1
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
2
|
Haghighi AH, Shojaee M, Askari R, Abbasian S, Gentil P. The effects of 12 weeks resistance training and vitamin D administration on neuromuscular joint, muscle strength and power in postmenopausal women. Physiol Behav 2024; 274:114419. [PMID: 38036018 DOI: 10.1016/j.physbeh.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND This study aimed to examine the effects of 12 weeks of resistance training (RT) and vitamin D (VitD) supplementation on muscle strength and C-terminal agrin fragment (CAF) and Neurotrophin-3 (NT-3) concentrations as potential biomarkers in postmenopausal women. METHODS This was a randomized double-blind placebo-controlled study. Forty-four healthy postmenopausal women (55.84 ± 4.70 years and 29.61 ± 4.26 kg/m2) were randomly assigned into four groups: (1) Resistance training + placebo (RT + PLA), (2) Vitamin D supplementation (VitD), (3) Resistance training + vitamin D (RT + VitD), and (4) Placebo (PLA). VitD was supplemented as an oral capsule containing 50000 IU of cholecalciferol every two weeks. RT involved leg press, chest press, leg extension, leg curl, and shoulder press exercises, performed with 3-4 sets at 70-85 % of 1RM, three times a week. RESULTS Circulating levels of CAF and NT-3 did not significantly change following the intervention period in the study groups (p > 0.05). There were significant increases in upper and lower body muscle strength and power for RT + VitD and RT + PLA ( < 0.05), but not for VitD or PLA (p > 0.05). The muscle function gains for RT + VitD and RT + PLA were higher than those for VitD and PLA but did not differ between them. CONCLUSION 12-week of RT interventions resulted in significant increases in muscle strength and power in postmenopausal women. However, VitD supplementation did not result in any additional benefits. The positive changes in muscle function promoted by RT do not seem to be associated with changes in the neuromuscular joint via the CAF or NT-3 as potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Haghighi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Malihe Shojaee
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Roya Askari
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Sadegh Abbasian
- Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Brazil.
| |
Collapse
|
3
|
Bettariga F, Bishop C, Taaffe DR, Galvão DA, Maestroni L, Newton RU. Time to consider the potential role of alternative resistance training methods in cancer management? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:715-725. [PMID: 37399886 PMCID: PMC10658316 DOI: 10.1016/j.jshs.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Exercise has emerged as fundamental therapeutic medicine in the management of cancer. Exercise improves health-related outcomes, including quality of life, neuromuscular strength, physical function, and body composition, and it is associated with a lower risk of disease recurrence and increased survival. Moreover, exercise during or post cancer treatments is safe, can ameliorate treatment-related side effects, and may enhance the effectiveness of chemotherapy and radiation therapy. To date, traditional resistance training (RT) is the most used RT modality in exercise oncology. However, alternative training modes, such as eccentric, cluster set, and blood flow restriction are gaining increased attention. These training modalities have been extensively investigated in both athletic and clinical populations (e.g., age-related frailty, cardiovascular disease, type 2 diabetes), showing considerable benefits in terms of neuromuscular strength, hypertrophy, body composition, and physical function. However, these training modes have only been partially or not at all investigated in cancer populations. Thus, this study outlines the benefits of these alternative RT methods in patients with cancer. Where evidence in cancer populations is sparse, we provide a robust rationale for the possible implementation of certain RT methods that have shown positive results in other clinical populations. Finally, we provide clinical insights for research that may guide future RT investigations in patients with cancer and suggest clear practical applications for targeted cancer populations and related benefits.
Collapse
Affiliation(s)
- Francesco Bettariga
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Chris Bishop
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Luca Maestroni
- London Sport Institute, School of Science and Technology, Middlesex University, London, NW4 4BT, UK
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4067, Australia.
