1
|
Chen H, Guo L. Exercise in Diabetic Cardiomyopathy: Its Protective Effects and Molecular Mechanism. Int J Mol Sci 2025; 26:1465. [PMID: 40003929 PMCID: PMC11855851 DOI: 10.3390/ijms26041465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the cardiovascular complications of diabetes, characterized by the development of ventricular systolic and diastolic dysfunction due to factors such as inflammation, oxidative stress, fibrosis, and disordered glucose metabolism. As a sustainable therapeutic approach, exercise has been reported in numerous studies to regulate blood glucose and improve abnormal energy metabolism through various mechanisms, thereby ameliorating left ventricular diastolic dysfunction and mitigating DCM. This review summarizes the positive impacts of exercise on DCM and explores its underlying molecular mechanisms, providing new insights and paving the way for the development of tailored exercise programs for the prophylaxis and therapy of DCM.
Collapse
Affiliation(s)
- Humin Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China;
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
3
|
Wang B, Jiang T, Qi Y, Luo S, Xia Y, Lang B, Zhang B, Zheng S. AGE-RAGE Axis and Cardiovascular Diseases: Pathophysiologic Mechanisms and Prospects for Clinical Applications. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07639-0. [PMID: 39499399 DOI: 10.1007/s10557-024-07639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Advanced glycation end products (AGE), a diverse array of molecules generated through non-enzymatic glycosylation, in conjunction with the receptor of advanced glycation end products (RAGE), play a crucial role in the pathogenesis of diabetes and its associated complications. Recent studies have revealed that the AGE-RAGE axis potentially accelerated the progression of cardiovascular diseases, including heart failure, atherosclerosis, myocarditis, pulmonary hypertension, hypertension, arrhythmia, and other related conditions. The AGE-RAGE axis is intricately involved in the initiation and progression of cardiovascular diseases, independently of its engagement in diabetes. The mechanisms include oxidative stress, inflammation, alterations in autophagy flux, and mitochondrial dysfunction. Conversely, inhibition of AGE production, disruption of the binding between RAGE and its ligands, or silencing of RAGE expression could effectively impair the function of AGE-RAGE axis, thereby delaying or ameliorating the aforementioned diseases. AGE and the soluble receptor for advanced glycation end products (sRAGE) have the potential to be novel predictors of cardiovascular diseases. In this review, we provide an in-depth overview towards the biosynthetic pathway of AGE and elucidate the pathophysiological implications in various cardiovascular diseases. Furthermore, we delve into the profound role of RAGE in cardiovascular diseases, offering novel insights for further exploration of the AGE-RAGE axis and potential strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Bijian Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Taidou Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Yaoyu Qi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Sha Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Ying Xia
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Binyan Lang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Bolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China
| | - Shuzhan Zheng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, No.25, Taiping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Hastings MH, Castro C, Freeman R, Abdul Kadir A, Lerchenmüller C, Li H, Rhee J, Roh JD, Roh K, Singh AP, Wu C, Xia P, Zhou Q, Xiao J, Rosenzweig A. Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic Transl Sci 2024; 9:535-552. [PMID: 38680954 PMCID: PMC11055208 DOI: 10.1016/j.jacbts.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 05/01/2024]
Abstract
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Margaret H. Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Claire Castro
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Freeman
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Azrul Abdul Kadir
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason D. Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kangsan Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anand P. Singh
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Wu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Peng Xia
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiulian Zhou
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zhang X, Chen X, Li S, Gao M, Han P, Cao L, Gao J, Tao Q, Zhai J, Liang D, Qin L, Guo Q. Association Between Advanced Glycation End Products and Sarcopenia: The Mediating Role of Osteoporosis. J Clin Endocrinol Metab 2024; 109:e1105-e1116. [PMID: 37925684 PMCID: PMC10876396 DOI: 10.1210/clinem/dgad640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
CONTEXT Advanced glycation end products (AGEs) are a group of molecules formed through nonenzymatic reactions. These compounds are associated with several age-related diseases, including sarcopenia and osteoporosis. OBJECTIVE This work aimed to investigate the relationships between AGEs, osteoporosis, and sarcopenia in community-dwelling older adults. METHODS This cross-sectional study included 1991 older adults aged 72.37 ± 5.90 years from China. AGE levels were measured by the AGE Reader device. Bone mineral density was assessed using dual-energy X-ray absorptiometry, and osteoporosis was diagnosed based on a T score of less than -2.5. Sarcopenia was defined as loss of muscle mass plus loss of muscle strength and/or reduced physical performance. Presarcopenia was defined as low muscle mass with normal muscle strength and normal physical performance. RESULTS The prevalence of sarcopenia was 18.5%, and that of osteoporosis was 40.5%. Compared to the lowest AGE quartile, the highest AGE quartile showed a significant association with sarcopenia (odds ratio [OR] 2.42; 95% CI, 1.60-3.66) (P for trend <.001), but not with presarcopenia. Per-SD increase in AGE was associated with higher odds of sarcopenia (OR 1.44; 95% CI, 1.26-1.66). Additionally, in the mediation analysis, when AGEs were treated as a continuous variable (the mediation effect is denoted by Za*Zb = 18.81; 95% CI, 8.07-32.32]-the 95% CI does not contain zero, representing a significant mediating effect) or a categorical variable (the mediating effect is expressed as Zmediation = 3.01 > 1.96, which represents a significant mediating effect), osteoporosis played a partial mediating role in the association between AGEs and sarcopenia. CONCLUSION Elevated AGEs are associated with sarcopenia but not with presarcopenia. This association was partially mediated by osteoporosis.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China
| | - Xiaoyu Chen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shengjie Li
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China
| | - Mengze Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China
| | - Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Liou Cao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jing Gao
- General Practice Clinic, Pujiang Community Health Service Center in Minhang District, Shanghai 201112, China
| | - Qiongying Tao
- Jiading Subdistrict Community Health Center, Shanghai 201899, China
| | - Jiayi Zhai
- Jiading Subdistrict Community Health Center, Shanghai 201899, China
| | - Dongyu Liang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Li Qin
- Department of General Medicine, Jiading Subdistrict Community Health Center, Shanghai 201899, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| |
Collapse
|
6
|
