1
|
Li X, Chen X, Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer's disease. Front Aging Neurosci 2023; 15:1300405. [PMID: 38178962 PMCID: PMC10766373 DOI: 10.3389/fnagi.2023.1300405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Copper (Cu) plays a crucial role as a trace element in various physiological processes in humans. Nonetheless, free copper ions accumulate in the brain over time, resulting in a range of pathological changes. Compelling evidence indicates that excessive free copper deposition contributes to cognitive decline in individuals with Alzheimer's disease (AD). Free copper levels in the serum and brain of AD patients are notably elevated, leading to reduced antioxidant defenses and mitochondrial dysfunction. Moreover, free copper accumulation triggers a specific form of cell death, namely copper-dependent cell death (cuproptosis). This article aimed to review the correlation between copper dysregulation and the pathogenesis of AD, along with the primary pathways regulating copper homoeostasis and copper-induced death in AD. Additionally, the efficacy and safety of natural and synthetic agents, including copper chelators, lipid peroxidation inhibitors, and antioxidants, were examined. These treatments can restore copper equilibrium and prevent copper-induced cell death in AD cases. Another aim of this review was to highlight the significance of copper dysregulation and promote the development of pharmaceutical interventions to address it.
Collapse
Affiliation(s)
- Xiao Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinwang Chen
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiyan Gao
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Gardener SL, Rainey-Smith SR, Weinborn M, Bondonno CP, Martins RN. Intake of Products Containing Anthocyanins, Flavanols, and Flavanones, and Cognitive Function: A Narrative Review. Front Aging Neurosci 2021; 13:640381. [PMID: 34539375 PMCID: PMC8446387 DOI: 10.3389/fnagi.2021.640381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this review is to examine human research studies published within the past 6 years which evaluate the role of anthocyanin, flavanol, and flavanone consumption in cognitive function, and to discuss potential mechanisms of action underlying any observed benefits. Evidence to date suggests the consumption of flavonoid-rich foods, such as berries and cocoa, may have the potential to limit, or even reverse, age-related declines in cognition. Over the last 6 years, the flavonoid subgroups of anthocyanins, flavanols, and flavanones have been shown to be beneficial in terms of conferring neuroprotection. The mechanisms by which flavonoids positively modulate cognitive function are yet to be fully elucidated. Postulated mechanisms include both direct actions such as receptor activation, neurotrophin release and intracellular signaling pathway modulation, and indirect actions such as enhancement of cerebral blood flow. Further intervention studies conducted in diverse populations with sufficient sample sizes and long durations are required to examine the effect of consumption of flavonoid groups on clinically relevant cognitive outcomes. As populations continue to focus on adopting healthy aging strategies, dietary interventions with flavonoids remains a promising avenue for future research. However, many questions are still to be answered, including identifying appropriate dosage, timeframes for intake, as well as the best form of flavonoids, before definitive conclusions can be drawn about the extent to which their consumption can protect the aging brain.
Collapse
Affiliation(s)
- Samantha L Gardener
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Stephanie R Rainey-Smith
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,School of Psychological Science, The University of Western Australia, Crawley, WA, Australia
| | - Michael Weinborn
- School of Psychological Science, The University of Western Australia, Crawley, WA, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital, The University of Western Australia, Perth, WA, Australia
| | - Ralph N Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Annunziata G, Sureda A, Orhan IE, Battino M, Arnone A, Jiménez-García M, Capó X, Cabot J, Sanadgol N, Giampieri F, Tenore GC, Kashani HRK, Silva AS, Habtemariam S, Nabavi SF, Nabavi SM. The neuroprotective effects of polyphenols, their role in innate immunity and the interplay with the microbiota. Neurosci Biobehav Rev 2021; 128:437-453. [PMID: 34245757 DOI: 10.1016/j.neubiorev.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders, particularly in the elderly population, represent one of the most pressing social and health-care problems in the world. Besides the well-established role of both oxidative stress and inflammation, alterations of the immune response have been found to be closely linked to the development of neurodegenerative diseases. Interestingly, various scientific evidence reported that an altered gut microbiota composition may contribute to the development of neuroinflammatory disorders. This leads to the proposal of the concept of the gut-brain-immune axis. In this scenario, polyphenols play a pivotal role due to their ability to exert neuroprotective, immunomodulatory and microbiota-remodeling activities. In the present review, we summarized the available literature to provide a scientific evidence regarding this neuroprotective and immunomodulatory effects and the interaction with gut microbiota of polyphenols and, the main signaling pathways involved that can explain their potential therapeutic application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Giuseppe Annunziata
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Istituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Angela Arnone
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Manuel Jiménez-García
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122, Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, E-07122, Palma de Mallorca, Spain.
