1
|
Mizuno T, Matsui Y, Tomida M, Suzuki Y, Ishizuka S, Watanabe T, Takemura M, Nishita Y, Tange C, Shimokata H, Imagama S, Otsuka R, Arai H. Relationship between quadriceps muscle computed tomography measurement and motor function, muscle mass, and sarcopenia diagnosis. Front Endocrinol (Lausanne) 2023; 14:1259350. [PMID: 38047116 PMCID: PMC10693452 DOI: 10.3389/fendo.2023.1259350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Background The quadriceps muscle is one of the human body's largest and most clinically important muscles and is evaluated using mid-thigh computed tomography (CT); however, its relationship with motor function and sarcopenia remains unclear. Herein, we investigated the relationship between the cross-sectional area (CSA) of the quadriceps muscle, CT attenuation value (CTV), dual-energy X-ray absorptiometry muscle mass measurements, and muscle strength and motor function to evaluate the relationship between muscle mass loss and motor function decline, determine the diagnostic ability for sarcopenia, and confirm the usefulness of quadriceps muscle CT evaluation. Methods A total of 472 middle-aged and older community dwellers (254 men and 218 women) aged ≥40 years (mean age: 62.3 years) were included in this study. The quantity and quality of the quadriceps muscle were assessed using CSA and CTV (CSA×CTV) as a composite index multiplied by quality and quantity. Age-adjusted partial correlations by sex with eight motor functions (knee extension muscle strength, power, normal walking speed, fast walking speed, grip strength, sit-up ability, balance ability, and reaction time) were evaluated, including correction methods for height, weight, and body mass index (BMI). Further, the accuracy of sarcopenia diagnosis was evaluated using appendicular muscle mass with dual-energy X-ray absorptiometry measurements, grip strength, and walking speed as the gold standard, and receiver operating characteristic curves were plotted to evaluate diagnostic performance. Results In men, CSA and CSA×CTV were significantly associated with seven of the eight motor functions (p<0.05), excluding only balance ability. BMI-corrected CSA was significantly correlated with all eight motor functions in men and women (p<0.05). In the diagnosis of sarcopenia based on skeletal muscle index, CSA (area under the curve (AUC) 0.935) and CSA×CTV (AUC 0.936) and their correction by height (CSA/height (AUC 0.917) and CSA×CTV/height (AUC 0.920)) were highly accurate and useful for diagnosis in men but moderately accurate in women (CSA (AUC 0.809), CSA×CTV (AUC 0.824), CSA/height (AUC 0.799), CSA×CTV/height (AUC 0.814)). Conclusion The present results showed that a single CT image of the quadriceps muscle at the mid-thigh is useful for diagnosing sarcopenic changes, such as loss of muscle mass, muscle weakness, and muscle function.
Collapse
Affiliation(s)
- Takafumi Mizuno
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and GerontologyObu, Obu, Japan
| | - Yasumoto Matsui
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and GerontologyObu, Obu, Japan
| | - Makiko Tomida
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
- Graduate School of Humanities and Social Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuo Suzuki
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and GerontologyObu, Obu, Japan
- Faculty of Health Sciences, Department of Human Care Engineering, Nihon Fukushi University, Mihama, Japan
| | - Shinya Ishizuka
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Watanabe
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and GerontologyObu, Obu, Japan
| | - Marie Takemura
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and GerontologyObu, Obu, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
2
|
Huang XC, Huang YL, Guo YT, Li SY, Gao C, Chen JX, Ma JY, He B. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia. Exp Gerontol 2023; 183:112322. [PMID: 37929293 DOI: 10.1016/j.exger.2023.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Severe sarcopenia may result in severe disability. Early diagnosis is currently the key to enhancing the treatment of sarcopenia, and there is an urgent need for a highly sensitive and dependable tool to evaluate the course of early sarcopenia in clinical practice. This study aims to investigate longitudinally the early diagnosability of magnetic resonance imaging (MRI)-based fat infiltration and blood flow perfusion technology in sarcopenia progression. METHODS 48 Sprague-Dawley rats were randomly assigned into six groups that were based on different periods of dexamethasone (DEX) injection (0, 2, 4, 6, 8, 10 days). Multimodal MRI was scanned to assess muscle mass. Grip strength and swimming exhaustion time of rats were measured to assess muscle strength and function. Immunofluorescence staining for CD31 was employed to assess skeletal muscle capillary formation, and western blot was used to detect vascular endothelial growth factor-A (VEGF-A) and muscle ring finger-1 (MuRF-1) protein expression. Subsequently, we analyzed the correlation between imaging and histopathologic parameters. A receiver operating characteristic (ROC) analysis was conducted to assess the effectiveness of quantitative MRI parameters for discriminating diagnosis in both pre- and post-modeling of DEX-induced sarcopenic rats. RESULTS Significant differences were found in PDFF, R2* and T2 values on day 2 of DEX-induction compared to the control group, occurring prior to the MRI-CSA values and limb grip strength on day 6 of induction and swimming exhaustion time on day 8 of induction. There is a strong correlation between MRI-CSA with HE-CSA values (r = 0.67; p < 0.001), oil red O (ORO) area with PDFF (r = 0.67; p < 0.001), microvascular density (MVD) (r = -0.79; p < 0.001) and VEGF-A (r = -0.73; p < 0.001) with R2*, MuRF-1 with MRI-CSA (r = -0.82; p < 0.001). The AUC of PDFF, R2*, and T2 values used for modeling evaluation are 0.81, 0.93, and 0.98, respectively. CONCLUSION Imaging parameters PDFF, R2*, and T2 can be used to sensitively evaluate early pathological changes in sarcopenia. The successful construction of a sarcopenia rat model can be assessed when PDFF exceeds 1.25, R2* exceeds 53.85, and T2 exceeds 33.88.
Collapse
Affiliation(s)
- Xin-Chen Huang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Long Huang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Tong Guo
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si-Yu Li
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Chao Gao
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-Xin Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-Yao Ma
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo He
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Yamada Y, Yoshida T, Murakami H, Gando Y, Kawakami R, Ohno H, Tanisawa K, Konishi K, Tripette J, Kondo E, Nakagata T, Nanri H, Miyachi M. Body Cell Mass to Fat-Free Mass Ratio and Extra- to Intracellular Water Ratio Are Related to Maximal Oxygen Uptake. J Gerontol A Biol Sci Med Sci 2023; 78:1778-1784. [PMID: 37262316 DOI: 10.1093/gerona/glad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 06/03/2023] Open
Abstract
Fat-free mass (FFM) is a heterogeneous compartment comprising body cell mass (BCM), intracellular water (ICW), extracellular solids, and extracellular water (ECW). The BCM/FFM and ECW/ICW ratios vary among individuals and decrease with age. This study aimed to determine whether BCM/FFM and ECW/ICW ratios are predictors of maximal oxygen uptake (V̇̇O2peak) independently of age, sex, and objectively measured physical activity (PA). A total of 115 Japanese males and females, aged 55.3 ± 8.0 years (mean ± standard deviation), were included in the study. Anthropometry, explosive leg muscle power, and V̇̇O2peak were measured, and BCM, FFM, ICW, and ECW were estimated. Step count and PA were objectively measured using a triaxial accelerometer. Blood flow volume was assessed using ultrasonography. BCM and ICW were negatively correlated with age, whereas FFM and ECW were not significantly correlated with age. FFM, ICW/ECW, BCM/FFM, step counts, moderate and vigorous PA, and leg muscle power were positively correlated with V̇̇O2peak, even after adjusting for age and sex (p < .05). Multiple regression analysis indicated that either BCM/FFM or ECW/ICW, leg power, and objectively measured PA were associated with V̇̇O2peak independent of age, sex, and FFM. Blood flow volume was significantly correlated with ECW (p < .05), but not with BCM. The BCM/FFM and ECW/ICW ratios were significant predictors of V̇̇O2peak, independent of age, sex, FFM, leg power, and objectively measured PA.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tsukasa Yoshida
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuko Gando
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport Science, Surugadai University, Hanno, Saitama, Japan
| | - Ryoko Kawakami
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Hachioji, Tokyo, Japan
| | - Harumi Ohno
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Nutrition, Faculty of Health Care, Kiryu University, Gumma, Japan
| | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Food and Nutritional Sciences, Toyo University, Gumma, Japan
| | - Julien Tripette
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Center for Interdisciplinary AI and Data Science, Ochanomizu University, Bunkyo, Tokyo, Japan
| | - Emi Kondo
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takashi Nakagata
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| |
Collapse
|
4
|
Vasilevska Nikodinovska V, Ivanoski S. Sarcopenia, More Than Just Muscle Atrophy: Imaging Methods for the Assessment of Muscle Quantity and Quality. ROFO-FORTSCHR RONTG 2023; 195:777-789. [PMID: 37160148 DOI: 10.1055/a-2057-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Sarcopenia, a progressive reduction of muscle mass and function, is associated with adverse outcomes in the elderly. Sarcopenia and muscle atrophy are not equal processes. Low muscle strength in association with muscle quantity/quality reduction is currently the optimal method for assessing sarcopenia. There is a practical need for indirect measurement of muscle strength using state-of-the-art imaging techniques. METHODS The following provides a narrative, broad review of all current imaging techniques for evaluating muscles and identifying sarcopenia, including DEXA, CT, MRI, and high-resolution ultrasound, their main strengths, weaknesses, and possible solutions to problems regarding each technique. RESULTS AND CONCLUSION Well-recognized imaging methods for the assessment of muscle mass are explained, including evaluation with DEXA, CT, and MRI muscle quantity assessment, ultrasound evaluation of muscle thickness and CSA, and their correlations with established muscle mass calculation methods. A special focus is on imaging methods for muscle quality evaluation. Several innovative and promising techniques that are still in the research phase but show potential in the assessment of different properties of muscle quality, including MRI DIXON sequences, MRI spectroscopy, Diffusion Tensor Imaging, ultrasound echo intensity, ultrasound elastography, and speed-of-sound ultrasound imaging are briefly mentioned. KEY POINTS · Sarcopenia definition includes low muscle strength and low muscle quantity/quality.. · DEXA is a low-radiation method for whole-body composition measurement in a single image.. · CT has established cut-off values for muscle quality/quantity evaluation and sarcopenia diagnosis.. · MRI is the most sophisticated muscle quality assessment method capable of evaluating myosteatosis, myofibrosis, and microstructure.. · Ultrasound can evaluate muscle quality, including tissue architecture, and elasticity with excellent spatial resolution.. CITATION FORMAT · Vasilevska Nikodinovska V, Ivanoski S, . Sarcopenia, More Than Just Muscle Atrophy: Imaging Methods for the Assessment of Muscle Quantity and Quality. Fortschr Röntgenstr 2023; 195: 777 - 789.