D’Haese S, Claes L, de Laat I, Van Campenhout S, Deluyker D, Heeren E, Haesen S, Lambrichts I, Wouters K, Schalkwijk CG, Hansen D, Eijnde BO, Bito V. Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients 2024; 16:431. [PMID: 38337716 PMCID: PMC10856993 DOI: 10.3390/nu16030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Endurance exercise training is a promising cardioprotective strategy in type 2 diabetes mellitus (T2DM), but the impact of its intensity is not clear. We aimed to investigate whether and how isocaloric moderate-intensity exercise training (MIT) and high-intensity interval exercise training (HIIT) could prevent the adverse cardiac remodeling and dysfunction that develop T2DM in rats. Male rats received a Western diet (WD) to induce T2DM and underwent a sedentary lifestyle (n = 7), MIT (n = 7) or HIIT (n = 8). Insulin resistance was defined as the HOMA-IR value. Cardiac function was assessed with left ventricular (LV) echocardiography and invasive hemodynamics. A qPCR and histology of LV tissue unraveled underlying mechanisms. We found that MIT and HIIT halted T2DM development compared to in sedentary WD rats (p < 0.05). Both interventions prevented increases in LV end-systolic pressure, wall thickness and interstitial collagen content (p < 0.05). In LV tissue, HIIT tended to upregulate the gene expression of an ROS-generating enzyme (NOX4), while both modalities increased proinflammatory macrophage markers and cytokines (CD86, TNF-α, IL-1β; p < 0.05). HIIT promoted antioxidant and dicarbonyl defense systems (SOD2, glyoxalase 1; p < 0.05) whereas MIT elevated anti-inflammatory macrophage marker expression (CD206, CD163; p < 0.01). We conclude that both MIT and HIIT limit WD-induced T2DM with diastolic dysfunction and pathological LV hypertrophy, possibly using different adaptive mechanisms.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Lisa Claes
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Iris de Laat
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Sven Van Campenhout
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Ellen Heeren
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Sibren Haesen
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Dominique Hansen
- UHasselt, Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Centre, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - BO Eijnde
- SMRc-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine & Life Sciences, Hasselt University, 3500 Diepenbeek, Belgium;
- Division of Sport Science, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| |
Collapse
|
7
|
D’Haese S, Verboven M, Evens L, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. Moderate- and High-Intensity Endurance Training Alleviate Diabetes-Induced Cardiac Dysfunction in Rats. Nutrients 2023; 15:3950. [PMID: 37764732 PMCID: PMC10535416 DOI: 10.3390/nu15183950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Exercise training is an encouraging approach to treat cardiac dysfunction in type 2 diabetes (T2DM), but the impact of its intensity is not understood. We aim to investigate whether and, if so, how moderate-intensity training (MIT) and high-intensity interval training (HIIT) alleviate adverse cardiac remodeling and dysfunction in rats with T2DM. Male rats received standard chow (n = 10) or Western diet (WD) to induce T2DM. Hereafter, WD rats were subjected to a 12-week sedentary lifestyle (n = 8), running MIT (n = 7) or HIIT (n = 7). Insulin resistance and glucose tolerance were assessed during the oral glucose tolerance test. Plasma advanced glycation end-products (AGEs) were evaluated. Echocardiography and hemodynamic measurements evaluated cardiac function. Underlying cardiac mechanisms were investigated by histology, western blot and colorimetry. We found that MIT and HIIT lowered insulin resistance and blood glucose levels compared to sedentary WD rats. MIT decreased harmful plasma AGE levels. In the heart, MIT and HIIT lowered end-diastolic pressure, left ventricular wall thickness and interstitial collagen deposition. Cardiac citrate synthase activity, mitochondrial oxidative capacity marker, raised after both exercise training modalities. We conclude that MIT and HIIT are effective in alleviating diastolic dysfunction and pathological cardiac remodeling in T2DM, by lowering fibrosis and optimizing mitochondrial capacity.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maxim Verboven
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Lize Evens
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| | - BO Eijnde
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
- UHasselt, SMRC Sports Medical Research Center, Agoralaan, 3590 Diepenbeek, Belgium
- Division of Sport Science, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Dominique Hansen
- UHasselt, REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.)
| |
Collapse
|
8
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
9
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Schmitt EE, McNair BD, Polson SM, Cook RF, Bruns DR. Mechanisms of Exercise-Induced Cardiac Remodeling Differ Between Young and Aged Hearts. Exerc Sport Sci Rev 2022; 50:137-144. [PMID: 35522248 PMCID: PMC9203913 DOI: 10.1249/jes.0000000000000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging induces physiological and molecular changes in the heart that increase the risk for heart disease. Several of these changes are targetable by exercise. We hypothesize that the mechanisms by which exercise improves cardiac function in the aged heart differ from those in the young exercised heart.
Collapse
Affiliation(s)
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Sydney M Polson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | | |
Collapse
|
11
|
Markiewicz E, Jerome J, Mammone T, Idowu OC. Anti-Glycation and Anti-Aging Properties of Resveratrol Derivatives in the in-vitro 3D Models of Human Skin. Clin Cosmet Investig Dermatol 2022; 15:911-927. [PMID: 35615726 PMCID: PMC9126233 DOI: 10.2147/ccid.s364538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 01/03/2023]
Abstract
Purpose Human skin undergoes modifications affecting its structural properties and barrier functions involved in protection against age-related damage. Glycation is a non-enzymatic reaction between macromolecules and sugars causing alterations to the elastic fibers and premature aging of the skin. Glycation can be prevented by a range of bioactive molecules; however, at present only a few of them are validated for inclusion in cosmetic products. There is also a demand for reproducible in-vitro assays demonstrating the anti-aging effect of compounds on the skin. This study aimed to define the potential targets for screening and validation of anti-glycation activity of novel cosmetic candidates from natural products and to provide a plausible mechanism for their anti-aging potential based on 3D skin models. Methods Dermal fibroblasts and 3D skin models were treated with glycation agent and topical applications of Resveratrol derivatives. The samples were analyzed for advanced glycation end products (AGEs) alongside an organization of elastic fibers and expression of proliferative, senescence, and oxidative stress markers by autofluorescence, immunocytochemistry and quantitative assays. Results Accumulation of AGEs in the 3D skin model is associated with reduced stratification of the epidermis and re-organization of the collagen in the upper, cell-dense layer of the dermis. Treatment of dermal fibroblasts with Resveratrol, OxyResveratrol, Piceatannol, and Triacetyl Resveratrol ameliorates the effects of glycation consistent with cellular aging. Subsequent topical application of the compounds in skin models results in a reduction in glycation-induced AGEs, an increase in collagen expression and a stratification of the epidermis. Conclusion Glycation could result in age-related alterations in the structural and cellular organizations of the superficial layers of the skin, which can be restored by Resveratrol derivatives, pointing to their promising capacities as bioactive ingredients in cosmetic products. Insight into the potential parameters affected by skin glycation could also serve as a reference for screening the bioactive molecules for cosmetic purposes.
