1
|
Bitsikas V, Cubizolles F, Schier AF. A vertebrate family without a functional Hypocretin/Orexin arousal system. Curr Biol 2024; 34:1532-1540.e4. [PMID: 38490200 DOI: 10.1016/j.cub.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
The Hypocretin/Orexin signaling pathway suppresses sleep and promotes arousal, whereas the loss of Hypocretin/Orexin results in narcolepsy, including the involuntary loss of muscle tone (cataplexy).1 Here, we show that the South Asian fish species Chromobotia macracanthus exhibits a sleep-like state during which individuals stop swimming and rest on their side. Strikingly, we discovered that the Hypocretin/Orexin system is pseudogenized in C. macracanthus, but in contrast to Hypocretin-deficient mammals, C. macracanthus does not suffer from sudden behavioral arrests. Similarly, zebrafish mutations in hypocretin/orexin show no evident signs of cataplectic-like episodes. Notably, four additional species in the Botiidae family also lack a functional Hypocretin/Orexin system. These findings identify the first vertebrate family that does not rely on a functional Hypocretin/Orexin system for the regulation of sleep and arousal.
Collapse
Affiliation(s)
- Vassilis Bitsikas
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Fabien Cubizolles
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Sleep Disorders in dogs: A Pathophysiological and Clinical Review. Top Companion Anim Med 2021; 43:100516. [PMID: 33556640 DOI: 10.1016/j.tcam.2021.100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Sleep is a fundamental process in mammals, including domestic dogs. Disturbances in sleep affect physiological functions like cognitive and physical performance, immune response, pain sensation and increase the risk of diseases. In dogs, sleep can be affected by several conditions, with narcolepsy, REM sleep behavior disorder and sleep breathing disorders being the most frequent causes. Furthermore, sleep disturbances can be a symptom of other primary diseases where they can contribute to the worsening of clinical signs. This review describes reciprocally interacting sleep and wakefulness promoting systems and how their dysfunction can explain the pathophysiological mechanisms of sleep disorders. Additionally, this work discusses the clinical characteristics, diagnostic tools and available treatments for these disorders while highlighting areas in where further studies are needed so as to improve their treatment and prevention.
Collapse
|
3
|
da Paz Oliveira G, Elias RM, Peres Fernandes GB, Moyses R, Tufik S, Bichuetti DB, Coelho FMS. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med 2020; 78:57-62. [PMID: 33385780 DOI: 10.1016/j.sleep.2020.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE to explore the status of concentration of klotho and fibroblast growth factor 23 (FGF23) in cerebrospinal fluid (CSF) of patients with narcolepsy. PATIENTS/METHODS 59 patients with narcolepsy and 17 control individuals were enrolled. We used radioimmunoassay, human klotho enzyme-linked immunosorbent assay (ELISA), human intact FGF23 ELISA and spectrophotometry to measure hypocretin-1, klotho, FGF-23 and phosphorus, respectively. T-Student Test was used to compare klotho and phosphate concentrations, Mann-Whitney U Test were used to compare FGF-23 levels between groups. ANOVA Test was used to compare klotho and phosphate CSF concentrations among narcolepsy patients with CSF hypocretin-1 <110 pg/ml (HCRT-) and narcolepsy patients with CSF hypocretin-1 >110 pg/ml (HCRT+) versus control subjects. RESULTS Klotho and phosphorus CSF levels were lower in narcoleptic patients than in control (908.18 ± 405.51 versus 1265.78 ± 523.26 pg/ml; p = 0.004 and 1.34 ± 0.25 versus 1.58 ± 0.23 mg/dl; p = 0.001, respectively). We found higher FGF-23 levels in narcoleptic patients (5.51 versus 4.00 pg/mL; p = 0.001). Klotho and phosphorus CSF levels were lower in both HCRT- and HCRT+ than controls. Moreover, there were higher FGF-23 levels in both HCRT-/HCRT+ groups versus controls. However, we did not find differences comparing HCRT- and HCRT+ groups, analyzing CSF klotho, FGF-23 or phosphorus levels. CONCLUSIONS Patients with narcolepsy have decreased CSF concentration of klotho and increased CSF levels of FGF-23. These findings may play a role in understanding the pathogenesis of narcolepsy.
