1
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605707. [PMID: 39131274 PMCID: PMC11312535 DOI: 10.1101/2024.08.02.605707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting "microbiome clock" predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's "microbiome age" does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- California Academy of Sciences, San Francisco, CA, USA
| | - Kimberly E. Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Duke University Population Research Institute, Duke University, Durham, NC, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Faculty of Life Sciences, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Jack A. Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke University, Durham, NC, USA
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig Germany
- Max Planck Institute for Mathematics in the Natural Sciences, Leipzig, Germany
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Woodman JP, Gokcekus S, Beck KB, Green JP, Nussey DH, Firth JA. The ecology of ageing in wild societies: linking age structure and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220464. [PMID: 39463244 PMCID: PMC11513650 DOI: 10.1098/rstb.2022.0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 10/29/2024] Open
Abstract
The age of individuals has consequences not only for their fitness and behaviour but also for the functioning of the groups they form. Because social behaviour often changes with age, population age structure is expected to shape the social organization, the social environments individuals experience and the operation of social processes within populations. Although research has explored changes in individual social behaviour with age, particularly in controlled settings, there is limited understanding of how age structure governs sociality in wild populations. Here, we synthesize previous research into age-related effects on social processes in natural populations, and discuss the links between age structure, sociality and ecology, specifically focusing on how population age structure might influence social structure and functioning. We highlight the potential for using empirical data from natural populations in combination with social network approaches to uncover pathways linking individual social ageing, population age structure and societal functioning. We discuss the broader implications of these insights for understanding the social impacts of anthropogenic effects on animal population demography and for building a deeper understanding of societal ageing in general.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Joe P. Woodman
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Samin Gokcekus
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Kristina B. Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jonathan P. Green
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Dan H. Nussey
- Institute of Ecology & Evolution, The University of Edinburgh, EdinburghEH9 3JT, UK
| | - Josh A. Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, Pemberton JM, Nussey DH, Firth JA. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230508. [PMID: 39463254 PMCID: PMC11513643 DOI: 10.1098/rstb.2023.0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 10/29/2024] Open
Abstract
As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality. Here, we uncover contrasting age-related patterns of infection across three helminth parasites in wild adult female red deer (Cervus elaphus). Counts of strongyle nematodes (order: Strongylida) increased with age, while counts of liver fluke (Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased, and lungworm (Dictyocaulus) counts did not change. These relationships could not be explained by socio-spatial behaviours, spatial structuring, or selective disappearance, suggesting behavioural ageing is unlikely to be responsible for driving age trends. Instead, social connectedness and strongyle infection were positively correlated, such that direct age-infection trends were directly contrasted with the effects implied by previously documented behavioural ageing. This suggests that behavioural ageing may reduce parasite exposure, potentially countering other age-related changes. These findings demonstrate that different parasites can show contrasting age trajectories depending on diverse intrinsic and extrinsic factors, and that behaviour's role in these processes is likely to be complex and multidirectional.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
- Department of Biology, Georgetown University, Washington, DC20057, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Adam Z. Hasik
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Sean Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alison Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | - David McBean
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | | | - Daniel H. Nussey
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Josh A. Firth
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
4
|
Le Coeur C, Berger V, Lummaa V, Wistbacka R, Selonen V. No evidence of early life resource pulse effects on age-specific variation in survival, reproduction and body mass of female Siberian flying squirrels. J Anim Ecol 2024; 93:2024-2037. [PMID: 39529264 PMCID: PMC11615270 DOI: 10.1111/1365-2656.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Understanding the diversity and causes of senescence patterns in the wild remains a challenging task, in particular among fast-living species for which senescence patterns have been poorly studied. Early life environmental conditions can shape senescence by influencing trade-offs between early and late life performance (disposable soma theory) or individual fitness through lifelong positive effects (silver spoon effects). Using a 23-year-long monitoring dataset of two populations of Siberian flying squirrels (Pteromys volans L.) in western Finland, we analysed the occurrence, onset and rate of senescence in female survival, body mass and reproductive performance. We also examined how early life pulsed resources (tree masting during the year of birth) influence age-specific variations in these traits. Our results indicate that survival senescence occurs after sexual maturity from 3 years of age. Females experiencing high resource availability at birth tended to survive better, but the age-specific trend was not affected by early life resource conditions. Maternal body mass declined slightly with age, starting at 4 years, regardless of early resource conditions. Similarly, among reproductive traits, we showed late-onset senescence in both litter size and annual reproductive probability, with no evidence supporting an effect of early life resources on these trends. We found no decline in juvenile body mass or in the juvenile size-number trade-off with maternal age. Our findings suggest that pulsed resources experienced at birth have a limited long-lasting impact on the life-history traits of this fast-living rodent, with no significant effect on senescence patterns.
Collapse
Affiliation(s)
- C. Le Coeur
- Department of BiologyUniversity of TurkuTurkuFinland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
| | - V. Berger
- Department of BiologyUniversity of TurkuTurkuFinland
| | - V. Lummaa
- Department of BiologyUniversity of TurkuTurkuFinland
| | - R. Wistbacka
- Department of BiologyUniversity of OuluOuluFinland
| | - V. Selonen
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
5
|
Mittell EA, Mandaliya P, Pemberton JM, Morris A, Morris S, Johnston SE, Kruuk LEB. Antler size in red deer: declining selection and increasing genetic variance with age, but little senescence. J Evol Biol 2024; 37:1288-1297. [PMID: 39303006 DOI: 10.1093/jeb/voae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
While senescence is a common occurrence in wild populations, not all traits decline with age simultaneously and some do not show any senescence. A lack of senescence in secondary sexual traits is thought to be due to their importance for reproductive success. However, if reproductive success senesces, why would secondary sexual traits apparently not senesce? Here, we explored this question in a wild population of red deer (Cervus elaphus) using antler form (number of points), a secondary sexual trait which shows little senescence, despite the occurrence of reproductive senescence. In line with expectations for traits that senesce, genetic variance in antler form increased with age and selection weakened with age. Therefore, there was no indication that a stronger selection on individuals that survived to older ages was countering the dilution of selection due to fewer individuals being alive. Furthermore, the effect of selective disappearance masking a slight decline in antler form in the oldest years was small. Interestingly, although genetic variance and positive selection of antler form were found, there was no evidence of a response to selection, supporting a genetic decoupling of antler senescence and reproductive senescence. Finally, a positive genetic covariance in antler form among age classes provides a possible explanation for the lack of senescence. These findings suggest that the antler form is under a genetic constraint that prevents it from senescing, providing an interesting evolutionary explanation for negligible senescence in a secondary sexual trait, and consequently, the existence of asynchrony in senescence among traits within populations.
Collapse
Affiliation(s)
- Elizabeth A Mittell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Priyam Mandaliya
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sean Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Loeske E B Kruuk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Lalande LD, Bourgoin G, Carbillet J, Cheynel L, Debias F, Ferté H, Gaillard JM, Garcia R, Lemaître JF, Palme R, Pellerin M, Peroz C, Rey B, Vuarin P, Gilot-Fromont E. Early-life glucocorticoids accelerate lymphocyte count senescence in roe deer. Gen Comp Endocrinol 2024; 357:114595. [PMID: 39059616 DOI: 10.1016/j.ygcen.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.
Collapse
Affiliation(s)
- Lucas D Lalande
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Louise Cheynel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés UMR 5023, F-69622 Villeurbanne, France
| | - François Debias
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Hubert Ferté
- Université de Reims, Épidémio-Surveillance et Circulation de Parasites dans les Environnements UR 7510, 55100 Reims, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rebecca Garcia
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Maryline Pellerin
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploités, 52210 Châteauvillain, France
| | - Carole Peroz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Pauline Vuarin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France.
| |
Collapse
|
7
|
Bieuville M, Dujon A, Raven N, Ujvari B, Pujol P, Eslami‐S Z, Alix Panabières C, Capp J, Thomas F. When Do Tumours Develop? Neoplastic Processes Across Different Timescales: Age, Season and Round the Circadian Clock. Evol Appl 2024; 17:e70024. [PMID: 39444444 PMCID: PMC11496201 DOI: 10.1111/eva.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
While it is recognised that most, if not all, multicellular organisms harbour neoplastic processes within their bodies, the timing of when these undesirable cell proliferations are most likely to occur and progress throughout the organism's lifetime remains only partially documented. Due to the different mechanisms implicated in tumourigenesis, it is highly unlikely that this probability remains constant at all times and stages of life. In this article, we summarise what is known about this variation, considering the roles of age, season and circadian rhythm. While most studies requiring that level of detail be done on humans, we also review available evidence in other animal species. For each of these timescales, we identify mechanisms or biological functions shaping the variation. When possible, we show that evolutionary processes likely played a role, either directly to regulate the cancer risk or indirectly through trade-offs. We find that neoplastic risk varies with age in a more complex way than predicted by early epidemiological models: rather than resulting from mutations alone, tumour development is dictated by tissue- and age-specific processes. Similarly, the seasonal cycle can be associated with risk variation in some species with life-history events such as sexual competition or mating being timed according to the season. Lastly, we show that the circadian cycle influences tumourigenesis in physiological, pathological and therapeutic contexts. We also highlight two biological functions at the core of these variations across our three timescales: immunity and metabolism. Finally, we show that our understanding of the entanglement between tumourigenic processes and biological cycles is constrained by the limited number of species for which we have extensive data. Improving our knowledge of the periods of vulnerability to the onset and/or progression of (malignant) tumours is a key issue that deserves further investigation, as it is key to successful cancer prevention strategies.