| |
Collapse
|
4
|
Way KL, Thomas HJ, Parker L, Maiorana A, Keske MA, Scott D, Reed JL, Tieng J, Hackett D, Hawkins T, Latella C, Cordina R, Tran DL. Cluster Sets to Prescribe Interval Resistance Training: A Potential Method to Optimise Resistance Training Safety, Feasibility and Efficacy in Cardiac Patients. SPORTS MEDICINE - OPEN 2023; 9:86. [PMID: 37725296 PMCID: PMC10509118 DOI: 10.1186/s40798-023-00634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The integration of resistance training for cardiac patients leads to important health outcomes that are not optimally obtained with aerobic exercise; these include an increase in muscle mass, maintenance of bone mineral density, and improvements in muscular fitness parameters. Despite the proliferation of evidence supporting resistance exercise in recent decades, the implementation of resistance training is underutilised, and prescription is often sub-optimal in cardiac patients. This is frequently associated with safety concerns and inadequate methods of practical exercise prescription. This review discusses the potential application of cluster sets to prescribe interval resistance training in cardiac populations. The addition of planned, regular passive intra-set rest periods (cluster sets) in resistance training (i.e., interval resistance training) may be a practical solution for reducing the magnitude of haemodynamic responses observed with traditional resistance training. This interval resistance training approach may be a more suitable option for cardiac patients. Additionally, many cardiac patients present with impaired exercise tolerance; this model of interval resistance training may be a more suitable option to reduce fatigue, increase patient tolerance and enhance performance to these workloads. Practical strategies to implement interval resistance training for cardiac patients are also discussed. Preliminary evidence suggests that interval resistance training may lead to safer acute haemodynamic responses in cardiac patients. Future research is needed to determine the efficacy and feasibility of interval resistance training for health outcomes in this population.
Collapse
Affiliation(s)
- Kimberley L Way
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia.
- Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, ON, Canada.
| | - Hannah J Thomas
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia
| | - Andrew Maiorana
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
- Allied Health Department, Fiona Stanley Hospital, Perth, WA, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia
| | - David Scott
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3125, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Jennifer L Reed
- Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jessica Tieng
- Epigenetics and RNA Biology Program, Centenary Institute, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Camperdown, NSW, 2006, Australia
| | - Daniel Hackett
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Tess Hawkins
- Concord Centre for STRONG Medicine, Concord Repatriation General Hospital, Concord West, NSW, Australia
| | - Christopher Latella
- School of Health and Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Rachael Cordina
- Central Clinical School, The University of Sydney School of Medicine, Camperdown, NSW, 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Charles Perkins Centre, Heart Research Institute, Camperdown, NSW, Australia
| | - Derek L Tran
- Central Clinical School, The University of Sydney School of Medicine, Camperdown, NSW, 2006, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Charles Perkins Centre, Heart Research Institute, Camperdown, NSW, Australia.
- Human Performance Research Centre, School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney, Moore Park, NSW, Australia.
| |
Collapse
|
5
|
Marques ACF, Rossi FE, Neves LM, Diniz TA, Messias IDA, Barela JA, Horak FB, Júnior IFF. Combined Aerobic and Strength Training Improves Dynamic Stability and can Prevent against Static Stability Decline in Postmenopausal Women: A Randomized Clinical Trial. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:e465-e473. [PMID: 37683658 PMCID: PMC10491475 DOI: 10.1055/s-0043-1772178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE To analyze the effect of combined training (CT) in postural control and gait parameters in postmenopausal women. METHODS A parallel-group, randomized, control study was conducted with 16 weeks of combined training (n = 16) versus a non-training control group (n = 12) in postmenopausal women (aged 59.3 ± 8.0). Pre and postintervention assessments included postural control (using an AMTI force platform - Advanced Mechanical Technology, Inc., Watertown, MA, USA) and gait impairments (using baropodometry). In addition, the upper limb strength and abdominal tests, as well as aerobic capacity, assessed functional indicators. RESULTS The CT intervention in postmenopausal women resulted in improved gait (stride length (p = 0.006); speed (p = 0.013); double support time (p = 0.045); and improved postural control (displacement area of postural sway in a normal base of support with eyes open (p = 0.006). Combined training increased functional indicators (abdominal - p = 0.031; aerobic capacity - p = 0.002). CONCLUSION In conclusion, combined aerobic plus strength training effectively improved gait and balance control in older women. The postmenopausal women from the CT group walked faster and with bigger steps after the intervention than the control group. In addition, they presented decreased postural sway in standing and decreased the percentage of double support time while walking, which means improved static and dynamic balance control and functional indicators.
