1
|
Baktybayeva L, Daulet G, Zazybin A, Yu V, Ostapchuk Y, Perfilyeva Y, Kali A, Abdolla N, Malmakova A, Baktybai N, Temirbekova Z, Rafikova K. Stimulation of B-Lymphopoiesis by Administration of a Trimecaine-Based Ionic Compound in Cyclophosphamide-Induced Hematopoietic-Depressive Model. Molecules 2023; 28:molecules28031378. [PMID: 36771044 PMCID: PMC9920924 DOI: 10.3390/molecules28031378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
According to the WHO, the secondary form of hematopoietic-depressive status increases the risk of death in people with oncological, infectious, and hormonal diseases. The choice of drugs that stimulate the hematopoietic activity of B-lymphopoiesis is limited. The current leucopoiesis drugs have a number of side effects: thymic preparations stimulate the production of PGE2, which causes chronic inflammation and various autoimmune diseases through the differentiation of T helper 1 (Th1) cells, the proliferation of Th17 cells, and the production of IL-22 from Th22 cells through EP2 and EP4 receptors; cytokine preparations can cause uncontrolled immune reactions and impaired contractility of smooth and cardiac muscles; drugs based on nucleic acids can stimulate the division of all cells, including bacterial and cancerous ones. The use of oligonucleotides such as ribozymes and antisense oligodeoxynucleotides (AS-ODNs) shows promise as therapeutic moieties, but faces a number of challenges such as nuclease sensitivity, off-target effects, and efficient delivery. The search for substances that stimulate B-lymphopoiesis among ionic compounds was motivated by the discovery of the unique properties of lidocaine docusate, one of the first ionic liquid forms of the known drugs. The lidocaine docusate (protonated form of lidocaine (2-(diethylamino)-N-(2,6-dimethylphenyl) acetamide + docusate-anion (dioctylsulfosuccinate))) suppresses the division of pheochromocytoma cells and activates immunity in rats. The trimecaine-based ionic compound (TIC) demonstrates high B-lymphopoiesis-stimulating activity. The TIC compound stimulates an increase in the volume of transitional B cells, which play an important role for further differentiation and formation of a sufficient number of mature B1 cells and mature B2 cells, where mature B2 cells make up the bulk of the functional population of B lymphocytes. The TIC compound most strongly stimulated the restoration of the number of marginal zone B cells, follicular B cells, and activated germinal center B cells after the cytotoxic emptying of the follicular centers of the spleen induced cyclophosphamide. It significantly exceeds the activity of the comparison drug methyluracil. The TIC compound does not affect the level of pro-B, pre-B-I, or pre-B-II bone marrow cells, which prevents the risk of the formation of immature functionally defective cells.
Collapse
Affiliation(s)
- Layilya Baktybayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan
| | - Guldana Daulet
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan
| | - Alexey Zazybin
- School of Chemical Engineering, Kazakh British Technical University, Tole Bi Str., 59, Almaty 050000, Kazakhstan
- Correspondence: ; Tel.: +7-705-293-0778
| | - Valentina Yu
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Walikhanov Str., 106, Almaty 050010, Kazakhstan
| | - Yekaterina Ostapchuk
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Dosmukhamedov Str., 86, Almaty 050012, Kazakhstan
| | - Yuliya Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Dosmukhamedov Str., 86, Almaty 050012, Kazakhstan
| | - Aikyn Kali
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Dosmukhamedov Str., 86, Almaty 050012, Kazakhstan
| | - Nurshat Abdolla
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin’s Institute of Molecular Biology and Biochemistry, Dosmukhamedov Str., 86, Almaty 050012, Kazakhstan
| | - Aigul Malmakova
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Walikhanov Str., 106, Almaty 050010, Kazakhstan
| | - Nuraly Baktybai
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan
| | - Zhanerke Temirbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av., 71, Almaty 050040, Kazakhstan
| | - Khadichahan Rafikova
- Department of Chemical and Biochemical Engineering, Institute of Oil and Gas Geology, Satbayev University, Almaty 050013, Kazakhstan
| |
Collapse
|
2
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Karin N. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative. Front Immunol 2020; 11:557586. [PMID: 33193327 PMCID: PMC7649122 DOI: 10.3389/fimmu.2020.557586] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) represent a heterogeneous population of immature myeloid cells. Under normal conditions, they differentiate into macrophages, dendritic cells, and granulocytes. Under pathological conditions, such as chronic inflammation, or cancer, they tend to maintain their immature state as immature myeloid cells that, within the tumor microenvironment, become suppressor cells and assist tumor escape from immune eradication. MDSC are comprised of two major subsets: monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC). Monocytic myeloid cells give rise to monocytic cells, whereas PMN-MDSC share similarities with neutrophils. Based on their biological activities, a two-stage model that includes the mobilization of the periphery as myeloid cells and their activation within the tumor microenvironment converting them into suppressor cells was previously suggested by D. Gabrilovich. From the migratory viewpoint, we are suggesting a more complex setup. It starts with crosstalk between the tumor site and the hematopoietic stem and progenitor cells (HSPCs) at the bone marrow (BM) and secondary lymphatic organs, resulting in rapid myelopoiesis followed by mobilization to the blood. Although myelopoiesis is coordinated by several cytokines and transcription factors, mobilization is selectively directed by chemokine receptors and may differ between M-MDSC and PMN-MDSC. These myeloid cells may then undergo further expansion at these secondary lymphatic organs and then home to the tumor site. Finally, selective homing of T cell subsets has been associated with retention at the target organs directed by adhesion molecules or chemokine receptors. The possible relevance to myeloid cells is still speculative but is discussed.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Hile G, Kahlenberg JM, Gudjonsson JE. Recent genetic advances in innate immunity of psoriatic arthritis. Clin Immunol 2020; 214:108405. [PMID: 32247832 DOI: 10.1016/j.clim.2020.108405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022]
Abstract
Psoriatic arthritis (PsA) is a heterogeneous disease that affects multiple organ systems including the peripheral and axial joints, entheses and nails. PsA is associated with significant comorbidities including cardiovascular, metabolic, and psychiatric diseases. The pathogenesis of PsA is complex and involves genetic, immunologic and environmental factors. Recent evidence suggests the heritability for PsA to be stronger and distinct from that of PsC. Prominent genes identified via GWAS for PsA include HLA-B/C, HLAB, IL12B, IL23R, TNP1, TRAF3IP3, and REL. We review the genetics of psoriatic arthritis and discuss the role of the innate immune system as important in the pathogenesis of PsA by focusing on key signaling pathways and cellular makeup. Understanding the candidate genes identified in PsA highlights pathways of critical importance to the pathogenesis of psoriatic disease including the key role of the innate immune response, mediated through IL-23/IL-17 axis, RANK and NFκB signaling pathways.