Collapse
Affiliation(s)
- Margaux Bieuville
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg‐UniversitätMainzGermany
- Institute for Quantitative and Computational Biosciences (IQCB)Johannes Gutenberg‐UniversitätMainzGermany
| | - Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Nynke Raven
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Beata Ujvari
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Pascal Pujol
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Oncogenetic DepartmentUniversity Medical Centre of MontpellierMontpellierFrance
| | - Zahra Eslami‐S
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Catherine Alix Panabières
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteUniversity of Toulouse, INSA, CNRS, INRAEToulouseFrance
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
8
|
Yang M, Harrison BR, Promislow DEL. Cellular age explains variation in age-related cell-to-cell transcriptome variability. Genome Res 2023; 33:1906-1916. [PMID: 37973195 PMCID: PMC10760448 DOI: 10.1101/gr.278144.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Organs and tissues age at different rates within a single individual. Such asynchrony in aging has been widely observed at multiple levels, from functional hallmarks, such as anatomical structures and physiological processes, to molecular endophenotypes, such as the transcriptome and metabolome. However, we lack a conceptual framework to understand why some components age faster than others. Just as demographic models explain why aging evolves, here we test the hypothesis that demographic differences among cell types, determined by cell-specific differences in turnover rate, can explain why the transcriptome shows signs of aging in some cell types but not others. Through analysis of mouse single-cell transcriptome data across diverse tissues and ages, we find that cellular age explains a large proportion of the variation in the age-related increase in transcriptome variance. We further show that long-lived cells are characterized by relatively high expression of genes associated with proteostasis and that the transcriptome of long-lived cells shows greater evolutionary constraint than short-lived cells. In contrast, in short-lived cell types, the transcriptome is enriched for genes associated with DNA repair. Based on these observations, we develop a novel heuristic model that explains how and why aging rates differ among cell types.
Collapse
Affiliation(s)
- Ming Yang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA;
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
McKenna-Ell C, Ravindran S, Pilkington JG, Pemberton JM, Nussey DH, Froy H. Trait-dependent associations between early- and late-life reproduction in a wild mammal. Biol Lett 2023; 19:20230050. [PMID: 37433328 DOI: 10.1098/rsbl.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Early- versus late-life trade-offs are a central prediction of life-history theory that are expected to shape the evolution of ageing. While ageing is widely observed in wild vertebrates, evidence that early-late trade-offs influence ageing rates remains limited. Vertebrate reproduction is a complex, multi-stage process, yet few studies have examined how different aspects of early-life reproductive allocation shape late-life performance and ageing. Here, we use longitudinal data from a 36-year study of wild Soay sheep to show that early-life reproduction predicts late-life reproductive performance in a trait-dependent manner. Females that started breeding earlier showed more rapid declines in annual breeding probability with age, consistent with a trade-off. However, age-related declines in offspring first-year survival and birth weight were not associated with early-life reproduction. Selective disappearance was evident in all three late-life reproductive measures, with longer-lived females having higher average performance. Our results provide mixed support for early-late reproductive trade-offs and show that the way early-life reproduction shapes late-life performance and ageing can differ among reproductive traits.
Collapse
Affiliation(s)
- Chris McKenna-Ell
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sanjana Ravindran
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Daniel H Nussey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
10
|
Meunier L, Sorci G, Abi Hussein H, Hingrat Y, Rehspringer N, Saint-Jalme M, Lesobre L, Torres Carreira J. Pre-but not post-meiotic senescence affects sperm quality and reproductive success in the North African houbara bustard. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.977184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Age-dependent reduction in reproductive success can arise due to multiple factors including a deterioration of reproductive physiology. Senescing males have been shown to produce ejaculates with poor sperm quality, which impinges on male reproductive success. In addition to individual age, gamete age can also affect male reproductive success. Accordingly, variance in male reproductive success can be due to pre-meiotic (referring to individual age) and post-meiotic senescence (sperm age). Here, we tested whether male senescence and sperm cell aging have additive or interactive effects on male reproductive success in a bird with a promiscuous mating system, the North African houbara bustard. To assess the effect of pre-meiotic aging, we compared male reproductive success between two age classes (3-6- and 12–16-year-old). To infer the effect of post-meiotic aging, male ejaculates were collected at three-time intervals following a common initial collection (day 1, 5, and 10). Therefore, day 1 ejaculates are supposed to contain younger sperm than day 5 and 10 ejaculates. Following controlled artificial inseminations, reproductive success was assessed using three fitness-linked traits (hatching success, chick growth rate and survival). In addition to reproductive output, we also assessed whether pre- and post-meiotic aging affected a wide range of sperm and ejaculate traits. In agreement with previous reports, we found that males in the older age class produced less sperm with poorer motility compared to young individuals. However, contrary to the prediction, we found that ejaculates collected at day 5 and 10 tended to have better sperm traits such as motility and velocity. The results on sperm traits were generally mirrored in the effect on reproductive success since young males produced offspring that grew faster and had better survival during the first month of life, and eggs fertilized by sperm collected at day 5 had the highest hatching success. In any of the models, there was evidence for interactive effects of male and sperm age. Overall, these results confirm the role of pre-meiotic aging on male reproductive success. The lack of evidence for sperm aging could come from the experimental design but might also reflect the pattern of mating frequency in a species with a lek-based mating system.
Collapse
|
11
|
Sparks AM, Hammers M, Komdeur J, Burke T, Richardson DS, Dugdale HL. Sex-dependent effects of parental age on offspring fitness in a cooperatively breeding bird. Evol Lett 2022; 6:438-449. [PMID: 36579166 PMCID: PMC9783413 DOI: 10.1002/evl3.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Parental age can have considerable effects on offspring phenotypes and health. However, intergenerational effects may also have longer term effects on offspring fitness. Few studies have investigated parental age effects on offspring fitness in natural populations while also testing for sex- and environment-specific effects. Further, longitudinal parental age effects may be masked by population-level processes such as the selective disappearance of poor-quality individuals. Here, we used multigenerational data collected on individually marked Seychelles warblers (Acrocephalus sechellensis) to investigate the impact of maternal and paternal age on offspring life span and lifetime reproductive success. We found negative effects of maternal age on female offspring life span and lifetime reproductive success, which were driven by within-mother effects. There was no difference in annual reproductive output of females born to older versus younger mothers, suggesting that the differences in offspring lifetime reproductive success were driven by effects on offspring life span. In contrast, there was no association between paternal age and female offspring life span or either maternal or paternal age and male offspring life span. Lifetime reproductive success, but not annual reproductive success, of male offspring increased with maternal age, but this was driven by between-mother effects. No paternal age effects were found on female offspring lifetime reproductive success but there was a positive between-father effect on male offspring lifetime reproductive success. We did not find strong evidence for environment-dependent parental age effects. Our study provides evidence for parental age effects on the lifetime fitness of offspring and shows that such effects can be sex dependent. These results add to the growing literature indicating the importance of intergenerational effects on long-term offspring performance and highlight that these effects can be an important driver of variation in longevity and fitness in the wild.
Collapse
Affiliation(s)
- Alexandra M. Sparks
- Faculty of Biological Sciences, School of BiologyUniversity of LeedsLeedsLS2 9JTUnited Kingdom,School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands,Aeres University of Applied SciencesAlmere1325 WBThe Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands
| | - Terry Burke
- School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom,Nature SeychellesMahéRepublic of Seychelles
| | - Hannah L. Dugdale
- Faculty of Biological Sciences, School of BiologyUniversity of LeedsLeedsLS2 9JTUnited Kingdom,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands
| |
Collapse
|
12
|
Naciri M, Aars J, Blanchet MA, Gimenez O, Cubaynes S. Reproductive senescence in polar bears in a variable environment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.920481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reproductive senescence is ubiquitous in mammals. However, patterns of senescence vary across reproductive traits, even within populations, perhaps because of differences in selection pressures, physiological constraints, and responses to environmental conditions. We investigated reproductive senescence in wild female polar bears (Ursus maritimus), using 31 years of capture-recapture data from the Svalbard area. We studied the influence of environmental conditions on age-specific litter production and litter size using generalized linear mixed models. Further, using a capture-recapture model that handles the dependency between vital rates of individuals belonging to the same family unit, we assessed maternal-age-related changes in first year cub and litter survival. We provide clear evidence for reproductive senescence in female polar bears. Litter production and litter size peaked in middle-aged females and declined sharply afterward. By contrast cub and litter survival did not decline after prime age. We found no evidence of terminal investment. The reproductive output of all females was affected by sea-ice conditions during the previous year and the Arctic Oscillation, with some effects differing greatly between age groups. Old females were affected the most by environmental conditions. Our results suggest that the decline in reproductive output is a combination of fertility and body-condition senescence, with a weak contribution of maternal-effect senescence, possibly due to benefits of experience. Further, as predicted by evolutionary theory, senescence appears to be a consequence of failures in early stages of the reproductive cycle rather than in late stages, and environmental variation affected old females more than prime-aged females. Our study emphasizes the need to study several reproductive traits and account for environmental variation when investigating reproductive senescence. Differences in senescence patterns across reproductive traits should be interpreted in light of evolutionary theory and while considering underlying physiological drivers.