Collapse
Affiliation(s)
| | - Fabrício Eduardo Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Universidade Federal do Piauí, Teresina, PI, Brazil
| | - Lucas Melo Neves
- Universidade Santo Amaro, São Paulo, SP, Brazil
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Iracimara de Anchieta Messias
- Faculty of Science and Technology, Universidade Estadual Paulista “Júlio de Mesquita Filho,” Presidente Prudente, SP, Brazil
| | - José A. Barela
- Department of Physical Education, Instituto de Biociências, Rio Claro, SP, Brazil
| | - Fay B. Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Ismael Forte Freitas Júnior
- Faculty of Science and Technology, Universidade Estadual Paulista “Júlio de Mesquita Filho,” Presidente Prudente, SP, Brazil
| |
Collapse
|
6
|
Janicijevic D, González-Hernández JM, Jiménez-Reyes P, Márquez G, García-Ramos A. Longitudinal Effects of Traditional and Rest Redistribution Set Configurations on Explosive-Strength and Strength-Endurance Manifestations. J Strength Cond Res 2022; 37:980-986. [PMID: 36730585 DOI: 10.1519/jsc.0000000000004376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Janicijevic, D, González-Hernández, JM, Jiménez-Reyes, P, Márquez, G, and García-Ramos, A. Longitudinal effects of traditional and rest redistribution set configurations on explosive-strength and strength-endurance manifestations. J Strength Cond Res XX(X): 000-000, 2022-This study aimed to compare the long-term effects of resistance training programs based on traditional and rest redistribution set configurations on explosive-strength and strength-endurance performance of lower-body and upper-body muscles. Thirty physically active men were randomly assigned to a traditional group (TRG: 6 sets of 5 repetitions with 3 minutes of interset rest) or a rest redistribution group (RRG: 30 sets of 1 repetition with 31 seconds of interrepetition rest). The training program lasted 6 weeks (2 sessions·wk-1), and in each training session, the squat and bench press exercises were performed with maximal concentric effort against approximately the 75% of the 1 repetition maximum. Before and after training, explosive-strength performance (peak velocity reached at submaximal loads during the countermovement jump and bench press throw) and strength-endurance performance (mean set velocity of 10 repetitions using both traditional and cluster sets in the squat and bench press) were assessed. Significant improvements in all dependent variables were observed after training for both the TRG (p ≤ 0.004; effect size [ES] = 0.63-3.06) and RRG (p ≤ 0.001; ES = 0.58-3.23). The magnitude of the changes was comparable for both groups with the only exception of the larger improvements observed in the RRG for the bench press mean set velocity using both traditional (ES = 0.77) and cluster (ES = 0.82) set configurations. Traditional and rest redistribution set configurations are equally effective to improve lower-body explosive strength, lower-body strength endurance, and upper-body explosive strength, whereas rest redistribution set configurations could induce greater adaptations in upper-body strength endurance.