Collapse
Affiliation(s)
- Grace Hile
- Department of Dermatology, University of Michigan, Ann Arbor 48109, MI, USA.
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor 48109, MI, USA.
| |
Collapse
|
5
|
Coakley JD, Breen EP, Moreno-Olivera A, Al-Harbi AI, Melo AM, O’Connell B, McManus R, Doherty DG, Ryan T. Dysregulated T helper type 1 (Th1) and Th17 responses in elderly hospitalised patients with infection and sepsis. PLoS One 2019; 14:e0224276. [PMID: 31658288 PMCID: PMC6816565 DOI: 10.1371/journal.pone.0224276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The role of Th1 and Th17 lymphocyte responses in human infection and sepsis of elderly patients has yet to be clarified. DESIGN A prospective observational study of patients with sepsis, infection only and healthy controls. SETTING The acute medical wards and intensive care units in a 1000 bed university hospital. PATIENTS 32 patients with sepsis, 20 patients with infection, and 20 healthy controls. Patients and controls were older than 65 years of age. Patients with recognised underlying immune compromise were excluded. METHODS Phenotype, differentiation status and cytokine production by T lymphocytes were determined by flow cytometry. MEASUREMENTS The differentiation states of circulating CD3+, CD4+, and CD8+ T cells were characterised as naive (CD45RA+, CD197+), central memory (CD45RA-, CD197+), effector memory (CD45RA-, CD197-), or terminally differentated (CD45RA+, CD197-). Expression of IL-12 and IL-23 receptors, and the transcription factors T-bet and RORγt, was analysed in circulating T lymphocytes. Expression of interferon- γ and IL-17A were analysed following stimulation in vitro. RESULTS CD4+ T cells from patients with infection predominantly expressed effector-memory or terminally differentiated phenotypes but CD4+ T cells from patients with severe sepsis predominantly expressed naive phenotypes (p<0.0001). CD4+ T cells expressing IL-23 receptor were lower in patients with sepsis compared to patients with infection alone (p = 0.007). RORγt expression by CD4+ T cells was less frequent in patients with sepsis (p<0.001), whereas T-bet expressing CD8+ T cells that do not express RORγt was lower in the sepsis patients. HLA-DR expression by monocytes was lower in patients with sepsis. In septic patients fewer monocytes expressed IL-23. CONCLUSION Persistent failure of T cell activation was observed in patients with sepsis. Sepsis was associated with attenuated CD8+Th1 and CD4+Th17 based lymphocyte response.