Collapse
Affiliation(s)
| | - Slavcho Ivanoski
- Diagnostic Radiology, St. Erasmo Hospital, Ohrid, North Macedonia
| |
Collapse
|
5
|
Taniguchi M, Fukumoto Y, Yagi M, Hirono T, Yamagata M, Asayama A, Okada S, Nakai R, Kobayashi M, Ichihashi N. A higher intramuscular fat in vastus medialis is associated with functional disabilities and symptoms in early stage of knee osteoarthritis: a case-control study. Arthritis Res Ther 2023; 25:61. [PMID: 37060080 PMCID: PMC10103393 DOI: 10.1186/s13075-023-03048-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND The characteristics of muscle degeneration in individual quadriceps in early knee osteoarthritis (OA) and the association of muscle quantity and quality on knee dysfunction remain unclear. This study aimed to clarify the characteristics of muscle degeneration in individual quadriceps muscles in early knee OA and elucidate the association of muscle volume and intramuscular adipose tissue (intraMAT) with knee dysfunction, including functional disabilities, symptoms, and joint morphology. METHODS Fifty participants were categorized into early knee OA and healthy control groups. 3.0 T magnetic resonance imaging (MRI) using T1-weighted and Dixon methods and 3D SPACE in the thigh muscle and knee joint regions was performed. Quadriceps muscle volume, intraMAT, and whole-organ MRI score (WORMS) were assessed. The Knee Society Score (KSS) was used to evaluate functional disabilities and knee symptoms. Univariate analysis of variance was conducted with covariates to clarify the differences in muscle volume and intraMAT between the two groups. Multiple linear regression analyses were performed using the KSS function and symptom subcategories and WORMS as dependent variables and muscle volume, intraMAT, and the presence of early knee OA as independent variables, such as potential confounders. RESULTS The quadriceps intraMAT, especially in the vastus medialis (VM), was significantly higher in patients with early knee OA than in healthy controls. The VM intraMAT, not muscle volume, was significantly associated with KSS function [B = - 3.47; 95% confidence interval [CI], - 5.24 to - 1.71; p < 0.001] and symptom scores [B = - 0.63; 95% CI, - 1.09 to - 0.17; p = 0.008], but not with WORMS. CONCLUSION These findings suggest that higher VM intraMAT is characteristic of quadriceps muscle degeneration in early knee OA and its increase is associated with functional disabilities and symptoms.
Collapse
Affiliation(s)
- Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Yoshihiro Fukumoto
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Faculty of Rehabilitation, Kansai Medical University, Hirakata, Japan
| | - Masahide Yagi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- School of Health and Sport Science, Chukyo University, Aichi, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Faculty of Rehabilitation, Kansai Medical University, Hirakata, Japan
| | - Akihiro Asayama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Rehabilitation, Japanese Red Cross Nagahama Hospital, Shiga, Japan
| | - Shogo Okada
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryusuke Nakai
- Kyoto University Institute for the Future of Human Society, Kyoto, Japan
| | | | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53-Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
6
|
Alcalde-Estévez E, Sosa P, Asenjo-Bueno A, Plaza P, Valenzuela PL, Naves-Díaz M, Olmos G, López-Ongil S, Ruiz-Torres MP. Dietary phosphate restriction prevents the appearance of sarcopenia signs in old mice. J Cachexia Sarcopenia Muscle 2023; 14:1060-1074. [PMID: 36855841 PMCID: PMC10067497 DOI: 10.1002/jcsm.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Sarcopenia is defined by the progressive and generalized loss of muscle mass and function associated with aging. We have previously proposed that aging-related hyperphosphataemia is linked with the appearance of sarcopenia signs. Because there are not effective treatments to prevent sarcopenia, except for resistance exercise, we propose here to analyse whether the dietary restriction of phosphate could be a useful strategy to improve muscle function and structure in an animal model of aging. METHODS Five-month-old (young), 24-month-old (old) and 28-month-old (geriatric) male C57BL6 mice were used. Old and geriatric mice were divided into two groups, one fed with a standard diet (0.6% phosphate) and the other fed with a low-phosphate (low-P) diet (0.2% phosphate) for 3 or 7 months, respectively. A phosphate binder, Velphoro®, was also supplemented in a group of old mice, mixed with a standard milled diet for 3 months. Muscle mass was measured by the weight of gastrocnemius and tibial muscles, and quality by nuclear magnetic resonance imaging (NMRI) and histological staining assays. Muscle strength was measured by grip test and contractile properties of the tibialis muscle by electrical stimulation of the common peroneal nerve. Gait parameters were analysed during the spontaneous locomotion of the mice with footprinting. Orientation and motor coordination were evaluated using a static rod test. RESULTS Old mice fed with low-P diet showed reduced serum phosphate concentration (16.46 ± 0.77 mg/dL young; 21.24 ± 0.95 mg/dL old; 17.46 ± 0.82 mg/dL low-P diet). Old mice fed with low-P diet displayed 44% more mass in gastrocnemius muscles with respect to old mice (P = 0.004). NMRI revealed a significant reduction in T2 relaxation time (P = 0.014) and increased magnetization transfer (P = 0.045) and mean diffusivity (P = 0.045) in low-P diet-treated mice compared with their coetaneous. The hypophosphataemic diet increased the fibre size and reduced the fibrotic area by 52% in gastrocnemius muscle with respect to old mice (P = 0.002). Twitch force and tetanic force were significantly increased in old mice fed with the hypophosphataemic diet (P = 0.004 and P = 0.014, respectively). Physical performance was also improved, increasing gait speed by 30% (P = 0.032) and reducing transition time in the static rod by 55% (P = 0.012). Similar results were found when diet was supplemented with Velphoro®. CONCLUSIONS The dietary restriction of phosphate in old mice improves muscle quantity and quality, muscle strength and physical performance. Similar results were found using the phosphate binder Velphoro®, supporting the role of phosphate in the impairment of muscle structure and function that occurs during aging.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Sosa
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Fundación para la investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Ana Asenjo-Bueno
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación Clínica de Cáncer de Pulmón H120-CNIO, Madrid, Spain
| | - Pedro L Valenzuela
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Manuel Naves-Díaz
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gemma Olmos
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - María P Ruiz-Torres
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| |
Collapse
|
7
|
Pseudo-T2 mapping for normalization of T2-weighted prostate MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:573-585. [PMID: 35150363 PMCID: PMC9363383 DOI: 10.1007/s10334-022-01003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/22/2021] [Accepted: 01/23/2022] [Indexed: 01/04/2023]
Abstract
Objective Signal intensity normalization is necessary to reduce heterogeneity in T2-weighted (T2W) magnetic resonance imaging (MRI) for quantitative analysis of multicenter data. AutoRef is an automated dual-reference tissue normalization method that normalizes transversal prostate T2W MRI by creating a pseudo-T2 map. The aim of this study was to evaluate the accuracy of pseudo-T2s and multicenter standardization performance for AutoRef with three pairs of reference tissues: fat/muscle (AutoRefF), femoral head/muscle (AutoRefFH) and pelvic bone/muscle (AutoRefPB). Materials and methods T2s measured by multi-echo spin echo (MESE) were compared to AutoRef pseudo-T2s in the whole prostate (WP) and zones (PZ and TZ/CZ/AFS) for seven asymptomatic volunteers with a paired Wilcoxon signed-rank test. AutoRef normalization was assessed on T2W images from a multicenter evaluation set of 1186 prostate cancer patients. Performance was measured by inter-patient histogram intersections of voxel intensities in the WP before and after normalization in a selected subset of 80 cases. Results AutoRefFH pseudo-T2s best approached MESE T2s in the volunteer study, with no significant difference shown (WP: p = 0.30, TZ/CZ/AFS: p = 0.22, PZ: p = 0.69). All three AutoRef versions increased inter-patient histogram intersections in the multicenter dataset, with median histogram intersections of 0.505 (original data), 0.738 (AutoRefFH), 0.739 (AutoRefF) and 0.726 (AutoRefPB). Discussion All AutoRef versions reduced variation in the multicenter data. AutoRefFH pseudo-T2s were closest to experimentally measured T2s. Supplementary Information The online version contains supplementary material available at 10.1007/s10334-022-01003-9.
Collapse
|
8
|
Quercetin attenuates adipogenesis and fibrosis in human skeletal muscle. Biochem Biophys Res Commun 2022; 615:24-30. [DOI: 10.1016/j.bbrc.2022.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
|
9
|
Albayda J, Demonceau G, Carlier PG. Muscle imaging in myositis: MRI, US, and PET. Best Pract Res Clin Rheumatol 2022; 36:101765. [PMID: 35760742 DOI: 10.1016/j.berh.2022.101765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Imaging is an important tool in the evaluation of idiopathic inflammatory myopathies. It plays a role in diagnosis, assessment of disease activity and follow-up, and as a non-invasive biomarker. Among the different modalities, nuclear magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) may have the most clinical utility in myositis. MRI is currently the best modality to evaluate skeletal muscle and provides excellent characterization of muscle edema and fat replacement through the use of T1-weighted and T2-weighted fat suppressed/STIR sequences. Although MRI can be read qualitatively for the presence of abnormalities, a more quantitative approach using Dixon sequences and the generation of water T2 parametric maps would be preferable for follow-up. Newer protocols such as diffusion-weighted imaging, functional imaging measures, and spectroscopy may be of interest to provide further insights into myositis. Despite the advantages of MRI, image acquisition is relatively time-consuming, expensive, and not accessible to all patients. The use of US to evaluate skeletal muscle in myositis is gaining interest, especially in chronic disease, where fat replacement and fibrosis are detected readily by this modality. Although easily deployed at the bedside, it is heavily dependent on operator experience to recognize disease states. Further, systematic characterization of muscle edema by US is still needed. PET provides valuable information on muscle function at a cellular level. Fluorodeoxyglucose (FDG-PET) has been the most common application in myositis to detect pathologic uptake indicative of inflammation. The use of neurodegenerative markers is now also being utilized for inclusion body myositis. These different modalities may prove to be complementary methods for myositis evaluation.