| | - Joan Cabot
- Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francesca Giampieri
- Department of Odontostomatologic and Specialized Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gian Carlo Tenore
- NutraPharmaLabs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | | | - Ana Sanches Silva
- National Institute of Agrarian and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Oporto, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Charham-Maritime, Kent, ME4 4TB, UK.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
5
|
Crawford L, Loprinzi PD. Effects of Exercise on Memory Interference in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:425-438. [PMID: 32342475 DOI: 10.1007/978-981-15-1792-1_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
There are several mechanisms that cause memory impairment, including motivated forgetting, active forgetting, natural decay, and memory interference. Interference occurs when one is attempting to recall something specific, but there is conflicting information making it more difficult to recall the target stimuli. In laboratory settings, it is common to measure memory interference with paired associate tasks-usually utilizing the AB-CD, AB-AC, AB-ABr, or AB-DE AC-FG method. Memory impairments are frequent among those with neuropsychiatric disorders such as depression, schizophrenia, and multiple sclerosis. The memory effects of each condition differ, but are all related to alterations in brain physiology and general memory deterioration. Exercise, or physical activity, has been demonstrated to attenuate memory interference in some cases, but the mechanisms are still being determined. Further research is needed on memory interference, in regard to exercise and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lindsay Crawford
- Department of Health, Exercise Science, and Recreation Management, Exercise and Memory Laboratory, The University of Mississippi, MS, Oxford, USA
| | - Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management, Exercise and Memory Laboratory, The University of Mississippi, MS, Oxford, USA.
| |
Collapse
|
6
|
Houlton J, Abumaria N, Hinkley SFR, Clarkson AN. Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Front Neurosci 2019; 13:790. [PMID: 31427916 PMCID: PMC6688532 DOI: 10.3389/fnins.2019.00790] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions.
Collapse
Affiliation(s)
- Josh Houlton
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simon F. R. Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Petone, New Zealand
| | - Andrew N. Clarkson
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Jamal M, Ito A, Tanaka N, Miki T, Takakura A, Suzuki S, Ameno K, Kinoshita H. The Role of Apolipoprotein E and Ethanol Exposure in Age-Related Changes in Choline Acetyltransferase and Brain-Derived Neurotrophic Factor Expression in the Mouse Hippocampus. J Mol Neurosci 2018; 65:84-92. [PMID: 29717403 DOI: 10.1007/s12031-018-1074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Disruption of apolipoprotein E (APOE) is responsible for age-dependent neurodegeneration and cognitive impairment. Elderly individuals are more sensitive than young individuals to the effects of ethanol (EtOH), particularly those affecting cognition. We investigated the role of APOE deficiency and EtOH exposure on age-dependent alterations in choline acetyltransferase (ChAT) and brain-derived neurotrophic factor (BDNF) mRNA and protein expression in the mouse hippocampus. Three-month-old (young) and 12-month-old (aged) ApoE-knockout (ApoE-KO) and wild-type (WT) mice were treated with saline or 2 g/kg EtOH, and the bilateral hippocampus was collected after 60 min for real-time PCR and western blotting analyses. ChAT (P < 0.01) and BDNF (P < 0.01) expression were significantly decreased in both young and aged saline- and EtOH-treated ApoE-KO mice versus young and aged saline- and EtOH-treated WT mice. Aged saline- and EtOH-treated ApoE-KO mice exhibited greater differences in ChAT and BDNF expression (P < 0.01) than young saline- and EtOH-treated ApoE-KO mice. Aged EtOH-treated WT mice also exhibited larger decreases in BDNF expression (P < 0.01)-but not in ChAT expression-than young EtOH-treated WT mice. EtOH decreased ChAT and BDNF expression in both young (P < 0.01) and aged (P < 0.01) ApoE-KO mice versus EtOH-free ApoE-KO mice of the same age. EtOH also decreased BDNF expression in aged (P < 0.01) WT mice versus EtOH-free aged WT mice. In summary, these results suggest that APOE deficiency and EtOH exposure cause age-dependent decreases in ChAT and BDNF in the hippocampus. Importantly, the decreases in ChAT and BDNF were greater in aged EtOH-treated mice, particularly those lacking APOE, raising the possibility that APOE-deficient individuals who consume alcohol may be at greater risk of memory deficit.
Collapse
Affiliation(s)
- Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| | - Asuka Ito
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Naoko Tanaka
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kita, Japan
| | - Ayaka Takakura
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kita, Japan
| | - Kiyoshi Ameno
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| |
Collapse
|
8
|
Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, Won MH, Yoon YS, Hwang IK. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep 2018. [PMID: 29532891 PMCID: PMC5928628 DOI: 10.3892/mmr.2018.8705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Age-dependent differences in myelin basic protein expression in the hippocampus of young, adult and aged gerbils. Lab Anim Res 2017; 33:237-243. [PMID: 29046699 PMCID: PMC5645602 DOI: 10.5625/lar.2017.33.3.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6 months) and aged (24 months), using western blot and immunohistochemistry. Western blot results showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path) was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-dependent and tissue specific according to hippocampal layers.