Collapse
|
13
|
Lalande LD, Lummaa V, Aung HH, Htut W, Nyein UK, Berger V, Briga M. Sex-specific body mass ageing trajectories in adult Asian elephants. J Evol Biol 2022; 35:752-762. [PMID: 35470907 DOI: 10.1111/jeb.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
In species with marked sexual dimorphism, the classic prediction is that the sex which undergoes stronger intrasexual competition ages earlier or quicker. However, more recently, alternative hypotheses have been put forward, showing that this association can be disrupted. Here, we utilize a unique, longitudinal data set of a semi-captive population of Asian elephants (Elephas maximus), a species with marked male-biased intrasexual competition, with males being larger and having shorter lifespans, and investigate whether males show earlier and/or faster body mass ageing than females. We found evidence of sex-specific body mass ageing trajectories: adult males gained weight up to the age of 48 years old, followed by a decrease in body mass until natural death. In contrast, adult females gained body mass with age until a body mass decline in the last year of life. Our study shows sex-specific ageing patterns, with an earlier onset of body mass declines in males than females, which is consistent with the predictions of the classical theory of ageing.
Collapse
Affiliation(s)
- Lucas D Lalande
- Department of Biology, University of Turku, Turku, Finland.,Université Bourgogne Franche-Comté, Dijon, France.,Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne CEDEX, France
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| | - Htoo H Aung
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, West Gyogone Forest Compound, Yangon, Myanmar
| | - Win Htut
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, West Gyogone Forest Compound, Yangon, Myanmar
| | - U Kyaw Nyein
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, West Gyogone Forest Compound, Yangon, Myanmar
| | - Vérane Berger
- Department of Biology, University of Turku, Turku, Finland
| | - Michael Briga
- Department of Biology, University of Turku, Turku, Finland.,Infectious Disease Epidemiology Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
14
|
Siracusa ER, Higham JP, Snyder-Mackler N, Brent LJN. Social ageing: exploring the drivers of late-life changes in social behaviour in mammals. Biol Lett 2022; 18:20210643. [PMID: 35232274 PMCID: PMC8889194 DOI: 10.1098/rsbl.2021.0643] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Social interactions help group-living organisms cope with socio-environmental challenges and are central to survival and reproductive success. Recent research has shown that social behaviour and relationships can change across the lifespan, a phenomenon referred to as 'social ageing'. Given the importance of social integration for health and well-being, age-dependent changes in social behaviour can modulate how fitness changes with age and may be an important source of unexplained variation in individual patterns of senescence. However, integrating social behaviour into ageing research requires a deeper understanding of the causes and consequences of age-based changes in social behaviour. Here, we provide an overview of the drivers of late-life changes in sociality. We suggest that explanations for social ageing can be categorized into three groups: changes in sociality that (a) occur as a result of senescence; (b) result from adaptations to ameliorate the negative effects of senescence; and/or (c) result from positive effects of age and demographic changes. Quantifying the relative contribution of these processes to late-life changes in sociality will allow us to move towards a more holistic understanding of how and why these patterns emerge and will provide important insights into the potential for social ageing to delay or accelerate other patterns of senescence.
Collapse
Affiliation(s)
- Erin R Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lauren J N Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
15
|
Moorad J, Ravindran S. Natural selection and the evolution of asynchronous aging. Am Nat 2021; 199:551-563. [DOI: 10.1086/718589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Rebol EJ, Anderson DJ. Sex-specific aging in bite force in a wild vertebrate. Exp Gerontol 2021; 159:111661. [PMID: 34923056 DOI: 10.1016/j.exger.2021.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022]
Abstract
The manifold differences between the sexes provide wide scope for sex differences in senescence. However, detecting physiological decline in old age and evaluating any sex difference in aging in a wild population can be challenging. This applies especially to long-lived species that require marking around birth in order to recognize elderly individuals, perhaps decades later. Here, we used bite force of known-age, long-lived Nazca boobies (Sula granti, a seabird) as a functional measure of muscle strength; surprisingly, only a single study has evaluated the possibility of senescent decline in muscle strength in a wild vertebrate. The male-biased adult sex ratio of this population constrains breeding opportunities across the lifespan for males, so we predicted that slower accumulation of reproductive costs would delay senescent decline in bite force in males compared to females, matching observed patterns in some non-muscle traits in this species. Data were collected from 349 adults using a force transducer at the start of the breeding season in November 2017 on Isla Española, Galápagos. Both sexes achieved less bite force in late life. The decline began at a later age in males, providing evidence of sex-specific schedules of decline in muscle function in a wild vertebrate.
Collapse
Affiliation(s)
- Erynn J Rebol
- Dept. of Biology, Wake Forest University, Winston-Salem, NC 27106, USA.
| | - David J Anderson
- Dept. of Biology, Wake Forest University, Winston-Salem, NC 27106, USA
| |
Collapse
|
17
|
Reichert S, Berger V, Dos Santos DJF, Lahdenperä M, Nyein UK, Htut W, Lummaa V. Age related variation of health markers in Asian elephants. Exp Gerontol 2021; 157:111629. [PMID: 34800624 DOI: 10.1016/j.exger.2021.111629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Although senescence is often observed in the wild, its underlying mechanistic causes can rarely be studied alongside its consequences, because data on health, molecular and physiological measures of senescence are rare. Documenting how different age-related changes in health accelerate ageing at a mechanistic level is key if we are to better understand the ageing process. Nevertheless, very few studies, particularly on natural populations of long-lived animals, have investigated age-related variation in biological markers of health and sex differences therein. Using blood samples collected from semi-captive Asian elephants, we show that pronounced differences in haematology, blood chemistry, immune, and liver functions among age classes are also evident under natural conditions in this extremely long-lived mammal. We provide strong support that overall health declined with age, with progressive declines in immune and liver functions similarly in both males and females. These changes parallel those mainly observed to-date in humans and laboratory mammals, and suggest a certain ubiquity in the ageing patterns.
Collapse
Affiliation(s)
- Sophie Reichert
- Department of Biology, University of Turku, Turku, Finland; Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Vérane Berger
- Department of Biology, University of Turku, Turku, Finland.
| | | | - Mirkka Lahdenperä
- Department of Public Health, University of Turku and Turku University Hospital, 20014 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, 20014 Turku, Finland
| | - U Kyaw Nyein
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, Yangon, Myanmar
| | - Win Htut
- Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, Yangon, Myanmar
| | - Virpi Lummaa
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Fay R, Martin J, Plard F. Distinguishing within- from between-individual effects: How to use the within-individual centring method for quadratic patterns. J Anim Ecol 2021; 91:8-19. [PMID: 34651314 PMCID: PMC9298145 DOI: 10.1111/1365-2656.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Any average pattern observed at the population level (cross-sectional analysis) may confound two different types of processes: some processes that occur among individuals and others that occur within individuals. Separating within- from among-individual processes is critical for our understanding of ecological and evolutionary dynamics. The within-individual centring method allows distinguishing within- from among-individual processes and this method has been widely used in ecology to investigate both linear and quadratic patterns. Here we show that two alternative equations could be used for the investigation of quadratic within-individual patterns. We explain the different assumptions and constraints of both equations. Reviewing the literature, we found that mainly one of these two equations has been used in studies investigating quadratic patterns. Yet this equation might not be the most appropriate in all circumstances leading to bias and imprecision. We show that these two alternative equations make different assumptions about the shape of the within-individual pattern. One equation assumes that the within-individual effect is related to an absolute process whereas the other assumes the effect arises from an individual relative process. The choice of using one equation instead of the other should depend upon the biological process investigated. Using simulations, we showed that a mismatch between the assumptions made by the equation used to analyse the data and the biological process investigated might led to flawed inference affecting output of model selection and accuracy of estimates. We stress that the equation used should be chosen carefully. We provide step by step guidelines for choosing an equation when studying quadratic pattern with the within-individual centring approach. We encourage the use of the within-individual centring method, promoting its relevant application for nonlinear relationships.