Collapse
Affiliation(s)
- Jemima Albayda
- Division of Rheumatology, Johns Hopkins University, Baltimore, USA.
| | | | - Pierre G Carlier
- Université Paris-Saclay, CEA, DRF, Service Hospitalier Frederic Joliot, Orsay, France
| |
Collapse
|
10
|
Waterval NFJ, Meekes VL, Hooijmans MT, Froeling M, Jaspers RT, Oudeman J, Nederveen AJ, Brehm MA, Nollet F. The relationship between quantitative magnetic resonance imaging of the ankle plantar flexors, muscle function during walking and maximal strength in people with neuromuscular diseases. Clin Biomech (Bristol, Avon) 2022; 94:105609. [PMID: 35247697 DOI: 10.1016/j.clinbiomech.2022.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progression of plantar flexor weakness in neuromuscular diseases is usually monitored by muscle strength measurements, although they poorly relate to muscle function during walking. Pathophysiological changes such as intramuscular adipose tissue affect dynamic muscle function independent from isometric strength. Diffusion tensor imaging and T2 imaging are quantitative MRI measures reflecting muscular pathophysiological changes, and are therefore potential biomarkers to monitor plantar flexor functioning during walking in people with neuromuscular diseases. METHODS In fourteen individuals with plantar flexor weakness diffusion tensor imaging and T2 scans of the plantar flexors were obtained, and the diffusion indices fractional anisotropy and mean diffusivity calculated. With a dynamometer, maximal isometric plantar flexor strength was measured. 3D gait analysis was used to assess maximal ankle moment and power during walking. FINDINGS Fractional anisotropy, mean diffusivity and T2 relaxation time all moderately correlated with maximal plantar flexor strength (r > 0.512). Fractional anisotropy and mean diffusivity were not related with ankle moment or power (r < 0.288). T2 relaxation time was strongly related to ankle moment (r = -0.789) and ankle power (r = -0.798), and moderately related to maximal plantar flexor strength (r < 0.600). INTERPRETATION In conclusion, T2 relaxation time, indicative of multiple pathophysiological changes, was strongly related to plantar flexor function during walking, while fractional anisotropy and mean diffusivity, indicative of fiber size, only related to maximal plantar flexor strength. This indicates that these measures may be suitable to monitor muscle function and gain insights into the pathophysiological changes underlying a poor plantar flexor functioning during gait in people with neuromuscular diseases.
Collapse
Affiliation(s)
- N F J Waterval
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands.
| | - V L Meekes
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - M T Hooijmans
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - M Froeling
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Utrecht, the Netherlands
| | - R T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands
| | - J Oudeman
- University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Utrecht, the Netherlands
| | - A J Nederveen
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - M A Brehm
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - F Nollet
- Amsterdam UMC, University of Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Umehara T, Kaneguchi A, Kawakami W, Katayama N, Kito N. Association of muscle mass and quality with hand grip strength in elderly patients with heart failure. Heart Vessels 2022; 37:1380-1386. [PMID: 35233647 DOI: 10.1007/s00380-022-02046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
In patients with heart failure, it is unknown whether the extracellular water (ECW)/intracellular water (ICW) ratio is associated with muscle strength, and thus, it is not well understood whether poor muscle quality contributes to muscular weakness. This study examined the relationship among hand grip strength, skeletal muscle mass index (SMI), and upper limb ECW/ICW ratio in patients with heart failure. This study followed a cross-sectional design. Demographic data, medical information, and hand grip strength were collected. The SMI and ECW/ICW ratio were measured using bio-impedance analysis (BIA). Hierarchical multiple regression analysis was conducted to identify factors associated with hand grip strength. 51 patients with heart failure were analyzed for this study (mean age 84.58 ± 7.18). Hierarchical multiple regression analysis identified SMI as well as upper limb ECW/ICW ratio as factors associated with hand grip strength, independent of age, sex, body mass index, and Life Space Assessment scores. Standardized partial regression coefficients representing the magnitude of involvement of each independent variable were 0.33 and - 0.16. The coefficient of determination adjusted for degrees of freedom (R2), representing the contribution rate of the regression equation, was 0.830. We revealed that loss of hand grip strength in patients with heart failure is associated with not only with a decrease in skeletal muscle mass, but also with a decline in muscle quality, characterized by an increased upper limb ECW/ICW ratio. BIA is a simple and useful method to measure the ECW/ICW ratio, and in turn, the muscle quality, in patients with heart failure.
Collapse
Affiliation(s)
- Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Wataru Kawakami
- Department of Rehabilitation, Kure Kyosai Hospital, Nishichuo 2-3-28, Kure, Hiroshima, Japan
| | - Nobuhisa Katayama
- Department of Rehabilitation, Kure Kyosai Hospital, Nishichuo 2-3-28, Kure, Hiroshima, Japan
| | - Nobuhiro Kito
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
12
|
Trueb P, Getzmann JM, Ried E, Deininger-Czermak E, Garcia Schueler HI, Guggenberger R. Comparison of Muscle Fat Fraction Measurements in the Lower Spine Musculature with Non-Contrast-Enhanced CT and Different MR Imaging Sequences. Eur J Radiol 2022; 150:110260. [DOI: 10.1016/j.ejrad.2022.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
|
13
|
Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, Del Grande F, Sconfienza LM. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY) 2022; 47:3205-3216. [PMID: 34687326 PMCID: PMC8536908 DOI: 10.1007/s00261-021-03294-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
Sarcopenia is a progressive, generalized skeletal muscle disorder characterized by reduction of muscle mass and strength. It is associated with increased adverse outcomes including falls, fractures, physical disability, and mortality, particularly, in elderly patients. Nowadays, sarcopenia has become a specific imaging biomarker able to predict clinical outcomes of patients. Muscle fibre reduction has shown to be an unfavourable pre-operative predictive factor in patients with cancer, and is associated with worse clinical outcomes in terms of postoperative complications, morbidity, mortality, and lower tolerance of chemoradiation therapy. Several imaging modalities, including dual-energy X-ray absorptiometry, CT, MRI, and US can be used to estimate muscle mass and quality to reach the diagnosis of sarcopenia. This article reviews the clinical implications of sarcopenia, how this condition can be assessed through different imaging modalities, and future perspectives of imaging of sarcopenia.
Collapse
Affiliation(s)
- Vito Chianca
- Clinica di Radiologia EOC IIMSI, Lugano, Switzerland ,Ospedale Evangelico Betania, Napoli, Italy
| | - Domenico Albano
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milano, Italy ,grid.10776.370000 0004 1762 5517Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| | - Carmelo Messina
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Salvatore Gitto
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Gaetano Ruffo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | | | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy. .,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
14
|
Garibaldi M, Nicoletti T, Bucci E, Fionda L, Leonardi L, Morino S, Tufano L, Alfieri G, Lauletta A, Merlonghi G, Perna A, Rossi S, Ricci E, Tartaglione T, Petrucci A, Pennisi EM, Salvetti M, Cutter G, Díaz-Manera J, Silvestri G, Antonini G. Muscle MRI in Myotonic Dystrophy type 1 (DM1): refining muscle involvement and implications for clinical trials. Eur J Neurol 2021; 29:843-854. [PMID: 34753219 PMCID: PMC9299773 DOI: 10.1111/ene.15174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only few studies reported muscle imaging data on small cohorts of patients with Myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients, to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness and to identify potential imaging biomarkers for disease activity and severity. METHODS 134 DM1 patients underwent a cross-sectional muscle MRI study. STIR and T1- sequences in lower and upper body were analysed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. RESULTS The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR positive signal in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless MRI signs of fat replacement. A subset of patients (20%) showed a "marbled" muscle appearance. CONCLUSIONS muscle MRI is a sensitive biomarker of disease severity also for the milder spectrum of disease. STIR hyperintensty seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and "marbled" appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutical targets for forthcoming clinical trials.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Tommaso Nicoletti
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Alessia Perna
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Enzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167, Rome, Italy
| | - Antonio Petrucci
- Neurology Unit, San Camillo-Forlanini Hospital, 00152, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, Italy
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Hospitals NHS Foundation Trust, NE1 3BZ, Newcastle upon Tyne, United Kingdom.,Neuromuscular Disorders Unit. Neurology Department, Universitat Autònoma de Barcelona. Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, UK.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 08041, Spain
| | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| |
Collapse
|
15
|
Burian E, Becherucci EA, Junker D, Sollmann N, Greve T, Hauner H, Zimmer C, Kirschke JS, Karampinos DC, Subburaj K, Baum T, Dieckmeyer M. Association of Cervical and Lumbar Paraspinal Muscle Composition Using Texture Analysis of MR-Based Proton Density Fat Fraction Maps. Diagnostics (Basel) 2021; 11:diagnostics11101929. [PMID: 34679627 PMCID: PMC8534863 DOI: 10.3390/diagnostics11101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the associations of cervical and lumbar paraspinal musculature based on a texture analysis of proton density fat fraction (PDFF) maps were investigated to identify gender- and anatomical location-specific structural patterns. Seventy-nine volunteers (25 men, 54 women) participated in the present study (mean age ± standard deviation: men: 43.7 ± 24.6 years; women: 37.1 ± 14.0 years). Using manual segmentations of the PDFF maps, texture analysis was performed and texture features were extracted. A significant difference in the mean PDFF between men and women was observed in the erector spinae muscle (p < 0.0001), whereas the mean PDFF did not significantly differ in the cervical musculature and the psoas muscle (p > 0.05 each). Among others, Variance(global) and Kurtosis(global) showed significantly higher values in men than in women in all included muscle groups (p < 0.001). Not only the mean PDFF values (p < 0.001) but also Variance(global) (p < 0.001), Energy (p < 0.001), Entropy (p = 0.01), Homogeneity (p < 0.001), and Correlation (p = 0.037) differed significantly between the three muscle compartments. The cervical and lumbar paraspinal musculature composition seems to be gender-specific and has anatomical location-specific structural patterns.
Collapse
Affiliation(s)
- Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (D.J.); (D.C.K.)
- Correspondence:
| | - Edoardo A. Becherucci
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (D.J.); (D.C.K.)
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Tobias Greve
- Department of Neurosurgery, University of Munich, 81377 Munich, Germany;
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 80992 Munich, Germany;
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
- TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (D.J.); (D.C.K.)
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore;
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (E.A.B.); (N.S.); (C.Z.); (J.S.K.); (T.B.); (M.D.)
| |
Collapse
|
16
|
Mizuno T, Matsui Y, Tomida M, Suzuki Y, Nishita Y, Tange C, Shimokata H, Imagama S, Otsuka R, Arai H. Differences in the mass and quality of the quadriceps with age and sex and their relationships with knee extension strength. J Cachexia Sarcopenia Muscle 2021; 12:900-912. [PMID: 34009738 PMCID: PMC8350198 DOI: 10.1002/jcsm.12715] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although muscle quality evaluations are currently considered important for diagnosing sarcopenia, data from the general population are lacking. This study used mid-thigh computed tomography measurements to evaluate age-related and sex-related differences in quadriceps femoris muscle quality and mass and their relationships with knee extension strength (KES). METHODS Cross-sectional data from 520 Japanese individuals (273 men and 247 women, mean age: 63.1 ± 10.6 years) were analysed. Mass and quality were assessed using quadriceps cross-sectional areas (CSAs) and computed tomography values (CTVs), respectively. The four constituent muscles, intermuscular adipose tissue, and entire quadriceps area (total quadriceps muscles + intermuscular adipose tissue) were assessed, and the data were stratified by five age groups and sex. To evaluate age-related decline, linear and quadratic equations were tested for fit according to the constituent muscles and sex. KES could be measured in 472 of the 520 participants (254 men and 218 women, mean age: 62.3 ± 10.3). Multiple linear regression analyses with age-adjusted models were then used for evaluating the relationships between KES and quadriceps measurements. RESULTS All muscle CSAs and CTVs showed downward trends with age (men: P < 0.001 for all; women: vastus medialis CTV, P = 0.004; others, P < 0.001); the intermuscular adipose tissue CSA did not show any trend (men: P = 0.938; women: P = 0.139), although its percentage of the entire quadriceps area showed an upward trend in both sexes (P < 0.001). Men exhibited a quadratic decline in the CSAs for the entire quadriceps area (P = 0.016), total quadriceps muscles (P = 0.021), the vastus medialis (P = 0.010) and vastus lateralis (P = 0.038), and all CTVs (rectus femoris, P = 0.044; others, P < 0.001). Women exhibited a quadratic equation in the CTV for rectus femoris (P = 0.031), but a linear decline in the other variables (P < 0.001 for all). Both the total quadriceps muscles CSA and CTV were significantly associated with KES in both sexes (P < 0.001). For each muscle, the CSAs of the vastus medialis (P < 0.001) and vastus intermedius (P = 0.001) were significantly associated with KES in men, whereas the vastus medialis CSA (P < 0.001), vastus lateralis CSA (P = 0.006), rectus femoris CSA (P = 0.020), and vastus intermedius CTV (P = 0.025) were significantly associated with KES in women CONCLUSIONS: Age-related quadriceps femoris changes in mass and quality differed by sex and the constituent muscles. The constituent muscles contributing to KES differed between men and women. Quadriceps CSA and CTV measurements are useful for objectively assessing age-related and sex-related muscle deterioration and KES.