Collapse
Affiliation(s)
- Giuliano da Paz Oliveira
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil; Universidade Federal do Piauí (UFPI), Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Rosilene Motta Elias
- Disciplina de Nefrologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Rosa Moyses
- Disciplina de Nefrologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Denis Bernardi Bichuetti
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Fernando Morgadinho Santos Coelho
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Giannoccaro MP, Sallemi G, Liguori R, Plazzi G, Pizza F. Immunotherapy in Narcolepsy. Curr Treat Options Neurol 2020; 22:2. [PMID: 31997035 DOI: 10.1007/s11940-020-0609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Narcolepsy type 1 (NT1) is a chronic and disabling sleep disorder due to the loss of hypocretinergic neurons in the lateral hypothalamus pathophysiologically linked to an autoimmune process. Current treatment is symptomatic, and no cure is available to date. Immunotherapy is considered a promising future therapeutic option, and this review discusses the rationale for immunotherapy in narcolepsy, current evidences of its effects, outcome measures, and future directions. RECENT FINDINGS A limited number of case reports and uncontrolled small case series have reported the effect of different immunotherapies in patients with NT1. These studies were mainly based on the use of intravenous immunoglobulin (IVig), followed by corticosteroids, plasmapheresis, and monoclonal antibodies. Although initial reports showed an improvement of symptoms, particularly when patients were treated close to disease onset, other observations have not confirmed these results. Inadequate timing of treatment, placebo effects, and spontaneous improvement due to the natural disease course can account for these contrasting findings. Moreover, clear endpoints and standardized outcome measures have not been used and are currently missing in the pediatric population. On the basis of the available data, there are no enough evidences to support the use of immunotherapy in NT1. Randomized, controlled studies using clear endpoints and new outcome measures are needed to achieve a definitive answer about the usefulness of these treatments in narcolepsy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giombattista Sallemi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
5
|
Medvedeva AV, Golovatyuk AO, Poluektov MG. Autoimmune mechanisms and new opportunities for treatment narcolepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:56-62. [DOI: 10.17116/jnevro201911904256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Viste R, Soosai J, Vikin T, Thorsby PM, Nilsen KB, Knudsen S. Long-term improvement after combined immunomodulation in early post-H1N1 vaccination narcolepsy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e389. [PMID: 28840177 PMCID: PMC5567175 DOI: 10.1212/nxi.0000000000000389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Rannveig Viste
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders (R.V., S.K.), Department of Neurology, Section for Clinical Neurophysiology (R.V., K.B.N.), Department of Child Neurology (J.S., T.V.), Oslo University Hospital, Ullevål, Norway; Hormone Laboratory, Department of Medical Biochemistry (P.M.T.), Oslo University Hospital, Aker, Norway; Department of Neuromedicine and Movement Science (K.B.N.), Norwegian University of Science and Technology, Trondheim, Norway; and Medical Faculty (R.V.), University of Oslo, Norway
| | - Joseph Soosai
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders (R.V., S.K.), Department of Neurology, Section for Clinical Neurophysiology (R.V., K.B.N.), Department of Child Neurology (J.S., T.V.), Oslo University Hospital, Ullevål, Norway; Hormone Laboratory, Department of Medical Biochemistry (P.M.T.), Oslo University Hospital, Aker, Norway; Department of Neuromedicine and Movement Science (K.B.N.), Norwegian University of Science and Technology, Trondheim, Norway; and Medical Faculty (R.V.), University of Oslo, Norway
| | - Truls Vikin
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders (R.V., S.K.), Department of Neurology, Section for Clinical Neurophysiology (R.V., K.B.N.), Department of Child Neurology (J.S., T.V.), Oslo University Hospital, Ullevål, Norway; Hormone Laboratory, Department of Medical Biochemistry (P.M.T.), Oslo University Hospital, Aker, Norway; Department of Neuromedicine and Movement Science (K.B.N.), Norwegian University of Science and Technology, Trondheim, Norway; and Medical Faculty (R.V.), University of Oslo, Norway