Collapse
Affiliation(s)
- Rémi Fay
- Swiss Ornithological Institute, Sempach, Switzerland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julien Martin
- Department of Biological Sciences, University of Ottawa, Ottawa, Canada
| | - Floriane Plard
- Swiss Ornithological Institute, Sempach, Switzerland.,Department of Aquaculture and Fish Biology, Hólar University, Háeyri, Iceland
| |
Collapse
|
19
|
Criscuolo F, Dobson FS, Schull Q. The influence of phylogeny and life history on telomere lengths and telomere rate of change among bird species: A meta-analysis. Ecol Evol 2021; 11:12908-12922. [PMID: 34646443 DOI: 10.22541/au.162308930.07224518/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 05/19/2023] Open
Abstract
Longevity is highly variable among animal species and has coevolved with other life-history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life-history traits independent of body size are largely underexplored for birds. To test associations of life-history traits and telomere dynamics, we conducted a phylogenetic meta-analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life-history traits. We examined 3 principal components of 12 life-history variables that represented: body size (PC1), the slow-fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small-to-medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life-history variables. TROC, however, was negatively and moderate-to-strongly associated with PC2 (unadjusted r = -.340; with phylogenetic correction, r = -.490). Independent of body size, long-lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian-related species, yet telomere dynamics are strongly linked to the pace of life.
Collapse
Affiliation(s)
- François Criscuolo
- CNRS Institut Pluridisciplinaire Hubert Curien UMR 7178 University of Strasbourg Strasbourg France
| | - F Stephen Dobson
- CNRS Institut Pluridisciplinaire Hubert Curien UMR 7178 University of Strasbourg Strasbourg France
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Quentin Schull
- MARBEC IFREMER IRD CNRS University of Montpellier Sète France
| |
Collapse
|
20
|
Criscuolo F, Dobson FS, Schull Q. The influence of phylogeny and life history on telomere lengths and telomere rate of change among bird species: A meta-analysis. Ecol Evol 2021; 11:12908-12922. [PMID: 34646443 PMCID: PMC8495793 DOI: 10.1002/ece3.7931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Longevity is highly variable among animal species and has coevolved with other life-history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life-history traits independent of body size are largely underexplored for birds. To test associations of life-history traits and telomere dynamics, we conducted a phylogenetic meta-analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life-history traits. We examined 3 principal components of 12 life-history variables that represented: body size (PC1), the slow-fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small-to-medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life-history variables. TROC, however, was negatively and moderate-to-strongly associated with PC2 (unadjusted r = -.340; with phylogenetic correction, r = -.490). Independent of body size, long-lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian-related species, yet telomere dynamics are strongly linked to the pace of life.
Collapse
Affiliation(s)
- François Criscuolo
- CNRSInstitut Pluridisciplinaire Hubert CurienUMR 7178University of StrasbourgStrasbourgFrance
| | - F. Stephen Dobson
- CNRSInstitut Pluridisciplinaire Hubert CurienUMR 7178University of StrasbourgStrasbourgFrance
- Department of Biological SciencesAuburn UniversityAuburnALUSA
| | | |
Collapse
|
21
|
Lee DS, Kang YHR, Ruiz-Lambides AV, Higham JP. The observed pattern and hidden process of female reproductive trajectories across the life span in a non-human primate. J Anim Ecol 2021; 90:2901-2914. [PMID: 34541669 DOI: 10.1111/1365-2656.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Age-specific fertility trajectories are fundamental to understanding population structure and the evolutionary ecology of diverse life histories. However, characterizing reproductive ageing has been difficult with cross-sectional data, where senescence especially late in life can be confounded by selective disappearance. Addressing such challenge requires longitudinal data tracking the reproductive life span of known individuals, but such data are rare, especially for very long-lived species such as primates. We analyse the entire life span trajectory of annual fertility, from reproductive maturity to death, for 673 free-ranging female rhesus macaques, Macaca mulatta, on Cayo Santiago, Puerto Rico. Using generalized linear mixed-effects models (GLMMs), we first tested if time to death explains the ageing pattern independently of and additionally to chronological age, and if so, whether there is interaction between them. While GLMM captures the patterns in the data well, it is not a generative model. For example, given the GLMM and an individual's reproductive trajectory up to a given age, we cannot directly predict the probability of reproduction or death in the next year. For this reason, we further fitted a hidden Markov chain model (HMM) which allows just such a prediction, and additionally helps infer the process underlying the observed trajectory. We show that, after accounting for individual differences in fertility, reproductive ageing exhibits both age-dependent decline and also an abrupt terminal decline independently of age at death. We infer from the HMM that the underlying process of reproductive trajectory is where individuals cycle between reproductive bouts until they enter an irreversible frail condition that constrains fertility. The findings provide valuable insights into the longitudinal progression of reproductive trajectories in primates, by revealing both age-dependent and age-independent patterns and processes of ageing, and contribute to a growing body of literature on reproductive ageing and senescence across animal taxa.
Collapse
Affiliation(s)
- D Susie Lee
- Population Health, Max-Planck-Institute for Demographic Research, Rostock, Germany.,Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Yul H R Kang
- Department of Engineering, Cambridge University, Cambridge, UK
| | | | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
22
|
Roper M, Capdevila P, Salguero-Gómez R. Senescence: why and where selection gradients might not decline with age. Proc Biol Sci 2021; 288:20210851. [PMID: 34284628 PMCID: PMC8292751 DOI: 10.1098/rspb.2021.0851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Patterns of ageing across the tree of life are much more diverse than previously thought. Yet, we still do not adequately understand how, why and where across the tree of life a particular pattern of ageing will evolve. An ability to predict ageing patterns requires a firmer understanding of how and why different ecological and evolutionary factors alter the sensitivity of fitness to age-related changes in mortality and reproduction. From this understanding, we can ask why and where selection gradients might not decline with age. Here, we begin by summarizing the recent breadth of literature that is unearthing, empirically and theoretically, the mechanisms that drive variation in patters of senescence. We focus on the relevance of two key parameters, population structure and reproductive value, as key to understanding selection gradients, and therefore senescence. We discuss how growth form, individual trade-offs, stage structure and social interactions may all facilitate differing distributions of these two key parameters than those predicted by classical theory. We argue that these four key aspects can help us understand why patterns of negligible and negative senescence can actually be explained under the same evolutionary framework as classical senescence.
Collapse
Affiliation(s)
- Mark Roper
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Pol Capdevila
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland 4071, Australia
- Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock 18057, Germany
| |
Collapse
|
23
|
Fay R, Ravussin PA, Arrigo D, von Rönn JAC, Schaub M. Age-specific reproduction in female pied flycatchers: evidence for asynchronous aging. Oecologia 2021; 196:723-734. [PMID: 34173894 PMCID: PMC8292251 DOI: 10.1007/s00442-021-04963-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Age-related variation in reproductive performance is central for the understanding of population dynamics and evolutionary processes. Our understanding of age trajectories in vital rates has long been limited by the lack of distinction between patterns occurring within- and among-individuals, and by the lack of comparative studies of age trajectories among traits. Thus, it is poorly understood how sets of demographic traits change within individuals according to their age. Based on 40 years of monitoring, we investigated age-related variation in five reproductive traits in female pied flycatchers (Ficedula hypoleuca) including laying date, clutch size, brood size, nest success (probability that a nest produces at least one chick) and egg success of successful nests (proportion of eggs resulting in a chick). We disentangled within- from among-individual processes and assessed the relative contribution of within-individual age-specific changes and selective appearance and disappearance. Finally, we compared the aging pattern among these five reproductive traits. We found strong evidence for age-specific performance including both early-life improvement and late-life decline in all reproductive traits but the egg success. Furthermore, the aging patterns varied substantially among reproductive traits both for the age of peak performance and for the rates of early-life improvement and late-life decline. The results show that age trajectories observed at the population level (cross-sectional analysis) may substantially differ from those occurring at the individual level and illustrate the complexity of variation in aging patterns across traits.
Collapse
Affiliation(s)
- Rémi Fay
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland.
| | | | | | - Jan A C von Rönn
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland
| | - Michael Schaub
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland
| |
Collapse
|
24
|
Yang X, Berman CM, Hu H, Hou R, Huang K, Wang X, Zhao H, Wang C, Li B, Zhang P. Female preferences for male golden snub-nosed monkeys vary with male age and social context. Curr Zool 2021; 68:133-142. [PMID: 35355945 PMCID: PMC8962732 DOI: 10.1093/cz/zoab044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Age is a key factor affecting sexual selection, as many physical and social traits are age-related. Although studies of primate mate choice often consider particular age-related traits, few consider the collective effects of male age. We tested the hypothesis that female golden snub-nosed monkeys Rhinopithecus roxellana prefer prime aged males (10–15 years) over younger and older males. We examined a habituated, provisioned troop during a 3-year study in the Qinling Mountains, China. Prime age males were more likely to be resident males of 1-male units (OMUs) than males of other ages. Since females are free to transfer between OMUs, the number of females per OMU can be indicative of female preferences. We examined the number of females per OMU, and found that it increased with resident male age up to 7–8 years, and declined after 12 years, such that prime age resident males had more females than other resident males. Females also initiated extra-unit copulations with high-ranking prime age males at significantly higher rates than with other males. Nevertheless, females tended to transfer from OMUs with high-ranking, older resident males to those with low-ranking, younger resident males. Thus, females appear to use different strategies when choosing social mates and extra-unit mates (i.e., different social contexts). We speculate that females may perceive early signs of aging in males and trade off the benefits and costs of high rank versus male senescence. This study lays the groundwork for future studies that examine possible direct and indirect benefits of such strategies.