Collapse
Affiliation(s)
- Takafumi Mizuno
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasumoto Matsui
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Makiko Tomida
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasuo Suzuki
- Center for Frailty and Locomotive Syndrome, National Center for Geriatrics and Gerontology, Obu, Japan.,Faculty of Health Sciences, Department of Human Care Engineering, Nihon Fukushi University, Mihama, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Chikako Tange
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroshi Shimokata
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan.,Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Otsuka
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
17
|
The effect of ageing on skeletal muscle as assessed by quantitative MR imaging: an association with frailty and muscle strength. Aging Clin Exp Res 2021; 33:291-301. [PMID: 32198628 PMCID: PMC7914187 DOI: 10.1007/s40520-020-01530-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Abstract
Background Skeletal muscles undergo changes with ageing which can cause sarcopenia that can result in frailty. Quantitative MRI may detect the muscle-deficit component of frailty which could help improve the understanding of ageing muscles. Aims To investigate whether quantitative MRI measures of T2, fat fraction (FF), diffusion tensor imaging and muscle volume can detect differences within the muscles between three age groups, and to assess how these measures compare with frailty index, gait speed and muscle power. Methods 18 ‘young’ (18–30 years), 18 ‘middle-aged’ (31–68 years) and 18 ‘older’ (> 69 years) healthy participants were recruited. Participants had an MRI of their dominant thigh. Knee extension and flexion power and handgrip strength were measured. Frailty (English Longitudinal Study of Ageing frailty index) and gait speed were measured in the older participants. Results Young participants had a lower muscle MRI T2, FF and mean diffusivity than middle-aged and older participants; middle-aged participants had lower values than older participants. Young participants had greater muscle flexion and extension power, muscle volume and stronger hand grip than middle-aged and older participants; middle-aged participants had greater values than the older participants. Quantitative MRI measurements correlated with frailty index, gait speed, grip strength and muscle power. Discussion Quantitative MRI and strength measurements can detect muscle differences due to ageing. Older participants had raised T2, FF and mean diffusivity and lower muscle volume, grip strength and muscle power. Conclusions Quantitative MRI measurements correlate with frailty and muscle function and could be used for identifying differences across age groups within muscle.
Collapse
|
18
|
Hioka A, Akazawa N, Okawa N, Nagahiro S. Increased total body extracellular-to-intracellular water ratio in community-dwelling elderly women is associated with decreased handgrip strength and gait speed. Nutrition 2021; 86:111175. [PMID: 33631617 DOI: 10.1016/j.nut.2021.111175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE As the extracellular-to-intracellular water (ECW/ICW) ratio of the thigh is negatively associated with knee extension strength or gait speed in the elderly, an increase in the total body ECW/ICW ratio in the elderly is considered to be related to a decrease in physical function. However, these relationships have not been properly investigated. The aim of this study was to investigate the relationship of handgrip strength and gait speed with the total body ECW/ICW ratio in community-dwelling elderly women. METHODS The present study used a cross-sectional design. We enrolled 71 community-dwelling women, ≥65 y of age, who could independently perform activities of daily living. The total body ECW/ICW ratio was measured using bioelectrical impedance analysis. Relationships between the total body ECW/ICW ratio and grip strength and gait speed were assessed using Pearson's correlation coefficient. Additionally, stepwise multiple regression analysis was used to identify the factors that were independently associated with handgrip strength and gait speed. The independent variables considered were the total body ECW/ICW ratio, age, body mass index, number of medications, presence of pain, and a history of certain conditions. RESULTS The results indicated that an increased total body ECW/ICW ratio in community-dwelling elderly women was associated with a decreased handgrip strength and gait speed. Furthermore, the total body ECW/ICW ratio was significantly, independently associated with handgrip strength even after adjusting for confounding factors. CONCLUSION These findings suggest that the total body ECW/ICW ratio may indicate health conditions in community-dwelling elderly women.
Collapse
Affiliation(s)
- Akemi Hioka
- Department of Physical Therapy, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima City, Japan
| | - Naoki Akazawa
- Department of Physical Therapy, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima City, Japan.
| | | | | |
Collapse
|
19
|
Araujo ECA, Marty B, Carlier PG, Baudin P, Reyngoudt H. Multiexponential Analysis of the Water
T2
‐Relaxation in the Skeletal Muscle Provides Distinct Markers of Disease Activity Between Inflammatory and Dystrophic Myopathies. J Magn Reson Imaging 2020; 53:181-189. [DOI: 10.1002/jmri.27300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ericky C. A. Araujo
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| | - Benjamin Marty
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| | - Pierre G. Carlier
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| | | | - Harmen Reyngoudt
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| |
Collapse
|
20
|
DOK7 Gene Therapy Enhances Neuromuscular Junction Innervation and Motor Function in Aged Mice. iScience 2020; 23:101385. [PMID: 32758427 PMCID: PMC7452162 DOI: 10.1016/j.isci.2020.101385] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Muscle denervation at the neuromuscular junction (NMJ), the essential synapse between motor neuron and skeletal muscle, is associated with age-related motor impairment. Therefore, improving muscle innervation at aged NMJs may be an effective therapeutic strategy for treating the impairment. We previously demonstrated that the muscle protein Dok-7 plays an essential role in NMJ formation, and, indeed, its forced expression in muscle enlarges NMJs. Moreover, therapeutic administration of an adeno-associated virus vector encoding human Dok-7 (DOK7 gene therapy) suppressed muscle denervation and enhanced motor activity in a mouse model of amyotrophic lateral sclerosis (ALS). Here, we show that DOK7 gene therapy significantly enhances motor function and muscle strength together with NMJ innervation in aged mice. Furthermore, the treated mice showed greatly increased compound muscle action potential (CMAP) amplitudes compared with the controls, suggesting enhanced neuromuscular transmission. Thus, therapies aimed at enhancing NMJ innervation have potential for treating age-related motor impairment. DOK7 gene therapy enhances motor function and muscle strength in aged (≥2 years) mice DOK7 gene therapy enhances neuromuscular junction (NMJ) innervation in aged mice DOK7 gene therapy increases compound muscle action potential amplitudes in aged mice Enhancing NMJ innervation in the elderly may strengthen muscles and motor activities
Collapse
|
21
|
Giraudo C, Cavaliere A, Lupi A, Guglielmi G, Quaia E. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg 2020; 10:1602-1613. [PMID: 32742955 PMCID: PMC7378089 DOI: 10.21037/qims.2019.12.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Sarcopenia is a clinical condition mainly affecting the elderly that can be associated in a long run with severe consequences like malnutrition and frailty. Considering the progressive ageing of the world population and the socio-economic impact of this disease, much effort is devoted and has to be further focused on an early and accurate diagnostic assessment of muscle loss. Currently, several radiological techniques can be applied for evaluating sarcopenia. If dual-energy X-ray absorptiometry (DXA) is still considered the main tool and it is even recommended as reference by the most current guidelines of the European working group on sarcopenia in older people (EWGSOP), the role of ultrasound (US), computed tomography (CT), peripheral quantitative CT (pQCT), and magnetic resonance imaging (MRI) should not be overlooked. Indeed, such techniques can provide robust qualitative and quantitative information. In particular, regarding MRI, the use of sequences like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS) and mapping that could provide further insights into the physiopathological features of sarcopenia, should be fostered. In an era pointing to the quantification and automatic evaluation of diseases, we call for future research extending the application of organ tailored protocols, taking advantage of the most recent technical developments.
Collapse
Affiliation(s)
- Chiara Giraudo
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Annachiara Cavaliere
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Amalia Lupi
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, University of Foggia, Foggia, Italy
| | - Emilio Quaia
- Radiology Institute, Department of Medicine—DIMED, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Sanz-Requena R, Martínez-Arnau FM, Pablos-Monzó A, Flor-Rufino C, Barrachina-Igual J, García-Martí G, Martí-Bonmatí L, Pérez-Ros P. The Role of Imaging Biomarkers in the Assessment of Sarcopenia. Diagnostics (Basel) 2020; 10:diagnostics10080534. [PMID: 32751452 PMCID: PMC7460125 DOI: 10.3390/diagnostics10080534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The diagnosis of sarcopenia through clinical assessment has some limitations. The literature advises studies that include objective markers along with clinical assessment in order to improve the sensitivity and specificity of current diagnostic criteria. The decrease of muscle quality precedes the loss of quantity, so we studied the role magnetic resonance imaging biomarkers as indicators of the quantity and quality of muscle in sarcopenia patients. METHODS a cross-sectional analysis was performed to analyze what MR-derived imaging parameters correlate better with sarcopenia diagnostic criteria in women of 70 years of age and over (independent walking and community-dwelling women who were sarcopenic in accordance with EWGSOP criteria with muscle mass adjusted to Spanish population were chosen). RESULTS The study included 26 women; 81 ± 8 years old. A strong correlation was obtained between cineanthropometric variables (BMI; thigh perimeter and fat mass) and imaging biomarkers (muscle/fat ratio, fatty infiltration, muscle T2*, water diffusion coefficient, and proton density fat fraction) with coefficients around 0.7 (absolute value). CONCLUSIONS Knowing the correlation of clinical parameters and imaging-derived muscle quality indicators can help to identify older women at risk of developing sarcopenia at an early stage. This may allow taking preventive actions to decrease disability, morbidity, and mortality in sarcopenia patients.