Collapse
Affiliation(s)
- John D. Coakley
- Department of Intensive Care Medicine, St James’s Hospital, Dublin, Ireland
- * E-mail:
| | - Eamon P. Breen
- Trinity Translational Medicine Institute, St James’s Hospital, Dublin, Ireland
| | - Ana Moreno-Olivera
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Alhanouf I. Al-Harbi
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Ashanty M. Melo
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Brian O’Connell
- Department of Clinical Microbiology, St James’s Hospital, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine and Genetics, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, Trinity Translational Medicine Institute, Dublin, Ireland
| | - Thomas Ryan
- Department of Intensive Care Medicine, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Abstract
Cancers promote immunological stresses that induce alterations of the myelopoietic output, defined as emergency myelopoiesis, which lead to the generation of different myeloid populations endowed with tumor-promoting activities. New evidence indicates that acquisition of this tumor-promoting phenotype by myeloid cells is the result of a multistep process, encompassing initial events originating into the bone marrow and later steps operating in the tumor microenvironment. The careful characterization of these sequential mechanisms is likely to offer new potential therapeutic opportunities. Here, we describe relevant mechanisms of myeloid cells reprogramming that instate immune dysfunctions and limit effective responses to anticancer therapy and discuss the influence that metabolic events, as well as chemotherapy, elicit on such events.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova
- Istituto Oncologico Veneto IOV I.R.C.C.S, Padova, Italy
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
7
|
Sica A, Guarneri V, Gennari A. Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress 2019; 3:284-294. [PMID: 31535085 PMCID: PMC6732213 DOI: 10.15698/cst2019.09.197] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancers promote immunological stresses that induce alterations of the myelopoietic output, defined as emergency myelopoiesis, which lead to the generation of different myeloid populations endowed with tumor-promoting activities. New evidence indicates that acquisition of this tumor-promoting phenotype by myeloid cells is the result of a multistep process, encompassing initial events originating into the bone marrow and later steps operating in the tumor microenvironment. The careful characterization of these sequential mechanisms is likely to offer new potential therapeutic opportunities. Here, we describe relevant mechanisms of myeloid cells reprogramming that instate immune dysfunctions and limit effective responses to anticancer therapy and discuss the influence that metabolic events, as well as chemotherapy, elicit on such events.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.,Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova.,Istituto Oncologico Veneto IOV I.R.C.C.S, Padova, Italy
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
8
|
Sadik C, Thieme M, Zillikens D, Terheyden P. First emergence of pyoderma gangraenosum, palmoplantar pustulosis and sacroiliitis in a psoriasis patient associated with switching from secukinumab to brodalumab. J Eur Acad Dermatol Venereol 2019; 33:e406-e407. [DOI: 10.1111/jdv.15714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C.D. Sadik
- Department of Dermatology, Allergy, and Venereology University of Lübeck Lübeck Germany
| | - M. Thieme
- Department of Dermatology, Allergy, and Venereology University of Lübeck Lübeck Germany
| | - D. Zillikens
- Department of Dermatology, Allergy, and Venereology University of Lübeck Lübeck Germany
| | - P. Terheyden
- Department of Dermatology, Allergy, and Venereology University of Lübeck Lübeck Germany
| |
Collapse
|
9
|
Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A, Sica A. Myeloid-Derived Suppressor Cells: Ductile Targets in Disease. Front Immunol 2019; 10:949. [PMID: 31130949 PMCID: PMC6509569 DOI: 10.3389/fimmu.2019.00949] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an “emergency state” that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease.
Collapse
Affiliation(s)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Antonio Sica
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
10
|
Williams JW, Huang LH, Randolph GJ. Cytokine Circuits in Cardiovascular Disease. Immunity 2019; 50:941-954. [PMID: 30995508 PMCID: PMC6924925 DOI: 10.1016/j.immuni.2019.03.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1β (IL-1β), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA.
| |
Collapse
|
11
|
Paquissi FC. Immunity and Fibrogenesis: The Role of Th17/IL-17 Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis. Front Immunol 2017; 8:1195. [PMID: 29033929 PMCID: PMC5626935 DOI: 10.3389/fimmu.2017.01195] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis is a common final pathway for most chronic liver diseases; representing an increasing burden worldwide and is associated with increased morbidity and mortality. Current evidence has shown that, after an initial injury, the immune response has a significant participation in the ongoing damage, and progression from chronic viral hepatitis (CVH) to cirrhosis, driving the activation and maintenance of main fibrogenic pathways. Among immune deregulations, those related to the subtype 17 of T helper lymphocytes (Th17)/interleukin-17 (IL-17) axis have been recognized as key immunopathological and prognostic elements in patients with CVH. The Th17/IL-17 axis has been found involved in several points of fibrogenesis chain from the activation of stellate cells, increased expression of profibrotic factors as TGF-β, promotion of the myofibroblastic or epithelial–mesenchymal transition, stimulation of the synthesis of collagen, and induction of imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). It also promotes the recruitment of inflammatory cells and increases the expression of proinflammatory cytokines such as IL-6 and IL-23. So, the Th17/IL-17 axis is simultaneously the fuel and the flame of a sustained proinflammatory and profibrotic environment. This work aims to present the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).
Collapse
|
12
|
Yang HW, Tang XS, Tian ZW, Wang Y, Yang WY, Hu JZ. Effects of Nano-Hydroxyapatite/Polyetheretherketone-Coated, Sandblasted, Large-Grit, and Acid-Etched Implants on Inflammatory Cytokines and Osseointegration in a Peri-Implantitis Model in Beagle Dogs. Med Sci Monit 2017; 23:4601-4611. [PMID: 28945699 PMCID: PMC5628887 DOI: 10.12659/msm.903048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background This study explored the effects of nano-hydroxyapatite/polyetheretherketone (n-HA/PEEK)-coated sandblasted, large-grit, and acid-etched (SLA) implants on inflammatory cytokines and osseointegration in peri-implantitis model beagle dogs. Material/Methods Peri-implantitis models were established. Eight beagle dogs were randomly and evenly assigned into SLA tied, SLA + n-HA/PEEK tied, SLA untied, or SLA + n-HA/PEEK untied groups. A special periodontal probe was used to detect the plaque index (PLI), probing depth (PD), and modified Sulcus Bleeding Index (mSBI). Gingival crevicular fluid was collected and an ELISA kit was utilized to detect IL-1, IL-6, and IL-17 levels. The colony-forming units were counted and the maximum shear strength of implants was tested using the axial pullout test. HE staining was used to detect the inflammation of peri-implant bone tissues. Osseointegration was observed through toluidine blue staining. Bone-to-implant contact (BIC) was obtained through histological observation and the mineral apposition rate (MAR) was calculated after immune fluorescent double staining. Results The SLA tied group demonstrated higher levels of PLI, PD, mSBI, IL-1, IL-6, and IL-17 and a higher degree of inflammation than the SLA + n-HA/PEEK tied group. The tied groups also displayed similar results over the untied groups at the same time point. The maximum shear strength, BIC, and MAR in the SLA tied group were significantly lower than in the SLA + n-HA/PEEK tied group. Conclusions Our findings demonstrate that SLA + n-HA/PEEK implants can promote osseointegration and relieve the inflammation response of peri-implantitis in beagle dogs.