Collapse
Affiliation(s)
- Ewa Markiewicz
- Hexis Lab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| | - Jaimie Jerome
- Estee Lauder Research Laboratories, Melville, NY, USA
| | | | - Olusola C Idowu
- Hexis Lab Limited, The Catalyst, Newcastle Helix, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Burke SK, Fenton AI, Konokhova Y, Hepple RT. Variation in muscle and neuromuscular junction morphology between atrophy-resistant and atrophy-prone muscles supports failed re-innervation in aging muscle atrophy. Exp Gerontol 2021; 156:111613. [PMID: 34740815 DOI: 10.1016/j.exger.2021.111613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
In advanced age, there is an accelerated decline in skeletal muscle mass that appears to be secondary to repeated cycles of denervation-reinnervation and eventually, failed reinnervation. However, whether variation in reinnervation capacity explains why some muscles are less vulnerable to age-related atrophy has not been addressed. In this study we examined changes in neuromuscular junction (NMJ) morphology, fiber cross-sectional area (CSA) and fiber type, accumulation of severely atrophied myofibers, and expression of a marker of denervation in four muscles that exhibit differences in the degree of age-related atrophy and which span the extremes of fiber type composition in 8 mo old (8 M) and 34 mo old (34 M) male Fischer 344 Brown Norway F1 hybrid rats. Aging muscle atrophy was most pronounced in the fast twitch gastrocnemius (Gas; 25%) and similar between extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscle (14-15%), whereas the slow-twitch adductor longus (AL) increased in mass by 21% between 8 M and 34 M (P < 0.05 for all). Only the Sol exhibited significant alterations in fiber type with aging, and there was a decrease in fiber CSA in the Gas, EDL, and Sol (P < 0.05) with aging that was not seen in the AL. Muscles that atrophied had an increased fraction of severely atrophic myofibers (P < 0.05), but this was not observed in the AL. The Gas and EDL both demonstrated a similar degree of age-related remodeling of pre- and post-synaptic NMJ components. On the other hand, pre- and post-synaptic morphology underwent greater changes with aging in the AL, and many of these same morphological variables were already greater in the Sol vs AL at 8 M, suggesting the Sol had already undergone substantial remodeling and may be nearing its adaptive limits. Consistent with this idea, analysis of NMJ morphology in Sol from 3 M rats exhibited similar values as 8 M AL, and the Sol demonstrated greater expression of the denervation marker neural cell adhesion molecule (NCAM) compared to the AL at 34 M. Collectively, our results are consistent with NMJ remodeling capacity being finite with aging and that maintained remodeling potential confers atrophy protection in aging skeletal muscle by reducing the degree of persistent denervation.
Collapse
Affiliation(s)
- Sarah K Burke
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew I Fenton
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Yana Konokhova
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Russell T Hepple
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Yeh CH, Chou YJ, Chu TK, Tsai TF. Rejuvenating the Aging Heart by Enhancing the Expression of the Cisd2 Prolongevity Gene. Int J Mol Sci 2021; 22:ijms222111487. [PMID: 34768917 PMCID: PMC8583758 DOI: 10.3390/ijms222111487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is the major risk factor for cardiovascular disease, which is the leading cause of mortality worldwide among aging populations. Cisd2 is a prolongevity gene that mediates lifespan in mammals. Previously, our investigations revealed that a persistently high level of Cisd2 expression in mice is able to prevent age-associated cardiac dysfunction. This study was designed to apply a genetic approach that induces cardiac-specific Cisd2 overexpression (Cisd2 icOE) at a late-life stage, namely a time point immediately preceding the onset of old age, and evaluate the translational potential of this approach. Several discoveries are pinpointed. Firstly, Cisd2 is downregulated in the aging heart. This decrease in Cisd2 leads to cardiac dysfunction and impairs electromechanical performance. Intriguingly, Cisd2 icOE prevents an exacerbation of age-associated electromechanical dysfunction. Secondly, Cisd2 icOE ameliorates cardiac fibrosis and improves the integrity of the intercalated discs, thereby reversing various structural abnormalities. Finally, Cisd2 icOE reverses the transcriptomic profile of the aging heart, changing it from an older-age pattern to a younger pattern. Intriguingly, Cisd2 icOE modulates a number of aging-related pathways, namely the sirtuin signaling, autophagy, and senescence pathways, to bring about rejuvenation of the heart as it enters old age. Our findings highlight Cisd2 as a novel molecular target for developing therapies targeting cardiac aging.
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli 350, Taiwan;
| | - Ting-Kuan Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-28267293
| |
Collapse
|
14
|
Pavlik G, Kováts T, Kneffel Z, Komka Z, Radák Z, Tóth M, Nemcsik J. Characteristics of the athlete's heart in aged hypertensive and normotensive subjects. J Sports Med Phys Fitness 2021; 62:990-996. [PMID: 34546024 DOI: 10.23736/s0022-4707.21.12699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Both hypertension and age-related impairment of the cardiac condition are known to be improved by regular physical training. As relatively few studies have been reported about the older, hypertensive patients, the aim of this study was to establish cardiac benefits of active lifestyle in these subjects. METHODS Two-dimensionally guided M-mode, Doppler- and tissue Doppler echocardiography was performed in 199 normo- and hypertensive, active and sedentary older (age>60 yrs.) men (111) and women (88). Results were compared either by ANOVA, or by Kruskall-Wallis test. RESULTS The left ventricular muscle index (LVMI), which is higher in young active than in sedentary persons, proved to be smaller in the active than sedentary older subjects: men normotensives: actives 83 vs. sedentary ones 98, hypertensives: actives 88 vs. sedentary ones 107, women normotensives: actives 77 vs. sedentary ones 89 g/m3. Diastolic function was better in the active groups demonstrated both by the ratio of the early to atrial peak blood flow velocities (men: normotensives: actives 1.03 vs. sedentary ones 0.76, women normotensives: actives 1.21 vs. sedentary ones 0.9, hypertensives: actives 1.04 vs. sedentary ones 0.88). The tissue Doppler results were also better in the active groups; the difference between the active and sedentary groups was more marked in the normotensive male groups than in the hypertensive ones. CONCLUSIONS Active lifestyle prevents age-related pathological LV hypertrophy, and attenuates the LV diastolic dysfunction.