Collapse
|
10
|
Lee KY, Kang JY, Yun JI, Chung JY, Hwang IK, Won MH, Choi JH. Age-related change of Iba-1 immunoreactivity in the adult and aged gerbil spinal cord. Anat Cell Biol 2017; 50:135-142. [PMID: 28713617 PMCID: PMC5509897 DOI: 10.5115/acb.2017.50.2.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
In the present study, we examined change of ionized calcium-binding adapter molecule 1 (Iba-1) in the adult and aged gerbil spinal cords. Significant change of morphological feature and neuronal cell loss were not observed in both adult and aged spinal cords of gerbil after NeuN immunohistochemistry and Fluoro-Jade B histofluoresce staining. Iba-1-immunoreactive microglia broadly distributed in the spinal cord. Most of Iba-1-immunoreactive microglia showed ramified forms in the adult gerbil cervical and lumbar spinal cords. However, morphological changes of Iba-1-immunoreactive microglia were observed in the cervical and lumbar regions of the aged gerbil spinal cord. These microglia were showed a hypertrophied body with shortened swollen processes which was characteristic of activated microglia. In addition, Iba-1 protein level significantly higher in aged cervical and lumbar spinal cords than those in the adult gerbil. The present study showed an increase of activated forms of Iba-1-immunoreactive microglia and its protein level without marked changes in morphological features and neuronal loss in the aged spinal cord compared to those in the adult gerbil spinal cord. This result suggests that the increase of Iba-1 expression in the aged spinal cord may be closely associated with age-related changes in aged gerbil spinal cord.
Collapse
Affiliation(s)
- Kwon Young Lee
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Joo Yeon Kang
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Moo Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
11
|
Ahn JH, Chen BH, Shin BN, Lee TK, Cho JH, Kim IH, Park JH, Lee JC, Tae HJ, Lee CH, Won MH, Lee YL, Choi SY, Hong S. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats. Mol Med Rep 2016; 14:851-6. [PMID: 27221506 PMCID: PMC4929834 DOI: 10.3892/mmr.2016.5300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/05/2016] [Indexed: 12/02/2022] Open
Abstract
Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
12
|
Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome. Neurobiol Aging 2016; 41:73-85. [PMID: 27103520 DOI: 10.1016/j.neurobiolaging.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 01/04/2016] [Accepted: 02/07/2016] [Indexed: 02/07/2023]
Abstract
Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function.
Collapse
|
13
|
Chen CC, Chen CJ, Wu D, Chi NF, Chen PC, Liao YP, Chiu HW, Hu CJ. BDNF Val66Met Polymorphism on Functional MRI During n-Back Working Memory Tasks. Medicine (Baltimore) 2015; 94:e1586. [PMID: 26496261 PMCID: PMC4620795 DOI: 10.1097/md.0000000000001586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Val66Met polymorphism on the brain-derived neurotrophic factor (BDNF) gene is associated with hippocampal pathology and impaired episodic memory. However, the influence of this polymorphism on working memory (WM) performance and patterns of brain activation is controversial. This study investigated the effects of BDNF Val66Met polymorphism on functional magnetic resonance imaging (fMRI) during n-back WM tasks in healthy middle-aged adults.A total of 110 participants without subjective or objective cognitive impairment underwent BDNF genotyping. Eleven Met allele carriers and 9 noncarriers underwent fMRI during WM tasks.The WM performance was similar between the 2 groups. Increased brain activation in response to increases in WM loads was observed in both groups. The Met allele carrier group showed consistently lower brain activation in the right superior frontal gyrus (SFG) and the middle occipital gyrus than that of the noncarrier group (P < 0.001). No brain region showed increased activation during WM tasks in the Met allele group.BDNF Val66Met polymorphism may affect the WM network. Met allele carriers have lower brain activation in the right SFG and middle occipital gyrus than do noncarriers during WM tasks. Defective development of the WM network during brain maturation or differentiation is a possible mechanism. Additional studies with a larger sample and longer follow-up period are warranted.
Collapse
Affiliation(s)
- Chih-Chung Chen
- From the Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei (CCC, HWC); Department of Neurology (CCC, DW, NFC, PCC, CJH); Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan (CJC, YPL); Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (YPL); Department of Neurology, Medical School, Taipei Medical University, Taipei (CJH); and Brain and Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan (CJH)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kanzafarova RF, Kazantseva AV, Khusnutdinova EK. Genetic and environmental aspects of mathematical disabilities. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ranjan A, Behari J, Mallick BN. Cytomorphometric Changes in Hippocampal CA1 Neurons Exposed to Simulated Microgravity Using Rats as Model. Front Neurol 2014; 5:77. [PMID: 24904521 PMCID: PMC4032998 DOI: 10.3389/fneur.2014.00077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/05/2014] [Indexed: 11/13/2022] Open
Abstract
Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225–275 g) to 14 days simulated microgravity (SMg) and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft, and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the postsynaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation, we propose that SMg exposure might be useful for recovery of stroke patients.