Collapse
Affiliation(s)
- Hua-Wei Yang
- Department of Stomatology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (mainland)
| | - Xiao-Shan Tang
- Department of Stomatology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (mainland)
| | - Zhuo-Wei Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China (mainland)
| | - Yang Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China (mainland)
| | - Wen-Yi Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China (mainland)
| | - Jing-Zhou Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China (mainland)
| |
Collapse
|
13
|
Kanekura T, Seishima M, Honma M, Etou T, Eto H, Okuma K, Okubo Y, Yamaguchi Y, Kambara T, Mabuchi T, Suga Y, Morita A, Yamanishi K, Tsuruta D, Itoh K, Yamaji K, Ikeda S. Therapeutic depletion of myeloid lineage leukocytes by adsorptive apheresis for psoriatic arthritis: Efficacy of a non-drug intervention for patients refractory to pharmacologics. J Dermatol 2017; 44:1353-1359. [DOI: 10.1111/1346-8138.13975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Takuro Kanekura
- Department of Dermatology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Mariko Seishima
- Department of Dermatology; Gifu University Graduate School of Medicine; Gifu Japan
| | - Masaru Honma
- Department of Dermatology; Asahikawa Medical University; Asahikawa Japan
| | - Takafumi Etou
- Department of Dermatology; Tokyo Teishin Hospital; Tokyo Japan
| | - Hikaru Eto
- Department of Dermatology; St Luke's International Hospital; Tokyo Japan
| | - Keiko Okuma
- Department of Dermatology and Allergology; Atopy (Allergy) Research Center; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Yukari Okubo
- Department of Dermatology; Tokyo Medical University; Tokyo Japan
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology; Yokohama City University Graduate School of Medicine; Kanagawa Japan
| | - Takeshi Kambara
- Department of Dermatology; Yokohama City University Medical Center; Kanagawa Japan
| | - Tomotaka Mabuchi
- Department of Dermatology; Tokai University School of Medicine; Kanagawa Japan
| | - Yasushi Suga
- Department of Dermatology; Juntendo University Urayasu Hospital; Chiba Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | | | - Daisuke Tsuruta
- Department of Dermatology; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Kei Itoh
- Department of Dermatology; JR Sapporo Hospital; Sapporo Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology; Juntendo University School of Medicine; Tokyo Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology; Atopy (Allergy) Research Center; Juntendo University Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
14
|
Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect Immun 2016; 84:2410-21. [PMID: 27271746 DOI: 10.1128/iai.00284-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/31/2016] [Indexed: 01/13/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by an excessive neutrophilic inflammatory response within the airway as a result of defective cystic fibrosis transmembrane receptor (CFTR) expression and function. Interleukin-17A induces airway neutrophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated with the pathophysiology of cystic fibrosis. The objectives of this study were to use the preclinical murine model of cystic fibrosis lung infection and inflammation to investigate the role of IL-17 in CF lung pathophysiology and explore therapeutic intervention with a focus on IL-17. Cftr-deficient mice (CF mice) and wild-type mice (WT mice) infected with P. aeruginosa had robust IL-17 production early in the infection associated with a persistent elevated inflammatory response. Intratracheal administration of IL-17 provoked a neutrophilic response in the airways of WT and CF animals which was similar to that observed with P. aeruginosa infection. The neutralization of IL-17 prior to infection significantly improved the outcomes in the CF mice, suggesting that IL-17 may be a therapeutic target. We demonstrate in this report that the pathophysiological contribution of IL-17 may be due to the induction of chemokines from the epithelium which is augmented by a deficiency of Cftr and ongoing inflammation. These studies demonstrate the in vivo contribution of IL-17 in cystic fibrosis lung disease and the therapeutic validity of attenuating IL-17 activity in cystic fibrosis.
Collapse
|
15
|
Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, Wang XY, Yi H, Yang YG. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016; 8:331ra40. [PMID: 27009269 PMCID: PMC4895207 DOI: 10.1126/scitranslmed.aae0482] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Abstract
Expansion of myeloid-derived suppressor cells (MDSCs) has been documented in some murine models and patients with autoimmune diseases, but the exact role of MDSCs in this process remains largely unknown. The current study investigates this question in patients with systemic lupus erythematosus (SLE). Patients with active SLE showed a significant increase in HLA-DR(-)CD11b(+)CD33(+)MDSCs, including both CD14(+)CD66b(-)monocytic and CD14(-)CD66b(+)granulocytic MDSCs, in the peripheral blood compared to healthy controls (HCs). The frequency of MDSCs was positively correlated with the levels of serum arginase-1 (Arg-1) activity, T helper 17 (TH17) responses, and disease severity in SLE patients. Consistently, in comparison with MDSCs from HCs, MDSCs from SLE patients exhibited significantly elevated Arg-1 production and increased potential to promote TH17 differentiation in vitro in an Arg-1-dependent manner. Moreover, in a humanized SLE model, MDSCs were essential for the induction of TH17 responses and the associated renal injuries, and the effect of MDSCs was Arg-1-dependent. Our data provide direct evidence demonstrating a pathogenic role for MDSCs in human SLE. This study also provides a molecular mechanism of the pathogenesis of SLE by demonstrating an Arg-1-dependent effect of MDSCs in the development of TH17 cell-associated autoimmunity, and suggests that targeting MDSCs or Arg-1 may offer potential therapeutic strategies for the treatment of SLE and other TH17 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Hao Wu
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China
| | - Yu Zhen
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China
| | - Zhanchuan Ma
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China
| | - Huimin Li
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China
| | - Jinyu Yu
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China
| | - Zhong-Gao Xu
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huanfa Yi
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China.