Collapse
Affiliation(s)
- Gábor Pavlik
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary -
| | - Tímea Kováts
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary.,The Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Kneffel
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary
| | - Zsolt Komka
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary.,The Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Zsolt Radák
- Research Centre for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Mikós Tóth
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary
| | - János Nemcsik
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Barcellos N, Cechinel LR, de Meireles LCF, Lovatel GA, Bruch GE, Carregal VM, Massensini AR, Dalla Costa T, Pereira LO, Siqueira IR. Effects of exercise modalities on BDNF and IL-1β content in circulating total extracellular vesicles and particles obtained from aged rats. Exp Gerontol 2020; 142:111124. [DOI: 10.1016/j.exger.2020.111124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
|
16
|
Gioscia-Ryan RA, Clayton ZS, Fleenor BS, Eng JS, Johnson LC, Rossman MJ, Zigler MC, Evans TD, Seals DR. Late-life voluntary wheel running reverses age-related aortic stiffness in mice: a translational model for studying mechanisms of exercise-mediated arterial de-stiffening. GeroScience 2020; 43:423-432. [PMID: 32529594 PMCID: PMC8050175 DOI: 10.1007/s11357-020-00212-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 01/02/2023] Open
Abstract
Aortic stiffening, assessed as pulse-wave velocity (PWV), increases with age and is an important antecedent to, and independent predictor of, cardiovascular diseases (CVD) and other clinical disorders of aging. Aerobic exercise promotes lower levels of aortic stiffness in older adults, but the underlying mechanisms are incompletely understood, largely due to inherent challenges of mechanistic studies of large elastic arteries in humans. Voluntary wheel running (VWR) is distinct among experimental animal exercise paradigms in that it allows investigation of the physiologic effects of aerobic training without potential confounding influences of aversive molecular signaling related to forced exercise. In this study, we investigated whether VWR in mice may be a suitable model for mechanistic studies (i.e., "reverse translation") of the beneficial effects of exercise on arterial stiffness in humans. We found that 10 weeks of VWR in old mice (~ 28 months) reversed age-related elevations in aortic PWV assessed in vivo (Old VWR: 369 ± 19 vs. old sedentary: 439 ± 20 cm/s, P < 0.05). The de-stiffening effects of VWR were accompanied by normalization of age-related increases in ex vivo mechanical stiffness of aortic segments and aortic accumulation of collagen-I and advanced glycation end products, as well as lower levels of aortic superoxide and nitrotyrosine. Our results suggest that late-life VWR in mice recapitulates the aortic de-stiffening effects of exercise in humans and indicates important mechanistic roles for decreased oxidative stress and extracellular matrix remodeling. Therefore, VWR is a suitable model for further study of the mechanisms underlying beneficial effects of exercise on arterial stiffness.
Collapse
Affiliation(s)
- Rachel A. Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | | | - Jason S. Eng
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | - Lawrence C. Johnson
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | - Matthew J. Rossman
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | - Melanie C. Zigler
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | - Trent D. Evans
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309 USA
| |
Collapse
|
17
|
Abstract
Sedentary behavior and physical inactivity are among the leading modifiable risk factors worldwide for cardiovascular disease and all-cause mortality. The promotion of physical activity and exercise training (ET) leading to improved levels of cardiorespiratory fitness is needed in all age groups, race, and ethnicities and both sexes to prevent many chronic diseases, especially cardiovascular disease. In this state-of-the-art review, we discuss the negative impact of sedentary behavior and physical inactivity, as well as the beneficial effects of physical activity /ET and cardiorespiratory fitness for the prevention of chronic noncommunicable diseases, including cardiovascular disease. We review the prognostic utility of cardiorespiratory fitness compared with obesity and the metabolic syndrome, as well as the increase of physical activity /ET for patients with heart failure as a therapeutic strategy, and ET dosing. Greater efforts at preventing sedentary behavior and physical inactivity while promoting physical activity, ET, and cardiorespiratory fitness are needed throughout the healthcare system worldwide and particularly in the United States in which the burden of cardiometabolic diseases remains extremely high.
Collapse
Affiliation(s)
- Carl J Lavie
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Cemal Ozemek
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Salvatore Carbone
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Peter T Katzmarzyk
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| | - Steven N Blair
- From the John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA (C.J.L.)
| |
Collapse
|
18
|
de Meireles LCF, Galvão F, Walker DM, Cechinel LR, de Souza Grefenhagen ÁI, Andrade G, Palazzo RP, Lovatel GA, Basso CG, Nestler EJ, Siqueira IR. Exercise Modalities Improve Aversive Memory and Survival Rate in Aged Rats: Role of Hippocampal Epigenetic Modifications. Mol Neurobiol 2019; 56:8408-8419. [PMID: 31250382 PMCID: PMC6918477 DOI: 10.1007/s12035-019-01675-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/09/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the effects of aging and different exercise modalities on aversive memory and epigenetic landscapes at brain-derived neurotrophic factor, cFos, and DNA methyltransferase 3 alpha (Bdnf, cFos, and Dnmt3a, respectively) gene promoters in hippocampus of rats. Specifically, active epigenetic histone markers (H3K9ac, H3K4me3, and H4K8ac) and a repressive mark (H3K9me2) were evaluated. Adult and aged male Wistar rats (2 and 22 months old) were subjected to aerobic, acrobatic, resistance, or combined exercise modalities for 20 min, 3 times a week, during 12 weeks. Aging per se altered histone modifications at the promoters of Bdnf, cFos, and Dnmt3a. All exercise modalities improved both survival rate and aversive memory performance in aged animals (n = 7-10). Exercise altered hippocampal epigenetic marks in an age- and modality-dependent manner (n = 4-5). Aerobic and resistance modalities attenuated age-induced effects on hippocampal Bdnf promoter H3K4me3. Besides, exercise modalities which improved memory performance in aged rats were able to modify H3K9ac or H3K4me3 at the cFos promoter, which could increase gene transcription. Our results highlight biological mechanisms which support the efficacy of all tested exercise modalities attenuating memory deficits induced by aging.
