1
|
Chen Y, Chen L, Ji T, Yu Y, Zhang T, Wang L. The purinergic receptor P2X3 promotes facial pain by activating neurons and cytokines in the trigeminal ganglion. Int Immunopharmacol 2024; 130:111801. [PMID: 38442578 DOI: 10.1016/j.intimp.2024.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
The mechanism underlying allodynia/hyperalgesia caused by dental pulpitis has remained enigmatic. This investigation endeavored to characterize the influence of the purinergic receptor P2X3 on pain caused by experimental pulpitis and the mechanism involved. An experimental model of irreversible pulpitis was produced by the drilling and exposure of the dental pulp of the left upper first and second molars in rats, followed by measuring nociceptive responses in the oral and maxillofacial regions. Subsequently, neuronal activity and the expression of P2X3 and pertinent cytokines in the trigeminal ganglion (TG) were meticulously examined and analyzed. Histological evidence corroborated that significant pulpitis was produced in this model, which led to a distinct escalation in nociceptive responses in rats. The activation of neurons, coupled with the upregulated expression of c-fos, P2X3, p-p38, TNF-α and IL-1β, was identified subsequent to the pulpitis surgery within the TG. The selective inhibition of P2X3 with A-317491 effectively restrained the abnormal allodynia/hyperalgesia following the pulpitis surgery and concurrently inhibited the upregulation of p-p38, TNF-α and IL-1β within the TG. These findings suggest that the P2X3 signaling pathway plays a pivotal role in instigating and perpetuating pain subsequent to the induction of pulpitis in rats, implicating its association with the p38 MAPK signaling pathway and inflammatory factors.
Collapse
Affiliation(s)
- Yangxi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China; Department of Emergency and General Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Liangyu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Tuo Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yuan Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Tiejun Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China; Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Kwon M, Jung IY, Cha M, Lee BH. Inhibition of the Nav1.7 Channel in the Trigeminal Ganglion Relieves Pulpitis Inflammatory Pain. Front Pharmacol 2021; 12:759730. [PMID: 34955831 PMCID: PMC8694709 DOI: 10.3389/fphar.2021.759730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Pulpitis causes significant changes in the peripheral nervous system, which induce hyperalgesia. However, the relationship between neuronal activity and Nav1.7 expression following pulpal noxious pain has not yet been investigated in the trigeminal ganglion (TG). The aim of our study was to verify whether experimentally induced pulpitis activates the expression of Nav1.7 peripherally and the neuronal activities of the TGs can be affected by Nav1.7 channel inhibition. Acute pulpitis was induced through allyl isothiocyanate (AITC) application to the rat maxillary molar tooth pulp. Three days after AITC application, abnormal pain behaviors were recorded, and the rats were euthanized to allow for immunohistochemical, optical imaging, and western blot analyses of the Nav1.7 expression in the TG. A significant increase in AITC-induced pain-like behaviors and histological evidence of pulpitis were observed. In addition, histological and western blot data showed that Nav1.7 expressions in the TGs were significantly higher in the AITC group than in the naive and saline group rats. Optical imaging showed that the AITC group showed higher neuronal activity after electrical stimulation of the TGs. Additionally, treatment of ProTxII, selective Nav1.7 blocker, on to the TGs in the AITC group effectively suppressed the hyperpolarized activity after electrical stimulation. These findings indicate that the inhibition of the Nav1.7 channel could modulate nociceptive signal processing in the TG following pulp inflammation.