Collapse
Affiliation(s)
- Danica Janicijevic
- Research Academy of Human Biomechanics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University, Ningbo, China.,Faculty of Sports Science, Ningbo University, Ningbo, China.,Faculty of Sport and Physical Education, The Research Center, University of Belgrade, Belgrade, Serbia
| | | | | | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain; and.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
7
|
Rappelt L, Held S, Leicht M, Wicker P, Donath L. Similar strength gains at lower perceived efforts via cluster set vs. traditional home-based online training: A 6 weeks randomized controlled trial. Front Sports Act Living 2022; 4:968258. [PMID: 36091869 PMCID: PMC9453863 DOI: 10.3389/fspor.2022.968258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cluster Training (CT) has been shown to induce strength at lower perceived efforts compared to traditional training (TRT) with sets performed to repetition failure. These findings have not yet been extended to remote online training in middle-aged to older people. Thus the present study aimed at investigating whether a cluster set online training with bodyweight exercises is similar in its effectiveness a more demanding traditional strength training employed with a traditional set structure. A total of n = 21 participants (14 female, 55 ± 12 years, 76.4 ± 16.1 kg, 1.71 ± 0.10 m, 74 ± 72 min of activity/w) were randomly assigned to either a CT or volume-, load-, and work-to-rest-ratio-matched TRT. After an initial 6-week run-in-phase, all participants were engaged into an online live-instructed full-body workout twice a week (40 min each) for a period of 6 weeks. Rates of perceived efforts (RPE) were assessed for each session (session RPE; sRPE). Changes in maximal voluntary contraction (MVC) at leg press (LP) and abdominal press (AP) as well as one-minute-sit-to-stand and Y-Balance-Test (YBT) were compared between BASELINE and PRE (ΔRUN-IN) and between PRE and POST (ΔINTERVENTION). In LP, TRT showed greater improvements with large effect sizes in ΔINTERVENTION compared to ΔRUN-IN. In CT, greater improvements with moderate effects were found in ΔINTERVENTION compared to ΔRUN-IN. In AP, both CT and TRT showed larger improvements with large effect sizes in ΔINTERVENTION compared to ΔRUN-IN. In YBT, a significant and large main effect for time was found indicating larger improvements for ΔINTERVENTION compared to ΔRUN-IN. CT showed lower sRPE than TRT. Both CT and TRT led to similar adaptations in MVC and balance performance. However, the perceived effort of CT was rated lower than for TRT. Therefore, conducting resistance training with a cluster set structure seems to be a suitable approach for training programs in middle-aged and older people.
Collapse
Affiliation(s)
- Ludwig Rappelt
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Steffen Held
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Mario Leicht
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Pamela Wicker
- Department of Sports Science, Bielefeld University, Bielefeld, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
8
|
Cannataro R, Cione E, Bonilla DA, Cerullo G, Angelini F, D'Antona G. Strength training in elderly: An useful tool against sarcopenia. Front Sports Act Living 2022; 4:950949. [PMID: 35924210 PMCID: PMC9339797 DOI: 10.3389/fspor.2022.950949] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
The loss of muscle mass and strength in elderly population (especially after the age of 65–70) represents a public health problem. Due to the high prevalence of frailty in older adults, cardiovascular or low-intensity exercise is implemented as first choice option. Although beneficial these training schemes are not as effective as strength-based resistance training for increasing muscle strength and hypertrophy. In fact, when performed progressively and under professional supervision, strength-based training has been proposed as an important and valid methodology to reduce sarcopenia-related problems. In this mini-review, we not only summarize the benefits of weight resistance training but also highlight practical recommendations and other non-conventional methods (e.g., suspension training) as part of an integral anti-sarcopenia strategy. Future directions including cluster set configurations and high-speed resistance training are also outlined.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Galascreen Laboratories, University of Calabria, Rende, Italy
- Research Division, Dynamical Business and Science Society–DBSS International SAS, Bogotá, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Galascreen Laboratories, University of Calabria, Rende, Italy
- *Correspondence: Erika Cione
| | - Diego A. Bonilla
- Research Division, Dynamical Business and Science Society–DBSS International SAS, Bogotá, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería, Colombia
- Sport Genomics Research Group, Department of Genetics, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | | | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Bonilla DA, Kreider RB, Petro JL, Romance R, García-Sillero M, Benítez-Porres J, Vargas-Molina S. Creatine Enhances the Effects of Cluster-Set Resistance Training on Lower-Limb Body Composition and Strength in Resistance-Trained Men: A Pilot Study. Nutrients 2021; 13:2303. [PMID: 34371813 PMCID: PMC8308441 DOI: 10.3390/nu13072303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022] Open
Abstract