Collapse
Affiliation(s)
- Roberto Sanz-Requena
- Radiology Department, Hospital Quironsalud Valencia, 46010 Valencia, Spain; (R.S.-R.); (G.G.-M.); (L.M.-B.)
| | - Francisco Miguel Martínez-Arnau
- Department of Physiotherapy, Universitat de Valencia, 46010 Valencia, Spain;
- Frailty and Cognitive Impairment Research Group (FROG), University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-983853 (ext. 51227)
| | - Ana Pablos-Monzó
- Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, 46900 Valencia, Spain;
| | | | | | - Gracián García-Martí
- Radiology Department, Hospital Quironsalud Valencia, 46010 Valencia, Spain; (R.S.-R.); (G.G.-M.); (L.M.-B.)
| | - Luis Martí-Bonmatí
- Radiology Department, Hospital Quironsalud Valencia, 46010 Valencia, Spain; (R.S.-R.); (G.G.-M.); (L.M.-B.)
| | - Pilar Pérez-Ros
- Nursing Department, Universidad Católica de Valencia San Vicente Mártir, 46007 Valencia, Spain;
| |
Collapse
|
23
|
Reyngoudt H, Marty B, Caldas de Almeida Araújo E, Baudin PY, Le Louër J, Boisserie JM, Béhin A, Servais L, Gidaro T, Carlier PG. Relationship between markers of disease activity and progression in skeletal muscle of GNE myopathy patients using quantitative nuclear magnetic resonance imaging and 31P nuclear magnetic resonance spectroscopy. Quant Imaging Med Surg 2020; 10:1450-1464. [PMID: 32676364 DOI: 10.21037/qims-20-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Quantitative nuclear magnetic resonance imaging (NMRI) is an objective and precise outcome measure for evaluating disease progression in neuromuscular disorders. We aimed to investigate predictive 'disease activity' NMR indices, including water T2 and 31P NMR spectroscopy (NMRS), and its relation to NMR markers of 'disease progression', such as the changes in fat fraction (ΔFat%) and contractile cross-sectional area (ΔcCSA), in GNE myopathy (GNEM) patients. Methods NMR was performed on a 3T clinical scanner, at baseline and at a 1-year interval, in 10 GNEM patients and 29 age-matched controls. Dixon-based fat-water imaging and water T2 mapping were acquired in legs and thighs, and in the dominant forearm. 31P NMRS was performed at the level of quadriceps and hamstring. Water T2 and 31P NMRS indices were determined for all muscle groups and visits. Correlations were performed with 'disease progression' indices ΔFat%, ΔcCSA and the muscle fat transformation rate (Rmuscle_transf). Results In quadriceps, known to be relatively preserved in GNEM, water T2 at baseline was significantly higher compared to controls, and correlated strongly with the one-year evolution of Fat% and cCSA and Rmuscle_transf. Various 31P NMRS indices showed significant differences in quadriceps and hamstring compared to controls and correlations existed between these indices and ΔFat%, ΔcCSA and Rmuscle_transf. Conclusions This study demonstrates that disease activity indices such as water T2 and 31P NMRS may predict disease progression in skeletal muscles of GNEM patients, and suggests that these measures may be considered to be valuable surrogate endpoints in the assessment of GNEM disease progression.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Ericky Caldas de Almeida Araújo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Pierre-Yves Baudin
- Consultants for Research in Imaging and Spectroscopy (C.R.I.S.), Tournai, Belgium
| | - Julien Le Louër
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Jean-Marc Boisserie
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Anthony Béhin
- Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France
| | - Laurent Servais
- Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France.,I-Motion-Pediatric Clinical Trials Department, Trousseau Hospital (AP-HP), Paris, France.,Centre de référence des maladies Neuromusculaires, CHU, University of Liège, Liège, Belgium.,MDUK Oxford Neuromuscular Center, Department of Pediatrics, University of Oxford, Oxford, UK
| | - Teresa Gidaro
- Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France.,I-Motion-Pediatric Clinical Trials Department, Trousseau Hospital (AP-HP), Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| |
Collapse
|
24
|
Burian E, Franz D, Greve T, Dieckmeyer M, Holzapfel C, Drabsch T, Sollmann N, Probst M, Kirschke JS, Rummeny EJ, Zimmer C, Hauner H, Karampinos DC, Baum T. Age- and gender-related variations of cervical muscle composition using chemical shift encoding-based water-fat MRI. Eur J Radiol 2020; 125:108904. [PMID: 32088656 DOI: 10.1016/j.ejrad.2020.108904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/06/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To understand fat distribution patterns and ectopic fat deposition in healthy adults and to provide normative data, encompassing the borders of physiological regional muscle composition. For this purpose chemical shift encoding-based water-fat Magnetic Resonance Imaging (MRI) was used for proton density fat fraction (PDFF) calculations. MATERIAL AND METHODS 91 volunteers were enrolled (male: n = 28, age = 36.6 ± 11.4 years; female: n = 63, age = 38.5 ± 15.1 years). PDFF values combined for the multifidus, semispinalis and spinalis cervicis muscles at the level of the 3rd cervical vertebral body (C3), the 5th cervical vertebral body (C5) and the first thoracic vertebral body (Th1) were extracted. RESULTS The paraspinal musculature at C3 (14.8 ± 10.1 % vs. 19.2 ± 11.0 %; p = 0.029) and Th1 (13.8 ± 7.0 % vs 17.7 ± 7.4 %; p = 0.011) showed significantly lower PDFF values in men compared to women. Partial correlation testing with BMI as control variable revealed highly significant correlations between the paraspinal musculature PDFF at C3 (men: r = 0.504, p = 0.007; women: r = 0.279, p = 0.028), C5 (men: r = 0.450, p = 0.019; women: r = 0.347, p = 0.006) and Th1 (men: r = 0.652, p < 0.0001; women: r = 0.443, p < 0.0001) with age in both genders. CONCLUSION The present data suggest gender and age-specific fat deposition patterns of the cervical and the upper cervicothoracic paraspinal muscles and may provide reference values for pathology detection.
Collapse
Affiliation(s)
- Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Tobias Greve
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Christina Holzapfel
- Institute for Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany.
| | - Theresa Drabsch
- Institute for Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany.
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Monika Probst
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Hans Hauner
- Institute for Nutritional Medicine, TUM School of Medicine, Technical University of Munich, Georg-Brauchle-Ring 62, 80992, Munich, Germany.
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
25
|
Brech GC, de Paula TS, Fedele TA, Dias AS, Soares-Júnior JM, Bordalo-Rodrigues M, Baracat EC, Alonso AC, Greve JMD. Response to fatigue observed through magnetic resonance imaging on the quadriceps muscle in postmenopausal women. Clinics (Sao Paulo) 2020; 75:e1768. [PMID: 32609225 PMCID: PMC7314579 DOI: 10.6061/clinics/2020/e1768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Menopause marks the end of women's reproductive period and can lead to sarcopenia and osteoporosis (OP), increasing the risk of falls and fractures. The aim of this study is to evaluate the influence of normal and low bone mineral density (BMD) on muscular activity, observed through inflammatory edema when mapping using magnetic resonance imaging (MRI) on the quadriceps muscle of postmenopausal women. METHODS This was a cross-sectional study involving 16 older women, who were divided into two groups: osteoporosis group (OG), older women with OP, and control group (CG), older women without OP. The groups were evaluated in terms of nuclear MRI exam before and after carrying out fatigue protocol exercises using an isokinetic dynamometer and squatting exercises. RESULTS The results of the present study showed that in intragroup comparisons, for both groups, there was a significant increase (p<0.05) in the T2 signal of the nuclear MRI in the quadriceps muscle after carrying out exercises using both thighs. In the intergroup comparison, no statistically significant difference was observed between the OG and CG, pre- (p=0.343) and postexercise (p=0.874). CONCLUSION The acute muscular activation of the quadriceps evaluated by T2 mapping on nuclear MRI equipment is equal in women with and without OP in the postmenopausal phase. BMD did not interfere with muscle response to exercise when muscle fatigue was reached.
Collapse
Affiliation(s)
- Guilherme Carlos Brech
- Laboratorio de Estudos do Movimento, Instituto de Ortopedia e Traumatologia (IOT), Hopital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Programa de Ciencias do Envelhecimento, Universidade Sao Judas Tadeu (USJT), Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Thalita Sousa de Paula
- Laboratorio de Estudos do Movimento, Instituto de Ortopedia e Traumatologia (IOT), Hopital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Fisioterapia, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, BR
| | - Thiago Antônio Fedele
- Radiologia, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aluane Silva Dias
- Programa de Ciencias do Envelhecimento, Universidade Sao Judas Tadeu (USJT), Sao Paulo, SP, BR
| | - José Maria Soares-Júnior
- Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marcelo Bordalo-Rodrigues
- Radiologia, Instituto de Ortopedia e Traumatologia (IOT), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Edmund Chada Baracat
- Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Angélica Castilho Alonso
- Laboratorio de Estudos do Movimento, Instituto de Ortopedia e Traumatologia (IOT), Hopital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Programa de Ciencias do Envelhecimento, Universidade Sao Judas Tadeu (USJT), Sao Paulo, SP, BR
| | - Julia Maria D’Andréa Greve
- Laboratorio de Estudos do Movimento, Instituto de Ortopedia e Traumatologia (IOT), Hopital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
26
|
Burian E, Inhuber S, Schlaeger S, Dieckmeyer M, Klupp E, Franz D, Weidlich D, Sollmann N, Löffler M, Schwirtz A, Rummeny EJ, Zimmer C, Kirschke JS, Karampinos DC, Baum T. Association of thigh and paraspinal muscle composition in young adults using chemical shift encoding-based water-fat MRI. Quant Imaging Med Surg 2020; 10:128-136. [PMID: 31956536 DOI: 10.21037/qims.2019.11.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Paraspinal and thigh muscles comprise the major muscle groups of the body. We investigated the composition of the psoas, erector spinae, quadriceps femoris and hamstring muscle groups and their association to each other using chemical shift encoding-based water-fat magnetic resonance imaging (MRI) in adult volunteers. Our aim was to elucidate fat distribution patterns within these muscle groups. Methods Thirty volunteers [15 males, age: 30.5±4.9 years, body mass index (BMI): 27.6±2.8 kg/m2 and 15 females, age: 29.9±7.0 years, BMI: 25.8±1.4 kg/m2] were recruited for this study. A six-echo 3D spoiled gradient echo sequence was used for chemical shift encoding-based water-fat separation at the lumbar spine and bilateral thigh. Proton density fat fraction (PDFF), cross-sectional area (CSA) and contractile mass index (CMI) of the psoas, erector spinae, quadriceps femoris and hamstring muscle groups were determined bilaterally and averaged over both sides. Results CSA and CMI values calculated for the erector spinae, psoas, quadriceps and hamstring muscle groups showed significant differences between men and women (P<0.05). With regard to PDFF measurement only the erector spinae showed significant differences between men and women (9.5%±2.4% vs. 11.7%±2.8%, P=0.015). The CMI of the psoas muscle as well as the erector spinae muscle showed significant correlations with the quadriceps muscle (r=0.691, P<0.0001 and r=0.761, P<0.0001) and the hamstring group (r=0.588, P=0.001 and r=0.603, P<0.0001). Conclusions CMI values of the erector spinae and psoas muscles were associated with those of the quadriceps femoris and hamstring musculature. These findings suggest a concordant spatial fat accumulation within the analyzed muscles in young adults and warrants further investigations in ageing and diseased muscle.