| | - Yong-Guang Yang
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, China. Department of Medicine, Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
16
|
Strauss L, Sangaletti S, Consonni FM, Szebeni G, Morlacchi S, Totaro MG, Porta C, Anselmo A, Tartari S, Doni A, Zitelli F, Tripodo C, Colombo MP, Sica A. RORC1 Regulates Tumor-Promoting "Emergency" Granulo-Monocytopoiesis. Cancer Cell 2015; 28:253-69. [PMID: 26267538 DOI: 10.1016/j.ccell.2015.07.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 07/21/2015] [Indexed: 11/25/2022]
Abstract
Cancer-driven granulo-monocytopoiesis stimulates expansion of tumor promoting myeloid populations, mostly myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We identified subsets of MDSCs and TAMs based on the expression of retinoic-acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor bearers. RORC1 orchestrates myelopoiesis by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) regulators of granulopoiesis, as well as the key transcriptional mediators of myeloid progenitor commitment and differentiation to the monocytic/macrophage lineage (IRF8 and PU.1). RORC1 supported tumor-promoting innate immunity by protecting MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, and limiting tumor infiltration by mature neutrophils. Accordingly, ablation of RORC1 in the hematopoietic compartment prevented cancer-driven myelopoiesis, resulting in inhibition of tumor growth and metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Granulocytes/metabolism
- Granulocytes/pathology
- Humans
- Immunohistochemistry
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Monocytes/metabolism
- Monocytes/pathology
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Myelopoiesis/genetics
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neutrophils/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Laura Strauss
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Sabina Sangaletti
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Gabor Szebeni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Sara Morlacchi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Maria Grazia Totaro
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Achille Anselmo
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Silvia Tartari
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Andrea Doni
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Francesco Zitelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Mario P Colombo
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Antonio Sica
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Via Bovio 6, 28100 Novara, Italy.
| |
Collapse
|
17
|
Blockage of Eosinopoiesis by IL-17A Is Prevented by Cytokine and Lipid Mediators of Allergic Inflammation. Mediators Inflamm 2015. [PMID: 26199466 PMCID: PMC4493302 DOI: 10.1155/2015/968932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interleukin- (IL-) 17A, a pleiotropic mediator of inflammation and autoimmunity, potently stimulates bone-marrow neutrophil production. To explore IL-17A effects on eosinopoiesis, we cultured bone-marrow from wild-type mice, or mutants lacking inducible nitric oxide synthase (iNOS−/−), CD95 (lpr), IL-17RA, or IL-4, with IL-5, alone or associated with IL-17A. Synergisms between IL-17A-activated, NO-dependent, and NO-independent mechanisms and antagonisms between IL-17A and proallergic factors were further examined. While IL-17A (0.1–10 ng/mL) had no IL-5-independent effect on eosinopoiesis, it dose-dependently suppressed IL-5-induced eosinophil differentiation, by acting during the initial 24 hours. Its effectiveness was abolished by caspase inhibitor, zVAD-fmk. The effect of IL-17A (0.1–1 ng/mL) was sensitive to the iNOS-selective inhibitor aminoguanidine and undetectable in iNOS−/− bone-marrow. By contrast, a higher IL-17A concentration (10 ng/mL) retained significant suppressive effect in both conditions, unmasking a high-end iNOS-independent mechanism. Lower IL-17A concentrations synergized with NO donor nitroprusside. Eosinopoiesis suppression by IL-17A was (a) undetectable in bone-marrow lacking IL-17RA or CD95 and (b) actively prevented by LTD4, LTC4, IL-13, and eotaxin. Sensitivity to IL-17A was increased in bone-marrow lacking IL-4; adding IL-4 to the cultures restored IL-5 responses to control levels. Therefore, effects of both IL-17A and proallergic factors are transduced by the iNOS-CD95 pathway in isolated bone-marrow.
