1
|
Johnson KO, Harel L, Triplett JW. Postsynaptic NMDA Receptor Expression Is Required for Visual Corticocollicular Projection Refinement in the Mouse Superior Colliculus. J Neurosci 2023; 43:1310-1320. [PMID: 36717228 PMCID: PMC9987568 DOI: 10.1523/jneurosci.1473-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023] Open
Abstract
Efficient sensory processing of spatial information is facilitated through the organization of neuronal connections into topographic maps of space. In integrative sensory centers, converging topographic maps must be aligned to merge spatially congruent information. The superior colliculus (SC) receives topographically ordered visual inputs from retinal ganglion cells (RGCs) in the eye and layer 5 neurons in the primary visual cortex (L5-V1). Previous studies suggest that RGCs instruct the alignment of later-arriving L5-V1 inputs in an activity-dependent manner. However, the molecular mechanisms underlying this remain unclear. Here, we explored the role of NMDA receptors in visual map alignment in the SC using a conditional genetic knockout approach. We leveraged a novel knock-in mouse line that expresses tamoxifen-inducible Cre recombinase under the control of the Tal1 gene (Tal1CreERT2 ), which we show allows for specific recombination in the superficial layers of the SC. We used Tal1CreERT2 mice of either sex to conditionally delete the obligate GluN1 subunit of the NMDA receptor (SC-cKO) during the period of visual map alignment. We observed a significant disruption of L5-V1 axon terminal organization in the SC of SC-cKO mice. Importantly, retinocollicular topography was unaffected in this context, suggesting that alignment is also disrupted. Time-course experiments suggest that NMDA receptors may play a critical role in the refinement of L5-V1 inputs in the SC. Together, these data implicate NMDA receptors as critical mediators of activity-dependent visual map alignment in the SC.SIGNIFICANCE STATEMENT Alignment of topographic inputs is critical for integration of spatially congruent sensory information; however, little is known about the mechanisms underlying this complex process. Here, we took a conditional genetic approach to explore the role of NMDA receptors in the alignment of retinal and cortical visual inputs in the superior colliculus. We characterize a novel mouse line providing spatial and temporal control of recombination in the superior colliculus and reveal a critical role for NMDA expression in visual map alignment. These data support a role for neuronal activity in visual map alignment and provide mechanistic insight into this complex developmental process.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
| | - Leeor Harel
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20037
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037
| |
Collapse
|
2
|
Long non-coding RNA signatures and related signaling pathway in T-cell acute lymphoblastic leukemia. Clin Transl Oncol 2022; 24:2081-2089. [DOI: 10.1007/s12094-022-02886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
|
3
|
Umemoto T, Johansson A, Ahmad SAI, Hashimoto M, Kubota S, Kikuchi K, Odaka H, Era T, Kurotaki D, Sashida G, Suda T. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J 2022; 41:e109463. [PMID: 35229328 PMCID: PMC9016348 DOI: 10.15252/embj.2021109463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.
Collapse
Affiliation(s)
- Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Alban Johansson
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Shah Adil Ishtiyaq Ahmad
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michihiro Hashimoto
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Odaka
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Takumi Era
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan,Cancer Science Institute of SingaporeNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
4
|
SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13215393. [PMID: 34771555 PMCID: PMC8582547 DOI: 10.3390/cancers13215393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive form of brain tumor and is still incurable. These neoplasms are particularly difficult to treat efficiently because of their highly heterogeneous and resistant characteristics. Advances in genomics have highlighted the complex molecular landscape of these tumors and the need to further develop effective and targeted therapies for each patient. A specific population of cells with enriched stem cell properties within tumors, i.e., glioblastoma stem cells (GSC), drives this cellular heterogeneity and therapeutical resistance, and thus constitutes an attractive target for the design of innovative treatments. However, the signals driving the maintenance and resistance of these cells are still unclear. We provide new findings regarding the expression of two transcription factors in these cells and directly in glioblastoma patient samples. We show that these proteins downregulate GSC growth and ultimately participate in the progression of gliomas. The forthcoming results will contribute to a better understanding of gliomagenesis. Abstract Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-β1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.
Collapse
|
5
|
Shan M, Ji X, Janssen K, Silverman IM, Humenik J, Garcia BA, Liebhaber SA, Gregory BD. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis. Life Sci Alliance 2021; 4:4/9/e202000659. [PMID: 34315813 PMCID: PMC8321672 DOI: 10.26508/lsa.202000659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022] Open
Abstract
Two features of eukaryotic RNA molecules that regulate their post-transcriptional fates are RNA secondary structure and RNA-binding protein (RBP) interaction sites. However, a comprehensive global overview of the dynamic nature of these sequence features during erythropoiesis has never been obtained. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approach to reveal the global landscape of RNA secondary structure and RBP-RNA interaction sites and the dynamics of these features during this important developmental process. We identify dynamic patterns of RNA secondary structure and RBP binding throughout the process and determine a set of corresponding protein-bound sequence motifs along with their dynamic structural and RBP-binding contexts. Finally, using these dynamically bound sequences, we identify a number of RBPs that have known and putative key functions in post-transcriptional regulation during mammalian erythropoiesis. In total, this global analysis reveals new post-transcriptional regulators of mammalian blood cell development.
Collapse
Affiliation(s)
- Mengge Shan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Kevin Janssen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Ian M Silverman
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Ben A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA .,Department of Medicine, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA .,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, PA, USA
| |
Collapse
|
6
|
Identification of Critical Genes and lncRNAs in Osteolysis after Total Hip Arthroplasty and Osteoarthritis by RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6681925. [PMID: 33791375 PMCID: PMC7984875 DOI: 10.1155/2021/6681925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023]
Abstract
Total hip arthroplasty (THA) is a cost-effective treatment for osteoarthritis (OA), and osteolysis is a common complication of THA. This study was aimed at exploring the relevant molecular biomarkers for osteolysis after THA. We performed RNA sequence to identify and characterize expressed mRNAs and lncRNAs in OA and osteolysis. Differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in OA and osteolysis were acquired, as well as shared DEmRNAs/DElncRNAs in OA and osteolysis and osteolysis-specific DEmRNAs/DElncRNAs. Then, shared and osteolysis-specific DElncRNA-DEmRNA coexpression networks were constructed to further investigate the function of DElncRNAs and DEmRNAs in OA and osteolysis. In total, 343 DEmRNAs and 25 DElncRNAs in OA, 908 DEmRNAs and 107 DElncRNAs in osteolysis, and 406 DEmRNAs and 46 DElncRNAs between OA and osteolysis were acquired. A total of 136 shared DEmRNAs and 9 shared DElncRNAs in OA and osteolysis and 736 osteolysis-specific DEmRNAs and 103 osteolysis-specific DElncRNAs were acquired. Then, 128 shared DElncRNA-DEmRNA coexpression pairs and 522 osteolysis-specific DElncRNA-DEmRNA coexpression pairs were identified. The present study highlighted the roles of four interaction pairs, including two shared lncRNA-mRNA interaction pairs in OA and osteolysis (AC111000.4 and AC016831.6), which may function in the immune process of OA and osteolysis by regulating CD8A and CD8B, respectively, and two osteolysis-specific interaction pairs (AC090607.4-FOXO3 and TAL1-ABALON), which may play an important role in osteoclastogenesis.
