1
|
Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential Effect of DPP-4 Inhibitors Towards Hepatic Diseases and Associated Glucose Intolerance. Diabetes Metab Syndr Obes 2022; 15:1845-1864. [PMID: 35733643 PMCID: PMC9208633 DOI: 10.2147/dmso.s369712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dipeptidyl-peptidase-4 (DPP-4) is an enzyme having various properties and physiological roles in lipid accumulation, resistance to anticancer agents, and immune stimulation. DPP-4 includes membrane-bound peptidases and is a kind of enzyme that cleaves alanine or proline-containing peptides such as incretins, chemokines, and appetite-suppressing hormones (neuropeptide) at their N-terminal dipeptides. DPP-4 plays a role in the final breakdown of peptides produced by other endo and exo-peptidases from nutritious proteins and their absorption in these tissues. DPP-4 enzyme activity has different modes of action on glucose metabolism, hunger regulation, gastrointestinal motility, immune system function, inflammation, and pain regulation. According to the literature survey, as DPP-4 levels increase in individuals with liver conditions, up-regulation of hepatic DPP-4 expression is likely to be the cause of glucose intolerance or insulin resistance. This review majorly focuses on the cleavage of alanine or proline-containing peptides such as incretins by the DPP-4 and its resulting conditions like glucose intolerance and cause of DPP-4 level elevation due to some liver conditions. Thus, we have discussed the various effects of DPP-4 on the liver diseases like hepatitis C, non-alcoholic fatty liver, hepatic regeneration and stem cell, hepatocellular carcinoma, and the impact of elevated DPP-4 levels in association with liver diseases as a cause of glucose intolerance and their treatment drug of choices. In addition, the effect of DPP-4 inhibitors on obesity and their negative aspects are also discussed in brief.
Collapse
Affiliation(s)
- Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Anjali Sharma
- Freelancer, Pharmacovigilance Expert, Uttar Pradesh, India
| | - Vaishnavi Chhabra
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Uttar Pradesh, 206130, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
- Correspondence: Abdulsalam Alhalmi, Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen, Email
| |
Collapse
|
2
|
Broxmeyer HE, Farag S. Background and future considerations for human cord blood hematopoietic cell transplantation, including economic concerns. Stem Cells Dev 2014; 22 Suppl 1:103-10. [PMID: 24304086 DOI: 10.1089/scd.2013.0382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cord blood (CB) has been used since 1988 as a source of hematopoietic stem cells (HSCs) and progenitor cells for hematopoietic cell transplantation (HCT) to treat patients with malignant and nonmalignant disorders. CB has both advantages and disadvantages when compared with other tissue sources of HSCs such as bone marrow and mobilized peripheral blood, which are also being used in the setting of HCT. This short review focuses on some historical information, as well as current efforts that are being assessed to enhance the efficacy of CB HCT. Also of importance are the costs of CB, and the feasibility and economics of using such to be identified, and newly confirmed improvements worldwide for the greatest number of patients. In this context, simple methods that would not necessarily entail the need for selected cell-processing facilities to ex vivo expand or improve the CB graft's functional activity may be of interest, with one such possibility being the use of an orally active inhibitor of the enzyme dipeptidylpeptidase 4, alone or in combination with other new and innovative approaches for improving HSC engraftment and in vivo repopulating capability of CB.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- 1 Department of Microbiology & Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | | |
Collapse
|
3
|
Broxmeyer HE. Counteracting the enzymatic activity of dipeptidylpeptidase 4 for potential therapeutic advantage, with an emphasis on cord blood transplantation. Korean J Intern Med 2013; 28:639-45. [PMID: 24307836 PMCID: PMC3846986 DOI: 10.3904/kjim.2013.28.6.639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/10/2013] [Indexed: 01/21/2023] Open
Abstract
Dipeptidylpeptidase (DPP) 4, also known as CD26, is an enzyme present on the surface of a number of different cell types. It is also found within cells and as a soluble protein in body fluids. It can specifically truncate proteins at the penultimate N-terminus residue for some amino acids, such as alanine, proline, serine, and perhaps others. DPP4 has been implicated in regulating the in vitro and in vivo functional activities of a number of hematopoietically active molecules, and this information, along with that on inhibition of DPP4, has been studied in efforts to enhance hematopoietic cell transplantation (HCT), hematopoiesis after stress in mouse models, and in the clinical setting of single-unit cord blood (CB) HCT. This article reviews the current status of this compound's effects on regulatory proteins, the field of CB HCT, a potential role for modulating DPP4 activity in enhancing single-unit CB HCT in adults, and future aspects in context of other cellular therapies and the area of regenerative medicine.
Collapse
Affiliation(s)
- Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Ou X, O'Leary HA, Broxmeyer HE. Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 2013; 122:161-9. [PMID: 23637126 PMCID: PMC3709652 DOI: 10.1182/blood-2013-02-487470] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/14/2013] [Indexed: 12/28/2022] Open
Abstract
Dipeptidylpeptidase (DPP) 4 has the potential to truncate proteins with a penultimate alanine, proline, or other selective amino acids at the N-terminus. DPP4 truncation of certain chemokines, colony-stimulating factors, and interleukins have recently been linked to regulation of hematopoietic stem/progenitor cells, more mature blood cells, and other cell types. We believe that the potential role of DPP4 in modification of many regulatory proteins, and their subsequent effects on numerous stem/progenitor and other cell-type functions has not been adequately appreciated. This review addresses the potential implications of the modifying effects of DPP4 on a large number of cytokines and other growth-regulating factors with either proven or putative DPP4 truncation sites on hematopoietic cells, and subsequent effects of DPP4-truncated proteins on multiple aspects of steady-state and stressed hematopoiesis, including stem/progenitor cell, and more mature cell, function.