Collapse
Affiliation(s)
| | - Fernando Galvão
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ágnis Iohana de Souza Grefenhagen
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Gisele Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberta Passos Palazzo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Agustini Lovatel
- Departamento de Fisioterapia, Universidade Federal de Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Carla Giovanna Basso
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Health Benefits of Endurance Training: Implications of the Brain-Derived Neurotrophic Factor-A Systematic Review. Neural Plast 2019; 2019:5413067. [PMID: 31341469 PMCID: PMC6613032 DOI: 10.1155/2019/5413067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/24/2019] [Indexed: 02/06/2023] Open
Abstract
This article presents a concept that wide expression of brain-derived neurotrophic factor (BDNF) and its receptors (TrkB) in the nervous tissue, evoked by regular endurance training (ET), can cause numerous motor and metabolic adaptations, which are beneficial for human health. The relationships between the training-evoked increase of endogenous BDNF and molecular and/or physiological adaptations in the nervous structures controlling both motor performance and homeostasis of the whole organism have been presented. Due to a very wide range of plastic changes that ET has exerted on various systems of the body, the improvement of motor skills and counteraction of the development of civilization diseases resulting from the posttraining increase of BDNF/TrkB levels have been discussed, as important for people, who undertake ET. Thus, this report presents the influence of endurance exercises on the (1) transformation of motoneuron properties, which are a final element of the motor pathways, (2) reduction of motor deficits evoked by Parkinson disease, and (3) prevention of the metabolic syndrome (MetS). This review suggests that the increase of posttraining levels of BDNF and its TrkB receptors causes simultaneous changes in the activity of the spinal cord, the substantia nigra, and the hypothalamic nuclei neurons, which are responsible for the alteration of the functional properties of motoneurons innervating the skeletal muscles, for the enhancement of dopamine release in the brain, and for the modulation of hormone levels involved in regulating the metabolic processes, responsively. Finally, training-evoked increase of the BDNF/TrkB leads to a change in a manner of regulation of skeletal muscles, causes a reduction of motor deficits observed in the Parkinson disease, and lowers weight, glucose level, and blood pressure, which accompany the MetS. Therefore, BDNF seems to be the molecular factor of pleiotropic activity, important in the modulation processes, underlying adaptations, which result from ET.
Collapse
|
20
|
Plasma matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs and aging and lifelong exercise adaptations in ventricular and arterial stiffness. Exp Gerontol 2019; 123:36-44. [PMID: 31095969 DOI: 10.1016/j.exger.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023]
Abstract
The age-associated increase in cardiac and central arterial stiffness is attenuated with lifelong (>25 years) endurance exercise in a dose-dependent manner. Remodelling of the extracellular matrix of cardiovascular structures may underpin these lifelong exercise adaptations in structural stiffness. The primary aim was to examine whether matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) levels are associated with aging and lifelong exercise-related changes in cardiac and central arterial stiffness. Plasma MMPs and TIMPs, left ventricular (LV) (LV stiffness constant) and central arterial stiffness (pulse wave velocity) were examined in healthy adults stratified into five groups based on age and lifelong weekly exercise frequency: (1) young sedentary adults (28-50 years), and older adults (>60 years) who had performed either: (a) sedentary (0-1 sessions/week), (b) casual (2-3 sessions/week), (c) committed (4-5 sessions/week) or (d) athletic (≥6 sessions/week) frequency of exercise. MMP-1 was significantly lower in young compared to older sedentary (p = 0.049). Except for TIMP-2 (p = 0.018 versus committed) and the ratio of MMP-2/TIMP-4 (p = 0.047 versus committed), MMP and TIMP expression was not significantly different in lifelong exercise groups (≥casual) compared to the older sedentary group. MMP-1, -3 had a weak positive relationship with central PWV (r = 0.17-0.25, p ≤ 0.050) but there were no significant relationships between MMPs or TIMPs and LV stiffness constant (p ≥ 0.148). In conclusion, there was not a clear or consistent difference in plasma MMPs and TIMPs with lifelong exercise dose despite exhibiting lower cardiovascular stiffness at the highest exercise levels.
Collapse
|
21
|
James G, Klyne DM, Millecamps M, Stone LS, Hodges PW. ISSLS Prize in Basic science 2019: Physical activity attenuates fibrotic alterations to the multifidus muscle associated with intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:893-904. [PMID: 30737621 DOI: 10.1007/s00586-019-05902-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic low back pain causes structural remodelling and inflammation in the multifidus muscle. Collagen expression is increased in the multifidus of humans with lumbar disc degeneration. However, the extent and mechanisms underlying the increased fibrotic activity in the multifidus are unknown. Physical activity reduces local inflammation that precedes multifidus fibrosis during intervertebral disc degeneration (IDD), but its effect on amelioration of fibrosis is unknown. This study aimed to assess the development of fibrosis and its underlying genetic network during IDD and the impact of physical activity. METHODS Wild-type and SPARC-null mice were either sedentary or housed with a running wheel, to allow voluntary physical activity. At 12 months of age, IDD was assessed with MRI, and multifidus muscle samples were harvested from L2 to L6. In SPARC-null mice, the L1/2 and L3/4 discs had low and high levels of IDD, respectively. Thus, multifidus samples from L2 and L4 were allocated to low- and high-IDD groups compared to assess the effects of IDD and physical activity on connective tissue and fibrotic genes. RESULTS High IDD was associated with greater connective tissue thickness and dysregulation of collagen-III, fibronectin, CTGF, substance P, TIMP1 and TIMP2 in the multifidus muscle. Physical activity attenuated the IDD-dependent increased connective tissue thickness and reduced the expression of collagen-I, fibronectin, CTGF, substance P, MMP2 and TIMP2 in SPARC-null animals and wild-type mice. Collagen-III and TIMP1 were only reduced in wild-type animals. CONCLUSIONS These data reveal the fibrotic networks that promote fibrosis in the multifidus muscle during chronic IDD. Furthermore, physical activity is shown to reduce fibrosis and regulate the fibrotic gene network. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- G James
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - D M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M Millecamps
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - L S Stone
- Alan Edwards Centre for Research on Pain, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - P W Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
22
|
Ma N, Liu HM, Xia T, Liu JD, Wang XZ. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide. Can J Physiol Pharmacol 2018; 96:902-908. [PMID: 29862831 DOI: 10.1139/cjpp-2018-0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Age-related fibrosis is attenuated by aerobic exercise; however, little is known concerning the underlying molecular mechanism. To address this question, aged rats were given moderate-intensity exercise for 12 weeks. After exercise in aged rats, hydrogen sulfide levels in plasma and heart increased 39.8% and 90.9%, respectively. Exercise upregulated expression of cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in heart of aged rats. Furthermore, aged rats were given moderate-intensity exercise for 12 weeks or treated with NaHS (intraperitoneal injection of 0.1 mL/kg per day of 0.28 mol/L NaHS). After exercise in aged rats, Masson-trichrome staining area decreased 34.8% and myocardial hydroxyproline levels decreased 29.6%. Exercise downregulated expression of collagen-I and α- smooth muscle actin in heart of aged rats. Exercise in aged rats reduced malondialdehyde levels in plasma and heart and 3-nitrotyrosine in heart. Exercise in aged rats reduced mRNA and protein expression of C/EBP homologous protein, glucose regulated protein 78, and X-box protein 1. Exercise also reduced mRNA and protein expression of interleukin 6 and monocyte chemotactic protein 1and suppressed activation of c-Jun N-terminal kinase in aging heart. Similar effects were demonstrated in aged rats treated with NaHS. Collectively, exercise restored bioavailability of hydrogen sulfide in the heart of aged rats, which partly explained the benefits of exercise against myocardial fibrosis of aged population.
