1
|
Jang J, He Z, Huang L, Hwang JY, Kim MY, Cho JY. Upregulation of NK cell activity, cytokine expression, and NF-κB pathway by ginsenoside concentrates from Panax ginseng berries in healthy mice and macrophage cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118681. [PMID: 39121929 DOI: 10.1016/j.jep.2024.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ziliang He
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Yeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Liu JJ, Yang JB, Wang Y, Hu XR, Wang YD, Nie LX, Wei F, Yu JD, Yao LW, Xu BL, Ma SC, Jin HY. Integrating network pharmacology and experimental validation to investigate the effects and mechanism of Renshen Shouwu decoction for ameliorating Alzheimer's disease. PHARMACEUTICAL BIOLOGY 2024; 62:767-780. [PMID: 39417324 PMCID: PMC11488172 DOI: 10.1080/13880209.2024.2415660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
CONTEXT The mechanism of Renshen Shouwu Decoction (RSSW) in treating Alzheimer's disease (AD) remains unknown. OBJECTIVE This study investigates the effects and mechanism of RSSW for ameliorating AD. MATERIALS AND METHODS Ten SAMR1 mice and 40 SAMP8 mice were divided into five groups: control (SAMR1), model (SAMP8), positive drug (Donepezil, 1.3 mg/kg/d), and RSSW (Low-dose, 117 mg/kg/d; High-dose, 234 mg/kg/d). Starting from 6 months of age, the medications were administered intragastrically for a total of 60 days. Subsequently, memory improvement in rapidly aging mice was assessed using the novel object recognition test and Morris water maze test. Through the identification of absorbed blood components and analysis of network pharmacology, active ingredients and potential targets involved in the treatment of AD were identified. Finally, AD-related biological indicators were detected using western blotting and ELISA. RESULT Our results demonstrated that RSSW effectively ameliorated memory impairments, inhibited tau hyperphosphorylation, and reduced β-amyloid plaque deposition in SAMP8 mice. Thirty absorbed blood components in RSSW were identified, revealing identified 96 major targets that play a key role in alleviating AD. Notably, the obtained main targets were highly enriched in SIRT1-mediated signaling pathways. Subsequent experimental validation confirmed that RSSW activated the SIRT1/NF-κB, SIRT1/AMPK, and SIRT1/p53 signaling cascades. Nine potential active ingredients were predicted through molecular docking. DISCUSSION AND CONCLUSIONS Our research findings suggest the mechanism of RSSW treatment for AD, which ameliorates memory impairments by reducing cortical tissue inflammation and apoptosis.
Collapse
Affiliation(s)
- Jing-jing Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institutes for Food and Drug Control, Beijing, China
| | - Jian-bo Yang
- National Institutes for Food and Drug Control, Beijing, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiao-ru Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Ya-dan Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Li-xing Nie
- National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing, China
| | - Jian-dong Yu
- National Institutes for Food and Drug Control, Beijing, China
| | - Ling-wen Yao
- National Institutes for Food and Drug Control, Beijing, China
| | - Bei-lei Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Shuang-cheng Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Institutes for Food and Drug Control, Beijing, China
| | - Hong-yu Jin
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wang YD, Han LS, Li GY, Yang KL, Shen YL, Zhang H, Hou JF, Wang EP. A Comparative Study of the Chemical Composition and Skincare Activities of Red and Yellow Ginseng Berries. Molecules 2024; 29:4962. [PMID: 39459330 PMCID: PMC11510097 DOI: 10.3390/molecules29204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
This study was conducted to investigate the differences in chemical composition between red (RGBs) and yellow ginseng berries (YGBs) and their whitening and anti-aging skincare effects. The differences in the chemical composition between RGB and YGB were analyzed by ultra-high-performance liquid chromatography tandem quadrupole electrostatic field orbit trap mass spectrometry (UHPLC-Q-Exactive-MS/MS) combined with multivariate statistics. An aging model was established using UVB radiation induction, and the whitening and anti-aging effects of the two ginseng berries were verified in vitro and in vivo using cell biology (HaCaT and B16-F10 cells) and zebrafish model organisms. A total of 31 differential compounds, including saponins, flavonoids, phenolic acids, and other chemical constituents, were identified between the two groups. Superoxide dismutase (SOD) activity was more significantly increased (p < 0.05) and malondialdehyde (MDA) content was more significantly decreased (p < 0.01) in RGB more than YGB induced by UVB ultraviolet radiation. In terms of whitening effects, YGB was more effective in inhibiting the melanin content of B16-F10 cells (p < 0.01). The results of zebrafish experiments were consistent with those of in vitro experiments and cell biology experiments. The DCFH fluorescence staining results revealed that both ginseng berries were able to significantly reduce the level of reactive oxygen species (ROS) in zebrafish (p < 0.01). Comparison of chemical composition and skin care activities based on RGB and YGB can provide a theoretical basis for the deep development and utilization of ginseng berry resources.
Collapse
Affiliation(s)
- Yu-Dan Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Lu-Sheng Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Gen-Yue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Kai-Li Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| | - Yan-Long Shen
- College of Innovation and Entrepreneurship, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences CAAS, Changchun 130112, China;
| | - Jian-Feng Hou
- Shiqi Biological R&D Centre (Suzhou Industrial Park) Co., Ltd., Suzhou 215125, China;
| | - En-Peng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.-D.W.); (L.-S.H.); (G.-Y.L.); (K.-L.Y.)