Collapse
Affiliation(s)
- Amit Ranjan
- School of Life Sciences, Jawaharlal Nehru University , New Delhi , India ; School of Environmental Sciences, Jawaharlal Nehru University , New Delhi , India
| | - Jitendra Behari
- School of Environmental Sciences, Jawaharlal Nehru University , New Delhi , India
| | - Birendra N Mallick
- School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
16
|
Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiol Aging 2013; 35:520-31. [PMID: 24112792 DOI: 10.1016/j.neurobiolaging.2013.09.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023]
Abstract
Age-related cognitive decline is accompanied by an increase of neuronal apoptosis and a dysregulation of neuroplasticity-related molecules such as brain-derived neurotrophic factor and neurotoxic factors including beta amyloid (Aβ) peptide. Because it has been previously demonstrated that phosphodiesterase-5 inhibitors (PDE5-Is) protect against hippocampal synaptic dysfunction and memory deficits in mouse models of Alzheimer's disease and physiological aging, we investigated the effect of a treatment with the PDE5-I, sildenafil, on cell death, pro- and antiapoptotic molecules, and Aβ production. We demonstrated that chronic intraperitoneal injection of sildenafil (3 mg/kg for 3 weeks) decreased terminal deoxyuridine triphosphate nick end labeling-positive cells in the CA1 hippocampal area of 26-30-month-old mice, downregulating the proapoptotic proteins, caspase-3 and B-cell lymphoma 2-associated X, and increasing antiapoptotic molecules such as B-cell lymphoma protein-2 and brain-derived neurotrophic factor. Also, sildenafil reverted the shifting of amyloid precursor protein processing toward Aβ42 production and the increase of the Aβ42:Aβ40 ratio in aged mice. Our data suggest that PDE5-I might be beneficial to treat age-related detrimental features in a physiological mouse model of aging.
Collapse
|
17
|
Rendeiro C, Vauzour D, Rattray M, Waffo-Téguo P, Mérillon JM, Butler LT, Williams CM, Spencer JPE. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One 2013; 8:e63535. [PMID: 23723987 PMCID: PMC3665790 DOI: 10.1371/journal.pone.0063535] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/03/2013] [Indexed: 12/25/2022] Open
Abstract
Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.
Collapse
Affiliation(s)
- Catarina Rendeiro
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - David Vauzour
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Marcus Rattray
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Pierre Waffo-Téguo
- University de Bordeaux, ISVV, Groupe d'Etude des Substances Végétales à Activité Biologique, Villenave d'Ornon, France
| | - Jean Michel Mérillon
- University de Bordeaux, ISVV, Groupe d'Etude des Substances Végétales à Activité Biologique, Villenave d'Ornon, France
| | - Laurie T. Butler
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Claire M. Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Jeremy P. E. Spencer
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Dwivedi Y. Involvement of brain-derived neurotrophic factor in late-life depression. Am J Geriatr Psychiatry 2013; 21:433-49. [PMID: 23570887 PMCID: PMC3767381 DOI: 10.1016/j.jagp.2012.10.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 10/16/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Banji D, Banji OJF, Dasaroju S, Annamalai AR. Piperine and curcumin exhibit synergism in attenuating D-galactose induced senescence in rats. Eur J Pharmacol 2012. [PMID: 23200897 DOI: 10.1016/j.ejphar.2012.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is associated with progressive decline in mental abilities and functional capacities. Postmitotic tissues are most vulnerable to alteration due to oxidative damage leading to behavioral and biochemical changes. We hypothesized that the anatomical and functional facets of the brain could be protected with powerful antioxidants such as piperine and curcumin by examining their effects individually and in combination in delaying senescence induced by d-galactose. Young adult male Wistar rats were treated with piperine (12 mg/kg) alone, and curcumin (40 mg/kg) alone; and in combination for a period of 49 days by the oral route with treatment being initiated a week prior to d-galactose (60 mg/kg, i.p.). A control group, d-galactose alone and naturally aged control were also evaluated. Behavioral tests, hippocampal volume, CA1 neuron number, oxidative parameters, formation of lipofuscin like autofluorescent substances, neurochemical estimation, and histopathological changes in CA1 region of hippocampus were established. Our results suggest that the combination exerted a superior response compared to monotherapy as evidenced by improved spatial memory, reduced oxidative burden, reduced accumulation of lipofuscin; improvement in signaling, increase in hippocampal volume and protection of hippocampal neurons. We speculate that the powerful antioxidant nature of both, augmented response of curcumin in the presence of piperine and enhanced serotoninergic signaling was responsible for improved cognition and prevention in senescence.