Collapse
Affiliation(s)
- Ning Ma
- a School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hong-Mei Liu
- b Yunnan College of Business Management, Kunming, Yunnan, China
| | - Ting Xia
- c Department of Critical Care Medicine, Weinan First Hospital, Weinan, Shaanxi, China
| | - Jian-Dong Liu
- d Department of Gastroenterology, The Third People's Hospital of Datong, Datong, Shanxi, China
| | - Xiao-Ze Wang
- e Department of General Surgery, Yuquan Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC, Zernicke RF, Hart DA. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front Physiol 2018; 9:112. [PMID: 29527173 PMCID: PMC5829464 DOI: 10.3389/fphys.2018.00112] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/05/2018] [Indexed: 01/14/2023] Open
Abstract
Inflammation can arise in response to a variety of stimuli, including infectious agents, tissue injury, autoimmune diseases, and obesity. Some of these responses are acute and resolve, while others become chronic and exert a sustained impact on the host, systemically, or locally. Obesity is now recognized as a chronic low-grade, systemic inflammatory state that predisposes to other chronic conditions including metabolic syndrome (MetS). Although obesity has received considerable attention regarding its pathophysiological link to chronic cardiovascular conditions and type 2 diabetes, the musculoskeletal (MSK) complications (i.e., muscle, bone, tendon, and joints) that result from obesity-associated metabolic disturbances are less frequently interrogated. As musculoskeletal diseases can lead to the worsening of MetS, this underscores the imminent need to understand the cause and effect relations between the two, and the convergence between inflammatory pathways that contribute to MSK damage. Muscle mass is a key predictor of longevity in older adults, and obesity-induced sarcopenia is a significant risk factor for adverse health outcomes. Muscle is highly plastic, undergoes regular remodeling, and is responsible for the majority of total body glucose utilization, which when impaired leads to insulin resistance. Furthermore, impaired muscle integrity, defined as persistent muscle loss, intramuscular lipid accumulation, or connective tissue deposition, is a hallmark of metabolic dysfunction. In fact, many common inflammatory pathways have been implicated in the pathogenesis of the interrelated tissues of the musculoskeletal system (e.g., tendinopathy, osteoporosis, and osteoarthritis). Despite these similarities, these diseases are rarely evaluated in a comprehensive manner. The aim of this review is to summarize the common pathways that lead to musculoskeletal damage and disease that result from and contribute to MetS. We propose the overarching hypothesis that there is a central role for muscle damage with chronic exposure to an obesity-inducing diet. The inflammatory consequence of diet and muscle dysregulation can result in dysregulated tissue repair and an imbalance toward negative adaptation, resulting in regulatory failure and other musculoskeletal tissue damage. The commonalities support the conclusion that musculoskeletal pathology with MetS should be evaluated in a comprehensive and integrated manner to understand risk for other MSK-related conditions. Implications for conservative management strategies to regulate MetS are discussed, as are future research opportunities.
Collapse
Affiliation(s)
- Kelsey H. Collins
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Graham Z. MacDonald
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Raylene A. Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline L. Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- CAPES Foundation, Brasilia, Brazil
| | - Ian C. Smith
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Ronald F. Zernicke
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Departments of Orthopaedic Surgery and Biomedical Engineering, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Family Practice, The Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
- Alberta Health Services Bone and Joint Health Strategic Clinical Network, Calgary, AB, Canada
| |
Collapse
|
24
|
Tanoorsaz S, Behpoor N, Tadibi V. Changes in Cardiac Levels of Caspase-8, Bcl-2 and NT-proBNP Following 4 Weeks of Aerobic Exercise in Diabetic Rats. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Cardiac apoptosis is one of the most important cardiovascular complications of diabetes. We aimed to investigate the changes of caspase-8, Bcl-2, and N-terminal pro B-type natriuretic peptide (NT-proBNP) in cardiac tissue after 4 weeks of aerobic exercise in male rats with diabetes. Methods: Forty adult male rats were randomly allocated to healthy control, diabetes, control + exercise and exercise + diabetes groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) solution (55 mg/kg). Two weeks after injection, fasting blood glucose levels were measured. After the induction of diabetes, the exercise program was performed for 4 weeks (5 sessions per week) at a speed of 15 to 18 m/min for 25 to 44 minutes. Forty-eight hours after the last training session, the subjects were anesthetized and the heart muscle was removed. Caspase-8, Bcl-2 and NT-proBNP levels were measured by ELISA method. Results: The induction of diabetes in the control group resulted in a significant increase in caspase-8, and NT-proBNP levels while an insignificant increase was observed for Bcl-2 levels (P<0.05). In non-diabetic groups, exercise caused no changes in caspase-8, NT-proBNP and Bcl-2 (P<0.05). Exercise in diabetic groups significantly decreased NT-proBNP while no changes were observed in caspase-8 and Bcl-2 (P<0.05). Conclusion: Our findings showed that diabetes increases the pro-apoptotic and anti-apoptotic agent. In addition, 4 weeks of regular aerobic exercises can be used as a non-pharmacological strategy to reduce the complications of apoptosis in diabetic cardiomyocytes.