Collapse
|
7
|
Milton-Harris L, Jeeves M, Walker SA, Ward SE, Mancini EJ. Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2. Oncotarget 2020; 11:1737-1748. [PMID: 32477463 PMCID: PMC7233811 DOI: 10.18632/oncotarget.27580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs.
Collapse
Affiliation(s)
- Leanne Milton-Harris
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Sarah A Walker
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Erika J Mancini
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
8
|
Mastelic-Gavillet B, Vono M, Gonzalez-Dias P, Ferreira FM, Cardozo L, Lambert PH, Nakaya HI, Siegrist CA. Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. Front Immunol 2019; 10:1845. [PMID: 31456798 PMCID: PMC6700230 DOI: 10.3389/fimmu.2019.01845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
T follicular helper (Tfh) cells have emerged as a critical limiting factor for controlling the magnitude of neonatal germinal center (GC) reactions and primary vaccine antibody responses. We compared the functional attributes of neonatal and adult Tfh cells at the transcriptomic level and demonstrated that the Tfh cell program is well-initiated in neonates although the Tfh gene-expression pattern (i.e., CXCR5, IL-21, BCL6, TBK1, STAT4, ASCL2, and c-MAF) is largely underrepresented as compared to adult Tfh cells. Importantly, we identified a TH2-bias of neonatal Tfh cells, with preferential differentiation toward short-lived pre-Tfh effector cells. Remarkably, adjuvantation with CpG-ODNs redirect neonatal pre-Tfh cells toward committed GC-Tfh cells, as illustrated by increased expression of Tfh signature genes and reduced expression of TH2-related genes.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Vono
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Patrícia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, School of Medicine, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Lucas Cardozo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paul-Henri Lambert
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claire-Anne Siegrist
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood 2019; 134:1159-1175. [PMID: 31366618 DOI: 10.1182/blood.2019000095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.
Collapse
|
10
|
Cul4a promotes zebrafish primitive erythropoiesis via upregulating scl and gata1 expression. Cell Death Dis 2019; 10:388. [PMID: 31101894 PMCID: PMC6525236 DOI: 10.1038/s41419-019-1629-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
CUL4A and CUL4B are closely related members in Cullin family and can each assemble a Cullin-RING E3 ligase complex (Cullin-RING Ligase 4A or 4B, CRL4A, or CRL4B) and participate in a variety of biological processes. Previously we showed that zebrafish cul4a, but not cul4b, is essential for cardiac and pectoral fin development. Here, we have identified cul4a as a crucial regulator of primitive erythropoiesis in zebrafish embryonic development. Depletion of cul4a resulted in a striking reduction of erythroid cells due to the inhibition of erythroid differentiation. Transcript levels for early hematopoietic regulatory genes including scl, lmo2, and gata1 are significantly reduced in cul4a-deficient embryos. Mechanistically, we demonstrated that scl and gata1, the central regulators of primitive hematopoiesis for erythroid determination, are transcriptionally upregulated by cul4a. These findings demonstrate an important role for cul4a in primitive erythropoiesis and may bear implications in regeneration medicine of anemia and related diseases.
Collapse
|
11
|
The enhancer RNA ARIEL activates the oncogenic transcriptional program in T-cell acute lymphoblastic leukemia. Blood 2019; 134:239-251. [PMID: 31076442 DOI: 10.1182/blood.2018874503] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/07/2019] [Indexed: 11/20/2022] Open
Abstract
The oncogenic transcription factor TAL1 regulates the transcriptional program in T-ALL. ARID5B is one of the critical downstream targets of TAL1, which further activates the oncogenic regulatory circuit in T-ALL cells. Here, we elucidated the molecular functions of the noncoding RNA, ARID5B-inducing enhancer associated long noncoding RNA (ARIEL), in T-ALL pathogenesis. We demonstrated that ARIEL is specifically activated in TAL1 + T-ALL cases, and its expression is associated with ARID5B enhancer activity. ARIEL recruits mediator proteins to the ARID5B enhancer, promotes enhancer-promoter interactions, and activates the expression of ARID5B, thereby positively regulating the TAL1-induced transcriptional program and the MYC oncogene. The TAL1 complex coordinately regulates the expression of ARIEL Knockdown of ARIEL inhibits cell growth and survival of T-ALL cells in culture and blocks disease progression in a murine xenograft model. Our results indicate that ARIEL plays an oncogenic role as an enhancer RNA in T-ALL.
Collapse
|
12
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
13
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
14
|
Leong WZ, Tan SH, Ngoc PCT, Amanda S, Yam AWY, Liau WS, Gong Z, Lawton LN, Tenen DG, Sanda T. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev 2018; 31:2343-2360. [PMID: 29326336 PMCID: PMC5795782 DOI: 10.1101/gad.302646.117] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Leong et al. identified ARID5B as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B positively regulates the expression of TAL1 and its regulatory partners and also activates the expression of the oncogene MYC. The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lymphoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2–4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active transcription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression. ARID5B positively regulates the expression of TAL1 and its regulatory partners. ARID5B also activates the expression of the oncogene MYC. Importantly, ARID5B is required for the survival and growth of T-ALL cells, and forced expression of ARID5B in immature thymocytes results in thymus retention, differentiation arrest, radioresistance, and tumor formation in zebrafish. Our results indicate that ARID5B reinforces the oncogenic transcriptional program by positively regulating the TAL1-induced regulatory circuit and MYC in T-ALL, thereby contributing to T-cell leukemogenesis.