Collapse
|
18
|
Basdeo SA, Moran B, Cluxton D, Canavan M, McCormick J, Connolly M, Orr C, Mills KHG, Veale DJ, Fearon U, Fletcher JM. Polyfunctional, Pathogenic CD161+ Th17 Lineage Cells Are Resistant to Regulatory T Cell-Mediated Suppression in the Context of Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:528-40. [PMID: 26062995 DOI: 10.4049/jimmunol.1402990] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis (RA), regulatory T cells (Tregs) fail to constrain autoimmune inflammation; however, the reasons for this are unclear. We investigated T cell regulation in the RA joint. Tregs from RA synovial fluid suppressed autologous responder T cells; however, when compared with Tregs from healthy control peripheral blood, they were significantly less suppressive. Despite their reduced suppressive activity, Tregs in the RA joint were highly proliferative and expressed FOXP3, CD39, and CTLA-4, which are markers of functional Tregs. This suggested that the reduced suppression is due to resistance of RA synovial fluid responder T cells to Treg inhibition. CD161(+) Th17 lineage cells were significantly enriched in the RA joint; we therefore investigated their relative susceptibility to Treg-mediated suppression. Peripheral blood CD161(+) Th cells from healthy controls were significantly more resistant to Treg-mediated suppression, when compared with CD161(-) Th cells, and this was mediated through a STAT3-dependant mechanism. Furthermore, depletion of CD161(+) Th cells from the responder T cell population in RA synovial fluid restored Treg-mediated suppression. In addition, CD161(+) Th cells exhibited pathogenic features, including polyfunctional proinflammatory cytokine production, an ability to activate synovial fibroblasts, and to survive and persist in the inflamed and hypoxic joint. Because CD161(+) Th cells are known to be enriched at sites of autoinflammation, our finding that they are highly proinflammatory and resistant to Treg-mediated suppression suggests an important pathogenic role in RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Sharee A Basdeo
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Deborah Cluxton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mary Canavan
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Jennifer McCormick
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Mary Connolly
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Carl Orr
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Douglas J Veale
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Ursula Fearon
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
19
|
Shin HS, Sarin R, Dixit N, Wu J, Gershwin E, Bowman EP, Adamopoulos IE. Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2014; 194:316-24. [PMID: 25452564 DOI: 10.4049/jimmunol.1401013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-23 has been well studied in the context of T cell differentiation; however, its role in the differentiation of myeloid progenitors is less clear. In this paper, we describe a novel role of IL-23 in myeloid cell differentiation. Specifically, we have identified that in human PBMCs, IL-23 induces the expression of MDL-1, a PU.1 transcriptional target during myeloid differentiation, which orchestrates osteoclast differentiation through activation of DNAX activating protein of 12 kDa and its ITAMs. The molecular events that lead to the differentiation of human macrophages to terminally differentiated osteoclasts are dependent on spleen tyrosine kinase and phospholipase Cγ2 phosphorylation for the induction of intracellular calcium flux and the subsequent activation of master regulator osteoclast transcription factor NFATc1. IL-23-elicited osteoclastogenesis is independent of the receptor activator of NF-κB ligand pathway and uses a unique myeloid DNAX activating protein of 12 kDa-associated lectin-1(+)/DNAX activating protein of 12 kDa(+) cell subset. Our data define a novel pathway that is used by IL-23 in myeloid cells and identify a major mechanism for the stimulation of osteoclastogenesis in inflammatory arthritis.
Collapse
Affiliation(s)
- Hyun-Seock Shin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Ritu Sarin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Neha Dixit
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Jian Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| | - Eric Gershwin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Edward P Bowman
- Discovery Research, Department of Immunology and Immunomodulatory Receptors, Merck Research Laboratories, Palo Alto, CA 94304; and
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA 95817
| |
Collapse
|
20
|
Ramani K, Pawaria S, Maers K, Huppler AR, Gaffen SL, Biswas PS. An essential role of interleukin-17 receptor signaling in the development of autoimmune glomerulonephritis. J Leukoc Biol 2014; 96:463-72. [PMID: 24935958 DOI: 10.1189/jlb.3a0414-184r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, proinflammatory cytokines in the nephritic kidney appear to contribute to the pathogenesis of AGN. The complex inflammatory cytokine network that drives renal pathology is poorly understood. IL-17, the signature cytokine of Th17 cells, which promotes autoimmune pathology in a variety of settings, is beginning to be identified in acute and chronic kidney diseases as well. However, the role of IL-17-mediated renal damage in the nephritic kidney has not been elucidated. Here, with the use of a murine model of experimental AGN, we showed that IL-17RA signaling is critical for the development of renal pathology. Despite normal systemic autoantibody response and glomerular immune-complex deposition, IL-17RA(-/-) mice exhibit a diminished influx of inflammatory cells and kidney-specific expression of IL-17 target genes correlating with disease resistance in AGN. IL-17 enhanced the production of proinflammatory cytokines and chemokines from tECs. Finally, we were able to show that neutralization of IL-17A ameliorated renal pathology in WT mice following AGN. These results clearly demonstrated that IL-17RA signaling significantly contributes to renal tissue injury in experimental AGN and suggest that blocking IL-17RA may be a promising therapeutic strategy for the treatment of proliferative and crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA; and
| | - Sudesh Pawaria
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA; and
| | - Kelly Maers
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA; and
| | - Anna R Huppler
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA; and Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA; and
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania, USA; and
| |
Collapse
|
21
|
Suzuki E, Mellins ED, Gershwin ME, Nestle FO, Adamopoulos IE. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun Rev 2014; 13:496-502. [PMID: 24424175 PMCID: PMC3995976 DOI: 10.1016/j.autrev.2014.01.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
Psoriatic arthritis (PsA) is an immune-mediated chronic inflammatory disease, affecting both the skin and joints. Disease progression is associated with aberrant cytokine expression, and TNF blockade is the most successful therapy to date. However, not all patients are responsive to anti-TNF treatment, highlighting the need to better understand the cellular and molecular mechanisms that govern the disease. PsA associations with single nucleotide polymorphisms in IL23R as well as TRAF3IP2 (Act1), a molecule downstream of the IL-17 receptor (IL-17R), have linked the IL-23/IL-17 axis to disease pathology. Although both cytokines are implicated in PsA, a full picture of their cellular targets and pathogenic mechanisms has not yet emerged. In this review, we focus on the IL-23/IL-17 axis-elicited responses mediated by osteoclasts, keratinocytes and neutrophils. Expanding our understanding of the cellular and molecular mechanisms that dictate pathogenicity in PsA will contribute to developing novel treatment strategies to combat disease.