Collapse
Affiliation(s)
- Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Il Young Jung
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Tavares-Ferreira D, Lawless N, Bird EV, Atkins S, Collier D, Sher E, Malki K, Lambert DW, Boissonade FM. Correlation of miRNA expression with intensity of neuropathic pain in man. Mol Pain 2020; 15:1744806919860323. [PMID: 31218919 PMCID: PMC6620726 DOI: 10.1177/1744806919860323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral nerve injury causes changes in expression of multiple receptors and mediators that participate in pain processing. We investigated the expression of microRNAs (miRNAs) – a class of post-transcriptional regulators involved in many physiological and pathophysiological processes – and their potential role in the development or maintenance of chronic neuropathic pain following lingual nerve injury in human and rat. Methods We profiled miRNA expression in Sprague-Dawley rat and human lingual nerve neuromas using TaqMan® low-density array cards. Expression of miRNAs of interest was validated via specific probes and correlated with nerve injury-related behavioural change in rat (time spent drinking) and clinical pain (visual analogue scale (VAS) score). Target prediction was performed using publicly available algorithms; gene enrichment and pathway analysis were conducted with MetaCore. Networks of miRNAs and putative target genes were created with Cytoscape; interaction of miRNAs and target genomes in rat and human was displayed graphically using CircosPlot. Results rno-miR-138 was upregulated in lingual nerve of injured rats versus sham controls. rno-miR-138 and rno-miR-667 expression correlated with behavioural change at day 3 post-injury (with negative (rno-miR-138) and positive (rno-miR-667) correlations between expression and time spent drinking). In human, hsa-miR-29a was downregulated in lingual nerve neuromas of patients with higher pain VAS scores (painful group) versus patients with lower pain VAS scores (non-painful). A statistically significant negative correlation was observed between expression of both hsa-miR-29a and hsa-miR-500a, and pain VAS score. Conclusions Our results show that following lingual nerve injury, there are highly significant correlations between abundance of specific miRNAs, altered behaviour and pain scores. This study provides the first demonstration of correlations between human miRNA levels and VAS scores for neuropathic pain and suggests a potential contribution of specific miRNAs to the development of chronic pain following lingual nerve injury. Putative targets for candidate miRNAs include genes related to interleukin and chemokine receptors and potassium channels.
Collapse
Affiliation(s)
| | - Nathan Lawless
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emma V Bird
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - Simon Atkins
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - David Collier
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emanuele Sher
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Karim Malki
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | | | | |
Collapse
|
4
|
Kern KU, Schwickert-Nieswandt M, Maihöfner C, Gaul C. Topical Ambroxol 20% for the Treatment of Classical Trigeminal Neuralgia - A New Option? Initial Clinical Case Observations. Headache 2019; 59:418-429. [PMID: 30653673 DOI: 10.1111/head.13475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Trigeminal neuralgia is difficult to treat and shows upregulation of sodium channels. The expectorant ambroxol acts as a strong local anesthetic, about 40 times stronger than lidocaine. It preferentially inhibits the channel subtype Nav 1.8, expressed especially in nociceptive C-fibers. It seemed reasonable to try ambroxol for the treatment with neuropathic facial pain unresponsive to other standard options. MATERIAL AND METHODS Medical records of patients suffering from classical trigeminal neuralgia (n = 5) and successful pain reduction following topical ambroxol 20% cream in addition to standard treatment are reported. RESULTS All patients reported pain attacks with pain intensity between 4 and 10 NRS (numeric pain scale). In all cases they could be triggered, 3 patients reported additional spontaneous pain. Attacks were reduced in all 5 patients. Pain reduction achieved following ambroxol 20% cream was 2-8 points (NRS) earliest within 15-30 minutes and lasted for 4-6 hours mostly. This was reproducible in all cases; in one case pain was eliminated after 1 week. No patient reported side effects or skin changes; oral medication was reduced in 2 patients. CONCLUSION For the first time, a clinically significant pain relief following topical ambroxol 20% cream in patients with trigeminal neuralgia is reported. In view of the positive side effect profile, topical ambroxol for patients with such a highly impaired quality of life should be investigated further as a matter of urgency.