Creatine monohydrate (CrM) supplementation has been shown to improve body composition and muscle strength when combined with resistance training (RT); however, no study has evaluated the combination of this nutritional strategy with cluster-set resistance training (CS-RT). The purpose of this pilot study was to evaluate the effects of CrM supplementation during a high-protein diet and a CS-RT program on lower-limb fat-free mass (LL-FFM) and muscular strength. Twenty-three resistance-trained men (>2 years of training experience, 26.6 ± 8.1 years, 176.3 ± 6.8 cm, 75.6 ± 8.9 kg) participated in this study. Subjects were randomly allocated to a CS-RT+CrM (n = 8), a CS-RT (n = 8), or a control group (n = 7). The CS-RT+CrM group followed a CrM supplementation protocol with 0.1 g·kg-1·day-1 over eight weeks. Two sessions per week of lower-limb CS-RT were performed. LL-FFM corrected for fat-free adipose tissue (dual-energy X-ray absorptiometry) and muscle strength (back squat 1 repetition maximum (SQ-1RM) and countermovement jump (CMJ)) were measured pre- and post-intervention. Significant improvements were found in whole-body fat mass, fat percentage, LL-fat mass, LL-FFM, and SQ-1RM in the CS-RT+CrM and CS-RT groups; however, larger effect sizes were obtained in the CS-RT+CrM group regarding whole body FFM (0.64 versus 0.16), lower-limb FFM (0.62 versus 0.18), and SQ-1RM (1.23 versus 0.75) when compared to the CS-RT group. CMJ showed a significant improvement in the CS-RT+CrM group with no significant changes in CS-RT or control groups. No significant differences were found between groups. Eight weeks of CrM supplementation plus a high-protein diet during a CS-RT program has a higher clinical meaningfulness on lower-limb body composition and strength-related variables in trained males than CS-RT alone. Further research might study the potential health and therapeutic effects of this nutrition and exercise strategy.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics®, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Ramón Romance
- Body Composition and Biodynamic Laboratory, Faculty of Education Sciences, University of Málaga, 29071 Málaga, Spain;
| | - Manuel García-Sillero
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain; (M.G.-S.); (S.V.-M.)
| | - Javier Benítez-Porres
- Physical Education and Sports, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain; (M.G.-S.); (S.V.-M.)
- Physical Education and Sports, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| |
Collapse
|
10
|
Strengthening the Case for Cluster Set Resistance Training in Aged and Clinical Settings: Emerging Evidence, Proposed Benefits and Suggestions. Sports Med 2021; 51:1335-1351. [PMID: 33983613 DOI: 10.1007/s40279-021-01455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Resistance training (RT) is a fundamental component of exercise prescription aimed at improving overall health and function. RT techniques such as cluster set (CS) configurations, characterized by additional short intra-set or inter-repetition rest intervals, have been shown to maintain acute muscular force, velocity, and 'power' outputs across a RT session, and facilitate positive longer-term neuromuscular adaptations. However, to date CS have mainly been explored from a human performance perspective despite potential for application in health and clinical exercise settings. Therefore, this current opinion piece aims to highlight emerging evidence and provide a rationale for why CS may be an advantageous RT technique for older adults, and across several neurological, neuromuscular, cardiovascular and pulmonary settings. Specifically, CS may minimize acute fatigue and adverse physiologic responses, improve patient tolerance of RT and promote functional adaptations (i.e., force, velocity, and power). Moreover, we propose that CS may be a particularly useful exercise rehabilitation technique where injury or illness, persistent fatigue, weakness and dysfunction exist. We further suggest that CS offer an alternative RT strategy that can be easily implemented alongside existing exercise/rehabilitation programs requiring no extra cost, minimal upskilling and/or time commitment for the patient and professional. In light of the emerging evidence and likely efficacy in clinical exercise practice, future research should move toward further direct investigation of CS-based RT in a variety of adverse health conditions and across the lifespan given the already demonstrated benefits in healthy populations.
Collapse
|
11
|
Gentil P, de Lira CAB, Coswig V, Barroso WKS, Vitorino PVDO, Ramirez-Campillo R, Martins W, Souza D. Practical Recommendations Relevant to the Use of Resistance Training for COVID-19 Survivors. Front Physiol 2021; 12:637590. [PMID: 33746777 PMCID: PMC7966515 DOI: 10.3389/fphys.2021.637590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The novel coronavirus disease (COVID-19) has emerged at the end of 2019 and caused a global pandemic. The disease predominantly affects the respiratory system; however, there is evidence that it is a multisystem disease that also impacts the cardiovascular system. Although the long-term consequences of COVID-19 are not well-known, evidence from similar diseases alerts for the possibility of long-term impaired physical function and reduced quality of life, especially in those requiring critical care. Therefore, rehabilitation strategies are needed to improve outcomes in COVID-19 survivors. Among the possible strategies, resistance training (RT) might be particularly interesting, since it has been shown to increase functional capacity both in acute and chronic respiratory conditions and in cardiac patients. The present article aims to propose evidence-based and practical suggestions for RT prescription for people who have been diagnosed with COVID-19 with a special focus on immune, respiratory, and cardiovascular systems. Based on the current literature, we present RT as a possible safe and feasible activity that can be time-efficient and easy to be implemented in different settings.