Collapse
Affiliation(s)
- Erika Suzuki
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Pediatric Rheumatology, Program in Immunology, Stanford University, Palo Alto, CA 94305, USA
| | - M Eric Gershwin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - Frank O Nestle
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, CA 95817, USA.
| |
Collapse
|
22
|
Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine 2014; 32:2413-9. [PMID: 24657716 DOI: 10.1016/j.vaccine.2014.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 11/23/2022]
Abstract
Glycoprotein D (gD) is essential for attachment and penetration of Bovine herpesvirus 5 (BoHV-5) into permissive cells, and is a major target of the host immune system, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate in mice the immunogenicity of recombinant BoHV-5 gD (rgD5) expressed in Pichia pastoris. Vaccines formulated with rgD5 alone or adjuvanted with Montanide 50 ISA V2; Emulsigen or Emulsigen-DDA was administered intramuscularly or subcutaneously. Almost all formulations stimulated a humoral immune response after the first inoculation. The only exception was observed when the rgD5 was administered subcutaneously without adjuvant, in this case, the antibodies were observed after three doses. Higher titers of neutralizing antibodies were obtained with the three oil-based adjuvant formulations when compared to non-adjuvanted vaccine formulations. The rgD5 vaccine stimulated high mRNA expression levels of Th1 (INF-γ) and pro-inflammatory cytokines (IL-17, GM-CSF). The results demonstrated that the recombinant gD from BoHV-5 conserved important epitopes for viral neutralization from native BoHV-5 gD and was able to elicit mixed Th1/Th2 immune response in mice.
Collapse
|
23
|
Abstract
BACKGROUND Myeloid cells are the most abundant and heterogeneous population of leukocytes. They are rapidly recruited from the blood to areas of inflammation and perform a number of important biological functions. Chronic inflammatory conditions contribute to generation of myeloid-derived suppressor cells (MDSCs). These pathologically activated cells are increasingly recognized as important players in cancer, transplantation, and autoimmunity for their abilities to modulate innate and adaptive immune responses. METHODS Since clinical data on MDSC accumulation in human patients affected with inflammatory bowel diseases (IBD) are relatively scarce, most of the information described in this review came from studies using experimental mouse models of IBD. RESULTS In this review, we discuss possible roles of these cells in chronic immune-mediated disorders focusing on studies conducted in IBD. We will review the available evidence on how MDSCs are involved in modulating T cell responses and look into the complex relationship between Th1, Th17 cells, and myeloid cells. Finally, we will review some recent successes and failures resulted from therapies aimed at manipulating myeloid cell numbers and/or their function. CONCLUSIONS Although MDSCs have been described in animal models of experimental colitis and in patients with IBD, their exact role in IBD pathogenesis is unclear and needs to be studied further. Information obtained from these studies will be useful to better understand the cross talk between myeloid cells in T cells during chronic inflammation and may identify novel pathways to be targeted therapeutically.
Collapse
|
24
|
Mackern-Oberti JP, Llanos C, Carreño LJ, Riquelme SA, Jacobelli SH, Anegon I, Kalergis AM. Carbon monoxide exposure improves immune function in lupus-prone mice. Immunology 2013; 140:123-32. [PMID: 23691924 PMCID: PMC3809712 DOI: 10.1111/imm.12124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 01/09/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple alterations affecting the normal function of immune cells, such as lymphocytes, dendritic cells (DCs) and monocytes. Although the understanding of autoimmunity has significantly increased, the breakthrough in effective therapies has been modest, making necessary the development of new therapeutic strategies. Here we propose that a new potential target for therapy is haem oxygenase-1 (HO-1), an enzyme that catalyses the degradation of the haem group into biliverdin, carbon monoxide (CO) and Fe(2+) . These products exhibit immunosuppressive and anti-inflammatory effects, which can contribute to improving tolerance during organ transplantation. Because HO-1 is highly expressed by immune cells involved in SLE pathogenesis, such as monocytes and DCs, we evaluated whether induction of HO-1 expression or the administration of CO could ameliorate disease in the FcγRIIb knockout (KO) mouse model for SLE. We found that CO administration decreased the expansion of CD11b(+) cells, prevented the decline of regulatory T cells and reduced anti-histone antibodies observed in untreated FcγRIIb KO mice. Furthermore, CO-treated animals and HO-1 induction showed less kidney damage compared with untreated mice. These data suggest that HO-1 modulation and CO administration can ameliorate autoimmunity and prevent the lupus symptoms shown by FcγRIIb KO mice, highlighting HO-1 as a potential new target for autoimmune therapy.