Collapse
Affiliation(s)
- Kai-Uwe Kern
- Institute for Pain Medicine/Pain Practice Wiesbaden, Wiesbaden, Germany
| | | | | | - Charly Gaul
- Migraine and Headache Clinic, Königstein, Germany
| |
Collapse
|
5
|
Acute hyperalgesia and delayed dry eye after corneal abrasion injury. Pain Rep 2018; 3:e664. [PMID: 30123857 PMCID: PMC6085140 DOI: 10.1097/pr9.0000000000000664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/28/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction: Corneal nerves mediate pain from the ocular surface, lacrimation, and blinking, all of which protect corneal surface homeostasis and help preserve vision. Because pain, lacrimation and blinking are rarely assessed at the same time, it is not known whether these responses and their underlying mechanisms have similar temporal dynamics after acute corneal injury. Methods: We examined changes in corneal nerve density, evoked and spontaneous pain, and ocular homeostasis in Sprague-Dawley male rats after a superficial epithelial injury with heptanol. We also measured changes in calcitonin gene-related peptide (CGRP), which has been implicated in both pain and epithelial repair. Results: Hyperalgesia was seen 24 hours after abrasion injury, while basal tear production was normal. One week after abrasion injury, pain responses had returned to baseline levels and dry eye symptoms emerged. There was no correlation between epithelial nerve density and pain responses. Expression of both ATF3 (a nerve injury marker) and CGRP increased in trigeminal ganglia 24 hours after injury when hyperalgesia was seen, and returned to normal one week later when pain behavior was normal. These molecular changes were absent in the contralateral ganglion, despite reductions in corneal epithelial nerve density in the uninjured eye. By contrast, CGRP was upregulated in peripheral corneal endings 1 week after injury, when dry eye symptoms emerged. Conclusion: Our results demonstrate dynamic trafficking of CGRP within trigeminal sensory nerves following corneal injury, with elevations in the ganglion correlated with pain behaviors and elevations in peripheral endings correlated with dry eye symptoms.
Collapse
|
6
|
Bird EV, Iannitti T, Christmas CR, Obara I, Andreev VI, King AE, Boissonade FM. A Novel Role for Lymphotactin (XCL1) Signaling in the Nervous System: XCL1 Acts via its Receptor XCR1 to Increase Trigeminal Neuronal Excitability. Neuroscience 2018; 379:334-349. [PMID: 29588250 PMCID: PMC5953414 DOI: 10.1016/j.neuroscience.2018.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023]
Abstract
We identified XCR1 in the peripheral and central nervous systems and demonstrated its upregulation following nerve injury. In injured nerve, XCR1 is present in nerve fibers, CD45-positive leucocytes and Schwann cells. In Vc, XCR1 labeling is consistent with expression in terminals of Aδ- and C-fiber afferents and excitatory interneurons. XCL1 increases neuronal excitability and activates intracellular signaling in Vc, a pain-processing region of the CNS. These data provide the first evidence that the XCL1-XCR1 axis may play a role in trigeminal pain pathways.
Chemokines are known to have a role in the nervous system, influencing a range of processes including the development of chronic pain. To date there are very few studies describing the functions of the chemokine lymphotactin (XCL1) or its receptor (XCR1) in the nervous system. We investigated the role of the XCL1-XCR1 axis in nociceptive processing, using a combination of immunohistochemical, pharmacological and electrophysiological techniques. Expression of XCR1 in the rat mental nerve was elevated 3 days following chronic constriction injury (CCI), compared with 11 days post-CCI and sham controls. XCR1 co-existed with neuronal marker PGP9.5, leukocyte common antigen CD45 and Schwann cell marker S-100. In the trigeminal root and white matter of the brainstem, XCR1-positive cells co-expressed the oligodendrocyte marker Olig2. In trigeminal subnucleus caudalis (Vc), XCR1 immunoreactivity was present in the outer laminae and was colocalized with vesicular glutamate transporter 2 (VGlut2), but not calcitonin gene-related peptide (CGRP) or isolectin B4 (IB4). Incubation of brainstem slices with XCL1 induced activation of c-Fos, ERK and p38 in the superficial layers of Vc, and enhanced levels of intrinsic excitability. These effects were blocked by the XCR1 antagonist viral CC chemokine macrophage inhibitory protein-II (vMIP-II). This study has identified for the first time a role for XCL1-XCR1 in nociceptive processing, demonstrating upregulation of XCR1 at nerve injury sites and identifying XCL1 as a modulator of central excitability and signaling via XCR1 in Vc, a key area for modulation of orofacial pain, thus indicating XCR1 as a potential target for novel analgesics.