Collapse
Affiliation(s)
- David Banji
- Department of Pharmacology, Nalanda College of Pharmacy, Charlapally, Nalgonda 508001, A.P., India.
| | | | | | | |
Collapse
|
20
|
Yan BC, Park JH, Kim SK, Choi JH, Lee CH, Yoo KY, Kwon YG, Kim YM, Kim JD, Won MH. Comparison of trophic factors changes in the hippocampal CA1 region between the young and adult gerbil induced by transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1231-42. [PMID: 22552890 DOI: 10.1007/s10571-012-9848-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we investigated neuronal death/damage in the gerbil hippocampal CA1 region (CA1) and compared changes in some trophic factors, such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), in the CA1 between the adult and young gerbils after 5 min of transient cerebral ischemia. Most of pyramidal neurons (89%) were damaged 4 days after ischemia-reperfusion (I-R) in the adult; however, in the young, about 59% of pyramidal neurons were damaged 7 days after I-R. The immunoreactivity and levels of BDNF and VEGF, not GDNF, in the CA1 of the normal young were lower than those in the normal adult. Four days after I-R in the adult group, the immunoreactivity and levels of BDNF and VEGF were distinctively decreased, and the immunoreactivity and level of GDNF were increased. However, in the young group, all of their immunoreactivities and levels were much higher than those in the normal young group. From 7 days after I-R, all the immunoreactivities and levels were apparently decreased compared to those of the normal adult and young. In brief, we confirmed our recent finding: more delayed and less neuronal death occurred in the young following I-R, and we newly found that the immunoreactivities of trophic factors, such as BDNF, GDNF, and VEGF, in the stratum pyramidale of the CA1 in the young gerbil were much higher than those in the adult gerbil 4 days after transient cerebral ischemia.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Edrey YH, Casper D, Huchon D, Mele J, Gelfond JA, Kristan DM, Nevo E, Buffenstein R. Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity. Aging Cell 2012; 11:213-22. [PMID: 22103690 DOI: 10.1111/j.1474-9726.2011.00772.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Naked mole-rats (Heterocephalus glaber), the longest-lived rodents, live 7-10 times longer than similarly sized mice and exhibit normal activities for approximately 75% of their lives. Little is known about the mechanisms that allow them to delay the aging process and live so long. Neuregulin-1 (NRG-1) signaling is critical for normal brain function during both development and adulthood. We hypothesized that long-lived species will maintain higher levels of NRG-1 and that this contributes to their sustained brain function and concomitant maintenance of normal activity. We monitored the levels of NRG-1 and its receptor ErbB4 in H. glaber at different ages ranging from 1 day to 26 years and found that levels of NRG-1 and ErbB4 were sustained throughout development and adulthood. In addition, we compared seven rodent species with widely divergent (4-32 year) maximum lifespan potential (MLSP) and found that at a physiologically equivalent age, the longer-lived rodents had higher levels of NRG-1 and ErbB4. Moreover, phylogenetic independent contrast analyses revealed that this significant strong correlation between MLSP and NRG-1 levels was independent of phylogeny. These results suggest that NRG-1 is an important factor contributing to divergent species MLSP through its role in maintaining neuronal integrity.
Collapse
Affiliation(s)
- Yael H Edrey
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc Nutr Soc 2012; 71:246-62. [PMID: 22414320 DOI: 10.1017/s0029665112000146] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.
Collapse
|
23
|
Rocher MN, Carré D, Spinnewyn B, Schulz J, Delaflotte S, Pignol B, Chabrier PE, Auguet M. Long-term treatment with standardized Ginkgo biloba Extract (EGb 761) attenuates cognitive deficits and hippocampal neuron loss in a gerbil model of vascular dementia. Fitoterapia 2011; 82:1075-80. [DOI: 10.1016/j.fitote.2011.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 11/26/2022]
|
24
|
Vanguilder HD, Freeman WM. The hippocampal neuroproteome with aging and cognitive decline: past progress and future directions. Front Aging Neurosci 2011; 3:8. [PMID: 21647399 PMCID: PMC3102218 DOI: 10.3389/fnagi.2011.00008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/12/2011] [Indexed: 01/12/2023] Open
Abstract
Although steady progress on understanding brain aging has been made over recent decades through standard anatomical, immunohistochemical, and biochemical techniques, the biological basis of non-neurodegenerative cognitive decline with aging remains to be determined. This is due in part to technical limitations of traditional approaches, in which only a small fraction of neurobiologically relevant proteins, mRNAs or metabolites can be assessed at a time. With the development and refinement of proteomic technologies that enable simultaneous quantitative assessment of hundreds to thousands of proteins, neuroproteomic studies of brain aging and cognitive decline are becoming more widespread. This review focuses on the contributions of neuroproteomic investigations to advances in our understanding of age-related deficits of hippocampus-dependent spatial learning and memory. Accumulating neuroproteomic data demonstrate that hippocampal aging involves common themes of dysregulated metabolism, increased oxidative stress, altered protein processing, and decreased synaptic function. Additionally, growing evidence suggests that cognitive decline does not represent a "more aged" phenotype, but rather is associated with specific neuroproteomic changes that occur in addition to age-related alterations. Understanding if and how age-related changes in the hippocampal neuroproteome contribute to cognitive decline and elucidating the pathways and processes that lead to cognitive decline are critical objectives that remain to be achieved. Progress in the field and challenges that remain to be addressed with regard to animal models, behavioral testing, and proteomic reporting are also discussed.