Collapse
MESH Headings
- Animals
- Autoimmunity/drug effects
- CD11b Antigen/metabolism
- Carbon Monoxide/administration & dosage
- Disease Models, Animal
- Enzyme Induction/drug effects
- Female
- Heme Oxygenase-1/biosynthesis
- Kidney/drug effects
- Kidney/enzymology
- Kidney/pathology
- Lupus Erythematosus, Systemic/enzymology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/therapy
- Male
- Membrane Proteins/biosynthesis
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
25
|
Tan W, Liu B, Barsoum A, Huang W, Kolls JK, Schwarzenberger P. Requirement of TPO/c-mpl for IL-17A-induced granulopoiesis and megakaryopoiesis. J Leukoc Biol 2013; 94:1303-8. [PMID: 23990627 DOI: 10.1189/jlb.1212639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
IL-17A is a critical, proinflammatory cytokine essential to host defense and is induced in response to microbial invasion. It stimulates granulopoiesis, leading to neutrophilia, neutrophil activation, and mobilization. TPO synergizes with other cytokines in stimulating and expanding hematopoietic progenitors, also leading to granulopoiesis and megakaryopoiesis, and is required for thrombocytopoiesis. We investigated the effects of in vivo expression of IL-17A on granulopoiesis and megakaryopoiesis in TPO receptor c-mpl-/- mice. IL-17A expression expanded megakaryocytes by 2.5-fold in normal mice but had no such effect in c-mpl-/- mice. The megakaryocyte expansion did not result in increased peripheral platelet counts. IL-17A expression did not impact bone marrow precursors in c-mpl-/- mice; however, it expanded splenic precursors, although to a lesser extent compared with normal controls (CFU-HPP). No peripheral neutrophil expansion was observed in c-mpl-/- mice. Moreover, in c-mpl-/- mice, release of IL-17A downstream cytokines was reduced significantly (KC, MIP-2, GM-CSF). The data suggest that IL-17A requires the presence of functional TPO/c-mpl to exert its effects on granulopoiesis and megakaryopoiesis. Furthermore, IL-17A and its downstream cytokines are important regulators and synergistic factors for the physiologic function of TPO/c-mpl on hematopoiesis.
Collapse
Affiliation(s)
- Weihong Tan
- 2.Louisiana State University, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Jiang Y, Zhu J, Wu L, Xu G, Dai J, Liu X. Tetracycline inhibits local inflammation induced by cerebral ischemia via modulating autophagy. PLoS One 2012; 7:e48672. [PMID: 23144925 PMCID: PMC3492486 DOI: 10.1371/journal.pone.0048672] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/28/2012] [Indexed: 11/24/2022] Open
Abstract
Background Tetracycline exerts neuroprotection via suppressing the local inflammation induced by cerebral ischemia. However, the underlying mechanism is not completely clear. Methodology/Principal Findings The mRNA and protein expressions of tumor necrosis factor α and interleukin 6 and the number of activated microglia were measured to detect the inflammatory process in the ischemic hemisphere. The key proteins of nuclear factor kappa B pathway and the binding activity of nuclear factor kappa B were also measured. Two key components of autophagy, Beclin 1 and LC3, were detected by western blotting. Pretreatment with tetracycline inhibited the mRNA and protein expressions of tumor necrosis factor α and interleukin 6 and decreased the numbers of activated and phagocytotic microglia. Tetracycline down regulated the total and phosphorylated expressions of IKK, IκB and p65 (P<0.05). The autophagy inhibitor, 3-methyladenine, inhibited inflammation and activation of nuclear factor kappa B pathway. The levels of Beclin 1 and LC3 were decreased by 3-methyladenine and tetracycline. Conclusions/Significance Our data suggested that pretreatment of tetracycline may inhibit autophagy in the ischemic stroke brain and then suppress the inflammatory process via inhibiting the activation of nuclear factor kappa B pathway.
Collapse
Affiliation(s)
- Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province, China
| | - Juehua Zhu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province, China
| | - Li Wu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province, China
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province, China
| | - Jianwu Dai
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
- * E-mail: (XL); (JD)
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province, China
- * E-mail: (XL); (JD)
| |
Collapse
|
27
|
Wang X, Chan CCS, Yang M, Deng J, Poon VKM, Leung VHC, Ko KH, Zhou J, Yuen KY, Zheng BJ, Lu L. A critical role of IL-17 in modulating the B-cell response during H5N1 influenza virus infection. Cell Mol Immunol 2011; 8:462-8. [PMID: 21946434 PMCID: PMC4012931 DOI: 10.1038/cmi.2011.38] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 01/13/2023] Open
Abstract
Interleukin-17 (IL-17), a member of the IL-17 cytokine family, plays a crucial role in mediating the immune response against extracellular bacteria and fungi in the lung. Although there is increasing evidence that IL-17 is involved in protective immunity against H1 and H3 influenza virus infections, little is known about the role of IL-17 in the highly pathogenic H5N1 influenza virus infection. In this study, we show that H5N1-infected IL-17 knockout (KO) mice exhibit markedly increased weight loss, more pronounced lung immunopathology and significantly reduced survival rates as compared with infected wild-type controls. Moreover, the frequency of B cells in the lung were substantially decreased in IL-17 KO mice after virus infection, which correlated with reduced CXCR5 expression in B cells and decreased CXCL13 production in the lung tissue of IL-17 KO mice. Consistent with this observation, B cells from IL-17 KO mice exhibited a significant reduction in chemokine-mediated migration in culture. Taken together, these findings demonstrate a critical role for IL-17 in mediating the recruitment of B cells to the site of pulmonary influenza virus infection in mice.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|