Collapse
Affiliation(s)
- Emma V Bird
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Tommaso Iannitti
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Claire R Christmas
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Ilona Obara
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Veselin I Andreev
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Anne E King
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Fiona M Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK.
| |
Collapse
|
7
|
Mizera L, Gossrau G, Hummel T, Haehner A. Effects of analgesics on olfactory function and the perception of intranasal trigeminal stimuli. Eur J Pain 2016; 21:92-100. [DOI: 10.1002/ejp.903] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/08/2022]
Affiliation(s)
- L. Mizera
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| | - G. Gossrau
- Comprehensive Pain Center; TU Dresden; Dresden Germany
| | - T. Hummel
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| | - A. Haehner
- Smell & Taste Clinic; Department of Otorhinolaryngology; TU Dresden; Dresden Germany
| |
Collapse
|
8
|
Tsuboi Y, Honda K, Bae YC, Shinoda M, Kondo M, Katagiri A, Echizenya S, Kamakura S, Lee J, Iwata K. Morphological and functional changes in regenerated primary afferent fibres following mental and inferior alveolar nerve transection. Eur J Pain 2014; 19:1258-66. [PMID: 25523341 DOI: 10.1002/ejp.650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND It is important to know the mechanisms underlying pain abnormalities associated with inferior alveolar nerve (IAN) regeneration in order to develop the appropriate treatment for orofacial neuropathic pain patients. However, peripheral mechanisms underlying orofacial pain abnormalities following IAN regeneration are not fully understood. METHODS Head withdrawal threshold (HWT), jaw opening reflex (JOR) thresholds, single-fibre recordings of the regenerated mental nerve (MN) fibres, calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), peripherin, neurofilament-200 (NF-200) and transient receptor potential vanilloid 1 (TRPV1) expression in trigeminal ganglion (TG) cells, and electron microscopic (EM) observations of the regenerated MN fibres were studied in MN- and IAN-transected (M-IANX) rats. RESULTS HWT to mechanical or heat stimulation of the mental skin was significantly lower in M-IANX rats compared with sham rats. Mean conduction velocity of action potentials recorded from MN fibres (n = 124) was significantly slower in M-IANX rats compared with sham rats. The percentage of Fluoro-Gold (FG)-labelled CGRP-, peripherin- or TRPV1-immunoreactive (IR) cells was significantly larger in M-IANX rats compared with that of sham rats, whereas that of FG-labelled IB4- and NF-200-IR cells was significantly smaller in M-IANX rats compared with sham rats. Large-sized myelinated nerve fibres were rarely observed in M-IANX rats, whereas large-sized unmyelinated nerve fibres were frequently observed and were aggregated in the bundles at the distal portion of regenerated axons. CONCLUSIONS These findings suggest that the demyelination of MN fibres following regeneration may be involved in peripheral sensitization, resulting in the orofacial neuropathic pain associated with trigeminal nerve injury.
Collapse
Affiliation(s)
- Y Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Y C Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - M Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - M Kondo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - A Katagiri
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - S Echizenya
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - S Kamakura
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - J Lee
- Department of Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
9
|
Tan AM. Emerging evidence for P body function in the peripheral nervous system. Neurosci Lett 2013; 563:166-8. [PMID: 24211685 DOI: 10.1016/j.neulet.2013.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
10
|
Bird EV, Christmas CR, Loescher AR, Smith KG, Robinson PP, Black JA, Waxman SG, Boissonade FM. Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas. Mol Pain 2013; 9:52. [PMID: 24144460 PMCID: PMC4016210 DOI: 10.1186/1744-8069-9-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background Voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed preferentially in small diameter sensory neurons, and are thought to play a role in the generation of ectopic activity in neuronal cell bodies and/or their axons following peripheral nerve injury. The expression of Nav1.8 and Nav1.9 has been quantified in human lingual nerves that have been previously injured inadvertently during lower third molar removal, and any correlation between the expression of these ion channels and the presence or absence of dysaesthesia investigated. Results Immunohistochemical processing and quantitative image analysis revealed that Nav1.8 and Nav1.9 were expressed in human lingual nerve neuromas from patients with or without symptoms of dysaesthesia. The level of Nav1.8 