Collapse
Affiliation(s)
- Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephanie Inhuber
- Department of Sport and Health Sciences, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ansgar Schwirtz
- Department of Sport and Health Sciences, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Kennedy P, Barnhill E, Gray C, Brown C, van Beek EJR, Roberts N, Greig CA. Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults. GeroScience 2019; 42:311-321. [PMID: 31865527 PMCID: PMC7031192 DOI: 10.1007/s11357-019-00147-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Determining the effect of ageing on thigh muscle stiffness using magnetic resonance elastography (MRE) and investigate whether fat fraction and muscle cross-sectional area (CSA) are related to stiffness. Six healthy older adults in their eighth and ninth decade and eight healthy young men were recruited and underwent a 3 T MRI protocol including MRE and Dixon fat fraction imaging. Muscle stiffness, fat fraction and muscle CSA were calculated in ROIs corresponding to the four quadriceps muscles (i.e. vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), rectus femoris (RF)), combined quadriceps, combined hamstrings and adductors and whole thigh. Muscle stiffness was significantly reduced (p < 0.05) in the older group in all measured ROIs except the VI (p = 0.573) and RF (p = 0.081). Similarly, mean fat fraction was significantly increased (p < 0.05) in the older group over all ROIs with the exception of the VI (p = 0.059) and VL muscle groups (p = 0.142). Muscle CSA was significantly reduced in older participants in the VM (p = 0.003) and the combined quadriceps (p = 0.001), hamstrings and adductors (p = 0.008) and whole thigh (p = 0.003). Over the whole thigh, stiffness was significantly negatively correlated with fat fraction (r = − 0.560, p = 0.037) and positively correlated with CSA (r = 0.749, p = 0.002). Stepwise regression analysis revealed that age was the most significant predictor of muscle stiffness (p = 0.001). These results suggest that muscle stiffness is significantly decreased in healthy older adults. Muscle fat fraction and muscle CSA are also significantly changed in older adults; however, age is the most significant predictor of muscle stiffness.
Collapse
Affiliation(s)
- Paul Kennedy
- Edinburgh Imaging facility QMRI, School of Clinical Sciences, The University of Edinburgh, Edinburgh, EH16 4TJ, UK. .,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Eric Barnhill
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Calum Gray
- Edinburgh Imaging facility QMRI, School of Clinical Sciences, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Colin Brown
- The Mentholatum Company Ltd., East Kilbride, Glasgow, UK
| | - Edwin J R van Beek
- Edinburgh Imaging facility QMRI, School of Clinical Sciences, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Neil Roberts
- Edinburgh Imaging facility QMRI, School of Clinical Sciences, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carolyn Anne Greig
- School of Sport, Exercise and Rehabilitation Sciences, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, NIHR Birmingham BRC, The University of Birmingham, B15 2TT, Birmingham, UK
| |
Collapse
|
28
|
Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old evidence and new insights. Eur Radiol 2019; 30:2199-2208. [PMID: 31834509 DOI: 10.1007/s00330-019-06573-2] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
To date, sarcopenia is considered a patient-specific imaging biomarker able to predict clinical outcomes. Several imaging modalities, including dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance (MR), and ultrasound (US), can be used to assess muscle mass and quality and to achieve the diagnosis of sarcopenia. With different extent, all these modalities can provide quantitative data, being thus reproducible and comparable over time. DXA is the one most commonly used in clinical practice, with the advantages of being accurate and widely available, and also being the only radiological tool with accepted cutoff values to diagnose sarcopenia. CT and MR are considered the reference standards, allowing the evaluation of muscle quality and fatty infiltration, but their application is so far mostly limited to research. US has been always regarded as a minor tool in sarcopenia and has never gained enough space. To date, CT is probably the easiest and most promising modality, although limited by the long time needed for muscle segmentation. Also, the absence of validated thresholds for CT measurements of myosteatosis requires that future studies should focus on this point. Radiologists have the great potential of becoming pivotal in the context of sarcopenia. We highly master imaging modalities and know perfectly how to apply them to different organs and clinical scenarios. Similarly, radiologists should master the culture of sarcopenia, and its clinical aspects and relevant implications for patient care. The medical and scientific radiological community should promote specific educational course to spread awareness among professionals. KEY POINTS: • DXA is an accurate, reproducible, and widely available imaging modality to evaluate body composition, being the most commonly used radiological tool to diagnose sarcopenia in clinical practice • CT and MR are the gold standard imaging modalities to assess muscle mass and quality, but no clear cutoff values have been reported to identify sarcopenia, limiting the application of these modalities to research purposes • US has shown to be accurate in the evaluation of muscle trophism, especially in the thigh, but its current application in sarcopenia is limited.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90127, Palermo, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy
| | - Jacopo Vitale
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122, Milan, Italy.
| |
Collapse
|
29
|
Codari M, Zanardo M, di Sabato ME, Nocerino E, Messina C, Sconfienza LM, Sardanelli F. MRI-Derived Biomarkers Related to Sarcopenia: A Systematic Review. J Magn Reson Imaging 2019; 51:1117-1127. [PMID: 31515891 DOI: 10.1002/jmri.26931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MRI allows quantitatively assessing muscle quantity and quality. PURPOSE To summarize the role of MRI as a noninvasive technique for the identification of in vivo surrogate biomarker of sarcopenia. STUDY TYPE Systematic review. POPULATION In April 2019, a systematic literature search (Medline/EMBASE) was performed to identify articles on the topic at issue. FIELD STRENGTH/SEQUENCE No field strength or sequence restrictions. ASSESSMENT After a literature search, study design, aim, sample size, demographics, magnetic field strength, imaged body region, MRI sequences, and imaging biomarker were extracted. STATISTICAL TESTS Data are presented as frequencies and percentages. RESULTS From 69 records identified through search query, 18 articles matched the inclusion criteria. All articles were published from 2012 and had a mainly prospective design (14/18, 78%). Sample size ranged from 9 to 284 subjects, for a total of 1706 enrolled subjects. Healthy subjects were enrolled or retrospectively selected in 8/18 (44%) articles, corresponding to 658 (39%) healthy subjects. Magnetic field strength was 1.5 or 3T in 14/18 (78%) studies. The most analyzed body regions were the thigh (7/18, 39%) and the trunk (6/18, 33%). Stratifying studies according to their aim, 13/18 (72%) studies focused on muscle quality and quantity, 3/18 (17%) studies on outcome prediction, and 2/18 articles (11%) addressed both aims. A wide set of MRI biomarkers have been proposed. Muscle cross-sectional area was the most used for muscle quantity estimation, while quantitative biomarkers of muscle fat content or fiber architecture were proposed to assess muscle quality. DATA CONCLUSION The proposed biomarkers were assessed using different MRI sequences for different body regions in different subjects/patient cohorts, pointing out a lack of standardization on this topic. Future studies should test and compare the performance of proposed MRI biomarkers for sarcopenia characterization and quantification using a standardized experimental setup. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1117-1127.
Collapse
Affiliation(s)
- Marina Codari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Moreno Zanardo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | | | | | - Carmelo Messina
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
30
|
Takamori M, Akiyama S, Yoshida K, Wakashin H, Seo Y. T 2 Distribution in the Forearm Muscles and the T 2 Threshold for Defining Activated Muscle. Magn Reson Med Sci 2019; 18:184-193. [PMID: 30449822 PMCID: PMC6630056 DOI: 10.2463/mrms.mp.2018-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose: In order to detect exercised muscles by the increase in T2, we have defined a Gaussian T2 distribution and reference values (T2r and SDr) in resting state muscles, and a threshold for detecting exercised muscles. Methods: The subjects were healthy adult volunteers (14 males and 12 females). Multiple-spin-echo (MSE) MR images were obtained with 10 TE values from 10 to 100 ms using a 0.2T MRI system. T2 values for 10 forearm muscles were obtained in the resting state and after isometric wrist flexion exercise with 5%, 15%, and 25% of the maximum voluntary contraction (MVC). Z values were obtained by (T2e − T2r)/SDr, where T2e was T2 after exercise. Based on sample size calculations, three thresholds (ZT = 1.00, 2.56, and 3.07) were applied to agonist and antagonist muscles. Results: A normal distribution of T2 was detected in resting muscles at 34 ± 3 ms (mean ± standard deviation [SD]) in 26 subjects using the Kolmogorov–Smirnov test, the Shapiro–Wilk test, and the Jarque–Bera test (P > 0.05). No gender differences were shown between the T2 or SD, and a similar result was obtained in 12 measurements on a single subject (P < 0.01). The T2r and SDr were used for reference values. The threshold ZT = 1.00 showed the highest sensitivity (0.86) even with 5% MVC, but it showed a lower specificity (0.85) than the other thresholds. ZT = 3.07 showed the highest specificity (1.0), but it showed a lower sensitivity (0.36) with the 5% MVC, compared with ZT = 2.56 (0.50). The receiver operating characteristics analysis also supported these results. Conclusion: We found that the T2 distribution in muscles was Gaussian, suggesting that a one-sample t-test can be applied, and that ZT = 2.56 could cover low-intensity exercise with high specificity and a low false-positive rate.