Collapse
Affiliation(s)
- Xi Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Carol M Berman
- Department of Anthropology and Graduate Program in Evolution, Ecology and Behavior, State University of New York at Buffalo, NY 14261, USA
| | - Hanyu Hu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Rong Hou
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaowei Wang
- Shaanxi Institute of Zoology, Shaanxi Province Academy of Sciences, Xi’an 710032, China
| | - Haitao Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Shaanxi Institute of Zoology, Shaanxi Province Academy of Sciences, Xi’an 710032, China
| | - Chengliang Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
- Shaanxi Institute of Zoology, Shaanxi Province Academy of Sciences, Xi’an 710032, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
25
|
Tidière M, Müller P, Sliwa A, Siberchicot A, Douay G. Sex-specific actuarial and reproductive senescence in zoo-housed tiger (Panthera tigris): The importance of sub-species for conservation. Zoo Biol 2021; 40:320-329. [PMID: 33861886 DOI: 10.1002/zoo.21610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/24/2021] [Indexed: 11/07/2022]
Abstract
A fifth of all known species are currently classified as threatened in the wild: the rate of biodiversity loss is rapid, continuous, and mostly due to anthropogenic activities. To slow down this decline, the accurate estimation of demographic parameters for threatened species is critical. With this aim, zoo institutions play an important role, giving access to data on zoo-housed animals, which aids researchers working on species life-history traits and intrinsic factors influencing the fitness of both sexes, such as age. While tigers (Panthera tigris) are particularly threatened in their natural environment, few of their demographic parameters have been determined because of their solitary and elusive nature as well as low population density. Using individual-based information for more than 9200 tigers (from 1938 to 2018) recorded in the International Tiger Studbook 2018, we aimed to determine sub-species and sex-specific variability of survival and reproductive parameters with age. No significant sex-difference in actuarial senescence (i.e., decline of survival probabilities with age) was observed but males tended to have a higher juvenile mortality and a faster senescence than females. Reproductive senescence (i.e., decline of reproductive parameters with age) was more pronounced in females than males. Moreover, we observed sub-species-specific variation in mortality and reproductive patterns, pointing out the necessity to consider them independently for conservation goals. Our findings can provide meaningful improvements to the husbandry of zoo-housed tigers, emphasizing the importance of adult breeding females of 7-9 years-old to control zoo-housed population size, but also providing accurate demographic estimates, crucial to set up effective conservation plans.
Collapse
Affiliation(s)
- Morgane Tidière
- Conservation Science Alliance, Species360, Minneapolis, Minnesota, 55425, USA.,Interdisciplinary Center on Population Dynamics, Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Aurélie Siberchicot
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS, Université de Lyon, Villeurbanne, France
| | - Guillaume Douay
- Conservation, Research, and Veterinary Department, Wildlife Reserves Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Briga M, Verhulst S. Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
27
|
Kroeger SB, Blumstein DT, Martin JGA. How social behaviour and life-history traits change with age and in the year prior to death in female yellow-bellied marmots. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190745. [PMID: 33678024 DOI: 10.1098/rstb.2019.0745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies in natural populations are essential to understand the evolutionary ecology of senescence and terminal allocation. While there are an increasing number of studies investigating late-life variation in different life-history traits of wild populations, little is known about these patterns in social behaviour. We used long-term individual based data on yellow-bellied marmots (Marmota flaviventer) to quantify how affiliative social behaviours and different life-history traits vary with age and in the last year of life, and how patterns compare between the two. We found that some social behaviours and all life-history traits varied with age, whereas terminal last year of life effects were only observed in life-history traits. Our results imply that affiliative social behaviours do not act as a mechanism to adjust allocation among traits when close to death, and highlight the importance of adopting an integrative approach, studying late-life variation and senescence across multiple different traits, to allow the identification of potential trade-offs. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Svenja B Kroeger
- Department of Landscape and Biodiversity, The Norwegian Institute of Bioeconomy Research, Klæbuveien 153, Trondheim 7031, Norway
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA.,The Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA
| | - Julien G A Martin
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
28
|
Abstract
AbstractReproduction, mortality, and immune function often change with age but do not invariably deteriorate. Across the tree of life, there is extensive variation in age-specific performance and changes to key life-history traits. These changes occur on a spectrum from classic senescence, where performance declines with age, to juvenescence, where performance improves with age. Reproduction, mortality, and immune function are also important factors influencing the spread of infectious disease, yet there exists no comprehensive investigation into how the aging spectrum of these traits impacts epidemics. We used a model laboratory infection system to compile an aging profile of a single organism, including traits directly linked to pathogen susceptibility and those that should indirectly alter pathogen transmission by influencing demography. We then developed generalizable epidemiological models demonstrating that different patterns of aging produce dramatically different transmission landscapes: in many cases, aging can reduce the probability of epidemics, but it can also promote severity. This work provides context and tools for use across taxa by empiricists, demographers, and epidemiologists, advancing our ability to accurately predict factors contributing to epidemics or the potential repercussions of senescence manipulation.
Collapse
|
29
|
Cooper EB, Bonnet T, Osmond HL, Cockburn A, Kruuk LEB. Aging and Senescence across Reproductive Traits and Survival in Superb Fairy-Wrens ( Malurus cyaneus). Am Nat 2020; 197:111-127. [PMID: 33417527 DOI: 10.1086/711755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhy do senescence rates of fitness-related traits often vary dramatically? By considering the full aging trajectories of multiple traits, we can better understand how a species' life history shapes the evolution of senescence within a population. Here, we examined age-related changes in sex-specific survival, reproduction, and several components of reproduction using a long-term study of a cooperatively breeding songbird, the superb fairy-wren (Malurus cyaneus). We compared aging patterns between traits by estimating standardized rates of maturation, age of onset of senescence, and rates of senescence while controlling for confounding factors reflecting individual variability in life history. We found striking differences in aging and senescence patterns between survival and reproduction as well as between reproductive traits. In both sexes, survival started to decline from maturity onward. In contrast, all reproductive traits showed improvements into early adulthood, and many showed little or no evidence of senescence. In females, despite senescence in clutch size, number of offspring surviving to independence did not decline in late life, possibly due to improvements in maternal care with age. Superb fairy-wrens have exceptionally high levels of extragroup paternity, and while male within-group reproductive success did not change with age, extragroup reproductive success showed a dramatic increase in early ages, followed by a senescent decline, suggesting that male reproductive aging is driven by sexual selection. We discuss how the superb fairy-wrens' complex life history may contribute to the disparate aging patterns across different traits.
Collapse
|
30
|
Sparks AM, Hayward AD, Watt K, Pilkington JG, Pemberton JM, Johnston SE, McNeilly TN, Nussey DH. Maternally derived anti-helminth antibodies predict offspring survival in a wild mammal. Proc Biol Sci 2020; 287:20201931. [PMID: 33234082 PMCID: PMC7739501 DOI: 10.1098/rspb.2020.1931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transfer of antibodies from mother to offspring provides crucial protection against infection to offspring during early life in humans and domestic and laboratory animals. However, few studies have tested the consequences of variation in maternal antibody transfer for offspring fitness in the wild. Further, separating the immunoprotective effects of antibodies from their association with nutritional resources provided by mothers is difficult. Here, we measured plasma levels of total and parasite-specific antibodies in neonatal (less than 10 days old) wild Soay sheep over 25 years to quantify variation in maternal antibody transfer and test its association with offspring survival. Maternal antibody transfer was predicted by maternal age and previous antibody responses, and was consistent within mothers across years. Neonatal total IgG antibody levels were positively related to early growth, suggesting they reflected nutritional transfer. Neonatal parasite-specific IgG levels positively predicted first-year survival, independent of lamb weight, total IgG levels and subsequent lamb parasite-specific antibody levels. This relationship was partly mediated via an indirect negative association with parasite burden. We show that among-female variation in maternal antibody transfer can have long-term effects on offspring growth, parasite burden and fitness in the wild, and is likely to impact naturally occurring host–parasite dynamics.
Collapse
Affiliation(s)
- Alexandra M Sparks
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Adam D Hayward
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
31
|
Raj Pant S, Hammers M, Komdeur J, Burke T, Dugdale HL, Richardson DS. Age-dependent changes in infidelity in Seychelles warblers. Mol Ecol 2020; 29:3731-3746. [PMID: 32706433 DOI: 10.1111/mec.15563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023]
Abstract
Extra-pair paternity (EPP) is often linked to male age in socially monogamous vertebrates; that is, older males are more likely to gain EPP and less likely to be cuckolded. However, whether this occurs because males improve at gaining paternity as they grow older, or because "higher quality" males that live longer are preferred by females, has rarely been tested, despite being central to our understanding of the evolutionary drivers of female infidelity. Moreover, how extra-pair reproduction changes with age within females has received even less attention. Using 18 years of longitudinal data from an individually marked population of Seychelles warblers (Acrocephalus sechellensis), we found considerable within-individual changes in extra-pair reproduction in both sexes: an early-life increase and a late-life decline. Furthermore, males were cuckolded less as they aged. Our results indicate that in this species age-related patterns of extra-pair reproduction are determined by within-individual changes with age, rather than differences among individuals in longevity. These results challenge the hypothesis-based on longevity reflecting intrinsic quality-that the association between male age and EPP is due to females seeking high-quality paternal genes for offspring. Importantly, EPP accounted for up to half of male reproductive success, emphasizing the male fitness benefits of this reproductive strategy. Finally, the occurrence of post-peak declines in extra-pair reproduction provides explicit evidence of senescence in infidelity in both males and females.