expression was significantly higher in patients reporting pain compared with no pain, and a significant positive correlation was observed between levels of Nav1.8 expression and VAS scores for the symptom of tingling. No significant differences were recorded in the level of expression of Nav1.9 between patients with or without pain. Conclusions These results demonstrate that Nav1.8 and Nav1.9 are present in human lingual nerve neuromas, with significant correlations between the level of expression of Nav1.8 and symptoms of pain. These data provide further evidence that changes in expression of Nav1.8 are important in the development and/or maintenance of nerve injury-induced pain, and suggest that Nav1.8 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Emma V Bird
- Academic Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ono K, Xu S, Hitomi S, Inenaga K. Comparison of the electrophysiological and immunohistochemical properties of acutely dissociated and 1-day cultured rat trigeminal ganglion neurons. Neurosci Lett 2012; 523:162-6. [DOI: 10.1016/j.neulet.2012.06.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 01/21/2023]
|
12
|
Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar Drugs 2012; 10:281-305. [PMID: 22412801 PMCID: PMC3296997 DOI: 10.3390/md10020281] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that blocks voltage-gated sodium channels (VGSCs). VGSCs play a critical role in neuronal function under both physiological and pathological conditions. TTX has been extensively used to functionally characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels according to their sensitivity to this toxin. Alterations in the expression and/or function of some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain conditions. The administration of TTX at doses below those that interfere with the generation and conduction of action potentials in normal (non-injured) nerves has been used in humans and experimental animals under different pain conditions. These data indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, the contribution of specific TTX-sensitive VGSCs to pain is reviewed.
Collapse
|
13
|
Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ. Role of glia in orofacial pain. Neuroscientist 2011; 17:303-20. [PMID: 21512131 DOI: 10.1177/1073858410386801] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several acute and chronic pain conditions in the face or mouth are very common, and some are unique to the orofacial region. However, the etiology and pathogenesis of most orofacial chronic pain conditions are unresolved, and they are difficult to diagnose and manage. This article provides a brief overview of the neural mechanisms underlying orofacial pain and then highlights recent findings indicating that nonneural cells, specifically satellite cells in the sensory ganglia and astroglia and microglia cells in the central nervous system, are important players in both acute and chronic inflammatory and neuropathic orofacial pain conditions and may offer new targets for management of these conditions.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Devoize L, Alvarez P, Monconduit L, Dallel R. Representation of dynamic mechanical allodynia in the ventral medial prefrontal cortex of trigeminal neuropathic rats. Eur J Pain 2011; 15:676-82. [PMID: 21316272 DOI: 10.1016/j.ejpain.2010.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/06/2010] [Accepted: 11/02/2010] [Indexed: 11/28/2022]
Abstract
Trigeminal neuropathic pain is due to lesion or dysfunction of the nervous system. Dynamic mechanical allodynia is a widespread symptom of neuropathic pain for which mechanisms are still poorly understood. Recent studies demonstrate that forebrain neurons, including neurons in the medial prefrontal cortex (mPFC) are important for the perception of acute and chronic pain. Using the phosphorylation of the extracellular-signal regulated kinase (pERK-1/2) as an anatomical marker of neuronal activation, the present study investigated how dynamic mechanical allodynia is processed in the rat ventral mPFC (prelimbic and infralimbic cortex) after chronic constriction injury to the infraorbital nerve (IoN-CCI). Two weeks after unilateral IoN-CCI, rats showed a dramatic bilateral trigeminal dynamic mechanical allodynia. Light, moving stroking of the infraorbital skin resulted in strong, bilateral upregulation of pERK-1/2 in the ventral mPFC of IoN-CCI animals. pERK-1/2 was located in neuronal cells only. Stimulus-evoked pERK-1/2 immunopositive cell bodies displayed a rostrocaudal gradient and layer-selective distribution in the ventral mPFC, being predominant in the rostral ventral mPFC and in layers II-III and V-VI of the ventral mPFC. In layers II-III, intense pERK-1/2 also extended into distal dendrites, up to layer I. These results demonstrate that trigeminal nerve injury induces a significant alteration in the ventral mPFC processing of tactile stimuli and suggest that ERK phosphorylation contributes to the mechanisms underlying abnormal pain perception under this condition.