Collapse
Affiliation(s)
- Saeid Tanoorsaz
- Ph.D Student in Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Naser Behpoor
- Assistant Professor of Exercise Medicine, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Vahid Tadibi
- Associate Professor of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
25
|
Liu X, Platt C, Rosenzweig A. The Role of MicroRNAs in the Cardiac Response to Exercise. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029850. [PMID: 28389519 DOI: 10.1101/cshperspect.a029850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncoding microRNAs (miRNAs) have emerged as central regulators of cardiac biology, modulating cardiac development and the response to pathological stress in disease. Although less well developed, emerging evidence suggests miRNAs are likely also important in the heart's response to the physiological stress of exercise. Given the well-recognized cardiovascular benefits of exercise, elucidating the contribution of miRNAs to this response has the potential not only to reveal novel aspects of cardiovascular biology but also to identify new targets for therapeutic intervention that may complement those discovered through studies of diseased hearts. Here, we first provide an overview of the cardiovascular effects of exercise as well as some of the major protein signaling mechanisms contributing to these effects. We then review the evidence that both cardiac and circulating miRNAs are dynamically regulated by exercise and regulate these mechanisms and phenotypes.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Colin Platt
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Anthony Rosenzweig
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Mahmoud AM. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:207-230. [PMID: 29022265 DOI: 10.1007/978-981-10-4307-9_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Kim CS, Park S, Kim J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J Exerc Nutrition Biochem 2017; 21:55-61. [PMID: 29036767 PMCID: PMC5643203 DOI: 10.20463/jenb.2017.0027] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 01/12/2023] Open
Abstract
[Purpose] Advanced glycation end products (AGEs) are non-enzymatic modifications of proteins or lipids after exposure to sugars. In this review, the glycation process and AGEs are introduced, and the harmful effects of AGEs in the aging process are discussed. [Methods] Results from human and animal studies examining the mechanisms and effects of AGEs are considered. In addition, publications addressing means to attenuate glycation stress through AGE inhibitors or physical exercise are reviewed. [Results] AGEs form in hyperglycemic conditions and/or the natural process of aging. Numerous publications have demonstrated acceleration of the aging process by AGEs. Exogenous AGEs in dietary foods also trigger organ dysfunction and tissue aging. Various herbal supplements or regular physical exercise have beneficial effects on glycemic control and oxidative stress with a consequent reduction of AGE accumulation during aging. [Conclusion] The inhibition of AGE formation and accumulation in tissues can lead to an increase in lifespan.
Collapse
Affiliation(s)
- Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sok Park
- Department of Sports Leadership, Kwangwoon University, Seoul, Republic of Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
28
|
Guzzoni V, Marqueti RDC, Durigan JLQ, Faustino de Carvalho H, Lino RLB, Mekaro MS, Costa Santos TO, Mecawi AS, Rodrigues JA, Hord JM, Lawler JM, Davel AP, Selistre-de-Araújo HS. Reduced collagen accumulation and augmented MMP-2 activity in left ventricle of old rats submitted to high-intensity resistance training. J Appl Physiol (1985) 2017; 123:655-663. [PMID: 28684598 DOI: 10.1152/japplphysiol.01090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 01/09/2023] Open
Abstract
Progressive fibrosis is a hallmark of the aging heart. Age-related fibrosis is modulated by endurance exercise training; however, little is known concerning the influence of resistance training (RT). Therefore we investigated the chronic effects of high-intensity RT on age-associated alterations of left ventricle (LV) structure, collagen content, matrix metalloproteinase-2 (MMP-2), and extracellular matrix-related gene expression, including transforming growth factor-β (TGF-β). Young adult (3 mo) and aged (21 mo) male Wistar rats were submitted to a RT protocol (ladder climbing with 65, 85, 95, and 100% load), three times a week for 12 wk. Forty-eight hours posttraining, arterial systolic and diastolic pressure, LV end-diastolic pressure (LVEDP) and dP/dt were recorded. LV morphology, collagen deposition, and gene expression of type I (COL-I) and type III (COL-III) collagen, MMP-2, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TGF-β1 were analyzed by quantitative reverse transcriptase-PCR. MMP-2 content was assessed by zymography. Increased collagen deposition was observed in LV from aged rats. These parameters were modulated by RT and were associated with increased MMP-2 activity and decreased COL-I, TGF-β1, and TIMP-1 mRNA content. Despite the effect of RT on collagen accumulation, there was no improvement on LVEDP and maximal negative LV dP/dt of aged rats. Cardiomyocyte diameter was preserved in all experimental conditions. In conclusion, RT attenuated age-associated collagen accumulation, concomitant to the increase in MMP-2 activity and decreased expression of COL-I, TGF-β1, and TIMP-1 in LV, illustrating a cardioprotective effect of RT on ventricular structure and function.NEW & NOTEWORTHY We demonstrated the beneficial resistance-training effect against age-related left ventricle collagen accumulation in the left ventricle, which was associated with decreased type I collagen (COL-I), transforming growth factor-β1 (TGF-β1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) gene expression and matrix metalloproteinase-2 (MMP-2) activity. Our findings suggest for the first time the potential effects of resistance training in modulating collagen accumulation and possibly fibrosis in the aging heart.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil;
| | | | | | | | | | - Marcelo S Mekaro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | | | - André Souza Mecawi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; and
| | - José Antunes Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; and
| | - Jeffrey M Hord
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Jonh M Lawler
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Ana Paula Davel
- Institute of Biology, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
29
|
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med 2017; 13:384-404. [PMID: 31285723 DOI: 10.1177/1559827617708991] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Advanced glycation end products (AGEs) are a family of compounds of diverse chemical nature that are the products of nonenzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs bind to one or more of their multiple receptors (RAGE) found on a variety of cell types and elicit an array of biologic responses. In this review, we have summarized the data on the nature of AGEs and issues associated with their measurements, their receptors, and changes in their expression under different physiologic and disease states. Last, we have used this information to prescribe lifestyle choices to modulate AGE-RAGE cycle for better health.
Collapse
Affiliation(s)
- Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Kathleen E Davis
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| |
Collapse
|
30
|
Abstract
While the socioeconomic and environmental factors associated with cancer disparity have been well documented, the contribution of biological factors is an emerging field of research. Established disparity factors such as low income, poor diet, drinking alcohol, smoking, and a sedentary lifestyle may have molecular effects on the inherent biological makeup of the tumor itself, possibly altering cell signaling events and gene expression profiles to profoundly alter tumor development and progression. Our understanding of the molecular and biological consequences of poor lifestyle is lacking, but such information may significantly change how we approach goals to reduce cancer incidence and mortality rates within minority populations. In this review, we will summarize the biological, socioeconomic, and environmental associations between a group of reactive metabolites known as advanced glycation end-products (AGEs) and cancer health disparity. Due to their links with lifestyle and the activation of disease-associated pathways, AGEs may represent both a biological consequence and a bio-behavioral indicator of poor lifestyle which may be targeted within specific populations to reduce disparities in cancer incidence and mortality.
Collapse
Affiliation(s)
- D P Turner
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
31
|
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev 2016; 160:1-18. [PMID: 27671971 DOI: 10.1016/j.mad.2016.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/30/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Vast evidence supports the view that glycation of proteins is one of the main factors contributing to aging and is an important element of etiopathology of age-related diseases, especially type 2 diabetes mellitus, cataract and neurodegenerative diseases. Counteracting glycation can therefore be a means of increasing both the lifespan and healthspan. In this review, accumulation of glycation products during aging is presented, pathophysiological effects of glycation are discussed and ways of attenuation of the effects of glycation are described, concentrating on prevention of glycation. The effects of glycation and glycation inhibitors on the course of selected age-related diseases, such as Alzheimer's disease, Parkinson's disease and cataract are also reviewed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland.