Collapse
Affiliation(s)
- Masayoshi Takamori
- Department of Regulatory Physiology, University of Dokkyo School of Medicine.,Department of Physical Therapy, Aoi Medical Academy
| | - Sumikazu Akiyama
- Department of Regulatory Physiology, University of Dokkyo School of Medicine.,Department of Rehabilitation, Faculty of Health Sciences, University of Human Arts and Sciences
| | - Kazuya Yoshida
- Department of Regulatory Physiology, University of Dokkyo School of Medicine.,Department of Rehabilitation, Faculty of Health Sciences, University of Human Arts and Sciences
| | - Hidefumi Wakashin
- Department of Regulatory Physiology, University of Dokkyo School of Medicine
| | - Yoshiteru Seo
- Department of Regulatory Physiology, University of Dokkyo School of Medicine
| |
Collapse
|
31
|
Heskamp L, van Nimwegen M, Ploegmakers MJ, Bassez G, Deux JF, Cumming SA, Monckton DG, van Engelen BGM, Heerschap A. Lower extremity muscle pathology in myotonic dystrophy type 1 assessed by quantitative MRI. Neurology 2019; 92:e2803-e2814. [PMID: 31118244 PMCID: PMC6598795 DOI: 10.1212/wnl.0000000000007648] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
Objective To determine the value of quantitative MRI in providing imaging biomarkers for disease in 20 different upper and lower leg muscles of patients with myotonic dystrophy type 1 (DM1). Methods We acquired images covering these muscles in 33 genetically and clinically well-characterized patients with DM1 and 10 unaffected controls. MRIs were recorded with a Dixon method to determine muscle fat fraction, muscle volume, and contractile muscle volume, and a multi-echo spin-echo sequence was used to determine T2 water relaxation time (T2water), reflecting putative edema. Results Muscles in patients with DM1 had higher fat fractions than muscles of controls (15.6 ± 11.1% vs 3.7 ± 1.5%). In addition, patients had smaller muscle volumes (902 ± 232 vs 1,097 ± 251 cm3), smaller contractile muscle volumes (779 ± 247 vs 1,054 ± 246 cm3), and increased T2water (33.4 ± 1.0 vs 31.9 ± 0.6 milliseconds), indicating atrophy and edema, respectively. Lower leg muscles were affected most frequently, especially the gastrocnemius medialis and soleus. Distribution of fat content per muscle indicated gradual fat infiltration in DM1. Between-patient variation in fat fraction was explained by age (≈45%), and another ≈14% was explained by estimated progenitor CTG repeat length (r2 = 0.485) and somatic instability (r2 = 0.590). Fat fraction correlated with the 6-minute walk test (r = −0.553) and muscular impairment rating scale (r = 0.537) and revealed subclinical muscle involvement. Conclusion This cross-sectional quantitative MRI study of 20 different lower extremity muscles in patients with DM1 revealed abnormal values for muscle fat fraction, volume, and T2water, which therefore may serve as objective biomarkers to assess disease state of skeletal muscles in these patients. ClinicalTrials.gov identifier NCT02118779.
Collapse
Affiliation(s)
- Linda Heskamp
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Marlies van Nimwegen
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Marieke J Ploegmakers
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Guillaume Bassez
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Jean-Francois Deux
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Sarah A Cumming
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Darren G Monckton
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Baziel G M van Engelen
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Arend Heerschap
- From the Department of Radiology and Nuclear Medicine (L.H., M.J.P., A.H.) and Department of Neurology (M.v.N., B.G.M.v.E.), Radboud University Medical Center, Nijmegen, the Netherlands; Neuromuscular Reference Center (G.B.), Sorbonne University, INSERM UMRS 974, AP-HP, Pitié-Salpêtrière Hospital; Department of Radiology (J.-F.D.), Henri Mondor University Hospital, Paris, France; and Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
32
|
Marty B, Carlier PG. Physiological and pathological skeletal muscle T1 changes quantified using a fast inversion-recovery radial NMR imaging sequence. Sci Rep 2019; 9:6852. [PMID: 31048765 PMCID: PMC6497638 DOI: 10.1038/s41598-019-43398-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
We investigated the response of skeletal muscle global T1 under different physiological and pathological conditions using an inversion-recovery radial T1 mapping sequence. Thirty five healthy volunteers, seven patients with Becker muscular dystrophy (BMD) and seven patients with sporadic inclusion body myositis (IBM) were investigated in order to evaluate the effects of gender, age, muscle group, exercise and pathological processes on global T1 values. In addition, the intramuscular fat content was measured using 3-point Dixon and the global T2 and water T2 (T2H2O) were determined with a multi-spin-echo sequence. In the muscles of healthy volunteers, there was no impact of age on global T1. However, we measured a significant effect of sex and muscle group. After exercise, a significant 7.7% increase of global T1 was measured in the recruited muscles, and global T1 variations were highly correlated to T2H2O variations (R = 0.91). In pathologies, global T1 values were reduced in fat infiltrated muscles. When fat fraction was taken into account, global T1 values were higher in IBM patients compared to BMD. Global T1 variations are a sensitive indicator of tissue changes in skeletal muscle related to several physiological and pathological events.
Collapse
Affiliation(s)
- Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France. .,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France.
| | - Pierre G Carlier
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| |
Collapse
|
33
|
Yamada M, Kimura Y, Ishiyama D, Nishio N, Otobe Y, Tanaka T, Ohji S, Koyama S, Sato A, Suzuki M, Ogawa H, Ichikawa T, Ito D, Arai H. Synergistic effect of bodyweight resistance exercise and protein supplementation on skeletal muscle in sarcopenic or dynapenic older adults. Geriatr Gerontol Int 2019; 19:429-437. [PMID: 30864254 DOI: 10.1111/ggi.13643] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
AIM The objective of this trial was to investigate the synergistic effects of bodyweight resistance exercise and a protein supplement with vitamin D on skeletal muscle in sarcopenic or dynapenic older adults. METHODS This was a four-arm randomized controlled trial. Sarcopenic or dynapenic older adults were recruited for this trial. After screening, a total of 112 older adults were randomly allocated among four groups; 28 older adults each were enrolled in the combined resistance exercise and nutritional supplementation group, the exercise alone group, the nutritional supplementation alone group, and the control group. Participants in the combined group and exercise alone groups took part in a bodyweight resistance exercise program for 12 weeks. Protein and vitamin D supplements were provided every day for 12 weeks for the participants in the combined group and nutritional supplementation alone groups. We assessed the echo intensity of participants' thigh muscle using ultrasonography, measured their appendicular muscle mass using a bioelectrical impedance data acquisition system, and tested their knee extension strength and physical function. RESULTS Participants in the combined group had a significantly greater improvement in rectus femoris echo intensity and knee extension torque than those in the other groups (P < 0.05). Furthermore, the combined program increased appendicular muscle mass in sarcopenic older adults (P < 0.05), but not in older adults with low physical function with normal muscle mass. CONCLUSIONS The present study confirmed the synergistic effect of bodyweight resistance exercise and protein supplement with vitamin D on muscle quality and muscle strength in sarcopenic or dynapenic older adults. Geriatr Gerontol Int 2019; 19: 429-437.
Collapse
Affiliation(s)
- Minoru Yamada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan.,National Center for Geriatrics and Gerontology, Morioka, Japan
| | - Yosuke Kimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Daisuke Ishiyama
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Naohito Nishio
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Yuhei Otobe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Tomoya Tanaka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Shunsuke Ohji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Shingo Koyama
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Atsushi Sato
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Mizue Suzuki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Hideyuki Ogawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Takeo Ichikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Daisuke Ito
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Morioka, Japan
| |
Collapse
|
34
|
Yoshida T, Yamada Y, Tanaka F, Yamagishi T, Shibata S, Kawakami Y. Intracellular-to-total water ratio explains the variability of muscle strength dependence on the size of the lower leg in the elderly. Exp Gerontol 2018; 113:120-127. [DOI: 10.1016/j.exger.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
|
35
|
Lower-extremity magnetic resonance imaging in patients with hyperkalemic periodic paralysis carrying the SCN4A mutation T704M: 30-month follow-up of seven patients. Neuromuscul Disord 2018; 28:837-845. [DOI: 10.1016/j.nmd.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
|
36
|
Abstract
As the final output of the somatic nervous system, the neuromuscular junction (NMJ) is essential for all voluntary movements. The NMJ is also necessary for connected cells to function and survive. Because of this central role, much effort has been devoted to understanding the effects of aging, diseases, and injuries on the NMJ. These efforts have revealed a close relationship between aberrant changes at NMJs and its three cellular components - the presynaptic site on motor axons, the postsynaptic region on muscle fibers and perisynaptic Schwann cells. Here, we review the morphological and molecular changes associated with aging NMJs in rodents and humans. We also provide an overview of factors with potential roles in maintaining and repairing adult and aged NMJs.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
37
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
38
|
Yamada M, Kimura Y, Ishiyama D, Nishio N, Tanaka T, Ohji S, Otobe Y, Koyama S, Sato A, Suzuki M, Ogawa H, Ichikawa T, Ito D, Arai H. Plasma Amino Acid Concentrations Are Associated with Muscle Function in Older Japanese Women. J Nutr Health Aging 2018; 22:819-823. [PMID: 30080226 DOI: 10.1007/s12603-018-1014-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although several previous studies have found benefits for amino acid supplementation in terms of muscle function, the role of plasma amino acid concentrations on sarcopenia are not well addressed yet. OBJECTIVE The aim of this study was to compare the amino acid concentrations at each stage of sarcopenia (normal, pre-sarcopenia, dynapenia, and sarcopenia) in community-dwelling older Japanese adults. SETTING AND SUBJECTS Community-dwelling older Japanese women (n=232, 79.4±7.0 years) participated in this study. MEASUREMENTS We measured plasma amino acid concentrations, 5-m walking speed, grip strength, and skeletal muscle mass using a bioelectrical impedance data acquisition system and compared them among participants at each stage of sarcopenia. RESULTS The proportions of normal, pre-sarcopenia, dynapenia, and sarcopenia patients were 40.5% (n=94), 12.1% (n=28), 26.3% (n=61), and 21.1% (n=49), respectively. Significant differences were observed for concentrations of leucine, branched-chain amino acid (BCAAs), and essential amino acid (EAAs) among the four groups (p<0.05), and the dynapenia and sarcopenia groups showed significantly lower concentrations of leucine than the normal group (p<0.05). CONCLUSIONS This study indicated a positive relationship between plasma leucine, BCAA and EAA concentrations and muscle function. A longitudinal study is needed to determine the causal relationship between leucine/BCAA concentrations and muscle function.