| |
Collapse
|
4
|
Lin H, Xu Y, Xiong H, Wang L, Shi Y, Wang D, Wang Z, Ren J, Wang S. Mechanism of action of Panax ginseng alcohol extract based on orexin-mediated autophagy in the treatment of sleep and cognition in aged sleep-deprived rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118907. [PMID: 39389397 DOI: 10.1016/j.jep.2024.118907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C. A. Meyer. has been used extensively globally as a medicine. It has a therapeutic effect on sleep and is an attractive alternative for patients with insomnia. The United States Patent of Invention has approved the use of P. ginseng alcohol extract (GAE) in nutraceuticals or food to improve sleep. It has shown promise as an effective therapeutic agent for improving sleep and cognition. However, its mechanism of action is not yet fully understood. AIM OF THE STUDY To investigate the therapeutic benefits of GAE on sleep and cognition and its underlying mechanism in aged sleep-deprived rats, with a focus on orexin-mediated autophagy function. MATERIALS AND METHODS We conducted in vivo tests in an aged sleep-deprivation rat model produced using p-chlorophenylalanine (PCPA) coupled with modified multi-platform method to examine the therapeutic effects and mechanisms of GAE. A pentobarbital sodium-induced sleep test and water maze were used to assess sleep and cognitive performance, respectively. An enzyme-linked immunosorbent assay was used to determine orexin levels and aging and sleep markers in serum and hypothalamic tissues. Hematoxylin-eosin staining and Nissl staining were used to assess histopathological changes, and autophagy levels were assessed using transmission electron microscopy, immunofluorescence. Western blot and immunohistochemical staining were performed to detect the levels of orexin, orexin-receptor proteins, and autophagy-associated proteins to study the effects of GAE on hippocampal neurons, and the underlying mechanisms. RESULTS In aged sleep-deprived rats, GAE treatment prolonged sleep duration, improved cognitive function, prevented hippocampal neuronal damage, increased the number of Nissl bodies, improved aging and sleep markers, and enhanced the LC3A/B expression in autophagosomes and neurons. The amount of orexin in serum and hypothalamic tissue and OX1R, OX2R, and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) proteins also reduced, which resulted in the inhibition of the PI3K/Akt/mTOR pathway and activation of the autophagy process. CONCLUSIONS GAE may reduce hypothalamic orexin secretion and interact with orexin receptors to inhibit the PI3K/Akt/mTOR signalling network and activate autophagy. This may be a potential mechanism of action of GAE in regulating sleep-related cognitive function.
Collapse
Affiliation(s)
- Haining Lin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunlong Xu
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Huazhong Xiong
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lichao Wang
- Prevention and Treatment Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuqing Shi
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongyi Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zixu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jixiang Ren
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Siming Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
5
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
6
|
Rameshrad M, Memariani Z, Naraki K, Hosseinzadeh H. Investigating the protective properties of Panax ginseng and its constituents against biotoxins and metal toxicity: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03410-2. [PMID: 39287674 DOI: 10.1007/s00210-024-03410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Natural toxins are toxic substances produced by living microorganisms and cause harmful effects to other creatures, but not the organisms themselves. Based on the sources, they are classified into fungal, microbial, herbal, algae, and animal biotoxins. Metals, the oldest toxicants, are not created or destroyed by human industry as elements, just concentrated in the biosphere. An antidote can counteract the toxic effects of a drug or toxin or mitigate the adverse effects of a harmful substance. The potential antidote effects of Panax ginseng in organ toxicity have been proved by many scientific research projects. Herein, we are going to gather a comprehensive mechanistic review of the antidotal effects of ginseng and its main constituents against natural toxins and metal toxicity. In this regard, a literate search has been done in PubMed/Medline, Science Direct, and Scopus from 2000 until 2024. The gathered data showed the protective impacts of this golden plant and its secondary metabolites against aflatoxin, deoxynivalenol, three-nitro propionic acid, ochratoxin A, lipopolysaccharide, nicotine, aconite, domoic acid, α-synuclein, amyloid β, and glutamate as well as aluminum, cadmium, chrome, copper, iron, and lead. These antidotal effects occur by multi-functional mechanisms. It may be attributed to antioxidant, anti-inflammatory, and anti-apoptotic effects. Future research directions on the antidotal effects of ginseng against natural toxins and metal toxicity involve broadening the scope of studies to include a wider range of toxins and metals, exploring synergistic interactions with other natural compounds, and conducting more human clinical trials to validate the efficacy and safety of ginseng-based treatments.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Luo Y, Hu B, Yuan Z, Bi H, Yu J, Pan Q. Emerging insights into traditional Chinese medicine associated with neurodegenerative diseases: A bibliometric analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118785. [PMID: 39241972 DOI: 10.1016/j.jep.2024.118785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Research suggests that traditional Chinese medicine (TCM) holds promise in offering innovative approaches to tackle neurodegenerative disorders. In our endeavor, we conducted a comprehensive bibliometric analysis to delve into the landscape of TCM research within the realm of neurodegenerative diseases, aiming to uncover the present scenario, breadth, and trends in this field. This analysis presents potentially valuable insights for the clinical application of traditional Chinese medicine and provides compelling evidence supporting its efficacy in the treatment of neurodegenerative conditions. AIM OF THE STUDY The incidence of neurodegenerative diseases is on the rise, yet effective treatments are still lacking. Research indicates that TCM could offer novel perspectives for addressing neurodegenerative conditions. Nonetheless, the literature on this topic is intricate and multifaceted, with existing reviews offering only limited coverage. To gain a thorough understanding of TCM research in neurodegenerative diseases, we undertook a bibliometric analysis to explore the current status, scope, and trends in this area. MATERIALS AND METHODS A literature search was carried out on April 1, 2024, utilizing the Web of Science Core Collection (WoSCC). Visualization and quantitative analyses were then performed with the assistance of CiteSpace, VOSviewer, and R software. RESULTS A total of 6856 articles were retrieved in the search. Research on TCM for neurodegenerative diseases commenced in 1989 and has exhibited a notable overall growth since then. Main research contributors include East Asian countries like China, as well as the United States. Through our analysis, we identified 15 highly productive authors, 10 top-tier journals, 13 citation clusters, 11 influential articles, and observed a progression in keyword evolution across 4 distinct categories. In 2020, there was a significant upsurge in the knowledge base, collaboration efforts, and publication output within the field. This field is interdisciplinary: network pharmacology emerges as the cutting-edge paradigm in TCM research, while Alzheimer's disease remains a prominent focus among neurodegenerative conditions due to its evolving etiology. A burst detection analysis unveils that in 2024, the focal points of research convergence between TCM and neurodegenerative diseases lie in two key biological processes or mechanisms: autophagy and microbiota. CONCLUSIONS For the first time, this study quantitatively and visually captures the evolution of TCM in addressing neurodegenerative diseases, showcasing a notable acceleration in recent years. Our findings underscore the pivotal role of interdisciplinary collaboration and the necessity for increased global partnerships. Network pharmacology, leveraging the advancements of the big data era, embraces a holistic and systematic approach as a novel paradigm in exploring traditional Chinese medicine and unraveling their fundamental mechanisms. Three ethnomedical plants-Tianma, Renshen, and Wuweizi-demonstrate the promise of their bioactive compounds in treating neurodegenerative disorders, bolstered by their extensive historical usage for such ailments. Moreover, our intricate analysis of the evolutionary trajectories of key themes such as targets and biomarkers substantially enriches our comprehension of the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yijie Luo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Boqi Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zhenjun Yuan
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Houjia Bi