Collapse
Affiliation(s)
- Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Phuong Cao Thi Ngoc
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Alice Wei Yee Yam
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Wei-Siang Liau
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Lee N Lawton
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.,Harvard Medical School, Boston, Massachusetts 02215, USA.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| |
Collapse
|
15
|
Jin S, Su H, Tran NT, Song J, Lu SS, Li Y, Huang S, Abdel-Wahab O, Liu Y, Zhao X. Splicing factor SF3B1K700E mutant dysregulates erythroid differentiation via aberrant alternative splicing of transcription factor TAL1. PLoS One 2017; 12:e0175523. [PMID: 28545085 PMCID: PMC5436638 DOI: 10.1371/journal.pone.0175523] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
More than 60% of myeloid dysplasia syndrome (MDS) contains mutations in genes encoding for splicing factors such as SF3B1, U2AF, SRSF2 and ZRSR2. Mutations in SF3B1 are associated with 80% cases of refractory anemia with ring sideroblast (RARS), a subtype of MDS. SF3B1K700E is the most frequently mutated site among mutations on SF3B1. Yet the molecular mechanisms on how mutations of splicing factors lead to defective erythropoiesis are not clear. SF3B1K700E mutant binds to an RNA binding protein, RBM15, stronger than the wild type SF3B1 protein in co-immunoprecipitation assays. In addition, K700E mutant alters the RNA splicing of transcription factors TAL1 and GATA1. Via alternative RNA splicing, a novel short TAL1 transcript variant (TAL1s) is generated. Enhanced interaction between SF3B1 and RBM15 promotes the production of full-length TAL1 (TAL1fl) mRNA, while reduction of RBM15 protein level via PRMT1-mediated degradation pathway changes TAL1s/TAL1fl ratio in favor of TAL1s. TAL1s contains the helix-loop-helix DNA binding domain but not the N terminal region upstream of the DNA binding domain. The TAL1s protein loses its interaction with ETO2, which represses early erythropoiesis. In this vein, overexpression of TAL1s stimulates the transcription of β-hemoglobin in human leukemia K562 cells and promotes erythroid differentiation of human cord blood CD34+ cells cultured in erythropoietin-containing medium. Therefore, mutations of SF3B1 may block erythropoiesis via dysregulation of alternative RNA splicing of transcription factor TAL1, and targeting PRMT1 may alleviate the anemic symptoms in MDS patients.
Collapse
Affiliation(s)
- Shuiling Jin
- Department of Internal Medicine, Henan Cancer Hospital & Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jing Song
- Department of Internal Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sydney S. Lu
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ying Li
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau. China
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yanyan Liu
- Department of Internal Medicine, Henan Cancer Hospital & Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
16
|
Kuvardina ON, Herkt S, Meyer A, Schneider L, Yillah J, Kohrs N, Bonig H, Seifried E, Müller-Tidow C, Lausen J. Hematopoietic transcription factors and differential cofactor binding regulate PRKACB isoform expression. Oncotarget 2017; 8:71685-71698. [PMID: 29069738 PMCID: PMC5641081 DOI: 10.18632/oncotarget.17386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Hematopoietic differentiation is controlled by key transcription factors, which regulate stem cell functions and differentiation. TAL1 is a central transcription factor for hematopoietic stem cell development in the embryo and for gene regulation during erythroid/megakaryocytic differentiation. Knowledge of the target genes controlled by a given transcription factor is important to understand its contribution to normal development and disease. To uncover direct target genes of TAL1 we used high affinity streptavidin/biotin-based chromatin precipitation (Strep-CP) followed by Strep-CP on ChIP analysis using ChIP promoter arrays. We identified 451 TAL1 target genes in K562 cells. Furthermore, we analysed the regulation of one of these genes, the catalytic subunit beta of protein kinase A (PRKACB), during megakaryopoiesis of K562 and primary human CD34+ stem cell/progenitor cells. We found that TAL1 together with hematopoietic transcription factors RUNX1 and GATA1 binds to the promoter of the isoform 3 of PRKACB (Cβ3). During megakaryocytic differentiation a coactivator complex on the Cβ3 promoter, which includes WDR5 and p300, is replaced with a corepressor complex. In this manner, activating chromatin modifications are removed and expression of the PRKACB-Cβ3 isoform during megakaryocytic differentiation is reduced. Our data uncover a role of the TAL1 complex in controlling differential isoform expression of PRKACB. These results reveal a novel function of TAL1, RUNX1 and GATA1 in the transcriptional control of protein kinase A activity, with implications for cellular signalling control during differentiation and disease.
Collapse
Affiliation(s)
- Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Jasmin Yillah
- Georg-Speyer-Haus, Institute for Tumorbiology and experimental Therapy, Frankfurt, Germany
| | - Nicole Kohrs
- Georg-Speyer-Haus, Institute for Tumorbiology and experimental Therapy, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Hasegawa A, Shimizu R. GATA1 Activity Governed by Configurations of cis-Acting Elements. Front Oncol 2017; 6:269. [PMID: 28119852 PMCID: PMC5220053 DOI: 10.3389/fonc.2016.00269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
The transcription factor GATA1 regulates the expression of essential erythroid and megakaryocytic differentiation genes through binding to the DNA consensus sequence WGATAR. The GATA1 protein has four functional domains, including two centrally located zinc-finger domains and two transactivation domains at the N- and C-termini. These functional domains play characteristic roles in the elaborate regulation of diversified GATA1 target genes, each of which exhibits a unique expression profile. Three types of GATA1-related hematological malignancies have been reported. One is a structural mutation in the GATA1 gene, resulting in the production of a short form of GATA1 that lacks the N-terminal transactivation domain and is found in Down syndrome-related acute megakaryocytic leukemia. The other two are cis-acting regulatory mutations affecting expression of the Gata1 gene, which have been shown to cause acute erythroblastic leukemia and myelofibrosis in mice. Therefore, imbalanced gene regulation caused by qualitative and quantitative changes in GATA1 is thought to be involved in specific hematological disease pathogenesis. In the present review, we discuss recent advances in understanding the mechanisms of differential transcriptional regulation by GATA1 during erythroid differentiation, with special reference to the binding kinetics of GATA1 at conformation-specific binding sites.
Collapse
Affiliation(s)
- Atsushi Hasegawa
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan; Medical Mega-Bank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Essential roles for Cdx in murine primitive hematopoiesis. Dev Biol 2017; 422:115-124. [PMID: 28065741 DOI: 10.1016/j.ydbio.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl.
Collapse
|
19
|
Runx Family Genes in Tissue Stem Cell Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:117-138. [PMID: 28299655 DOI: 10.1007/978-981-10-3233-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.
Collapse
|
20
|
Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Leukemia 2016; 31:1798-1807. [PMID: 28028313 PMCID: PMC5529293 DOI: 10.1038/leu.2016.392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder resulting from leukemic transformation of thymus T-cell precursors. TAL1 is normally expressed in hematopoietic stem cells (HSCs) but is silenced in immature thymocytes. We hypothesize that TAL1 contributes to leukemogenesis by activating genes that are normally repressed in immature thymocytes. Herein, we identified a novel TAL1-regulated super-enhancer controlling the GIMAP locus, which resides within an insulated chromosomal locus in T-ALL cells. The GIMAP genes are expressed in HSCs and mature T-cells but are downregulated during the immature stage of thymocyte differentiation. The GIMAP enhancer is activated by TAL1, RUNX1 and GATA3 in human T-ALL cells but is repressed by E-proteins. Overexpression of human GIMAP genes in immature thymocytes alone does not induce tumorigenesis but accelerates leukemia development in zebrafish. Our results demonstrate that aberrant activation of the GIMAP enhancer contributes to T-cell leukemogenesis.