Collapse
Affiliation(s)
- Laurent Devoize
- Clermont Université, Université d'Auvergne, Neurobiologie de douleur trigémiale, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
15
|
Nakagawa K, Takeda M, Tsuboi Y, Kondo M, Kitagawa J, Matsumoto S, Kobayashi A, Sessle BJ, Shinoda M, Iwata K. Alteration of primary afferent activity following inferior alveolar nerve transection in rats. Mol Pain 2010; 6:9. [PMID: 20122287 PMCID: PMC2829527 DOI: 10.1186/1744-8069-6-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/03/2010] [Indexed: 01/17/2023] Open
Abstract
Background In order to evaluate the neural mechanisms underlying the abnormal facial pain that may develop following regeneration of the injured inferior alveolar nerve (IAN), the properties of the IAN innervated in the mental region were analyzed. Results Fluorogold (FG) injection into the mental region 14 days after IAN transection showed massive labeling of trigeminal ganglion (TG). The escape threshold to mechanical stimulation of the mental skin was significantly lower (i.e. mechanical allodynia) at 11-14 days after IAN transection than before surgery. The background activity, mechanically evoked responses and afterdischarges of IAN Aδ-fibers were significantly higher in IAN-transected rats than naive. The small/medium diameter TG neurons showed an increase in both tetrodotoxin (TTX)-resistant (TTX-R) and -sensitive (TTX-S) sodium currents (INa) and decrease in total potassium current, transient current (IA) and sustained current (IK) in IAN-transected rats. The amplitude, overshoot amplitude and number of action potentials evoked by the depolarizing pulses after 1 μM TTX administration in TG neurons were significantly higher, whereas the threshold current to elicit spikes was smaller in IAN-transected rats than naive. Resting membrane potential was significantly smaller in IAN-transected rats than that of naive. Conclusions These data suggest that the increase in both TTX-S INa and TTX-R INa and the decrease in IA and Ik in small/medium TG neurons in IAN-transected rats are involved in the activation of spike generation, resulting in hyperexcitability of Aδ-IAN fibers innervating the mental region after IAN transection.
Collapse
Affiliation(s)
- Kazuharu Nakagawa
- Department of Dysphagia Rehabilitation, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Differential anti-neuropathic pain effects of tetrodotoxin in sciatic nerve- versus infraorbital nerve-ligated rats – Behavioral, pharmacological and immunohistochemical investigations. Neuropharmacology 2010; 58:474-87. [DOI: 10.1016/j.neuropharm.2009.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 01/21/2023]
|
17
|
Lees G, Shipton E. Voltage-gated sodium channels in nociception and their potential as targets for new drugs in treatment of chronic neuropathic pain. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.cacc.2009.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Martin YB, Avendaño C. Effects of removal of dietary polyunsaturated fatty acids on plasma extravasation and mechanical allodynia in a trigeminal neuropathic pain model. Mol Pain 2009; 5:8. [PMID: 19243598 PMCID: PMC2651866 DOI: 10.1186/1744-8069-5-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/25/2009] [Indexed: 12/27/2022] Open
Abstract
Background Neuropathic pain (NP) is partially mediated by neuroinflammatory mechanisms, and also modulates local neurogenic inflammation. Dietary lipids, in particular the total amount and relative proportions of polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families, have been reported to modify the threshold for thermal and mechanical allodynia in the partial sciatic nerve ligation model of NP in rats. The effects of dietary lipids on other popular NP models, such as the chronic constriction injury (CCI), have not yet been examined. It is also unknown whether dietary PUFAs exert any effect on the capsaicin (CAP)-induced neurogenic inflammation under control or NP conditions. In this study we investigated these interrelated phenomena in the trigeminal territory, which has been much less explored, and for which not all data derived from limb nerves can be directly applied. Results We studied the effects of a CCI of the infraorbital nerve (IoN) on the development of mechanical allodynia and CAP-induced plasma extravasation in rats fed either a regular diet (RD), or a modified diet (MD) with much lower total content and ω-3:ω-6 ratio of PUFAs. In rats kept on MD, mechanical allodynia following CCI-IoN was more pronounced and developed earlier. Extravasation was substantially increased in naive rats fed MD, and displayed differential diet-depending changes one and four weeks after CCI-IoN. When compared with basal levels (in naive and/or sham cases), the net effect of CCI-IoN on ipsilateral extravasation was a reduction in the MD group, but an increase in the RD group, effectively neutralizing the original intergroup differences. Conclusion In summary, PUFA intake reduces CAP-induced neurogenic plasma extravasation in the trigeminal territory, and their removal significantly alters the mechanical allodynia and the plasma extravasation that result from a unilateral CCI-IoN. It is likely that this "protective" effect of dietary lipids is temporary. Also, the presence of contralateral effects of CCI-IoN precludes using the contralateral side as control.