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jiaqi Yu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qian Pan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Nunes YC, Mendes NM, Pereira de Lima E, Chehadi AC, Lamas CB, Haber JFS, dos Santos Bueno M, Araújo AC, Catharin VCS, Detregiachi CRP, Laurindo LF, Tanaka M, Barbalho SM, Marin MJS. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024; 16:2721. [PMID: 39203857 PMCID: PMC11357524 DOI: 10.3390/nu16162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Aging-related disorders pose significant challenges due to their complex interplay of physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dysfunction. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties, has emerged as a promising candidate for mitigating these age-related processes. However, gaps in understanding the precise mechanisms of curcumin's effects and the optimal dosages for different conditions necessitate further investigation. This systematic review synthesizes current evidence on curcumin's potential in addressing age-related disorders, emphasizing its impact on cognitive function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy, and mechanisms of action of curcumin supplementation, this review aims to provide insights into its therapeutic potential for promoting healthy aging. A systematic search across three databases using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic agent in combating age-related disorders. The findings of this review suggest that curcumin could offer a natural and effective approach to enhancing the quality of life of aging individuals. Further research and well-designed clinical trials are essential to validate these findings and optimize the use of curcumin in personalized medicine approaches for age-related conditions.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Nathalia M. Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Amanda Chabrour Chehadi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Manoela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Vitor C. Strozze Catharin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Lucas Fornari Laurindo
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordination, Hospital Beneficente (HBU), University of Marília (UNIMAR), Marília 17525-160, SP, Brazil
| | | |
Collapse
|
9
|
Guo B, Liang Y, Fu B, Luo J, Zhou X, Ji R, He X. Integrated Analysis of Ginsenoside Content and Biomarker Changes in Processed Ginseng: Implications for Anti-Cancer Mechanisms. Foods 2024; 13:2497. [PMID: 39200424 PMCID: PMC11353654 DOI: 10.3390/foods13162497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Black ginseng is the processed product of ginseng, and it has been found that the content and types of rare ginsenosides increased after processing. However, there is limited research on the ginsenoside differences between cultivated and forest ginseng before and after processing and among various plant parts. This study investigated the effects of processing on ginsenosides in different parts of cultivated and forest ginseng. After processing, the contents of Re, Rg1, S-Rg3, Rg5, R-Rh1, Rk1, Rk3, and F4 were significantly increased or decreased, the growth age of forest ginseng was not proportional to the content of ginsenosides, and the differences in ginsenoside content in ginseng from different cultivation methods were relatively small. Chemometric analysis identified processing biomarkers showing varying percentage changes in different parts. Network pharmacology predicted the EGFR/PI3K/Akt/mTOR pathway as a potential key pathway for the anti-cancer effect of black ginseng.
Collapse
Affiliation(s)
- Biyu Guo
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Yingli Liang
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Biru Fu
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Jiayi Luo
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Xingchen Zhou
- Jingji (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510006, China;
| | - Ruifeng Ji
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Xin He
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| |
Collapse
|
10
|
Kim H, Suh HS, Lee EE. Association between dietary supplements and frailty: a cross-sectional study using national survey data in South Korea. Int J Food Sci Nutr 2024; 75:486-495. [PMID: 38816911 DOI: 10.1080/09637486.2024.2356802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
We aimed to examine the association between the use of specific types of dietary supplements and frailty using cross-sectional, nationally representative survey data. Adults aged ≥50 years in the Korea National Health and Nutrition Examination Survey 2018-2020 were included. We calculated a 46-item frailty index to assess frailty. In total, 27,384 older adults were included (mean age: 62.47 years; median frailty index: 0.12). Among them, 72% used at least one dietary supplement. The prevalence of dietary supplement use was higher among women than among men and in participants with higher socioeconomic status. Compared to non-users, users of dietary supplements had a healthier diet and nutrient intake, and lower levels of frailty. After adjusting for socioeconomic and dietary factors, users of vitamin C, red ginseng or calcium were found to be significantly less frail. Our findings indicate promising results concerning dietary supplement intake in managing frailty among older Korean adults.
Collapse
Affiliation(s)
- Hyunjoo Kim
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hae Sun Suh
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul, Republic of Korea
| | - Eunkyung Euni Lee
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
12
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach. Front Pharmacol 2024; 15:1415844. [PMID: 38966558 PMCID: PMC11222675 DOI: 10.3389/fphar.2024.1415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang P, Zhang D, Ma C, Wang R, Wang W. Free Radical Scavenging Effect and Immunomodulatory Activity of Total Saponins Extract of Ginseng Fibrous Roots. Molecules 2024; 29:2770. [PMID: 38930835 PMCID: PMC11206437 DOI: 10.3390/molecules29122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Ginseng (Panax ginseng C.A. Mey) is known for its rich saponin compounds and tonic effects. To better utilize the medicinal value of ginseng, this study investigated the extraction process, components, free radical scavenging ability, and immunomodulatory activity of total saponins of ginseng fibrous roots. The response surface methodology was employed to optimize the extraction process of total saponins, and Q-Orbitrap high-resolution liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical constituents in the total saponins extract of ginseng fibrous roots (GRS). The results showed that the optimal extraction process was achieved with an ethanol concentration of 68%, a material-solvent ratio of 1:25 mL/g, and an extraction time of 20 min, yielding a total saponin content of 6.34% under these conditions. The extract contained four terpenoid compounds and four polyphenolic compounds. GRS exhibited considerable scavenging activity against DPPH and ABTS radicals, with IC50 values of 0.893 and 0.210 mg/mL, respectively. Moreover, GRS restored immune suppression in mice by increasing white blood cell, red blood cell, and neutrophil counts, and improving the lymphocyte. It also promoted immune system recovery, as evidenced by elevated serum levels of IL-2, IFN-γ, TNF-α, and IL-1β in mice. GRS is a natural compound with promising potential for developing antioxidants and immunomodulatory foods.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Dongyan Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Chuanjie Ma
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Ruxia Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Weili Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang 110031, China
| |
Collapse
|
14
|
Tanaka M, Vécsei L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024; 12:1083. [PMID: 38791045 PMCID: PMC11117868 DOI: 10.3390/biomedicines12051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Welcome to Biomedicines' 10th Anniversary Special Issue, a journey through the human mind's labyrinth and complex neurological pathways [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
15
|
He S, Shi J, Ma L, Pei H, Zhang P, Shi D, Li H. Total ginsenosides decrease Aβ production through activating PPARγ. Biomed Pharmacother 2024; 174:116577. [PMID: 38593704 DOI: 10.1016/j.biopha.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION Total ginsenosides (TG), the major active constituents of ginseng, have been proven to be beneficial in treatment of Alzheimer's disease (AD). However, the underlying mechanism of TG remains unclear. METHODS APP/PS1 mice and N2a/APP695 cells were used as in vivo and in vitro model, respectively. Morris water maze (MWM) was used to investigate behavioral changes of mice; neuronal pathological changes were assessed by hematoxylin and eosin (H&E) and nissl staining; immunofluorescence staining was used to examine amyloid beta (Aβ) deposition; Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to examine the expression of relative amyloidogenic genes and proteins. Moreover, the antagonist of PPARγ, GW9662, was used to determine whether the effects of TG on Aβ production were associated with PPARγ activity. RESULTS TG treatment increased the spatial learning and memory abilities of APP/PS1 mice while decreasing the Aβ accumulation in the cortex and hippocampus. In N2a/APP695 cells, TG treatment attenuated the secretion of Aβ1-40 and Aβ1-42 acting as an PPARγ agonist by inhibiting the translocation of NF-κB p65. Additionally, TG treatment also decreased the expression of amyloidogenic pathway related gene BACE1, PS1 and PS2. CONCLUSIONS TG treatment reduced the production of Aβ both in vivo and in vitro. Activating PPARγ might be a potential therapeutic target of TG in facilitating Aβ clearance and ameliorating cognitive deficiency in APP/PS1 mice.