Collapse
Affiliation(s)
- Heather D Vanguilder
- Department of Pharmacology, Penn State College of Medicine, Milton S. Hershey Medical Center Hershey, PA, USA
| | | |
Collapse
|
25
|
Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 2010; 30:5368-75. [PMID: 20392958 DOI: 10.1523/jneurosci.6251-09.2010] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain-derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age, and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood.
Collapse
|
26
|
Pei X, Yang R, Zhang Z, Gao L, Wang J, Xu Y, Zhao M, Han X, Liu Z, Li Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.04.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiol Aging 2010; 31:118-28. [DOI: 10.1016/j.neurobiolaging.2008.03.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/03/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022]
|
28
|
Age-related Changes in the Insulin Receptor β in the Gerbil Hippocampus. Neurochem Res 2009; 34:2154-62. [DOI: 10.1007/s11064-009-0010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
29
|
Gong P, Zheng A, Chen D, Ge W, Lv C, Zhang K, Gao X, Zhang F. Effect of BDNF Val66Met polymorphism on digital working memory and spatial localization in a healthy Chinese Han population. J Mol Neurosci 2009; 38:250-6. [PMID: 19424874 DOI: 10.1007/s12031-009-9205-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Cognitive abilities are complex human traits influenced by genetic factors. Brain-derived neurotrophic factor (BDNF), a unique polypeptide growth factor, has an influence on the differentiation and survival of neurons in the nervous system. A single-nucleotide polymorphism (rs6265) in the human gene, resulting in a valine to methionine substitution in the pro-BDNF protein, was thought to associate with psychiatric disorders and might play roles in the individual difference of cognitive abilities. However, the specific roles of the gene in cognition remain unclear. To investigate the relationships between the substitution and cognitive abilities, a healthy population-based study and the PCR-SSCP method were performed. The results showed the substitution was associated with digital working memory (p = 0.02) and spatial localization (p = 0.03), but not with inhibition, shifting, updating, visuo-spatial working memory, long-term memory, and others (p > 0.05) among the compared genotype groups analyzed by general linear model. On the other hand, the participants with BDNF (GG) had higher average performance in digital working memory and spatial localization than the ones with BDNF (AA). The findings of the present work implied that the variation in BDNF might play positive roles in human digital working memory and spatial localization.
Collapse
Affiliation(s)
- Pingyuan Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Population & Health, College of Life Science, Northwest University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Freeman WM, VanGuilder HD, Bennett C, Sonntag WE. Cognitive performance and age-related changes in the hippocampal proteome. Neuroscience 2008; 159:183-95. [PMID: 19135133 DOI: 10.1016/j.neuroscience.2008.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/06/2008] [Accepted: 12/02/2008] [Indexed: 12/26/2022]
Abstract
Declining cognitive performance is associated with increasing age, even in the absence of overt pathological processes. We and others have reported that declining cognitive performance is associated with age-related changes in brain glucose utilization, long-term potentiation and paired-pulse facilitation, protein expression, neurotransmitter levels, and trophic factors. However, it is unclear whether these changes are causes or symptoms of the underlying alterations in dendritic and synaptic morphology that occur with age. In this study, we examined the hippocampal proteome for age- and cognition-associated changes in behaviorally stratified young and old rats, using two-dimensional in-gel electrophoresis and MS/MS. Comparison of old cognitively intact with old cognitively impaired animals revealed additional changes that would not have been detected otherwise. Interestingly, not all age-related changes in protein expression were associated with cognitive decline, and distinct differences in protein expression were found when comparing old cognitively intact with old cognitively impaired rats. A large number of protein changes with age were related to the glycolysis/gluconeogenesis pathway. In total, the proteomic changes suggest that age-related alterations act synergistically with other perturbations to result in cognitive decline. This study also demonstrates the importance of examining behaviorally-defined animals in proteomic studies, as comparison of young to old animals regardless of behavioral performance would have failed to detect many cognitive impairment-specific protein expression changes evident when behavioral stratification data were used.