Collapse
|
21
|
Wang H, Wu D, Wang X, Chen G, Zhang Y, Yan W, Luo X, Han M, Ning Q. Hepatitis B virus surface protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. Biol Chem 2016; 397:1173-1185. [DOI: 10.1515/hsz-2015-0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
Abstract
The protein inhibitor of activated STAT1 (PIAS1) plays important roles in regulating virus-induced chronic hepatitis, but the interaction between hepatitis B virus (HBV) and hPIAS1 is not clear. Our aim was to verify if HBV encoding proteins enhance the transcription of hPIAS1 and which cis-elements and transcription factors were involved in the mechanism. In order to do, so a series of molecular biological methods, along with functional and histological studies, were performed. We found that the HBV surface protein (HBs) enhanced hPIAS1 transcription through the activities of TAL1, E47, myogenin (MYOG), and NFI, dependent on the activation of p38MAPK and ERK signaling pathways in vitro, which might contribute to the ineffectiveness of treatment in CHB patients. Furthermore, liver samples from patients with high HBsAg levels and HBV DNA displayed increased hPIAS1 expression and high levels of TAL1, E47, MYOG, and NFI, compared to those patients with low HBsAg levels and HBV DNA, and healthy controls. These findings suggest that the HBs protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. It provides new potential targets for antiviral therapeutic strategies for controlling HBV-associated diseases.
Collapse
|
22
|
Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F, Tremblay V, Rakopoulos P, Singh K, Huang S, Pflumio F, Hébert J, Couture JF, Perkins TJ, Ge K, Dilworth FJ, Brand M. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev 2016; 30:508-21. [PMID: 26944678 PMCID: PMC4782046 DOI: 10.1101/gad.276790.115] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Benyoucef et al. reveal the existence of a subtype-specific epigenetic vulnerability in T-cell acute lymphoblastic leukemia (T-ALL) by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.
Collapse
Affiliation(s)
- Aissa Benyoucef
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Carmen G Palii
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Chaochen Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Alphonse Chu
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Fengtao Dai
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Véronique Tremblay
- Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Patricia Rakopoulos
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Kulwant Singh
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Francoise Pflumio
- Commissariat á l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant (DSV)-Institut de Recherche en Radiobiologie Cellulaire et Moléculaire (IRCM)-Stem Cells and Radiation Department (SCSR)-Laboratory of Hematopoietic Stem Cells and Leukemia (LSHL), U967, Fontenay-aux-Roses 92265, Paris, France; Institut National de la Santé et de la Recherche Médicale, U967, Fontenay-aux-Roses 92265, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, UMR 967, Fontenay-aux-Roses 92265, Paris, France
| | - Josée Hébert
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Jean-Francois Couture
- Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Theodore J Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - F Jeffrey Dilworth
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
23
|
The proto-oncogenic protein TAL1 controls TGF-β1 signaling through interaction with SMAD3. BIOCHIMIE OPEN 2016; 2:69-78. [PMID: 29632840 PMCID: PMC5889486 DOI: 10.1016/j.biopen.2016.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/07/2016] [Indexed: 01/13/2023]
Abstract
TGF-β1 is involved in many aspects of tissue development and homeostasis including hematopoiesis. The TAL1 transcription factor is also an important player of this latter process and is expressed very early in the myeloid and erythroid lineages. We previously established a link between TGF-β1 signaling and TAL1 by showing that the cytokine was able to induce its proteolytic degradation by the ubiquitin proteasome pathway. In this manuscript we show that TAL1 interacts with SMAD3 that acts in the pathway downstream of TGF-β1 association with its receptor. TAL1 expression strengthens the positive or negative effect of SMAD3 on various genes. Both transcription factors activate the inhibitory SMAD7 factor through the E box motif present in its transcriptional promoter. DNA precipitation assays showed that TAL1 present in Jurkat or K562 cells binds to this SMAD binding element in a SMAD3 dependent manner. SMAD3 and TAL1 also inhibit several genes including ID1, hTERT and TGF-β1 itself. In this latter case TAL1 and SMAD3 can impair the positive effect exerted by E47. Our results indicate that TAL1 expression can modulate TGF-β1 signaling by interacting with SMAD3 and by increasing its transcriptional properties. They also suggest the existence of a negative feedback loop between TAL1 expression and TGF-β1 signaling.
Collapse
|
24
|
Combined Id1 and Id3 Deletion Leads to Severe Erythropoietic Disturbances. PLoS One 2016; 11:e0154480. [PMID: 27128622 PMCID: PMC4851361 DOI: 10.1371/journal.pone.0154480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
The Inhibitor of DNA Binding (Id) proteins play a crucial role in regulating hematopoiesis and are known to interact with E proteins and the bHLH family of transcription factors. Current efforts seek to elucidate the individual roles of Id members in regulating hematopoietic development and specification. However, the nature of their functional redundancies remains elusive since ablation of multiple Id genes is embryonically lethal. We developed a model to test this compensation in the adult. We report that global Id3 ablation with Tie2Cre-mediated conditional ablation of Id1 in both hematopoietic and endothelial cells (Id cDKO) extends viability to 1 year but leads to multi-lineage hematopoietic defects including the emergence of anemia associated with defective erythroid development, a novel phenotype unreported in prior single Id knockout studies. We observe decreased cell counts in the bone marrow and splenomegaly to dimensions beyond what is seen in single Id knockout models. Transcriptional dysregulation of hematopoietic regulators observed in bone marrow cells is also magnified in the spleen. E47 protein levels were elevated in Id cDKO bone marrow cell isolates, but decreased in the erythroid lineage. Chromatin immunoprecipitation (ChIP) studies reveal increased occupancy of E47 and GATA1 at the promoter regions of β-globin and E2A. Bone marrow transplantation studies highlight the importance of intrinsic Id signals in maintaining hematopoietic homeostasis while revealing a strong extrinsic influence in the development of anemia. Together, these findings demonstrate that loss of Id compensation leads to dysregulation of the hematopoietic transcriptional network and multiple defects in erythropoietic development in adult mice.
Collapse
|
25
|
Easterbrook J, Fidanza A, Forrester LM. Concise review: programming human pluripotent stem cells into blood. Br J Haematol 2016; 173:671-9. [PMID: 26996518 PMCID: PMC4914896 DOI: 10.1111/bjh.14010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion-transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long-term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future.