Collapse
Affiliation(s)
- Shan He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Valotto Neto LJ, Reverete de Araujo M, Moretti Junior RC, Mendes Machado N, Joshi RK, dos Santos Buglio D, Barbalho Lamas C, Direito R, Fornari Laurindo L, Tanaka M, Barbalho SM. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants (Basel) 2024; 13:393. [PMID: 38671841 PMCID: PMC11047749 DOI: 10.3390/antiox13040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aging of the global population has increased the prevalence of neurodegenerative conditions. Bacopa monnieri (BM), an herb with active compounds, such as bacosides A and B, betulinic acid, loliolide, asiatic acid, and quercetin, demonstrates the potential for brain health. Limited research has been conducted on the therapeutic applications of BM in neurodegenerative conditions. This systematic review aims to project BM's beneficial role in brain disorders. BM has anti-apoptotic and antioxidant actions and can repair damaged neurons, stimulate kinase activity, restore synaptic function, improve nerve transmission, and increase neuroprotection. The included twenty-two clinical trials demonstrated that BM can reduce Nuclear Factor-κB phosphorylation, improve emotional function, cognitive functions, anhedonia, hyperactivity, sleep routine, depression, attention deficit, learning problems, memory retention, impulsivity, and psychiatric problems. Moreover, BM can reduce the levels of pro-inflammatory biomarkers and oxidative stress. Here, we highlight that BM provides notable therapeutic benefits and can serve as a complementary approach for the care of patients with neurodegenerative conditions associated with brain disorders. This review adds to the growing interest in natural products and their potential therapeutic applications by improving our understanding of the mechanisms underlying cognitive function and neurodegeneration and informing the development of new therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Luiz José Valotto Neto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Matheus Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Nathalia Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Rakesh Kumar Joshi
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Daiane dos Santos Buglio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Medical School of Marilia (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
17
|
PING Y, LIU J, WANG H, WANG Y, QIU H, ZHANG Y. Research progress in the treatment of an immune system disease-type 1 diabetes-by regulating the intestinal flora with Chinese medicine and food homologous drugs. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:150-161. [PMID: 38966054 PMCID: PMC11220337 DOI: 10.12938/bmfh.2023-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/06/2024] [Indexed: 07/06/2024]
Abstract
Type 1 diabetes (T1D) is a specific autoimmune disease related to genetic and autoimmune factors. Recent studies have found that the intestinal flora is one of the important environmental factors in the development of T1D. The gut microbiota is the largest microbiota in the human body and has a significant impact on material and energy metabolism. Related studies have found that the intestinal floras of T1D patients are unbalanced. Compared with normal patients, the abundance of beneficial bacteria is reduced, and various pathogenic bacteria are significantly increased, affecting the occurrence and development of diabetes. Medicinal and food homologous traditional Chinese medicine (TCM) has a multicomponent, multitarget, and biphasic regulatory effect. Its chemical composition can increase the abundance of beneficial bacteria, improve the diversity of the intestinal flora, reduce blood sugar, and achieve the purpose of preventing and treating T1D by regulating the intestinal flora and its metabolites. Therefore, based on a review of T1D, intestinal flora, and TCM derived from medicine and food, this review describes the relationship between T1D and the intestinal flora, as well as the research progress of TCM interventions for T1D through regulation of the intestinal flora. Medicine and food homologous TCM has certain advantages in treating diabetes and regulating the intestinal flora. It can be seen that there is still great research space and broad development prospects for the treatment of diabetes by regulating the intestinal flora with drug and food homologous TCM.
Collapse
Affiliation(s)
- Yang PING
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| | - Jianing LIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Huilin WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yan WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Hongbin QIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yu ZHANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| |
Collapse
|
18
|
Kim MY, Jeong B, Lee GS, Jeon H, Yang YM, Yang H, Han YH. Panaxydol extracted from Panax ginseng inhibits NLRP3 inflammasome activation to ameliorate NASH-induced liver injury. Int Immunopharmacol 2024; 128:111565. [PMID: 38262161 DOI: 10.1016/j.intimp.2024.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Activation of NOD-like receptor protein 3 (NLRP3) inflammasome exacerbates liver inflammation and fibrosis in nonalcoholic steatohepatitis (NASH), suggesting that development of inflammasome inhibitor can become leading candidate to ameliorate NASH. Panax ginseng (P. ginseng) contains numerous bioactive natural components to reduce inflammation. This study aims to identify inhibitory components of P. ginseng for NLRP3 inflammasome activation. We separated polar and non-polar fractions of P. ginseng and tested modulation of NLRP3 inflammasome, and then identified pure component for inflammasome inhibitor which ameliorates diet-induced NASH. Non-polar P. ginseng fractions obtained from ethyl acetate solvent attenuated IL-1β secretion and expression of active caspase-1. We revealed that panaxydol (PND) is pure component to inhibit NLRP3 inflammasome activation. PND blocked inflammasome cytokines release, pyroptotic cell death, caspase-1 activation and specking of inflammasome complex. Inhibitory effect of PND was specific to NLRP3-dependent pathway via potential interaction with ATP binding motif of NLRP3. Moreover, in vivo studies showed that PND plays beneficial roles to reduce tissue inflammations through disruption of NLRP3 inflammasome and to ameliorate the development of NASH. These results provide new insight of natural products, panaxydol, for NLRP3 inflammasome inhibitor and could offer potential therapeutic candidate for reliving NASH.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Birang Jeong
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Hongjun Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Yoon Mee Yang
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Heejung Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea.