Collapse
Affiliation(s)
- W M Freeman
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
31
|
Morphochemical characteristics of hippocampal neurons in rats with different behavioral parameters. Bull Exp Biol Med 2008; 144:846-8. [PMID: 18856215 DOI: 10.1007/s10517-007-0445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The hippocampus (CA3 field) was studied in rats with different behavioral characteristics. Protein contents in the neuronal cytoplasm and nuclei, as well as the size of neurons in animals predisposed to stress, poorly trained in a shuttle box, and exhibiting low locomotor activity in the open field were lower than in rats resistant to stress and characterized by high learning capacity and locomotor activity. Our results suggest that neuronal differences in the hippocampal CA3 field are associated with variations in learning capacity of animals.
Collapse
|
32
|
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. ACTA ACUST UNITED AC 2008; 59:201-20. [PMID: 18708092 DOI: 10.1016/j.brainresrev.2008.07.007] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 01/13/2023]
Abstract
The decline observed during aging involves multiple factors that influence several systems. It is the case for learning and memory processes which are severely reduced with aging. It is admitted that these cognitive effects result from impaired neuronal plasticity, which is altered in normal aging but mainly in Alzheimer disease. Neurotrophins and their receptors, notably BDNF, are expressed in brain areas exhibiting a high degree of plasticity (i.e. the hippocampus, cerebral cortex) and are considered as genuine molecular mediators of functional and morphological synaptic plasticity. Modification of BDNF and/or the expression of its receptors (TrkB.FL, TrkB.T1 and TrkB.T2) have been described during normal aging and Alzheimer disease. Interestingly, recent findings show that some physiologic or pathologic age-associated changes in the central nervous system could be offset by administration of exogenous BDNF and/or by stimulating its receptor expression. These molecules may thus represent a physiological reserve which could determine physiological or pathological aging. These data suggest that boosting the expression or activity of these endogenous protective systems may be a promising therapeutic alternative to enhance healthy aging.
Collapse
|
33
|
Comparison of ionized calcium-binding adapter molecule 1 immunoreactivity of the hippocampal dentate gyrus and CA1 region in adult and aged dogs. Neurochem Res 2008; 33:1309-15. [PMID: 18270819 DOI: 10.1007/s11064-007-9584-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2-3 years) and aged (10-12 years) dogs. We also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-gamma expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.
Collapse
|
34
|
Choi JH, Lee CH, Hwang IK, Won MH, Seong JK, Yoon YS, Lee HS, Lee IS. Age-related changes in ionized calcium-binding adapter molecule 1 immunoreactivity and protein level in the gerbil hippocampal CA1 region. J Vet Med Sci 2008; 69:1131-6. [PMID: 18057827 DOI: 10.1292/jvms.69.1131] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglia are evenly distributed throughout the brain parenchyma. They respond rapidly to a variety of alterations in the microenvironment of the brain and act as sensors for pathological events in the brain. In the present study, we investigated the age-dependent changes in the immunoreactivity and protein level of ionized calcium-binding adapter molecule 1 (Iba-1), a microglial marker, in the CA1 region of the gerbil hippocampus. Iba-1 immunoreactive microglia were detected in the hippocampal CA1 region of the postnatal month 1 (PM 1) group. Iba-1 positive microglia were morphologically inactive between the PM 1 and PM 12 stages. Some Iba-1 immunoreactive microglia were present in the active form in the hippocampal CA1 region of the PM 18 and PM 24 groups. The Iba-1 protein levels in hippocampal CA1 homogenates were decreased in the PM 1 through PM 6 groups and increased in an age-dependent manner thereafter. These results suggest that Iba-1 immunoreactive microglia in the active form were detected in the hippocampal CA1 region in the PM 18 and PM 24 groups. This result may be associated with an age-dependent susceptibility to neurodegenerative diseases associated with the hippocampus.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, seoul 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hwang IK, Li H, Yoo KY, Choi JH, Lee CH, Chung DW, Kim DW, Seong JK, Yoon YS, Lee IS, Won MH. Comparison of glutamic acid decarboxylase 67 immunoreactive neurons in the hippocampal CA1 region at various age stages in dogs. Neurosci Lett 2007; 431:251-5. [PMID: 18166269 DOI: 10.1016/j.neulet.2007.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The hippocampus is a main brain region concerning learning and memory processes. It is imperative to determine the extent of alterations in number and function of inhibitory GABAergic interneurons in the hippocampus as a function of age. We examined changes in GABAergic neurons in the hippocampal CA1 region at various ages of dogs using glutamic acid decarboxylase 67 (GAD67), which is a rate-limiting enzyme for GABA synthesis. We found only one band in the brain homogenates in dogs as well as mice and rats. GAD67 immunoreactive neurons in 1-year-old dogs were mainly detected in the stratum oriens. In the 6-year-old group, GAD67 immunoreactive neurons were evenly distributed in the CA1 region, and numbers of the neurons were highest among all experimental groups. Thereafter, GAD67 immunoreactive neurons were significantly decreased region with age: GAD67 immunoreactive neurons were scarcely found in the CA1 region in 10-year-old dogs. The reduction of GAD67 immunoreactive neurons in the hippocampal CA1 region may be closely related to highly susceptibility to memory loss in old aged dogs.