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
32
|
Hepple RT. Impact of aging on mitochondrial function in cardiac and skeletal muscle. Free Radic Biol Med 2016; 98:177-186. [PMID: 27033952 DOI: 10.1016/j.freeradbiomed.2016.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/12/2016] [Indexed: 12/13/2022]
Abstract
Both skeletal muscle and cardiac muscle are subject to marked structural and functional impairment with aging and these changes contribute to the reduced capacity for exercise as we age. Since mitochondria are involved in multiple aspects of cellular homeostasis including energetics, reactive oxygen species signaling, and regulation of intrinsic apoptotic pathways, defects in this organelle are frequently implicated in the deterioration of skeletal and cardiac muscle with aging. On this basis, the purpose of this review is to evaluate the evidence that aging causes dysfunction in mitochondria in striated muscle with a view towards drawing conclusions about the potential of these changes to contribute to the deterioration seen in striated muscle with aging. As will be shown, impairment in respiration and reactive oxygen species emission with aging are highly variable between studies and seem to be largely a consequence of physical inactivity. On the other hand, both skeletal and cardiac muscle mitochondria are more susceptible to permeability transition and this seems a likely cause of the increased recruitment of mitochondrial-mediated pathways of apoptosis seen in striated muscle. The review concludes by examining the role of degeneration of mitochondrial DNA versus impaired mitochondrial quality control mechanisms in the accumulation of mitochondria that are sensitized to permeability transition, whereby the latter mechanism is favored as the most likely cause.
Collapse
Affiliation(s)
- R T Hepple
- Department of Kinesiology, Centre for Translational Biology, McGill University Health Center, Canada; Meakins Christie Laboratories, Canada; Department of Medicine, McGill University, Canada
| |
Collapse
|
33
|
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res 2016; 118:279-95. [PMID: 26838314 DOI: 10.1161/circresaha.115.305250] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population.
Collapse
Affiliation(s)
- Jason Roh
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Rhee
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Vinita Chaudhari
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anthony Rosenzweig
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
34
|
Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
35
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
36
|
Felix ACS, Dutra SGV, Tezini GCSV, Simões MV, de Souza HCD. Aerobic physical training increases contractile response and reduces cardiac fibrosis in rats subjected to early ovarian hormone deprivation. J Appl Physiol (1985) 2015; 118:1276-85. [DOI: 10.1152/japplphysiol.00483.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of early ovarian hormone deprivation on the heart and the role of physical training in this condition using different approaches: cardiac autonomic tone, contractility, morphology and function, and cardiac fibrosis. Female Wistar rats ( n = 48) were assigned into two groups: ovariectomized (Ovx; 10-wk-old) and control rats (Sham; 10-wk-old). Each group was further divided into two subgroups, sedentary and trained (aerobic training by swimming for 10 wk). The sedentary groups showed similar cardiac autonomic tone values; however, only the Sham group had an increase in vagal participation for the determination of the basal heart rate after physical training. The contractile responses to cardiac β-agonists of the sedentary groups were similar, including an increased response to a β1-agonist (dobutamine) observed after physical training. The Ovx sedentary group presented changes in cardiac morphology, which resulted in decreases in the ejection fraction, fractional shortening, and cardiac index compared with the Sham sedentary group. Physical training did little to alter these findings. Moreover, histology analysis showed a significant increase in cardiac fibrosis in the sedentary Ovx group, which was not observed in the trained Ovx group. We conclude that early ovarian hormone deprivation in rats impairs autonomic control, cardiac morphology, and cardiac function and increases cardiac fibrosis; however, it does not affect the contractility induced by dobutamine and salbutamol. Furthermore, this model of physical training prevented an increase in fibrosis and promoted an increase in the cardiac contractile response but had little effect on cardiac autonomic control or morphological and functional parameters.
Collapse
Affiliation(s)
- Ana Carolina S. Felix
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Sabrina G. V. Dutra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Geisa C. S. V. Tezini
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Marcus Vinicius Simões
- Division of Cardiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hugo Celso Dutra de Souza
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| |
Collapse
|
37
|
Turner DP. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity. Cancer Res 2015; 75:1925-9. [PMID: 25920350 DOI: 10.1158/0008-5472.can-15-0169] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
Low income, poor diet, obesity, and a lack of exercise are interrelated lifestyle factors that can profoundly alter our biologic make up to increase cancer risk, growth, and development. We recently reported a potential mechanistic link between carbohydrate-derived metabolites and cancer, which may provide a biologic consequence of lifestyle that can directly affect tumor biology. Advanced glycation end-products (AGE) are reactive metabolites produced as a by-product of sugar metabolism. Failure to remove these highly reactive metabolites can lead to protein damage, aberrant cell signaling, increased stress responses, and decreased genetic fidelity. Critically, AGE accumulation is also directly affected by our lifestyle choices and shows a race-specific, tumor-dependent pattern of accumulation in cancer patients. This review will discuss the contribution of AGEs to the cancer phenotype, with a particular emphasis on their biologic links with the socioeconomic and environmental risk factors that drive cancer disparity. Given the potential benefits of lifestyle changes and the potential biologic role of AGEs in promoting cancer, opportunities exist for collaborations affecting basic, translational, epidemiologic, and cancer prevention initiatives.
Collapse
Affiliation(s)
- David P Turner
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
38
|
Costa ADF, Franco OL. Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol 2015; 230:959-68. [PMID: 25393239 DOI: 10.1002/jcp.24807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Several epidemiologic studies suggest that obesity and hypertension are associated with cardiac transcriptome modifications that could be further associated with inflammatory processes and cardiac hypertrophy. In this field, transcriptome studies have demonstrated their importance to elucidate physiologic mechanisms, pathways or genes involved in many biologic processes. Over the past decade, RNA microarray and RNA-seq analysis has become an essential component to examine metabolic pathways in terms of mRNA expression in cardiology. In this review, cardiac muscle gene expression in response to effects of obesity and hypertension will be focused, providing a broad view on cardiac transcriptome and physiologic and biochemical mechanisms involved in gene expression changes produced by these events, emphasizing the use of new technologies for gene expression analyses.
Collapse
Affiliation(s)
- Alzenira de Fátima Costa
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia Centro de Análises Proteômicas e Bioquímicas, Brasília, Brazil
| | | |
Collapse
|
39
|
Cowling RT. The aging heart, endothelin-1 and the senescent cardiac fibroblast. J Mol Cell Cardiol 2015; 81:12-4. [DOI: 10.1016/j.yjmcc.2015.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 01/27/2023]
|