Collapse
Affiliation(s)
- Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil.,Hypertension League, Federal University of Goiás, Goiânia, Brazil
| | | | - Victor Coswig
- College of Physical Education, Federal University of Pará, Castanhal, Brazil
| | | | - Priscila Valverde de Oliveira Vitorino
- Hypertension League, Federal University of Goiás, Goiânia, Brazil.,Social Sciences and Health School, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile.,Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Wagner Martins
- Physiotherapy College, University of Brasília, Brasília, Brazil
| | - Daniel Souza
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
12
|
Davies TB, Tran DL, Hogan CM, Haff GG, Latella C. Chronic Effects of Altering Resistance Training Set Configurations Using Cluster Sets: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:707-736. [PMID: 33475986 DOI: 10.1007/s40279-020-01408-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The acute responses to cluster set resistance training (RT) have been demonstrated. However, as compared to traditional sets, the effect of cluster sets on muscular and neuromuscular adaptations remains unclear. OBJECTIVE To compare the effects of RT programs implementing cluster and traditional set configurations on muscular and neuromuscular adaptations. METHODS Systematic searches of Embase, Scopus, Medline and SPORTDiscus were conducted. Inclusion criteria were: (1) randomized or non-randomized comparative studies; (2) publication in English; (3) participants of all age groups; (4) participants free of any medical condition or injury; (5) cluster set intervention; (6) comparison intervention utilizing a traditional set configuration; (7) intervention length ≥ three weeks and (8) at least one measure of changes in strength/force/torque, power, velocity, hypertrophy or muscular endurance. Raw data (mean ± SD or range) were extracted from included studies. Hedges' g effect sizes (ES) ± standard error of the mean (SEM) and 95% confidence intervals (95% CI) were calculated. RESULTS Twenty-nine studies were included in the meta-analysis. No differences between cluster and traditional set configurations were found for strength (ES = - 0.05 ± 0.10, 95% CI - 0.21 to 0.11, p = 0.56), power output (ES = 0.02 ± 0.10, 95% CI - 0.17 to 0.20, p = 0.86), velocity (ES = 0.15 ± 0.13, 95% CI - 0.10 to 0.41, p = 0.24), hypertrophy (ES = - 0.05 ± 0.14, 95% CI - 0.32 to 0.23, p = 0.73) or endurance (ES = - 0.07 ± 0.18, 95% CI - 0.43 to 0.29, p = 0.70) adaptations. Moreover, no differences were observed when training volume, cluster set model, training status, body parts trained or exercise type were considered. CONCLUSION Collectively, both cluster and traditional set configurations demonstrate equal effectiveness to positively induce muscular and neuromuscular adaptation(s). However, cluster set configurations may achieve such adaptations with less fatigue development during RT which may be an important consideration across various exercise settings and stages of periodized RT programs.