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
19
|
Marques-Santos F, Faria RX, Amendoeira MRR. The Search for Drugs Derived from Natural Products for Toxoplasma gondii Infection Treatment in the Last 20 Years - A Systematic Review. Curr Top Med Chem 2024; 24:1960-1999. [PMID: 38952156 DOI: 10.2174/0115680266299409240606062235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Toxoplasmosis is a worldwide distributed zoonosis caused by Toxoplasma gondii (T. gondii), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individuals, this disease can cause severe or fatal symptoms. METHOD Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological toxicity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone marrow suppression. RESULTS The limited effect, significant toxicity, and emerging resistance to current drugs available to treat T. gondii infections require investigating other effective, nontoxic, and well-tolerated alternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases Conclusion: This review provides data on new therapeutic and prophylactic methods for T. gondii infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.
Collapse
Affiliation(s)
- Fabielle Marques-Santos
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Rio de Janeiro, RJ, Brasil
| | - Maria Regina Reis Amendoeira
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
21
|
Liu S, Zhu X, Pei H, Zhao Y, Zong Y, Chen W, He Z, Du R. Ginseng Stem-and-Leaf Saponins Mitigate Chlorpyrifos-Evoked Intestinal Toxicity In Vivo and In Vitro: Oxidative Stress, Inflammatory Response and Apoptosis. Int J Mol Sci 2023; 24:15968. [PMID: 37958950 PMCID: PMC10650881 DOI: 10.3390/ijms242115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 μg/mL, 60 μg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Xiaoying Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
22
|
Hu L, Ran J, Wang L, Wu M, Wang Z, Xiao H, Du K, Wang Y. Ginsenoside Rg1 attenuates D-galactose-induced neural stem cell senescence via the Sirt1-Nrf2-BDNF pathway. Eur J Neurosci 2023; 58:4084-4101. [PMID: 37753701 DOI: 10.1111/ejn.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
With the ageing of society's population, neurodegenerative diseases have become an important factor affecting the quality of life and mortality in the elderly. Since its physiopathological processes are complex and the authorized medications have recently been shown to have several adverse effects, the development of safe and efficient medications is urgently needed. In this study, we looked at how ginsenoside Rg1 works to postpone neural stem cell ageing and brain ageing, giving it a solid scientific foundation for use as a therapeutic therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Hu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Mengna Wu
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing, China
| | - Ziling Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Hanxianzhi Xiao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Kunhang Du
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yaping Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Liu S, Jiang Y, Wang Y, Huo H, Cilkiz M, Chen P, Han Y, Li L, Wang K, Zhao M, Zhu L, Lei J, Wang Y, Zhang M. Genetic and molecular dissection of ginseng ( Panax ginseng Mey.) germplasm using high-density genic SNP markers, secondary metabolites, and gene expressions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165349. [PMID: 37575919 PMCID: PMC10416250 DOI: 10.3389/fpls.2023.1165349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023]
Abstract
Genetic and molecular knowledge of a species is crucial to its gene discovery and enhanced breeding. Here, we report the genetic and molecular dissection of ginseng, an important herb for healthy food and medicine. A mini-core collection consisting of 344 cultivars and landraces was developed for ginseng that represents the genetic variation of ginseng existing in its origin and diversity center. We sequenced the transcriptomes of all 344 cultivars and landraces; identified over 1.5 million genic SNPs, thereby revealing the genic diversity of ginseng; and analyzed them with 26,600 high-quality genic SNPs or a selection of them. Ginseng had a wide molecular diversity and was clustered into three subpopulations. Analysis of 16 ginsenosides, the major bioactive components for healthy food and medicine, showed that ginseng had a wide variation in the contents of all 16 ginsenosides and an extensive correlation of their contents, suggesting that they are synthesized through a single or multiple correlated pathways. Furthermore, we pair-wisely examined the relationships between the cultivars and landraces, revealing their relationships in gene expression, gene variation, and ginsenoside biosynthesis. These results provide new knowledge and new genetic and genic resources for advanced research and breeding of ginseng and related species.
Collapse
Affiliation(s)
- Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Mustafa Cilkiz
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
24
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Qiao J, Wang C, Chen Y, Yu S, Liu Y, Yu S, Jiang L, Jin C, Wang X, Zhang P, Zhao D, Wang J, Liu M. Herbal/Natural Compounds Resist Hallmarks of Brain Aging: From Molecular Mechanisms to Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12040920. [PMID: 37107295 PMCID: PMC10136184 DOI: 10.3390/antiox12040920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Aging is a complex process of impaired physiological integrity and function, and is associated with increased risk of cardiovascular disease, diabetes, neurodegeneration, and cancer. The cellular environment of the aging brain exhibits perturbed bioenergetics, impaired adaptive neuroplasticity and flexibility, abnormal neuronal network activity, dysregulated neuronal Ca2+ homeostasis, accumulation of oxidatively modified molecules and organelles, and clear signs of inflammation. These changes make the aging brain susceptible to age-related diseases, such as Alzheimer's and Parkinson's diseases. In recent years, unprecedented advances have been made in the study of aging, especially the effects of herbal/natural compounds on evolutionarily conserved genetic pathways and biological processes. Here, we provide a comprehensive review of the aging process and age-related diseases, and we discuss the molecular mechanisms underlying the therapeutic properties of herbal/natural compounds against the hallmarks of brain aging.