Collapse
Affiliation(s)
- Sara Raj Pant
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Nature Seychelles, Mahe, Republic of Seychelles
| |
Collapse
|
32
|
Tully T, Le Galliard JF, Baron JP. Micro-geographic shift between negligible and actuarial senescence in a wild snake. J Anim Ecol 2020; 89:2704-2716. [PMID: 32929717 DOI: 10.1111/1365-2656.13317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/06/2020] [Indexed: 11/30/2022]
Abstract
While it has long been known that species have contrasted life expectancy (pace of mortality) and generation time (pace of reproduction), recent studies have also uncovered that the shape of adult age trajectories of mortality and reproduction can vary remarkably among species along a continuum of senescence ranging from strong deterioration (senescence), insignificant deterioration (negligible senescence) to improvement with advancing age (negative senescence). As for many long-lived ectotherms with asymptotic growth and increasing reproductive output with age, snakes are good candidates for negligible senescence to occur. Yet, intraspecific variation in the pace and shape of actuarial and reproductive senescence across wild populations of these species remains to be explored. Here, we used 37 years of mark-recapture data in two nearby habitats inside a meadow viper Vipera ursinii population to quantify life expectancies, generation times and the shape of actuarial and reproductive senescence. Female vipers maintained stable reproductive performances at old ages, even when accounting for the predicted increase of fertility with body size, providing evidence for negligible reproductive senescence in both habitats. Males had a higher adult mortality and a shorter life expectancy on average than females and actuarial senescence shifted from negligible senescence in the optimal habitat to strong senescence in the sub-optimal habitat. Overall, these results demonstrate that micro-geographic environmental variation can generate qualitative shifts in actuarial senescence patterns. This highlights that taking into account the within-species plasticity of age-dependent trajectories could prove useful in better understanding what determines the evolution of life-history age trajectories.
Collapse
Affiliation(s)
- Thomas Tully
- Institute of Ecology and Environmental Sciences, CNRS, iEES-Paris, Sorbonne Université, Paris, France.,Sorbonne Université, INSPE, Paris, France
| | - Jean-François Le Galliard
- Institute of Ecology and Environmental Sciences, CNRS, iEES-Paris, Sorbonne Université, Paris, France.,Département de Biologie, CNRS, UMS 3194, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), Ecole Normale Supérieure, PSL Research University, Saint-Pierre-lès-Nemours, France
| | - Jean-Pierre Baron
- Institute of Ecology and Environmental Sciences, CNRS, iEES-Paris, Sorbonne Université, Paris, France
| |
Collapse
|
33
|
Fay R, Schaub M, Border JA, Henderson IG, Fahl G, Feulner J, Horch P, Müller M, Rebstock H, Shitikov D, Tome D, Vögeli M, Grüebler MU. Evidence for senescence in survival but not in reproduction in a short-lived passerine. Ecol Evol 2020; 10:5383-5390. [PMID: 32607160 PMCID: PMC7319115 DOI: 10.1002/ece3.6281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022] Open
Abstract
Senescence has been studied since a long time by theoreticians in ecology and evolution, but empirical support in natural population has only recently been accumulating. One of the current challenges is the investigation of senescence of multiple fitness components and the study of differences between sexes. Until now, studies have been more frequently conducted on females than on males and rather in long-lived than in short-lived species. To reach a more fundamental understanding of the evolution of senescence, it is critical to investigate age-specific survival and reproduction performance in both sexes and in a large range of species with contrasting life histories. In this study, we present results on patterns of age-specific and sex-specific variation in survival and reproduction in the whinchat Saxicola rubetra, a short-lived passerine. We compiled individual-based long-term datasets from seven populations that were jointly analyzed within a Bayesian modeling framework. We found evidence for senescence in survival with a continuous decline after the age of 1 year, but no evidence of reproductive senescence. Furthermore, we found no clear evidence for sex effects on these patterns. We discuss these results in light of previous studies documenting senescence in short-lived birds. We note that most of them have been conducted in populations breeding in nest boxes, and we question the potential effect of the nest boxes on the shape of age-reproductive trajectories.
Collapse
Affiliation(s)
- Rémi Fay
- Swiss Ornithological InstituteSempachSwitzerland
| | | | | | | | | | | | - Petra Horch
- Swiss Ornithological InstituteSempachSwitzerland
| | | | | | - Dmitry Shitikov
- Zoology and Ecology DepartmentMoscow Pedagogical State UniversityMoscowRussia
| | | | | | | |
Collapse
|
34
|
Froy H, Sparks AM, Watt K, Sinclair R, Bach F, Pilkington JG, Pemberton JM, McNeilly TN, Nussey DH. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 2020; 365:1296-1298. [PMID: 31604239 DOI: 10.1126/science.aaw5822] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
Our understanding of the deterioration in immune function in old age-immunosenescence-derives principally from studies of modern human populations and laboratory animals. The generality and significance of this process for systems experiencing complex, natural infections and environmental challenges are unknown. Here, we show that late-life declines in an important immune marker of resistance to helminth parasites in wild Soay sheep predict overwinter mortality. We found senescence in circulating antibody levels against a highly prevalent nematode worm, which was associated with reduced adult survival probability, independent of changes in body weight. These findings establish a role for immunosenescence in the ecology and evolution of natural populations.
Collapse
Affiliation(s)
- H Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. .,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A M Sparks
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - K Watt
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - R Sinclair
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - F Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - J G Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - T N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - D H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc Natl Acad Sci U S A 2020; 117:8546-8553. [PMID: 32205429 DOI: 10.1073/pnas.1911999117] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In human populations, women consistently outlive men, which suggests profound biological foundations for sex differences in survival. Quantifying whether such sex differences are also pervasive in wild mammals is a crucial challenge in both evolutionary biology and biogerontology. Here, we compile demographic data from 134 mammal populations, encompassing 101 species, to show that the female's median lifespan is on average 18.6% longer than that of conspecific males, whereas in humans the female advantage is on average 7.8%. On the contrary, we do not find any consistent sex differences in aging rates. In addition, sex differences in median adult lifespan and aging rates are both highly variable across species. Our analyses suggest that the magnitude of sex differences in mammalian mortality patterns is likely shaped by local environmental conditions in interaction with the sex-specific costs of sexual selection.
Collapse
|
36
|
Boonekamp JJ, Bauch C, Verhulst S. Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population. J Anim Ecol 2020; 89:1395-1407. [PMID: 32037534 PMCID: PMC7317873 DOI: 10.1111/1365-2656.13186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
The assumption that reproductive effort decreases somatic state, accelerating ageing, is central to our understanding of life‐history variation. Maximal reproductive effort early in life is predicted to be maladaptive by accelerating ageing disproportionally, decreasing fitness. Optimality theory predicts that reproductive effort is restrained early in life to balance the fitness contribution of reproduction against the survival cost induced by the reproductive effort. When adaptive, the level of reproductive restraint is predicted to be inversely linked to the remaining life expectancy, potentially resulting in a terminal effort in the last period of reproduction. Experimental tests of the reproductive restraint hypothesis require manipulation of somatic state and subsequent investigation of reproductive effort and residual life span. To our knowledge the available evidence remains inconclusive, and hence reproductive restraint remains to be demonstrated. We modulated somatic state through a lifelong brood size manipulation in wild jackdaws and measured its consequences for age‐dependent mortality and reproductive success. The assumption that lifelong increased brood size reduced somatic state was supported: Birds rearing enlarged broods showed subsequent increased rate of actuarial senescence, resulting in reduced residual life span. The treatment induced a reproductive response in later seasons: Egg volume and nestling survival were higher in subsequent seasons in the increased versus reduced broods' treatment group. We detected these increases in egg volume and nestling survival despite the expectation that in the absence of a change in reproductive effort, the reduced somatic state indicated by the increased mortality rate would result in lower reproductive output. This leads us to conclude that the higher reproductive success we observed was the result of higher reproductive effort. Our findings show that reproductive effort negatively covaries with remaining life expectancy, supporting optimality theory and confirming reproductive restraint as a key factor underpinning life‐history variation.