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hwang IK, Yoo KY, Yi SS, Kwon YG, Ahn YK, Seong JK, Lee IS, Yoon YS, Won MH. Age-related differentiation in newly generated DCX immunoreactive neurons in the subgranular zone of the gerbil dentate gyrus. Neurochem Res 2007; 33:867-72. [PMID: 17987384 DOI: 10.1007/s11064-007-9528-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/05/2007] [Indexed: 01/17/2023]
Abstract
In the present study, we investigated age-related changes of newborn neurons in the gerbil dentate gyrus using doublecortin (DCX), a marker of neuronal progenitors which differentiate into neurons in the brain. In the postnatal month 1 (PM 1) group, DCX immunoreactivity was detected in the subgranular zone of the dentate gyrus, but DCX immunoreactive neurons did not have fully developed processes. Thereafter, DCX immunoreactivity and its protein levels in the dentate gyrus were found to decrease with age. Between PM 3 and PM 18, DCX immunoreactive neuronal progenitors showed well-developed processes which projected to the granular layer of the dentate gyrus, but at PM 24, a few DCX immunoreactive neuronal progenitors were detected in the subgranular zone of the dentate gyrus. DCX protein level in the dentate gyrus at PM 1 was high, thereafter levels of DCX were decreased with time. The authors suggest that a decrease of DCX immunoreactivity and its protein level with age may be associated with aging processes in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pardon MC. Stress and ageing interactions: A paradox in the context of shared etiological and physiopathological processes. ACTA ACUST UNITED AC 2007; 54:251-73. [PMID: 17408561 DOI: 10.1016/j.brainresrev.2007.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/15/2007] [Accepted: 02/22/2007] [Indexed: 12/18/2022]
Abstract
Gerontology has made considerable progress in the understanding of the mechanisms underlying the ageing process and age-related neurodegenerative disorders. However, ways to improve quality of life in the elderly remain to be elucidated. It is now clear that stress and the ageing process share a number of underlying mechanisms bound in a very close, if not indissociable, relationship. The ageing process is regulated by the factors underlying the ability to adjust to stress, whilst stress has an influence on the life span and the quality of ageing. In addition, the ability to cope with stress in adulthood predicts life expectancy and quality of life at senescence. The ageing process and stress also share several common mechanisms, particularly in relation to the energy factor. Stress consumes energy and ageing may be considered as a cost of the energy expended to deal with the stressors to which the body is exposed throughout its lifetime. This suggests that the ageing process is associated with and/or a consequence of a long-lasting activation of the major stress responsive systems. However, despite common features, the interaction between stress and the ageing process gives rise to some paradoxes. Stress can either diminish or exacerbate the ageing process just as the ageing process can worsen or counter the effects of stress. There has been little attempt to understand how ageing and stress might interact to promote "successful" or pathological ageing. A key factor in this respect is the individual's ability to adapt to stress. Viewed from this angle, the quality of life of aged subjects may be improved through therapy designed to improve the tolerance to stress.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
38
|
Hwang IK, Moon SM, Yoo KY, Li H, Kwon HD, Hwang HS, Choi SK, Lee BH, Kim JD, Won MH. c-Myb immunoreactivity, protein and mRNA levels significantly increase in the aged hippocampus proper in gerbils. Neurochem Res 2007; 32:1091-7. [PMID: 17401667 DOI: 10.1007/s11064-006-9278-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Myb genes are a family of transcription factors and have been implicated in the control of the proliferation and differentiation of normal and transformed cells. c-Myb is the best characterized member of the myb family. In the present study, we investigated age-dependent changes of c-myb immunoreactivity, its protein and mRNA level in the hippocampus proper (CA1-3 regions) at various age stages in gerbils. In the postnatal month 1 (PM 1) group, c-myb immunoreactivity was detected in non-pyramidal neurons of the strata oriens and radiatum as well as in pyramidal neurons of the stratum pyramidale. At PM 3, c-myb immunoreactivity and its protein level were similar to those at PM 1. Thereafter, c-myb immunoreactivity and its protein level were increased with time. In the PM 24 group, c-myb immunoreactivity, its protein and mRNA levels were highest. These results suggest that the significant increase of c-myb immunoreactivity, protein and mRNA levels in the aged hippocampus may be associated with neuronal aging.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|