Collapse
Affiliation(s)
- Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiawen Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
26
|
Xu HY, Li QC, Zhou WJ, Zhang HB, Chen ZX, Peng N, Gong SY, Liu B, Zeng F. Anti-Oxidative and Anti-Aging Effects of Probiotic Fermented Ginseng by Modulating Gut Microbiota and Metabolites in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01055-9. [PMID: 36947370 DOI: 10.1007/s11130-023-01055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Antioxidative and antiaging abilities of probiotic fermented ginseng (PG) were evaluated in Caenorhabditis elegans (C. elegans). Lifespan and effect on heat stress and acute oxidative stress in C. elegans were significantly enhanced by PG. Antioxidative enzymes such as T-SOD, GSH-PX, CAT were significantly up-regulated, and MDA, ROS and apoptosis levels were significantly down-regulated. At the same time, PG exerted antioxidant and anti-aging activities by reducing the expression of DAF-2 mRNA and increasing the expression of SKN-1 and SOD-3 mRNA in C. elegans. In addition, the mechanism of antioxidative and antiaging activities of PG was explored through gut microbiota sequencing and untargeted metabolomics. The results of gut microbiota indicated that PG could significantly improve the composition and structure of microbes in the gut of C. elegans, and the relative abundance of beneficial bacteria was up-regulated. Untargeted metabolomic results elucidated that PG modulated antioxidant and antiaging activities through neuroactive ligand-receptor interaction, Citrate cycle (TCA cycle), pyruvate metabolism, ascorbate and aldarate metabolism and D-Arginine and D-ornithine metabolism of C. elegans. These results indicated that PG had excellent antioxidant and anti-aging activities, providing research value for the development of functional foods and improvement of aging-related diseases.
Collapse
Affiliation(s)
- Huan-Yi Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Quan-Cen Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wen-Jie Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hai-Bo Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhi-Xian Chen
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Ning Peng
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Shi-Yu Gong
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang, 443003, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
27
|
Nrf2-mediated activation of HO-1 is required in the blocking effect of compound K, a ginseng saponin metabolite, against oxidative stress damage in ARPE-19 human retinal pigment epithelial cells. J Ginseng Res 2023; 47:311-318. [PMID: 36926611 PMCID: PMC10014180 DOI: 10.1016/j.jgr.2022.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background The beneficial effects of compound K (CK) on different chronic diseases have been shown to be at least related to antioxidant action. Nevertheless, since its antioxidant activity in human retinal pigment epithelial (RPE) cells is still unknown, here we investigated whether CK alleviates oxidative stress-stimulated damage in RPE ARPE-19 cells. Methods The cytoprotective consequence of CK in hydrogen peroxide (H2O2)-treated cells was evaluated by cell viability, DNA damage, and apoptosis assays. Fluorescence analysis and immunoblotting were performed to investigate the inhibitory action of CK on reactive oxygen species (ROS) production and mitochondrial dysfunction. Results H2O2-promoted cytotoxicity, oxidative stress, DNA damage, mitochondrial impairment, and apoptosis were significantly attenuated by CK in ARPE-19 cells. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation level and its shuttling to the nucleus were increased, which was correlated with upregulated activation of heme oxygenase-1 (HO-1). However, zinc protoporphyrin, a blocker of HO-1, significantly abrogated the preventive action of CK in H2O2-treated ARPE-19 cells. Conclusion This study indicates that activation of Nrf2/HO-1 signaling by CK plays an important role in rescuing ARPE-19 cells from oxidative cellular damage.
Collapse
|
28
|
Shin EJ, Nguyen BT, Sharma N, Tran NKC, Nguyen YND, Hwang Y, Park JH, Nah SY, Ko SK, Byun JK, Lee Y, Kim DJ, Jeong JH, Kim HC. Ginsenoside Re mitigates memory impairments in aged GPx-1 KO mice by inhibiting the interplay between PAFR, NFκB, and microgliosis in the hippocampus. Food Chem Toxicol 2023; 173:113627. [PMID: 36682417 DOI: 10.1016/j.fct.2023.113627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ngoc Kim Cuong Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju, 12106, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju, 28644, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
29
|
Microorganisms for Ginsenosides Biosynthesis: Recent Progress, Challenges, and Perspectives. Molecules 2023; 28:molecules28031437. [PMID: 36771109 PMCID: PMC9921939 DOI: 10.3390/molecules28031437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Ginsenosides are major bioactive compounds present in the Panax species. Ginsenosides exhibit various pharmaceutical properties, including anticancer, anti-inflammatory, antimetastatic, hypertension, and neurodegenerative disorder activities. Although several commercial products have been presented on the market, most of the current chemical processes have an unfriendly environment and a high cost of downstream processing. Compared to plant extraction, microbial production exhibits high efficiency, high selectivity, and saves time for the manufacturing of industrial products. To reach the full potential of the pharmaceutical resource of ginsenoside, a suitable microorganism has been developed as a novel approach. In this review, cell biological mechanisms in anticancer activities and the present state of research on the production of ginsenosides are summarized. Microbial hosts, including native endophytes and engineered microbes, have been used as novel and promising approaches. Furthermore, the present challenges and perspectives of using microbial hosts to produce ginsenosides have been discussed.
Collapse
|
30
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
31
|
Huang T, Lee S, Lee T, Yun S, Kim Y, Yang H. Smart Farming Enhances Bioactive Compounds Content of Panax ginseng on Moderating Scopolamine-Induced Memory Deficits and Neuroinflammation. PLANTS (BASEL, SWITZERLAND) 2023; 12:640. [PMID: 36771724 PMCID: PMC9920294 DOI: 10.3390/plants12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Korean ginseng (Panax ginseng) is a traditional herbal supplement known to have a variety of pharmacological activities. A smart farm system could provide potential standardization of ginseng seedlings after investigating plant metabolic responses to various parameters in order to design optimal conditions. This research was performed to investigate the effect of smart-farmed ginseng on memory improvement in a scopolamine-induced memory deficit mouse model and an LPS-induced microglial cell model. A smart farming system was applied to culture ginseng. The administration of its extract (S2 extract) under specific culture conditions significantly attenuated cognitive and spatial memory deficits by regulating AKT/ERK/CREB signaling, as well as the cortical inflammation associated with suppression of COX-2 and NLRP3 induced by scopolamine. In addition, S2 extract improved the activation of iNOS and COX-2, and the secretion of NO in LPS-induced BV-2 microglia. Based on the HPLC fingerprint and in vitro data, ginsenosides Rb2 and Rd were found to be the main contributors to the anti-inflammatory effects of the S2 extract. Our findings suggest that integrating a smart farm system may enhance the metabolic productivity of ginseng and provides evidence of its potential impact on natural bioactive compounds of medicinal plants with beneficial qualities, such as ginsenosides Rb2 and Rd.