Collapse
Affiliation(s)
- Xuan Ou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
5
|
Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 2012; 18:1786-96. [PMID: 23160239 DOI: 10.1038/nm.2991] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
Enhancement of hematopoietic recovery after radiation, chemotherapy, or hematopoietic stem cell (HSC) transplantation is clinically relevant. Dipeptidylpeptidase (DPP4) cleaves a wide variety of substrates, including the chemokine stromal cell-derived factor-1 (SDF-1). In the course of experiments showing that inhibition of DPP4 enhances SDF-1-mediated progenitor cell survival, ex vivo cytokine expansion and replating frequency, we unexpectedly found that DPP4 has a more general role in regulating colony-stimulating factor (CSF) activity. DPP4 cleaved within the N-termini of the CSFs granulocyte-macrophage (GM)-CSF, G-CSF, interleukin-3 (IL-3) and erythropoietin and decreased their activity. Dpp4 knockout or DPP4 inhibition enhanced CSF activities both in vitro and in vivo. The reduced activity of DPP4-truncated versus full-length human GM-CSF was mechanistically linked to effects on receptor-binding affinity, induction of GM-CSF receptor oligomerization and signaling capacity. Hematopoiesis in mice after radiation or chemotherapy was enhanced in Dpp4(-/-) mice or mice receiving an orally active DPP4 inhibitor. DPP4 inhibition enhanced engraftment in mice without compromising HSC function, suggesting the potential clinical utility of this approach.
Collapse
|
6
|
Broxmeyer HE. Enhancing engraftment of cord blood cells via insight into the biology of stem/progenitor cell function. Ann N Y Acad Sci 2012; 1266:151-60. [PMID: 22901266 PMCID: PMC3428743 DOI: 10.1111/j.1749-6632.2012.06509.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cord blood (CB) transplantation has been used over the last 24 years to treat patients with malignant and nonmalignant disorders. CB has its advantages and disadvantages compared with other sources of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) for transplantation. More knowledge of the cytokines and intracellular signaling molecules regulating HSCs and HPCs could be used to modulate these regulators for clinical benefit. This review provides information about the general field of CB transplantation and about studies from the author's laboratory that focus on regulation of HSCs and HPCs by CD26/DPPIV, SDF-1/CXCL12, the Rheb2-mTOR pathway, SIRT1, DEK, cyclin-dependent kinase inhibitors, and cytokines/growth factors. Cryopreservation of CB HSCs and HPCs is also briefly discussed.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion. PLoS One 2012; 7:e29383. [PMID: 22235291 PMCID: PMC3250442 DOI: 10.1371/journal.pone.0029383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
Background Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. Methodology/Principal Findings CB derived CD34+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors) caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. Conclusion/Significance Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant procedures.
Collapse
|
8
|
Broxmeyer HE. Insights into the biology of cord blood stem/progenitor cells. Cell Prolif 2011; 44 Suppl 1:55-9. [PMID: 21481045 PMCID: PMC6496194 DOI: 10.1111/j.1365-2184.2010.00728.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/02/2010] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To review information on cord blood banking and transplantation with respect to the author's studies, and in context of this field of investigation. RESULTS Cord blood transplantation has been successfully used to treat a number of malignant and non-malignant disorders. However, this technique is still associated with limited numbers of cells for transplantation, and with delayed engraftment of neutrophils and platelets. The field of cord blood transplantation will benefit from enhanced and mechanistically based information on haematopoietic stem cell function and potential means to enhance its effectiveness are reviewed. This includes notions concerning possibility of retrieving more cells from the placenta and cord blood, to expand haematopoietic stem cells ex vivo and to increase efficiency of homing and engraftment of these cells. Also discussed are cryopreservation and long-term storage of cord blood haematopoietic and progenitor cells, and new laboratory findings and animal studies for non-haematopoietic uses of cord blood.
Collapse
Affiliation(s)
- H. E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Yu L, Hales CA. Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Respir Res 2011; 12:21. [PMID: 21294880 PMCID: PMC3042398 DOI: 10.1186/1465-9921-12-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/04/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood. METHODS In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats. RESULTS We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats. CONCLUSIONS The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
10
|
Abstract
The field of cord blood transplantation has come a long way since the first transplant more than 20 years ago. Advancements in the field will require continuing efforts to better understand hematopoietic stem and progenitor cell function and engraftment. Cautious optimism is inherent in the potential relevance and applicability of nonhematopoietic stem and progenitor cell types found in cord blood, and induced pluripotent stem cells generated from cord blood cells. Rigorous investigations and close interactions between scientific and clinical investigators are required to translate human in vitro and animal in vivo findings into clinical utility.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| |
Collapse
|