Collapse
Affiliation(s)
- Yasmina B Martin
- Department of Anatomy, Histology & Neuroscience, Autonoma University of Madrid, Medical School, Madrid, Spain.
| | | |
Collapse
|
19
|
Hur YK, Choi IS, Cho JH, Park EJ, Choi JK, Choi BJ, Jang IS. Effects of carbamazepine and amitriptyline on tetrodotoxinresistant Na+ channels in immature rat trigeminal ganglion neurons. Arch Pharm Res 2008; 31:178-82. [PMID: 18365687 DOI: 10.1007/s12272-001-1138-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although anticonvulsant drugs that block voltage-dependent Na+ channels have been widely used for neuropathic pain, including peripheral nerve injury-induced pain, much less is known about the actions of these drugs on immature trigeminal ganglion (TG) neurons. Here we report the effects of carbamazepine (CBZ) and amitriptyline (ATL) on tetrodotoxin-resistant (TTX-R) Na' channels expressed on immature rat TG neurons. TTX-R Na+ currents (I(Na)) were recorded in the presence of 300 nM TTX by use of a conventional whole-cell patch clamp method. Both CBZ and ATL inhibited TTX-R I(Na) in a concentration-dependent manner, but ATL was more potent. While CBZ and ATL did not affect the overall voltage-activation relationship of TTX-R Na+ channels, both drugs shifted the voltage-activation relationship to the left, indicating that they inhibited TTX-R Na+ channels more efficiently at depolarized membrane potentials. ATL showed a profound use-dependent blockade of TTX-R I(Na), but CBZ had little effect. The present results suggest that both CBZ and ATL, common drugs used for treating neuropathic pain, efficiently inhibit TTX-R Na+ channels expressed on immature TG neurons, and that these drugs might be useful for the treatment of trigeminal nerve injury-induced neuropathic pain, as well as the inhibition of ongoing central sensitization, even during immature periods.
Collapse
Affiliation(s)
- Yun-Kyung Hur
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Padilla F, Couble ML, Coste B, Maingret F, Clerc N, Crest M, Ritter AM, Magloire H, Delmas P. Expression and localization of the Nav1.9 sodium channel in enteric neurons and in trigeminal sensory endings: implication for intestinal reflex function and orofacial pain. Mol Cell Neurosci 2007; 35:138-52. [PMID: 17363266 DOI: 10.1016/j.mcn.2007.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/21/2022] Open
Abstract
The Nav1.9 sodium channel is expressed in nociceptive DRG neurons where it contributes to spontaneous pain behavior after peripheral inflammation. Here, we used a newly developed antibody to investigate the distribution of Nav1.9 in rat and mouse trigeminal ganglion (TG) nerve endings and in enteric nervous system (ENS). In TGs, Nav1.9 was expressed in the soma of small- and medium-sized, peripherin-positive neurons. Nav1.9 was present along trigeminal afferent fibers and at terminals in lip skin and dental pulp. In the ENS, Nav1.9 was detected within the soma and proximal axons of sensory, Dogiel type II, myenteric and submucosal neurons. Immunological data were correlated with the detection of persistent TTX-resistant Na(+) currents sharing similar properties in DRG, TG and myenteric neurons. Collectively, our data support a potential role of Nav1.9 in the transmission of trigeminal pain and the regulation of intestinal reflexes. Nav1.9 might therefore constitute a molecular target for therapeutic treatments of orofacial pain and gastrointestinal syndromes.
Collapse
Affiliation(s)
- Françoise Padilla
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Bd. Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|