Collapse
Affiliation(s)
- Tianqi Huang
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
- Korea Institute of Science and Technology (KIST) School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sangbin Lee
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Teamin Lee
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Seungbeom Yun
- R&D Center, BTC Corporation, Technology Development Center, Gyeonggi Technopark, 705, Ansan 15588, Republic of Korea
| | - Yongduk Kim
- R&D Center, BTC Corporation, Technology Development Center, Gyeonggi Technopark, 705, Ansan 15588, Republic of Korea
| | - Hyunok Yang
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
32
|
Ginsenoside Rg1 Delays Chronological Aging in a Yeast Model via CDC19- and SDH2-Mediated Cellular Metabolism. Antioxidants (Basel) 2023; 12:antiox12020296. [PMID: 36829855 PMCID: PMC9952469 DOI: 10.3390/antiox12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Ginsenosides, active substances in Panax ginseng C. A. Meyer (ginseng), extend lifespan in multiple species, ameliorate age-associated damage, and limit functional decline in multiple tissues. However, their active components and their molecular mechanisms are largely unknown. Here, ginsenoside Rg1 (Rg1) promoted longevity in Saccharomyces cerevisiae. Treatment with Rg1 decreased aging-mediated surface wrinkling, enhanced stress resistance, decreased reactive oxygen species' production and apoptosis, improved antioxidant enzyme activity, and decreased the aging rate. Proteomic analysis indicated that Rg1 delays S. cerevisiae senescence by regulating metabolic homeostasis. Protein-protein interaction networks based on differential protein expression indicated that CDC19, a homologue of pyruvate kinase, and SDH2, the succinate dehydrogenase iron-sulfur protein subunit, might be the effector proteins involved in the regulation by Rg1. Further experiments confirmed that Rg1 improved specific parameters of mitochondrial bioenergetics and core enzymes in the glycolytic pathway. Mutant strains were constructed that demonstrated the relationships between metabolic homeostasis and the predicted target proteins of Rg1. Rg1 could be used in new treatments for slowing the aging process. Our results also provide a useful dataset for further investigations of the mechanisms of ginseng in aging.
Collapse
|
33
|
Mellen RH, Girotto OS, Marques EB, Laurindo LF, Grippa PC, Mendes CG, Garcia LNH, Bechara MD, Barbalho SM, Sinatora RV, Haber JFDS, Flato UAP, Bueno PCDS, Detregiachi CRP, Quesada K. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023; 11:136. [PMID: 36672642 PMCID: PMC9856128 DOI: 10.3390/biomedicines11010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a multifactorial condition related to the loss of muscle mass and strength due to aging, eating habits, physical inactivity, or even caused by another disease. Affected individuals have a higher risk of falls and may be associated with heart disease, respiratory diseases, cognitive impairment, and consequently an increased risk of hospitalization, in addition to causing an economic impact due to the high cost of care during the stay in hospitals. The standardization of appropriate treatment for patients with sarcopenia that could help reduce pathology-related morbidity is necessary. For these reasons, this study aimed to perform a systematic review of the role of nutrition and drugs that could ameliorate the health and quality of life of sarcopenic patients and PRISMA guidelines were followed. Lifestyle interventions have shown a profound impact on sarcopenia treatment but using supplements and different drugs can also impact skeletal muscle maintenance. Creatine, leucine, branched-chain amino acids, omega 3, and vitamin D can show benefits. Although with controversial results, medications such as Metformin, GLP-1, losartan, statin, growth hormone, and dipeptidyl peptidase 4 inhibitors have also been considered and can alter the sarcopenic's metabolic parameters, protect against cardiovascular diseases and outcomes, while protecting muscles.
Collapse
Affiliation(s)
- Rodrigo Haber Mellen
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Otávio Simões Girotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Eduarda Boni Marques
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lorena Natalino Haber Garcia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Uri Adrian P. Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Patricia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| |
Collapse
|
34
|
Du X, Lou N, Hu S, Xiao R, Chu C, Huang Q, Lu L, Li S, Yang J. Anti-Aging of the Nervous System and Related Neurodegenerative Diseases With Chinese Herbal Medicine. Am J Alzheimers Dis Other Demen 2023; 38:15333175231205445. [PMID: 37818604 PMCID: PMC10624054 DOI: 10.1177/15333175231205445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Human beings have always pursued a prolonged lifespan, while the aging of the nervous system is associated with a large variety of diseases. Pathological aging of the nervous system results in a series of neurodegenerative diseases and can cause disability and death in the elderly. Therefore, there is an urgent need for the prevention and treatment of nervous system aging. Chinese herbal medicines have a long history, featuring rich and safe ingredients, and have great potential for the development of anti-aging treatment. We searched the publications on PubMed with key words "anti-aging of the nervous system" and "Chinese herbal medicine" in recent 10 years, and found sixteen Chinese herbal medicines. Then by comparing their popularity of use as well as active components based on the research articles, five common Chinese herbal medicines namely Ginseng Radix, Lycii Fructus, Astragali Radix, Coptidis Rhizoma and Ginkgo Folium, were confirmed to be the most related to anti-nervous system aging and neural degenerative diseases. At the same time, the active ingredients, research models, action mechanisms and curative effects of these five common Chinese herbal medicines were reviewed. From the five common Chinese herbal medicines reviewed in this paper, many encouraging effects of Chinese herbal medicines on treating nervous system aging and related diseases were revealed and more potent herbs would be explored with the help of the proposed possible mechanisms.