Collapse
Affiliation(s)
| | - Antonella Fidanza
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Lesley M Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
27
|
Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, Shi Y, Armstrong SA, Roeder RG. JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev 2016; 29:2123-39. [PMID: 26494788 PMCID: PMC4617977 DOI: 10.1101/gad.267278.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RUNX1-RUNX1T1 (formerly AML1-ETO), a transcription factor generated by the t(8;21) translocation in acute myeloid leukemia (AML), dictates a leukemic program by increasing self-renewal and inhibiting differentiation. Here we demonstrate that the histone demethylase JMJD1C functions as a coactivator for RUNX1-RUNX1T1 and is required for its transcriptional program. JMJD1C is directly recruited by RUNX1-RUNX1T1 to its target genes and regulates their expression by maintaining low H3K9 dimethyl (H3K9me2) levels. Analyses in JMJD1C knockout mice also establish a JMJD1C requirement for RUNX1-RUNX1T1's ability to increase proliferation. We also show a critical role for JMJD1C in the survival of multiple human AML cell lines, suggesting that it is required for leukemic programs in different AML cell types through its association with key transcription factors.
Collapse
Affiliation(s)
- Mo Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Nan Zhu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University, Newark, New Jersey 07103, USA
| | - Benoit Laurent
- Division of Newborn Medicine, Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Rowena Eng
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Yang Shi
- Division of Newborn Medicine, Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott A Armstrong
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
28
|
Abstract
Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Collapse
|
29
|
Mansur MB, van Delft FW, Colman SM, Furness CL, Gibson J, Emerenciano M, Kempski H, Clappier E, Cave H, Soulier J, Pombo-de-Oliveira MS, Greaves M, Ford AM. Distinctive genotypes in infants with T-cell acute lymphoblastic leukaemia. Br J Haematol 2015. [PMID: 26205622 PMCID: PMC4737125 DOI: 10.1111/bjh.13613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infant T‐cell acute lymphoblastic leukaemia (iT‐ALL) is a very rare and poorly defined entity with a poor prognosis. We assembled a unique series of 13 infants with T‐ALL, which allowed us to identify genotypic abnormalities and to investigate prenatal origins. Matched samples (diagnosis/remission) were analysed by single nucleotide polymorphism‐array to identify genomic losses and gains. In three cases, we identified a recurrent somatic deletion on chromosome 3. These losses result in the complete deletion of MLF1 and have not previously been described in T‐ALL. We observed two cases with an 11p13 deletion (LMO2‐related), one of which also harboured a deletion of RB1. Another case presented a large 11q14·1‐11q23·2 deletion that included ATM and only five patients (38%) showed deletions of CDKN2A/B. Four cases showed NOTCH1 mutations; in one case FBXW7 was the sole mutation and three cases showed alterations in PTEN. KMT2A rearrangements (KMT2A‐r) were detected in three out of 13 cases. For three patients, mutations and copy number alterations (including deletion of PTEN) could be backtracked to birth using neonatal blood spot DNA, demonstrating an in utero origin. Overall, our data indicates that iT‐ALL has a diverse but distinctive profile of genotypic abnormalities when compared to T‐ALL in older children and adults.
Collapse
Affiliation(s)
- Marcela B Mansur
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Susan M Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jane Gibson
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Mariana Emerenciano
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Helena Kempski
- Paediatric Malignancy Cytogenetics Unit, Institute of Child Health & Great Ormond Street Hospital, London, UK
| | | | - Hélène Cave
- Department of Genetics, Robert Debré Hospital, APHP, Paris, France
| | - Jean Soulier
- Haematology Laboratory, Saint-Louis Louis Hospital, APHP, Paris, France
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| |
Collapse
|
30
|
Benyoucef A, Calvo J, Renou L, Arcangeli ML, van den Heuvel A, Amsellem S, Mehrpour M, Larghero J, Soler E, Naguibneva I, Pflumio F. The SCL/TAL1 Transcription Factor Represses the Stress Protein DDiT4/REDD1 in Human Hematopoietic Stem/Progenitor Cells. Stem Cells 2015; 33:2268-79. [PMID: 25858676 DOI: 10.1002/stem.2028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/11/2015] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are regulated through numerous molecular mechanisms that have not been interconnected. The transcription factor stem cell leukemia/T-cell acute leukemia 1 (TAL1) controls human HSPC but its mechanism of action is not clarified. In this study, we show that knockdown (KD) or short-term conditional over-expression (OE) of TAL1 in human HSPC ex vivo, respectively, blocks and maintains hematopoietic potentials, affecting proliferation of human HSPC. Comparative gene expression analyses of TAL1/KD and TAL1/OE human HSPC revealed modifications of cell cycle regulators as well as previously described TAL1 target genes. Interestingly an inverse correlation between TAL1 and DNA damage-induced transcript 4 (DDiT4/REDD1), an inhibitor of the mammalian target of rapamycin (mTOR) pathway, is uncovered. Low phosphorylation levels of mTOR target proteins in TAL1/KD HSPC confirmed an interplay between mTOR pathway and TAL1 in correlation with TAL1-mediated effects of HSPC proliferation. Finally chromatin immunoprecipitation experiments performed in human HSPC showed that DDiT4 is a direct TAL1 target gene. Functional analyses showed that TAL1 represses DDiT4 expression in HSPCs. These results pinpoint DDiT4/REDD1 as a novel target gene regulated by TAL1 in human HSPC and establish for the first time a link between TAL1 and the mTOR pathway in human early hematopoietic cells. Stem Cells 2015;33:2268-2279.