| | - Per Medbøe Thorsby
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders (R.V., S.K.), Department of Neurology, Section for Clinical Neurophysiology (R.V., K.B.N.), Department of Child Neurology (J.S., T.V.), Oslo University Hospital, Ullevål, Norway; Hormone Laboratory, Department of Medical Biochemistry (P.M.T.), Oslo University Hospital, Aker, Norway; Department of Neuromedicine and Movement Science (K.B.N.), Norwegian University of Science and Technology, Trondheim, Norway; and Medical Faculty (R.V.), University of Oslo, Norway
| | - Kristian Bernhard Nilsen
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders (R.V., S.K.), Department of Neurology, Section for Clinical Neurophysiology (R.V., K.B.N.), Department of Child Neurology (J.S., T.V.), Oslo University Hospital, Ullevål, Norway; Hormone Laboratory, Department of Medical Biochemistry (P.M.T.), Oslo University Hospital, Aker, Norway; Department of Neuromedicine and Movement Science (K.B.N.), Norwegian University of Science and Technology, Trondheim, Norway; and Medical Faculty (R.V.), University of Oslo, Norway
| | - Stine Knudsen
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Department of Rare Disorders (R.V., S.K.), Department of Neurology, Section for Clinical Neurophysiology (R.V., K.B.N.), Department of Child Neurology (J.S., T.V.), Oslo University Hospital, Ullevål, Norway; Hormone Laboratory, Department of Medical Biochemistry (P.M.T.), Oslo University Hospital, Aker, Norway; Department of Neuromedicine and Movement Science (K.B.N.), Norwegian University of Science and Technology, Trondheim, Norway; and Medical Faculty (R.V.), University of Oslo, Norway
| |
Collapse
|
7
|
|
8
|
Characterizing behavioral sleep using actigraphy in adult dogs of various ages fed once or twice daily. J Vet Behav 2013. [DOI: 10.1016/j.jveb.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Toth LA, Bhargava P. Animal models of sleep disorders. Comp Med 2013; 63:91-104. [PMID: 23582416 PMCID: PMC3625050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/21/2012] [Accepted: 11/25/2012] [Indexed: 06/02/2023]
Abstract
Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders-insomnia, narcolepsy, restless legs syndrome, and sleep apnea-and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders.
Collapse
Affiliation(s)
- Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| | | |
Collapse
|
10
|
Winrow CJ, Gotter AL, Cox CD, Tannenbaum PL, Garson SL, Doran SM, Breslin MJ, Schreier JD, Fox SV, Harrell CM, Stevens J, Reiss DR, Cui D, Coleman PJ, Renger JJ. Pharmacological characterization of MK-6096 – A dual orexin receptor antagonist for insomnia. Neuropharmacology 2012; 62:978-87. [DOI: 10.1016/j.neuropharm.2011.10.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/26/2011] [Accepted: 10/04/2011] [Indexed: 01/02/2023]
|
11
|
|
12
|
Alóe F, Alves RC, Araújo JF, Azevedo A, Bacelar A, Bezerra M, Bittencourt LRA, Bustamante G, Cardoso TAMDO, Eckeli AL, Fernandes RMF, Goulart L, Pradella-Hallinan M, Hasan R, Sander HH, Pinto LR, Lopes MC, Minhoto GR, Moraes W, Moreira GA, Pachito D, Pedrazolli M, Poyares D, Prado L, Rizzo G, Rodrigues RN, Roitman I, Silva AB, Tavares SMA. [Brazilian guidelines for the diagnosis of narcolepsy]. ACTA ACUST UNITED AC 2010; 32:294-304. [PMID: 20585744 DOI: 10.1590/s1516-44462010005000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/09/2010] [Indexed: 11/21/2022]
Abstract
This manuscript contains the conclusion of the consensus meeting on the diagnosis of narcolepsy based on the review of Medline publications between 1980-2010. Narcolepsy is a chronic disorder with age at onset between the first and second decade of life. Essential narcolepsy symptoms are cataplexy and excessive sleepiness. Cataplexy is defined as sudden, recurrent and reversible attacks of muscle weakness triggered by emotions. Accessory narcolepsy symptoms are hypnagogic hallucinations, sleep paralysis and nocturnal fragmented sleep. The clinical diagnosis according to the International Classification of Sleep Disorders is the presence of excessive sleepiness and cataplexy. A full in-lab polysomnography followed by a multiple sleep latency test is recommended for the confirmation of the diagnosis and co-morbidities. The presence of two sleep-onset REM period naps in the multiple sleep latency test is diagnostic for cataplexy-free narcolepsy. A positive HLA-DQB1*0602 with lower than 110pg/mL level of hypocretin-1 in the cerebrospinal fluid is required for the final diagnosis of cataplexy- and sleep-onset REM period -free narcolepsy.