Collapse
Affiliation(s)
- Xiaohui Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Nanbin Lou
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Sinan Hu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ruopeng Xiao
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qiankai Huang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lin Lu
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shanshan Li
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
35
|
Investigating the Anticancer Activity of G-Rh1 Using In Silico and In Vitro Studies (A549 Lung Cancer Cells). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238311. [PMID: 36500403 PMCID: PMC9890317 DOI: 10.3390/molecules27238311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses on the two metastatic regulators, Rho-associated protein kinase 1 (ROCK1) and RhoA, along with other standard apoptosis regulators. The ROCK1 protein is a member of the active serine/threonine kinase family that is crucial for many biological processes, including cell division, differentiation, and death, as well as many cellular processes and muscle contraction. The abnormal activation of ROCK1 kinase causes several disorders, whereas numerous studies have also shown that RhoA is expressed highly in various cancers, including colon, lung, ovarian, gastric, and liver malignancies. Hence, inhibiting both ROCK1 and RhoA will be promising in preventing metastasis. Therefore, the molecular level interaction of G-Rh1 with the ROCK1 and RhoA active site residues from the preliminary screening clearly shows its inhibitory potential. Molecular dynamics simulation and principal component analysis give essential insights for comprehending the conformational changes that result from G-Rh1 binding to ROCK1 and RhoA. Further, MTT assay was employed to examine the potential cytotoxicity in vitro against human lung cancer cells (A549) and Raw 264.7 Murine macrophage cells. Thus, G-Rh1 showed significant cytotoxicity against human lung adenocarcinoma (A549) at 100 µg/mL. In addition, we observed an elevated level of reactive oxygen species (ROS) generation, perhaps promoting cancer cell toxicity. Additionally, G-Rh1 suppressed the mRNA expression of RhoA, ROCK1, MMP1, and MMP9 in cancer cell. Accordingly, G-Rh1 upregulated the p53, Bax, Caspase 3, caspase 9 while Bcl2 is downregulated intrinsic pathway. The findings from our study propose that the anticancer activity of G-Rh1 may be related to the induction of apoptosis by the RhoA/ROCK1 signaling pathway. As a result, this study evaluated the functional drug-like compound G-Rh1 from Panax ginseng in preventing and treating lung cancer adenocarcinoma via regulating metastasis and apoptosis.
Collapse
|
36
|
Panossian A, Abdelfatah S, Efferth T. Network Pharmacology of Ginseng (Part III): Antitumor Potential of a Fixed Combination of Red Ginseng and Red Sage as Determined by Transcriptomics. Pharmaceuticals (Basel) 2022; 15:ph15111345. [PMID: 36355517 PMCID: PMC9696821 DOI: 10.3390/ph15111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background: This study aimed to assess the effect of a fixed combination of Red Ginseng and Red Sage (RG–RS) on the gene expression of neuronal cells to evaluate the potential impacts on cellular functions and predict its relevance in the treatment of stress and aging-related diseases and disorders. Methods: Gene expression profiling was conducted by transcriptome-wide mRNA microarray analyses of murine HT22 hippocampal cell culture after treatment with RG–RS preparation. Ingenuity pathway analysis (IPA) was performed with datasets of significantly upregulated or downregulated genes and the expected effects on the physiological and cellular function and the diseases were identified. Results: RG–RS deregulates 1028 genes associated with cancer and 139 with metastasis, suggesting a predicted decrease in tumorigenesis, the proliferation of tumor cells, tumor growth, metastasis, and an increase in apoptosis and autophagy by their effects on the various signaling and metabolic pathways, including the inhibition of Warburg’s aerobic glycolysis, estrogen-mediated S-phase entry signaling, osteoarthritis signaling, and the super-pathway of cholesterol biosynthesis. Conclusion: The results of this study provide evidence of the potential efficacy of the fixed combination of Red Ginseng (Panax ginseng C.A. Mey.) and Red Sage/Danshen (Salvia miltiorrhiza Bunge) in cancer. Further clinical and experimental studies are required to assess the efficacy and safety of RG–RS in preventing the progression of cancer, osteoarthritis, and other aging-related diseases.
Collapse
Affiliation(s)
- Alexander Panossian
- EuroPharma USA Inc., Green Bay, WI 54311, USA
- Phytomed AB, 58344 Vastervick, Sweden
- Correspondence: (A.P.); (T.E.)
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55131 Mainz, Germany
- Correspondence: (A.P.); (T.E.)
| |
Collapse
|
37
|
Network Pharmacology of Adaptogens in the Assessment of Their Pleiotropic Therapeutic Activity. Pharmaceuticals (Basel) 2022; 15:ph15091051. [PMID: 36145272 PMCID: PMC9504187 DOI: 10.3390/ph15091051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
The reductionist concept, based on the ligand–receptor interaction, is not a suitable model for adaptogens, and herbal preparations affect multiple physiological functions, revealing polyvalent pharmacological activities, and are traditionally used in many conditions. This review, for the first time, provides a rationale for the pleiotropic therapeutic efficacy of adaptogens based on evidence from recent gene expression studies in target cells and where the network pharmacology and systems biology approaches were applied. The specific molecular targets and adaptive stress response signaling mechanisms involved in nonspecific modes of action of adaptogens are identified.
Collapse
|
38
|
Gong L, Yin J, Zhang Y, Huang R, Lou Y, Jiang H, Sun L, Jia J, Zeng X. Neuroprotective Mechanisms of Ginsenoside Rb1 in Central Nervous System Diseases. Front Pharmacol 2022; 13:914352. [PMID: 35721176 PMCID: PMC9201244 DOI: 10.3389/fphar.2022.914352] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Panax ginseng and Panax notoginseng, two well-known herbs with enormous medical value in Asian countries, have a long usage history in China for the therapy of some diseases, such as stroke. Ginsenoside Rb1 is one of most important active ingredients in Panax ginseng and Panax notoginseng. In the last two decades, more attention has focused on ginsenoside Rb1 as an antioxidative, anti-apoptotic and anti-inflammatory agent that can protect the nervous system. In the review, we summarize the neuroprotective roles of ginsenoside Rb1 and its potential mechanisms in central nervous system diseases (CNSDs), including neurodegenerative diseases, cerebral ischemia injury, depression and spinal cord injury. In conclusion, ginsenoside Rb1 has a potential neuroprotection due to its inhibition of oxidative stress, apoptosis, neuroinflammation and autophagy in CNSDs and may be a promising candidate agent for clinical therapy of CNSDs in the future.
Collapse
Affiliation(s)
- Liang Gong
- Jiaxing University Medical College, Jiaxing, China
| | - Jiayi Yin
- Jiaxing University Medical College, Jiaxing, China
| | - Yu Zhang
- Jiaxing University Medical College, Jiaxing, China
| | - Ren Huang
- Jiaxing University Medical College, Jiaxing, China
| | - Yuxuan Lou
- Jiaxing University Medical College, Jiaxing, China
| | - Haojie Jiang
- Jiaxing University Medical College, Jiaxing, China
| | - Liyan Sun
- Department of Clinical Medicine, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|