Collapse
Affiliation(s)
- M Yamada
- Minoru Yamada, PT, PhD, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 3-29-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan, Tel.: +81-3-3942-6863, Fax: +81-3-3942-6895, E-mail address:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamada M, Kimura Y, Ishiyama D, Nishio N, Abe Y, Kakehi T, Fujimoto J, Tanaka T, Ohji S, Otobe Y, Koyama S, Okajima Y, Arai H. Differential Characteristics of Skeletal Muscle in Community-Dwelling Older Adults. J Am Med Dir Assoc 2017; 18:807.e9-807.e16. [DOI: 10.1016/j.jamda.2017.05.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023]
|
40
|
Yamada Y, Buehring B, Krueger D, Anderson RM, Schoeller DA, Binkley N. Electrical Properties Assessed by Bioelectrical Impedance Spectroscopy as Biomarkers of Age-related Loss of Skeletal Muscle Quantity and Quality. J Gerontol A Biol Sci Med Sci 2017; 72:1180-1186. [PMID: 28814064 PMCID: PMC5861891 DOI: 10.1093/gerona/glw225] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/19/2016] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle, in addition to being comprised of a heterogeneous muscle fiber population, also includes extracellular components that do not contribute to positive tensional force production. Here we test segmental bioelectrical impedance spectroscopy (S-BIS) to assess muscle intracellular mass and composition. S-BIS can evaluate electrical properties that may be related to muscle force production. Muscle fiber membranes separate the intracellular components from the extracellular environment and consist of lipid bilayers which act as an electrical capacitor. We found that S-BIS measures accounted for ~85% of the age-related decrease in appendicular muscle power compared with only ~49% for dual-energy x-ray absorptiometry (DXA) measures. Indices of extracellular (noncontractile) and cellular (contractile) compartments in skeletal muscle tissues were determined using the Cole-Cole plot from S-BIS measures. Characteristic frequency, membrane capacitance, and phase angle determined by Cole-Cole analysis together presented a S-BIS complex model that explained ~79% of interindividual variance of leg muscle power. This finding underscores the value of S-BIS to measure muscle composition rather than lean mass as measured by DXA and suggests that S-BIS should be highly informative in skeletal muscle physiology.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Nutritional Science, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Bjoern Buehring
- Osteoporosis Clinical Research Program
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
- GRECC, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | | | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
- GRECC, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | | | - Neil Binkley
- Osteoporosis Clinical Research Program
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
- GRECC, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
41
|
Yamada Y, Yoshida T, Yokoyama K, Watanabe Y, Miyake M, Yamagata E, Yamada M, Kimura M. The Extracellular to Intracellular Water Ratio in Upper Legs is Negatively Associated With Skeletal Muscle Strength and Gait Speed in Older People. J Gerontol A Biol Sci Med Sci 2017; 72:293-298. [PMID: 27422438 DOI: 10.1093/gerona/glw125] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/16/2016] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscles contain a large volume of water that is classified into intracellular (ICW) and extracellular (ECW) water fractions. Nuclear magnetic resonance-based biomarkers suggest that increased water T2 heterogeneities, as well as elevated water T2 relaxation in the quadriceps occurs in the elderly when compared with young adults. However, nuclear magnetic resonance is difficult to apply to a large-scale study or a clinical setting for sarcopenia and frailty screening. Segmental bioelectrical impedance spectroscopy is a unique tool used to assess the segmental ratio of ECW/ICW in the limbs. We evaluated 405 community-living people aged between 65 and 90 years. ECW and ICW in the upper legs were assessed by segmental bioelectrical impedance spectroscopy. Isometric knee extension strength, gait speed, and skeletal muscle mass were measured. Thigh ECW/ICW was negatively correlated with knee extension strength and gait speed (r = -.617 and -.431, respectively, p < .001) and increased with age (p < .001). Thigh ECW/ICW was a significant predictor of knee extension strength and gait speed independent of age, sex, body mass index, and skeletal muscle mass. Relative expansion of ECW against ICW in the thigh muscles is a factor in decreased muscle quality and a biomarker of muscle aging.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Nutritional Science, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Tsukasa Yoshida
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Senior Citizen's Welfare Section, Kameoka City Government, Kameoka, Japan
| | | | - Yuya Watanabe
- Department of Health and Sports Sciences, Kyoto Gakuen University, Kameoka, Japan
| | - Motoko Miyake
- Department of Health and Sports Sciences, Kyoto Gakuen University, Kameoka, Japan
| | - Emi Yamagata
- Faculty of Nursing, Doshisha Women's College of Liberal Arts, Kyotanabe, Japan
| | - Minoru Yamada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tokyo, Japan
| | - Misaka Kimura
- Department of Health and Sports Sciences, Kyoto Gakuen University, Kameoka, Japan
| | | |
Collapse
|
42
|
Increase in echo intensity and extracellular-to-intracellular water ratio is independently associated with muscle weakness in elderly women. Eur J Appl Physiol 2017; 117:2001-2007. [DOI: 10.1007/s00421-017-3686-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022]
|
43
|
Biomarkers associated with sedentary behaviour in older adults: A systematic review. Ageing Res Rev 2017; 35:87-111. [PMID: 28025174 DOI: 10.1016/j.arr.2016.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/30/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Pathomechanisms of sedentary behaviour (SB) are unclear. We conducted a systematic review to investigate the associations between SB and various biomarkers in older adults. METHODS Electronic databases were searched (MEDLINE, EMBASE, CINAHL, AMED) up to July 2015 to identify studies with objective or subjective measures of SB, sample size ≥50, mean age ≥60years and accelerometer wear time ≥3days. Methodological quality was appraised with the CASP tool. The protocol was pre-specified (PROSPERO CRD42015023731). RESULTS 12701 abstracts were retrieved, 275 full text articles further explored, from which 249 were excluded. In the final sample (26 articles) a total of 63 biomarkers were detected. Most investigated markers were: body mass index (BMI, n=15), waist circumference (WC, n=15), blood pressure (n=11), triglycerides (n=12) and high density lipoprotein (HDL, n=15). Some inflammation markers were identified such as interleukin-6, C-reactive protein or tumor necrosis factor alpha. There was a lack of renal, muscle or bone biomarkers. Randomized controlled trials found a positive correlation for SB with BMI, neck circumference, fat mass, HbA1C, cholesterol and insulin levels, cohort studies additionally for WC, leptin, C-peptide, ApoA1 and Low density lipoprotein and a negative correlation for HDL. CONCLUSION Most studied biomarkers associated with SB were of cardiovascular or metabolic origin. There is a suggestion of a negative impact of SB on biomarkers but still a paucity of high quality investigations exist. Longitudinal studies with objectively measured SB are needed to further elucidate the pathophysiological pathways and possible associations of unexplored biomarkers.
Collapse
|
44
|
Klupp E, Weidlich D, Schlaeger S, Baum T, Cervantes B, Deschauer M, Kooijman H, Rummeny EJ, Zimmer C, Kirschke JS, Karampinos DC. B1-insensitive T2 mapping of healthy thigh muscles using a T2-prepared 3D TSE sequence. PLoS One 2017; 12:e0171337. [PMID: 28196133 PMCID: PMC5308846 DOI: 10.1371/journal.pone.0171337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022] Open
Abstract
Purpose To propose a T2-prepared 3D turbo spin echo (T2prep 3D TSE) sequence for B1-insensitive skeletal muscle T2 mapping and compare its performance with 2D and 3D multi-echo spin echo (MESE) for T2 mapping in thigh muscles of healthy subjects. Methods The performance of 2D MESE, 3D MESE and the proposed T2prep 3D TSE in the presence of transmit B1 and B0 inhomogeneities was first simulated. The thigh muscles of ten young and healthy subjects were then scanned on a 3 T system and T2 mapping was performed using the three sequences. Transmit B1-maps and proton density fat fraction (PDFF) maps were also acquired. The subjects were scanned three times to assess reproducibility. T2 values were compared among sequences and their sensitivity to B1 inhomogeneities was compared to simulation results. Correlations were also determined between T2 values, PDFF and B1. Results The left rectus femoris muscle showed the largest B1 deviations from the nominal value (from 54.2% to 92.9%). Significant negative correlations between T2 values and B1 values were found in the left rectus femoris muscle for 3D MESE (r = -0.72, p<0.001) and 2D MESE (r = -0.71, p<0.001), but not for T2prep 3D TSE (r = -0.32, p = 0.09). Reproducibility of T2 expressed by root mean square coefficients of variation (RMSCVs) were equal to 3.5% in T2prep 3D TSE, 2.6% in 3D MESE and 2.4% in 2D MESE. Significant differences between T2 values of 3D sequences (T2prep 3D TSE and 3D MESE) and 2D MESE were found in all muscles with the highest values for 2D MESE (p<0.05). No significant correlations were found between PDFF and T2 values. Conclusion A strong influence of an inhomogeneous B1 field on the T2 values of 3D MESE and 2D MESE was shown, whereas the proposed T2prep 3D TSE gives B1-insensitive and reproducible thigh muscle T2 mapping.
Collapse
Affiliation(s)
- Elisabeth Klupp
- Institut für Diagnostische und Interventionelle Neuroradiologie, Technische Universität München, Munich, Germany
- * E-mail:
| | - Dominik Weidlich
- Institut für Diagnostische und Interventionelle Radiologie, Technische Universität München, Munich, Germany
| | - Sarah Schlaeger
- Institut für Diagnostische und Interventionelle Neuroradiologie, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Institut für Diagnostische und Interventionelle Radiologie, Technische Universität München, Munich, Germany
| | - Barbara Cervantes
- Institut für Diagnostische und Interventionelle Radiologie, Technische Universität München, Munich, Germany
| | - Marcus Deschauer
- Neurologische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | | | - Ernst J. Rummeny
- Institut für Diagnostische und Interventionelle Radiologie, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Institut für Diagnostische und Interventionelle Neuroradiologie, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Institut für Diagnostische und Interventionelle Neuroradiologie, Technische Universität München, Munich, Germany
| | - Dimitrios C. Karampinos
- Institut für Diagnostische und Interventionelle Radiologie, Technische Universität München, Munich, Germany
| |
Collapse
|
45
|
Peng XG, Wang Y, Zhang S, Bai Y, Mao H, Teng GJ, Ju S. Noninvasive assessment of age, gender, and exercise effects on skeletal muscle: Initial experience with T 1 ρ MRI of calf muscle. J Magn Reson Imaging 2016; 46:61-70. [PMID: 27862560 DOI: 10.1002/jmri.25546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To prospectively investigate age- and gender-related changes in the fast-twitch (tibialis anterior, TA) and slow-twitch (soleus, SOL) skeletal muscle of healthy rats and volunteers and to compare the exercise-related difference in health volunteers with T1 ρ magnetic resonance imaging (MRI). MATERIALS AND METHODS In all, 18 rats and 70 humans were involved in this study. For the animal study, T1 ρ relaxation times were measured in the TA and SOL rat muscle with a 3.0T MRI scanner and compared to histological data. For the human study, three groups (young, middle-aged, and elderly) of volunteers underwent T1 ρ MRI scans (3.0T) of their calves. To further differentiate the human scans, 18 volunteers were recruited, half of them (n = 9) routinely trained with high-intensity sports, while the other half (n = 9) with no physical training. Statistical analysis was performed via paired t-test, independent-sample t-test, and analysis of variance (ANOVA). Correlations between T1 ρ and age/gender/physical endurance were calculated. RESULTS The average T1 ρ relaxation times of the TA and SOL of female rats were higher than that of male rats (P < 0.001). The T1 ρ relaxation time of TA was significantly lower compared to SOL (P < 0.001). A significant linear correlation was observed between T1 ρ and the type I slow-twitch fiber proportion (%) in SOL (R2 = 0.837, P < 0.001). Similarly, in human studies the average T1 ρ relaxation times of TA were significantly lower than SOL for all age groups (P < 0.001). The higher T1 ρ relaxation times of TA and SOL in the elderly volunteers (P < 0.001) and in the females (P < 0.05) indicated significant age- and gender-dependent differences. In high-intensity sports groups, the higher T1 ρ in SOL (P < 0.01) and lower in TA (P < 0.05) were observed compared with the control group. CONCLUSION This study demonstrated that T1 ρ MRI can be used to display the differences in fast- and slow-twitch skeletal muscle as well as potentially age-, gender-, and exercise-related differences. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:61-70.
Collapse
Affiliation(s)
- Xin-Gui Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, P.R. China
| | - Yuancheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, P.R. China
| | - Shijun Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, P.R. China
| | - Yingying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, P.R. China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, P.R. China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, P.R. China
| |
Collapse
|