Collapse
Affiliation(s)
- Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Gasparini C, Devigili A, Pilastro A. Sexual selection and ageing: interplay between pre- and post-copulatory traits senescence in the guppy. Proc Biol Sci 2020; 286:20182873. [PMID: 30963845 DOI: 10.1098/rspb.2018.2873] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traits associated with mating and fertilization success are expected to senesce with age, but limited information is available on their relative rates of senescence. In polyandrous species, male reproductive fitness depends on both mating and fertilization success. Because successful mating is a prerequisite for post-copulatory sexual selection, ejaculate traits are expected to senesce faster than pre-copulatory traits, as pre-copulatory sexual selection is often deemed to be stronger than post-copulatory sexual selection. This pattern has generally been found in the few empirical studies conducted so far. We tested this prediction in the guppy ( Poecilia reticulata), a livebearing fish characterized by intense sperm competition, by comparing the expression of male sexual traits at two ages (four and nine months). Contrary to prediction, we found that post-copulatory traits senesced at a significantly slower rate than pre-copulatory traits. We also looked at whether early investment in those sexual traits affects longevity, and the interaction between sperm age (duration of sperm storage inside the male) and male age. Our results suggest that the relative senescence rate of pre- and post-copulatory sexual traits may vary among species with different mating systems and ecology.
Collapse
Affiliation(s)
- Clelia Gasparini
- 1 Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia , Crawley, Western Australia 6009 , Australia.,2 Department of Biology, University of Padova , 35131 Padova , Italy
| | - Alessandro Devigili
- 2 Department of Biology, University of Padova , 35131 Padova , Italy.,3 Department of Zoology, Stockholm University , Stockholm 106 91 , Sweden
| | - Andrea Pilastro
- 2 Department of Biology, University of Padova , 35131 Padova , Italy
| |
Collapse
|
38
|
Frankish CK, Manica A, Phillips RA. Effects of age on foraging behavior in two closely related albatross species. MOVEMENT ECOLOGY 2020; 8:7. [PMID: 32047635 PMCID: PMC7006180 DOI: 10.1186/s40462-020-0194-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Foraging performance is widely hypothesized to play a key role in shaping age-specific demographic rates in wild populations, yet the underlying behavioral changes are poorly understood. Seabirds are among the longest-lived vertebrates, and demonstrate extensive age-related variation in survival, breeding frequency and success. The breeding season is a particularly critical phase during the annual cycle, but it remains unclear whether differences in experience or physiological condition related to age interact with the changing degree of the central-place constraint in shaping foraging patterns in time and space. METHODS Here we analyze tracking data collected over two decades from congeneric black-browed (BBA) and grey-headed (GHA) albatrosses, Thalassarche melanophris and T. chrysostoma, breeding at South Georgia. We compare the foraging trip parameters, at-sea activity (flights and landings) and habitat preferences of individuals aged 10-45 years and contrast these patterns between the incubation and early chick-rearing stages. RESULTS Young breeders of both species showed improvements in foraging competency with age, reducing foraging trip duration until age 26. Thereafter, there were signs of foraging senescence; older adults took gradually longer trips, narrowed their habitat preference (foraging within a smaller range of sea surface temperatures) (GHA), made fewer landings and rested on the water for longer (BBA). Some age-specific effects were apparent for each species only in certain breeding stages, highlighting the complex interaction between intrinsic drivers in determining individual foraging strategies. CONCLUSIONS Using cross-sectional data, this study highlighted clear age-related patterns in foraging behavior at the population-level for two species of albatrosses. These trends are likely to have important consequences for the population dynamics of these threatened seabirds, as young or old individuals may be more vulnerable to worsening environmental conditions.
Collapse
Affiliation(s)
- Caitlin K. Frankish
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
| |
Collapse
|
39
|
Thorley J, Duncan C, Sharp SP, Gaynor D, Manser MB, Clutton-Brock T. Sex-independent senescence in a cooperatively breeding mammal. J Anim Ecol 2020; 89:1080-1093. [PMID: 31943191 DOI: 10.1111/1365-2656.13173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
Researchers studying mammals have frequently interpreted earlier or faster rates of ageing in males as resulting from polygyny and the associated higher costs of reproductive competition. Yet, few studies conducted on wild populations have compared sex-specific senescence trajectories outside of polygynous species, making it difficult to make generalized inferences on the role of reproductive competition in driving senescence, particularly when other differences between males and females might also contribute to sex-specific changes in performance across lifespan. Here, we examine age-related variation in body mass, reproductive output and survival in dominant male and female meerkats, Suricata suricatta. Meerkats are socially monogamous cooperative breeders where a single dominant pair virtually monopolizes reproduction in each group and subordinate group members help to rear offspring produced by breeders. In contrast to many polygynous societies, we find that neither the onset nor the rate of senescence in body mass or reproductive output shows clear differences between males and females. Both sexes also display similar patterns of age-related survival across lifespan, but unlike most wild vertebrates, survival senescence (increases in annual mortality with rising age) was absent in dominants of both sexes, and as a result, the fitness costs of senescence were entirely attributable to declines in reproductive output from mid- to late-life. We suggest that the potential for intrasexual competition to increase rates of senescence in females-who are hormonally masculinized and frequently aggressive-is offset by their ability to maintain longer tenures of dominance than males, and that these processes when combined lead to similar patterns of senescence in both sexes. Our results stress the need to consider the form and intensity of sexual competition as well as other sex-specific features of life history when investigating the operation of senescence in wild populations.
Collapse
Affiliation(s)
- Jack Thorley
- Department of Zoology, University of Cambridge, Cambridge, UK.,Kalahari Research Centre, Kuruman River Reserve, South Africa
| | - Christopher Duncan
- Department of Zoology, University of Cambridge, Cambridge, UK.,Kalahari Research Centre, Kuruman River Reserve, South Africa
| | - Stuart P Sharp
- Lancaster Environment Centre, Lancaster University, Lancashire, UK
| | - David Gaynor
- Kalahari Research Centre, Kuruman River Reserve, South Africa.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Marta B Manser
- Kalahari Research Centre, Kuruman River Reserve, South Africa.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa.,Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK.,Kalahari Research Centre, Kuruman River Reserve, South Africa.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
40
|
Affiliation(s)
- Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive UMR5558 CNRS Université Lyon 1 University of Lyon Villeurbanne France
| |
Collapse
|
41
|
Björk JR, Dasari M, Grieneisen L, Archie EA. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. Am J Primatol 2019; 81:e22970. [PMID: 30941803 PMCID: PMC7193701 DOI: 10.1002/ajp.22970] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
Abstract
To date, most insights into the processes shaping vertebrate gut microbiomes have emerged from studies with cross-sectional designs. While this approach has been valuable, emerging time series analyses on vertebrate gut microbiomes show that gut microbial composition can change rapidly from 1 day to the next, with consequences for host physical functioning, health, and fitness. Hence, the next frontier of microbiome research will require longitudinal perspectives. Here we argue that primatologists, with their traditional focus on tracking the lives of individual animals and familiarity with longitudinal fecal sampling, are well positioned to conduct research at the forefront of gut microbiome dynamics. We begin by reviewing some of the most important ecological processes governing microbiome change over time, and briefly summarizing statistical challenges and approaches to microbiome time series analysis. We then introduce five questions of general interest to microbiome science where we think field-based primate studies are especially well positioned to fill major gaps: (a) Do early life events shape gut microbiome composition in adulthood? (b) Do shifting social landscapes cause gut microbial change? (c) Are gut microbiome phenotypes heritable across variable environments? (d) Does the gut microbiome show signs of host aging? And (e) do gut microbiome composition and dynamics predict host health and fitness? For all of these questions, we highlight areas where primatologists are uniquely positioned to make substantial contributions. We review preliminary evidence, discuss possible study designs, and suggest future directions.
Collapse
Affiliation(s)
- Johannes R Björk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Laura Grieneisen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
42
|
Cohen AA, Coste CFD, Li X, Bourg S, Pavard S. Are trade‐offs really the key drivers of ageing and life span? Funct Ecol 2019. [DOI: 10.1111/1365-2435.13444] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan A. Cohen
- Groupe de recherche PRIMUS Department of Family Medicine University of Sherbrooke Sherbrooke QC Canada
| | - Christophe F. D. Coste
- Center for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Unité Eco‐anthropologie (EA) Muséum National d'Histoire Naturelle CNRS 7206 Université Paris Diderot Paris France
| | - Xiang‐Yi Li
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Salomé Bourg
- CNRS Laboratoire de Biométrie et Biologie Évolutive UMR5558 Université Lyon 1 Villeurbanne France
| | - Samuel Pavard
- Unité Eco‐anthropologie (EA) Muséum National d'Histoire Naturelle CNRS 7206 Université Paris Diderot Paris France
| |
Collapse
|
43
|
Vanpé C, Gaillard JM, Hewison AJM, Quemere E, Kjellander P, Pellerin M, Lemaître JF. Old females rarely mate with old males in roe deer, Capreolus capreolus. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Little is known about whether female mating tactics vary with age based on their preference for mates. To fill this knowledge gap, we examined how maternal age is related to the age of their mates using detailed individual long-term monitoring of a genotyped and pedigreed European roe deer (Capreolus capreolus Linnaeus, 1758) population. We found that mating between old females and prime-aged males was more frequent than mating between prime-aged females and prime-aged males. This suggests that old females avoid old mates. Old females might be more selective in their mate choice than prime-aged females owing to increased mate-sampling effort. Our finding is in line with the terminal investment/allocation hypothesis. The study of age-related variation in female mating behaviour is particularly important because this behaviour can influence the intensity and direction of sexual selection and the maintenance of variation in male sexually selected traits. Further studies are needed to quantify the exact fitness benefits of age-specific mating tactics in females.