Collapse
Affiliation(s)
- Flávio Alóe
- Hospital das Clínicas, Universidade de São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen L, Brown RE, McKenna JT, McCarley RW. Animal models of narcolepsy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 8:296-308. [PMID: 19689311 DOI: 10.2174/187152709788921717] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models.
Collapse
Affiliation(s)
- Lichao Chen
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Brockton, MA 02301, USA.
| | | | | | | |
Collapse
|
14
|
Scammell TE, Willie JT, Guilleminault C, Siegel JM. A consensus definition of cataplexy in mouse models of narcolepsy. Sleep 2009; 32:111-6. [PMID: 19189786 PMCID: PMC2625315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.
Collapse
Affiliation(s)
- Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Psi for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare.
Collapse
|
16
|
Plazzi G, Poli F, Franceschini C, Parmeggiani A, Pirazzoli P, Bernardi F, Mignot E, Cicognani A, Montagna P. Intravenous high-dose immunoglobulin treatment in recent onset childhood narcolepsy with cataplexy. J Neurol 2008; 255:1549-54. [PMID: 18769859 DOI: 10.1007/s00415-008-0983-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/20/2008] [Accepted: 04/15/2008] [Indexed: 10/21/2022]
|
17
|
Bentivoglio M, Kristensson K. Neural–immune interactions in disorders of sleep-wakefulness organization. Trends Neurosci 2007; 30:645-52. [DOI: 10.1016/j.tins.2007.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 11/30/2022]
|
18
|
|
19
|
Abstract
Narcolepsy treatment has changed dramatically over the last century. For the treatment of sleepiness in narcolepsy, we have progressed from the early use of caffeine. We have available a variety of different stimulants, and a wake-promoting agent, modafinil, which is widely regarded as the first-line medication for narcolepsy. Cataplexy is managed by medications whereas behavioral treatment, such as avoidance of emotion, was the only treatment available in the past. Following the widespread use of antidepressant medications for cataplexy, we now have sodium oxybate, which works by an unknown mechanism but is the only Food and Drug Administration (FDA)-approved medication for cataplexy. We also recognize that other sleep disorders can occur in narcolepsy, such as obstructive sleep apnea syndrome or rapid eye movement sleep behavior disorder, and new treatments allow these comorbid conditions to be effectively treated. However, although we cannot cure narcolepsy, the current treatments for excessive sleepiness and cataplexy can be effective for many patients. We are improving the quality of life for our patients without producing clinically significant adverse effects. We need new therapeutic advances and several medications that work, though different mechanisms are likely to be available in the near future.