Collapse
Affiliation(s)
- Timothy B Davies
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Derek L Tran
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Clorinda M Hogan
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - G Gregory Haff
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Directorate of Physiotherapy and Sport, University of Salford, Greater Manchester, UK
| | - Christopher Latella
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
13
|
Jukic I, Van Hooren B, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. The Effects of Set Structure Manipulation on Chronic Adaptations to Resistance Training: A Systematic Review and Meta-Analysis. Sports Med 2021; 51:1061-1086. [PMID: 33417154 DOI: 10.1007/s40279-020-01423-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND The acute effects of resistance training (RT) set structure alteration are well established; however, less is known about their effects on chronic training adaptations. OBJECTIVE The aim of this systematic review and meta-analysis was to synthesise the available evidence on the effectiveness of traditional (TS), cluster (CS) and rest redistribution (RR) set structures in promoting chronic RT adaptations, and provide an overview of the factors which might differentially influence the magnitude of specific training adaptations between set structure types. METHODS This review was performed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines encompassing the literature search of five databases. Studies in English that compared muscular strength, endurance, and/or hypertrophy adaptations, as well as vertical jump performance, velocity and power at submaximal loads and shifts in the slopes of force-velocity profiles between TS and CS or RR set structures (i.e., alternative set structures) were included. Risk of bias assessment was performed using a modified Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Random-effects meta-analyses and meta-regressions were performed where possible. RESULTS 17 studies met the inclusion criteria, none had more than one risk of bias item assessed as high risk. Pooled results revealed that none of the set structures were more effective at inducing strength (standardised mean difference (SMD) = - 0.06) or hypertrophy (SMD = - 0.03). TS were more effective at improving muscular endurance compared to alternative set structures (SMD = - 0.38), whereas alternative set structures tended to be more effective for vertical jump performance gains (SMD = 0.13), but this effect was not statistically significant (p = 0.190). Greater velocity and power outputs at submaximal loads (SMD = 0.18) were observed when using alternative set structures compared to TS. In addition, alternative set structures promoted greater shifts of the slope of force-velocity profiles towards more velocity dominant profiles compared to TS (SMD = 0.28). Sub-group analyses controlling for each alternative set structure independently showed mixed results likely caused by the relatively small number of studies available for some outcomes. CONCLUSION Modifying TS to an alternative set structure (CS or RR) has a negligible impact on strength and hypertrophy. Using CS and RR can lead to greater vertical jump performance, velocity and power at submaximal loads and shifts to more velocity dominant force-velocity profiles compared to training using TS. However, TS may provide more favourable effects on muscle endurance when compared to CS and RR. These findings demonstrate that altering TS to alternative set structures may influence the magnitude of specific muscular adaptations indicating set structure manipulation is an important consideration for RT program design. PROTOCOL REGISTRATION The original protocol was prospectively registered (CRD42019138954) with the PROSPERO (International Prospective Register of Systematic Reviews).
Collapse
Affiliation(s)
- Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Amador García Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Michael R McGuigan
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - James J Tufano
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Marques DL, Neiva HP, Marinho DA, Marques MC. Novel Resistance Training Approach to Monitoring the Volume in Older Adults: The Role of Movement Velocity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7557. [PMID: 33080817 PMCID: PMC7589697 DOI: 10.3390/ijerph17207557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
We analyzed the effects of velocity-monitored resistance training (RT) with a velocity loss of 20% on strength and functional capacity in institutionalized older adults. Thirty-nine participants (78.8 ± 6.7 years) were divided into a control group (CG; n = 20) or an RT group (n = 19). Over 10 weeks, the RT group performed two sessions per week, and the mean velocity of each repetition was monitored in the leg-press and chest-press exercises at 40-65% of one-repetition maximum (1RM). The set ended when the participants reached a velocity loss of 20%. The CG maintained their daily routine. At pre- and post-test, both groups were assessed in the 1RM leg-press, 1RM chest-press, handgrip strength, medicine ball throw (MBT), walking speed, and sit-to-stand (STS). At baseline, we did not find significant differences between groups. After 10 weeks, we observed significant differences (p < 0.001-0.01) between groups in the 1RM leg-press, 1RM chest-press, MBT-1 kg, and STS. The RT group performed a total number of repetitions of 437.6 ± 66.1 in the leg-press and 296.4 ± 78.9 in the chest-press. Our results demonstrate that velocity loss effectively prescribes the volume in older adults and that a threshold of 20% improves strength-related variables in this population.
Collapse
Affiliation(s)
- Diogo L. Marques
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.L.M.); (H.P.N.); (D.A.M.)
| | - Henrique P. Neiva
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.L.M.); (H.P.N.); (D.A.M.)
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, 6201-001 Covilhã, Portugal
| | - Daniel A. Marinho
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.L.M.); (H.P.N.); (D.A.M.)
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, 6201-001 Covilhã, Portugal
| | - Mário C. Marques
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal; (D.L.M.); (H.P.N.); (D.A.M.)
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, 6201-001 Covilhã, Portugal
| |
Collapse
|