Collapse
Affiliation(s)
- Aissa Benyoucef
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Julien Calvo
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Laurent Renou
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Marie-Laure Arcangeli
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | | | - Sophie Amsellem
- Centre d'Investigation Clinique-BioThérapie, Institut Gustave Roussy, Villejuif, Paris, France
| | - Maryam Mehrpour
- INSERM U1151-CNRS UMR 8253 Institut Necker Enfants-Malades (INEM), Université Paris Descartes, Paris, France
| | - Jerome Larghero
- Cell Therapy Unit and Clinical Investigation Center in Biotherapies, AP-HP, Saint-Louis Hospital, Paris, France
| | - Eric Soler
- INSERM, U967, Fontenay-aux-Roses, Paris, France.,Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.,CEA, DSV-IRCM-SCSR-LHM, UMR967, Fontenay-aux-Roses, Paris, France
| | - Irina Naguibneva
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| | - Francoise Pflumio
- CEA, DSV-IRCM-SCSR-LSHL, UMR 967, équipe labellisée Ligue Nationale contre le Cancer, Fontenay-aux-Roses, Paris, France.,INSERM, U967, Fontenay-aux-Roses, Paris, France.,Université Paris Diderot, UMR 967, Fontenay-aux-Roses, Paris, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, Paris, France
| |
Collapse
|
31
|
Musialik E, Bujko M, Kober P, Wypych A, Gawle-Krawczyk K, Matysiak M, Siedlecki JA. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res 2015; 50:26-32. [PMID: 25830127 PMCID: PMC4377334 DOI: 10.5045/br.2015.50.1.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/28/2014] [Accepted: 01/09/2015] [Indexed: 12/13/2022] Open
Abstract
Background Precursor B-cell acute lymphoblastic leukemia (B-cell ALL) is the most common neoplasm in children and is characterized by genetic and epigenetic aberrations in hematopoietic transcription factor (TF) genes. This study evaluated promoter DNA methylation and aberrant expression levels of early- and late-acting hematopoietic TF genes homeobox A4 and A5 (HOXA4 and HOXA5), Meis homeobox 1 (MEIS1), T-cell acute lymphocytic leukemia 1 (TAL1), and interferon regulatory factors 4 and 8 (IRF4 and IRF8) in pediatric B-cell ALL. Methods Blood samples of 38 ALL patients and 20 controls were obtained. DNA was treated with sodium bisulfite and DNA methylation level of HOXA4, HOXA5, MEIS1, TAL1, IRF4, and IRF8 was assessed using quantitative methylation-specific polymerase chain reaction (PCR). Relative gene expression was measured using quantitative reverse transcription-PCR. Results Aberrant methylation of TAL1, IRF8, MEIS1, and IRF4 was observed in 26.3%, 7.9%, 5.3%, and 2.6% patients, respectively, but not in controls. HOXA4 and HOXA5 were methylated in some controls and hypermethylated in 16% and 5% patients, respectively. IRF8, MEIS1, and TAL1 expression was lower in patients than in controls. MEIS1 expression was inversely correlated with white blood cell (WBC) count. HOXA4 expression was down-regulated in patients with high risk according to the National Cancer Institute (NCI) classification. TAL1 methylation was slightly elevated in patients aged >9 years and in patients showing relapse, suggesting its potential prognostic value. Conclusion Aberrant methylation and expression of the selected hematopoietic genes were correlated with demographic/clinical prognostic factors of pediatric ALL, such as age, WBC count, and NCI risk classification.
Collapse
Affiliation(s)
- Ewa Musialik
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wypych
- Department of Pediatric Haematology & Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Gawle-Krawczyk
- Department of Pediatric Haematology & Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Matysiak
- Department of Pediatric Haematology & Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
33
|
Maksimenko O, Georgiev P. Mechanisms and proteins involved in long-distance interactions. Front Genet 2014; 5:28. [PMID: 24600469 PMCID: PMC3927085 DOI: 10.3389/fgene.2014.00028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/25/2014] [Indexed: 12/28/2022] Open
Abstract
Due to advances in genome-wide technologies, consistent distant interactions within chromosomes of higher eukaryotes have been revealed. In particular, it has been shown that enhancers can specifically and directly interact with promoters by looping out intervening sequences, which can be up to several hundred kilobases long. This review is focused on transcription factors that are supposed to be involved in long-range interactions. Available data are in agreement with the model that several known transcription factors and insulator proteins belong to an abundant but poorly studied class of proteins that are responsible for chromosomal architecture.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
34
|
Barrow JJ, Li Y, Hossain M, Huang S, Bungert J. Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain. Nucleic Acids Res 2014; 42:4363-74. [PMID: 24497190 PMCID: PMC3985677 DOI: 10.1093/nar/gku107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Developmental stage-specific expression of the β-type globin genes is regulated by many cis- and trans-acting components. The adult β-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult β-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult β-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult β-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult β-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.
Collapse
Affiliation(s)
- Joeva J Barrow
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Shands Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, 32610, FL, USA
| | | | | | | | | |
Collapse
|
35
|
Paluru P, Hudock KM, Cheng X, Mills JA, Ying L, Galvão AM, Lu L, Tiyaboonchai A, Sim X, Sullivan SK, French DL, Gadue P. The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Res 2013; 12:441-51. [PMID: 24412757 DOI: 10.1016/j.scr.2013.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 01/17/2023] Open
Abstract
The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.
Collapse
Affiliation(s)
- Prasuna Paluru
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristin M Hudock
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xin Cheng
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason A Mills
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lei Ying
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aline M Galvão
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lin Lu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amita Tiyaboonchai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xiuli Sim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Deborah L French
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Solek CM, Oliveri P, Loza-Coll M, Schrankel CS, Ho EC, Wang G, Rast JP. An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 2013; 382:280-92. [DOI: 10.1016/j.ydbio.2013.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022]
|
37
|
Courtial N, Mücke C, Herkt S, Kolodziej S, Hussong H, Lausen J. The T-cell oncogene Tal2 Is a Target of PU.1 and upregulated during osteoclastogenesis. PLoS One 2013; 8:e76637. [PMID: 24086757 PMCID: PMC3784441 DOI: 10.1371/journal.pone.0076637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcription factors play a crucial role in regulating differentiation processes during human life and are important in disease. The basic helix-loop-helix transcription factors Tal1 and Lyl1 play a major role in the regulation of gene expression in the hematopoietic system and are involved in human leukemia. Tal2, which belongs to the same family of transcription factors as Tal1 and Lyl1, is also involved in human leukaemia. However, little is known regarding the expression and regulation of Tal2 in hematopoietic cells. Here we show that Tal2 is expressed in hematopoietic cells of the myeloid lineage. Interestingly, we found that usage of the Tal2 promoter is different in human and mouse cells. Two promoters, hP1 and hP2 drive Tal2 expression in human erythroleukemia K562 cells, however in mouse RAW cells only the mP1 promoter is used. Furthermore, we found that Tal2 expression is upregulated during oesteoclastogenesis. We show that Tal2 is a direct target gene of the myeloid transcription factor PU.1, which is a key transcription factor for osteoclast gene expression. Strikingly, PU.1 binding to the P1 promoter is conserved between mouse and human, but PU.1 binding to P2 was only detected in human K562 cells. Additionally, we provide evidence that Tal2 influences the expression of the osteoclastic differentiation gene TRACP. These findings provide novel insight into the expression control of Tal2 in hematopoietic cells and reveal a function of Tal2 as a regulator of gene expression during osteoclast differentiation.