Collapse
Affiliation(s)
- Michael Thorpy
- Sleep-Wake Disorders Center, Montefiore Medical Center and Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, USA.
| |
Collapse
|
20
|
Siegel JM, Boehmer LN. Narcolepsy and the hypocretin system--where motion meets emotion. ACTA ACUST UNITED AC 2006; 2:548-56. [PMID: 16990828 PMCID: PMC8766427 DOI: 10.1038/ncpneuro0300] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 07/31/2006] [Indexed: 01/08/2023]
Abstract
Narcolepsy is a neurological disorder that is characterized by excessive daytime sleepiness and cataplexy--a loss of muscle tone generally triggered by certain strong emotions with sudden onset. The underlying cause of most cases of human narcolepsy is a loss of neurons that produce hypocretin (Hcrt, also known as orexin). These cells normally serve to drive and synchronize the activity of monoaminergic and cholinergic cells. Sleepiness results from the reduced activity of monoaminergic, cholinergic and other cells that are normally activated by Hcrt neurons, as well as from the loss of Hcrt itself. Cataplexy is caused by an episodic loss of activity in noradrenergic cells that support muscle tone, and a linked activation of a medial medullary cell population that suppresses muscle tone. Current treatments for narcolepsy include stimulants to combat sleepiness and antidepressants to reduce cataplexy. Sodium oxybate produces both reductions in cataplexy and improved waking alertness. Future treatments are likely to include Hcrt or Hcrt agonists to reverse the underlying neurochemical deficit.
Collapse
Affiliation(s)
- Jerome M Siegel
- Brain Research Institute, University of California, Los Angeles (UCLA), and VA Greater Los Angeles Healthcare System, CA, USA.
| | | |
Collapse
|
21
|
Abstract
The hypocretins (also called the orexins) are two neuropeptides derived from the same precursor whose expression is restricted to a few thousand neurons of the lateral hypothalamus. Two G-protein coupled receptors for the hypocretins have been identified, and these show different distributions within the central nervous system and differential affinities for the two hypocretins. Hypocretin fibers project throughout the brain, including several areas implicated in regulation of the sleep/wakefulness cycle. Central administration of synthetic hypocretin-1 affects blood pressure, hormone secretion and locomotor activity, and increases wakefulness while suppressing rapid eye movement sleep. Most human patients with narcolepsy have greatly reduced levels of hypocretin peptides in their cerebral spinal fluid and no or barely detectable hypocretin-containing neurons in their hypothalamus. Multiple lines of evidence suggest that the hypocretinergic system integrates homeostatic, metabolic and limbic information and provides a coherent output that results in stability of the states of vigilance.
Collapse
Affiliation(s)
- Luis de Lecea
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
22
|
Perspectives on Neuroscience and Behavior. Neuroscientist 2005. [DOI: 10.1177/107385840501100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Affiliation(s)
- Merrill S Wise
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
John J, Wu MF, Maidment NT, Lam HA, Boehmer LN, Patton M, Siegel JM. Developmental changes in CSF hypocretin-1 (orexin-A) levels in normal and genetically narcoleptic Doberman pinschers. J Physiol 2004; 560:587-92. [PMID: 15308685 PMCID: PMC1665256 DOI: 10.1113/jphysiol.2004.070573] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of hypocretin cells or mutation of hypocretin receptors causes narcolepsy. In canine genetic narcolepsy, produced by a mutation of the Hcrtr2 gene, symptoms develop postnatally with symptom onset at 4 weeks of age and maximal symptom severity by 10-32 weeks of age. Canine narcolepsy can readily be quantified. The large size of the dog cerebrospinal fluid (CSF) cerebellomedullary cistern allows the withdrawal of sufficient volumes of CSF for accurate assay of hypocretin levels, as early as postnatal day 4. We have taken advantage of these features to determine the relation of CSF hypocretin levels to symptom onset and compare hypocretin levels in narcoleptic and normal dogs. We find that by 4 days after birth, Hcrtr2 mutants have significantly higher levels of Hcrt than normal age- and breed-matched dogs. These levels were also significantly higher than those in adult narcoleptic and normal dogs. A reduction followed by an increase in Hcrt levels coincides with symptom onset and increase in the narcoleptics. The Hcrtr2 mutation alters the normal developmental course of hypocretin levels.
Collapse
Affiliation(s)
- Joshi John
- Department Psychiatry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|