Collapse
Affiliation(s)
- Cécile Vanpé
- Laboratoire de Biométrie et de Biologie Evolutive, Centre National de la Recherche Scientifique UMR5558, Université Lyon 1, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et de Biologie Evolutive, Centre National de la Recherche Scientifique UMR5558, Université Lyon 1, Villeurbanne, France
| | - A J Mark Hewison
- Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, Institut National de la Recherche Agronomique, Castanet Tolosan, France
| | - Erwan Quemere
- Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, Institut National de la Recherche Agronomique, Castanet Tolosan, France
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Maryline Pellerin
- Office National de la Chasse et de la Faune Sauvage, Direction de la Recherche et de l’Expertise – Unité Ongulés Sauvages, Gières, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et de Biologie Evolutive, Centre National de la Recherche Scientifique UMR5558, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
44
|
Lemaître J, Pavard S, Giraudeau M, Vincze O, Jennings G, Hamede R, Ujvari B, Thomas F. Eco‐evolutionary perspectives of the dynamic relationships linking senescence and cancer. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jean‐François Lemaître
- Université de Lyon, F‐69000, Lyon; Université Lyon 1; CNRS, UMR5558 Laboratoire de Biométrie et Biologie Évolutive F‐69622 Villeurbanne France
| | - Samuel Pavard
- Unité Eco-anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS 7206 Université Paris Diderot Paris France
| | | | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Tisza Research MTA Centre for Ecological Research Debrecen Hungary
| | - Geordie Jennings
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Rodrigo Hamede
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| | | |
Collapse
|
45
|
Zajitschek F, Zajitschek S, Bonduriansky R. Senescence in wild insects: Key questions and challenges. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Felix Zajitschek
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Susanne Zajitschek
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
46
|
Péron G, Bonenfant C, Lemaitre JF, Ronget V, Tidiere M, Gaillard JM. Does grandparental care select for a longer lifespan in non-human mammals? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Several non-human mammalian species provide grandparental care but remain fertile until death, unlike our species. This might call into question the ‘grandmother hypothesis’ that the ability to provide grandparental care, associated with an increase in the cost of breeding with age, promote the early cessation of reproduction. Here, we analyse individual longevity records from non-human mammals to determine whether the few species with grandparental care also stand out among mammals in terms of age-specific survival patterns. Indeed, females of species with grandparental care lived on average 43% longer than males (range: 24–61%), compared with 12% in other polygynous species (95% quantile: −8 to 30%), because of low baseline mortality rates and delayed onset of actuarial senescence. We discuss this finding with respect to the ‘stopping early’ vs. ‘living longer’ debate. We review the role of the environmental context and of the decrease in offspring performance with maternal age (Lansing effect). We formalize the idea of a continuum of parental–grandparental allocation instead of a discrete switch to grandparental care only. Lastly, we suggest that the evolution of menopause has been driven by different forces in different species.
Collapse
Affiliation(s)
| | - Christophe Bonenfant
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Jean-François Lemaitre
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Victor Ronget
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Morgane Tidiere
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Jean-Michel Gaillard
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| |
Collapse
|
47
|
Bretman A, Fricke C. Exposure to males, but not receipt of sex peptide, accelerates functional ageing in female fruit flies. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amanda Bretman
- School of Biology, Faculty of Biological Sciences University of Leeds Leeds UK
| | - Claudia Fricke
- Institute for Evolution and Biodiversity University of Muenster Muenster Germany
| |
Collapse
|
48
|
Ma L, Guo K, Su S, Lin LH, Xia Y, Ji X. Age-related reproduction of female Mongolian racerunners (Eremias argus; Lacertidae): Evidence of reproductive senescence. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:290-298. [PMID: 30945817 DOI: 10.1002/jez.2264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023]
Abstract
The reproductive maturation hypothesis, the terminal investment hypothesis, and the senescence hypothesis are the most extensively evaluated hypotheses proposed to explain age-related patterns of reproduction in iteroparous organisms. Here, we evaluated these hypotheses for the Mongolian racerunner (Eremias argus), a short-lived lacertid lizard, by comparing reproductive traits between females that completed reproductive cycles under the same laboratory conditions in two consecutive years (2008 and 2009). Reproductive females gained linear size (snout-vent length) not only as they got 1 year older but also during the breeding season. Larger females generally laid eggs earlier and invested more in reproduction than did smaller ones. Females switched from laying smaller eggs in the first clutch to larger eggs in the subsequent clutches but kept clutch size and postpartum body mass constant between successive clutches in a breeding season and between years. Females that laid more clutches or eggs in 2008 did not lay fewer clutches or eggs in 2009. Of the traits examined, only clutch frequency, annual fecundity, and annual reproductive output were susceptible to ageing. Specifically, the clutch frequency was reduced by 1.1 clutches, annual fecundity by 3.1 eggs and annual reproductive output by 1.0 g in 2009 compared with 2008. Our results suggest that the reproductive maturation hypothesis better explains patterns of reproduction in young or prime-aged females of E. argus, whereas the senescence hypothesis better explains reproductive patterns in old females. The terminal investment hypothesis does not apply to any trait examined because no trait value was maximized in old females.
Collapse
Affiliation(s)
- Li Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kun Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shan Su
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuan Xia
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Tompkins EM, Anderson DJ. Sex-specific patterns of senescence in Nazca boobies linked to mating system. J Anim Ecol 2019; 88:986-1000. [PMID: 30746683 DOI: 10.1111/1365-2656.12944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/15/2018] [Indexed: 01/19/2023]
Abstract
Under life-history theories of ageing, increased senescence should follow relatively high reproductive effort. This expectation has rarely been tested against senescence varying between and within the two sexes, although such an approach may clarify the origins of sex-specific ageing in the context of a given mating system. Nazca boobies (Sula granti; a seabird) practise serial monogamy and biparental care. A male-biased population sex ratio results in earlier and more frequent breeding by females. Based on sex-specific reproductive schedules, females were expected to show faster age-related decline for survival and reproduction. Within each sex, high reproductive effort in early life was expected to reduce late-life performance and accelerate senescence. Longitudinal data were used to (a) evaluate the sex specificity of reproductive and actuarial senescence and then (b) test for early-/late-life fitness trade-offs within each sex. Within-sex analyses inform an interpretation of sex differences in senescence based on costs of reproduction. Analyses incorporated individual heterogeneity in breeding performance and cohort-level differences in early-adult environments. Females showed marginally more intense actuarial senescence and stronger age-related declines for fledging success. The opposite pattern (earlier and faster male senescence) was found for breeding probability. Individual reproductive effort in early life positively predicted late-life reproductive performance in both sexes and thus did not support a causal link between early-reproduction/late-life fitness trade-offs and sex differences in ageing. A high-quality diet in early adulthood reduced late-life survival (females) and accelerated senescence for fledging success (males). This study documents clear variation in ageing patterns-by sex, early-adult environment and early-adult reproductive effort-with implications for the role mating systems and early-life environments play in determining ageing patterns. Absent evidence for a disposable soma mechanism, patterns of sex differences in senescence may result from age- and condition-dependent mate choice interacting with this population's male-biased sex ratio and mate rotation.
Collapse
Affiliation(s)
- Emily M Tompkins
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina
| | - David J Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
50
|
Briga M, Jimeno B, Verhulst S. Coupling lifespan and aging? The age at onset of body mass decline associates positively with sex-specific lifespan but negatively with environment-specific lifespan. Exp Gerontol 2019; 119:111-119. [PMID: 30711609 DOI: 10.1016/j.exger.2019.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 11/28/2022]
Abstract
Whether lifespan scales to age-associated changes in health and disease is an urgent question in societies with increasing lifespan. Body mass is associated with organismal functioning in many species, and often changes with age. We here tested in zebra finches whether two factors that decreased lifespan, sex and poor environmental quality, accelerated the onset of body mass declines. We subjected 597 birds for nine years to experimentally manipulated foraging costs (harsh = H, benign = B) during development (small vs large brood size) and in adulthood (easy vs hard foraging conditions) in a 2 × 2 design. This yielded four treatment combinations (HH, HB, BH, BB) for each sex. Harsh environments during development and in adulthood decreased average body mass additively. The body mass aging trajectory showed a short steep increase in early adulthood, followed by a plateau and then a decline after 5 years. This decline occurred in all groups except for HB females, which gained mass until death. Surprisingly, the onset of body mass decline was earlier in experimental groups with a longer lifespan. In contrast, the onset of body mass decline was one year earlier in females, which lived two months (4%) shorter than males. Thus, the onset of body mass aging associated positively with the sex-specific differences in lifespan, but negatively with the environmental modulation of lifespan. Thus, body mass aging trajectories did not generally scale to lifespan, and we discuss the possible causes and implications of this finding.
Collapse
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands; Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|