Collapse
Affiliation(s)
- Nadine Courtial
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Christian Mücke
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Stefanie Herkt
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Stephan Kolodziej
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Helge Hussong
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | - Jörn Lausen
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
38
|
Ejarque M, Altirriba J, Gomis R, Gasa R. Characterization of the transcriptional activity of the basic helix-loop-helix (bHLH) transcription factor Atoh8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1175-83. [PMID: 23938248 DOI: 10.1016/j.bbagrm.2013.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022]
Abstract
The atonal-related Neurogenin/NeuroD family of basic helix-loop-helix (bHLH) transcription factors comprises potent inducers of neuronal and endocrine differentiation programs in the nervous and digestive system. Atonal homolog 8 (Atoh8) displays high similarity in the bHLH domain with NeuroD proteins. Yet, available evidences indicate that Atoh8 has distinctive features including a ubiquitous expression pattern in embryonic tissues and the ability to inhibit differentiation. To gain insights into Atoh8 function, we aimed at identifying Atoh8 targets and investigated the effects of Atoh8 on global gene expression patterns in pancreatic mPAC cells, a model of bHLH-dependent endocrine differentiation. Our data reveal that Atoh8 is a weak transcriptional activator and does not exhibit proendocrine activity. Conversely, it blocks the induction of a reduced group of gene targets of the atonal-related proendocrine factor Neurogenin3. We show that Atoh8 lacks a transactivation domain and possesses intrinsic repressor activity that depends on a conserved Proline-rich domain. Atoh8 binds the ubiquitous E protein E47 and its ability to repress transcription may partly result from its ability to inhibit E47/E47 and Neurogenin3/E47 dimer activities. These results reveal distinctive transcriptional properties of Atoh8 within the atonal-related bHLH family that may be associated with the acquisition of new biological functions.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Research Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | | | | |
Collapse
|
39
|
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CHM, von Boehmer H, Young RA, Look AT. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:1545-57. [PMID: 23857984 PMCID: PMC3727321 DOI: 10.1084/jem.20122516] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
miR-223 is upregulated by the transcription factor TAL1 in human T-ALL cells and suppress the FBXW7 tumor suppressor. The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegué E. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013; 13:285-99. [PMID: 23850243 DOI: 10.1016/j.stem.2013.06.009] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/07/2013] [Accepted: 06/11/2013] [Indexed: 01/16/2023]
Abstract
Multipotent stromal cells (MSCs) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. Here, we show that myeloproliferative neoplasia (MPN) progressively remodels the endosteal BM niche into a self-reinforcing leukemic niche that impairs normal hematopoiesis, favors leukemic stem cell (LSC) function, and contributes to BM fibrosis. We show that leukemic myeloid cells stimulate MSCs to overproduce functionally altered OBCs, which accumulate in the BM cavity as inflammatory myelofibrotic cells. We identify roles for thrombopoietin, CCL3, and direct cell-cell interactions in driving OBC expansion, and for changes in TGF-β, Notch, and inflammatory signaling in OBC remodeling. MPN-expanded OBCs, in turn, exhibit decreased expression of many HSC retention factors and severely compromised ability to maintain normal HSCs, but effectively support LSCs. Targeting this pathological interplay could represent a novel avenue for treatment of MPN-affected patients and prevention of myelofibrosis.
Collapse
Affiliation(s)
- Koen Schepers
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Hall-Ponselé E, Platonova O, Vyas P, Patient R, Porcher C, Mancini EJ. Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Rep 2013; 4:135-47. [PMID: 23831025 PMCID: PMC3714592 DOI: 10.1016/j.celrep.2013.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/23/2013] [Accepted: 06/06/2013] [Indexed: 01/25/2023] Open
Abstract
Cell fate is governed by combinatorial actions of transcriptional regulators assembling into multiprotein complexes. However, the molecular details of how these complexes form are poorly understood. One such complex, which contains the basic-helix-loop-helix heterodimer SCL:E47 and bridging proteins LMO2:LDB1, critically regulates hematopoiesis and induces T cell leukemia. Here, we report the crystal structure of (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA, providing a molecular account of the network of interactions assembling this complex. This reveals an unexpected role for LMO2. Upon binding to SCL, LMO2 induces new hydrogen bonds in SCL:E47, thereby strengthening heterodimer formation. This imposes a rotation movement onto E47 that weakens the heterodimer:DNA interaction, shifting the main DNA-binding activity onto additional protein partners. Along with biochemical analyses, this illustrates, at an atomic level, how hematopoietic-specific SCL sequesters ubiquitous E47 and associated cofactors and supports SCL's reported DNA-binding-independent functions. Importantly, this work will drive the design of small molecules inhibiting leukemogenic processes.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
PKR regulates proliferation, differentiation, and survival of murine hematopoietic stem/progenitor cells. Blood 2013; 121:3364-74. [PMID: 23403623 DOI: 10.1182/blood-2012-09-456400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase R (PKR) is an interferon (IFN)-inducible, double-stranded RNA-activated kinase that initiates apoptosis in response to cellular stress. To determine the role of PKR in hematopoiesis, we developed transgenic mouse models that express either human PKR (TgPKR) or a dominant-negative PKR (TgDNPKR) mutant specifically in hematopoietic tissues. Significantly, peripheral blood counts from TgPKR mice decrease with age in association with dysplastic marrow changes. TgPKR mice have reduced colony-forming capacity and the colonies also are more sensitive to hematopoietic stresses. Furthermore, TgPKR mice have fewer hematopoietic stem/progenitor cells (HSPCs), and the percentage of quiescent (G0) HSPCs is increased. Importantly, treatment of TgPKR bone marrow (BM) with a PKR inhibitor specifically rescues sensitivity to growth factor deprivation. In contrast, marrow from PKR knockout (PKRKO) mice has increased potential for colony formation and HSPCs are more actively proliferating and resistant to stress. Significantly, TgPKR HSPCs have increased expression of p21 and IFN regulatory factor, whereas cells from PKRKO mice display mechanisms indicative of proliferation such as reduced eukaryotic initiation factor 2α phosphorylation, increased extracellular signal-regulated protein kinases 1 and 2 phosphorylation, and increased CDK2 expression. Collectively, data reveal that PKR is an unrecognized but important regulator of HSPC cell fate and may play a role in the pathogenesis of BM failure.
Collapse
|
43
|
Espina J, Feijóo CG, Solís C, Glavic A. csrnp1a is necessary for the development of primitive hematopoiesis progenitors in zebrafish. PLoS One 2013; 8:e53858. [PMID: 23326522 PMCID: PMC3541188 DOI: 10.1371/journal.pone.0053858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
The CSRNP (cystein-serine-rich nuclear protein) transcription factors are conserved from Drosophila to human. Functional studies in mice, through knockout for each of their paralogs, have resulted insufficient to elucidate the function of this family of proteins in vertebrate development. Previously, we described the function of the zebrafish ortholog, Csnrp1/Axud1, showing its essential role in the survival and proliferation of cephalic progenitors. To extend our understanding of this family, we have studied the function of its paralog csrnp1a. Our results show that csrnp1a is expressed from 0 hpf, until larval stages, particularly in cephalic territories and in the intermediate cell mass (ICM). Using morpholinos in wild type and transgenic lines we observed that Csrnp1a knockdown generates a mild reduction in head size and a depletion of blood cells in circulation. This was combined with in situ hybridizations to analyze the expression of different mesodermal and primitive hematopoiesis markers. Morphant embryos have impaired blood formation without disruption of mesoderm specification, angiogenesis or heart development. The reduction of circulating blood cells occurs at the hematopoietic progenitor level, affecting both the erythroid and myeloid lineages. In addition, cell proliferation was also altered in hematopoietic anterior sites, specifically in spi1 expression domain. These and previous observations suggest an important role of Csnrps transcription factors in progenitor biology, both in the neural and hematopoietic linages.
Collapse
Affiliation(s)
- Jaime Espina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Ciencia Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencia Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Camila Solís
- Departamento de Ciencia Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Alvaro Glavic
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
44
|
Retrotransposon insertion in the T-cell acute lymphocytic leukemia 1 (Tal1) gene is associated with severe renal disease and patchy alopecia in Hairpatches (Hpt) mice. PLoS One 2013; 8:e53426. [PMID: 23301070 PMCID: PMC3534690 DOI: 10.1371/journal.pone.0053426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022] Open
Abstract
“Hairpatches” (Hpt) is a naturally occurring, autosomal semi-dominant mouse mutation. Hpt/Hpt homozygotes die in utero, while Hpt/+ heterozygotes exhibit progressive renal failure accompanied by patchy alopecia. This mutation is a model for the rare human disorder “glomerulonephritis with sparse hair and telangiectases" (OMIM 137940). Fine mapping localized the Hpt locus to a 6.7 Mb region of Chromosome 4 containing 62 known genes. Quantitative real time PCR revealed differential expression for only one gene in the interval, T-cell acute lymphocytic leukemia 1 (Tal1), which was highly upregulated in the kidney and skin of Hpt/+ mice. Southern blot analysis of Hpt mutant DNA indicated a new EcoRI site in the Tal1 gene. High throughput sequencing identified an endogenous retroviral class II intracisternal A particle insertion in Tal1 intron 4. Our data suggests that the IAP insertion in Tal1 underlies the histopathological changes in the kidney by three weeks of age, and that glomerulosclerosis is a consequence of an initial developmental defect, progressing in severity over time. The Hairpatches mouse model allows an investigation into the effects of Tal1, a transcription factor characterized by complex regulation patterns, and its effects on renal disease.
Collapse
|
45
|
Materna SC, Ransick A, Li E, Davidson EH. Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 2012; 375:92-104. [PMID: 23261933 DOI: 10.1016/j.ydbio.2012.11.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
Abstract
Specification of the non-skeletogenic mesoderm (NSM) in sea urchin embryos depends on Delta signaling. Signal reception leads to expression of regulatory genes that later contribute to the aboral NSM regulatory state. In oral NSM, this is replaced by a distinct oral regulatory state in consequence of Nodal signaling. Through regulome wide analysis we identify the homeobox gene not as an immediate Nodal target. not expression in NSM causes extinction of the aboral regulatory state in the oral NSM, and expression of a new suite of regulatory genes. All NSM specific regulatory genes are henceforth expressed exclusively, in oral or aboral domains, presaging the mesodermal cell types that will emerge. We have analyzed the regulatory linkages within the aboral NSM gene regulatory network. A linchpin of this network is gataE which as we show is a direct Gcm target and part of a feedback loop locking down the aboral regulatory state.
Collapse
Affiliation(s)
- Stefan C Materna
- California Institute of Technology, Division of Biology, m/c 156-29, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
46
|
Kadauke S, Udugama MI, Pawlicki JM, Achtman JC, Jain DP, Cheng Y, Hardison RC, Blobel GA. Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1. Cell 2012; 150:725-37. [PMID: 22901805 DOI: 10.1016/j.cell.2012.06.038] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/11/2012] [Accepted: 06/04/2012] [Indexed: 12/21/2022]
Abstract
Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live-cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. The GATA1 coregulators FOG1 and TAL1 dissociate from mitotic chromatin, suggesting that GATA1 functions as platform for their postmitotic recruitment. Mitotic GATA1 target genes tend to reactivate more rapidly upon entry into G1 than genes from which GATA1 dissociates. Mitosis-specific destruction of GATA1 delays reactivation selectively of genes that retain GATA1 during mitosis. These studies suggest a requirement of mitotic "bookmarking" by GATA1 for the faithful propagation of cell-type-specific transcription programs through cell division.
Collapse
Affiliation(s)
- Stephan Kadauke
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem cell development. Biochim Biophys Acta Gen Subj 2012; 1830:2395-403. [PMID: 23069720 DOI: 10.1016/j.bbagen.2012.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. SCOPE OF REVIEW The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. MAJOR CONCLUSIONS The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. GENERAL SIGNIFICANCE HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC generation in the developing embryo provides important new knowledge on how these complex stem cells are made, sustained and expanded in the embryo to give rise to the complete adult hematopoietic system, thus stimulating novel strategies for producing increased numbers of clinically useful HSCs. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- P Kaimakis
- Erasmus Medical Center, Erasmus MC Stem Cell Institute, Dept. of Cell Biology, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | | | | |
Collapse
|
48
|
Kaimakis P, Crisan M, Dzierzak E. The biochemistry of hematopoietic stem cell development. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23069720 DOI: 10.1016/j.bbagen.20 12.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. SCOPE OF REVIEW The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. MAJOR CONCLUSIONS The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. GENERAL SIGNIFICANCE HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC generation in the developing embryo provides important new knowledge on how these complex stem cells are made, sustained and expanded in the embryo to give rise to the complete adult hematopoietic system, thus stimulating novel strategies for producing increased numbers of clinically useful HSCs. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- P Kaimakis
- Erasmus Medical Center, Erasmus MC Stem Cell Institute, Dept. of Cell Biology, PO Box 2040, 3000 CA Rotterdam, Netherlands
| | | | | |
Collapse
|
49
|
Direct reprogramming of terminally differentiated B cells into erythroid lineage. FEBS Lett 2012; 586:3645-52. [PMID: 22968040 DOI: 10.1016/j.febslet.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
Abstract
Hematopoietic progenitors have been shown to retain plasticity and switch lineages by appropriate stimuli. However, mature blood cells hardly showed such differentiation plasticity. In this paper, we tried to reprogram mature B cells into erythroid lineage by expressing various hematopoietic transcription factors. Among various factors, GATA-1, SCL together with CCAAT/enhancer binding protein (C/EBP) α turned out to be a minimal set of factors that efficiently reprogrammed terminally differentiated mature B cells into erythroid lineage, as evidenced by colony forming assays and erythroid-specific gene expressions. This study sets an avenue to generate autologous erythrocytes from peripheral B cells.
Collapse
|
50
|
Novel insights into the genetic controls of primitive and definitive hematopoiesis from zebrafish models. Adv Hematol 2012; 2012:830703. [PMID: 22888355 PMCID: PMC3410305 DOI: 10.1155/2012/830703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/20/2012] [Accepted: 06/08/2012] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.
Collapse
|