1
|
Kalimullina T, Sachdeva R, Pawar K, Cao S, Marwaha A, Liu J, Plunet W, Squair J, West CR, Tetzlaff W, Krassioukov AV. Neuroprotective agents ineffective in mitigating autonomic dysreflexia following experimental spinal cord injury. Exp Neurol 2024; 382:114993. [PMID: 39393671 DOI: 10.1016/j.expneurol.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND OBJECTIVES Loss of supraspinal cardiovascular control and secondary damage following spinal cord injury (SCI) lead to cardiovascular dysfunction, where autonomic dysreflexia (AD), triggered by stimuli below the injury, can cause uncontrolled blood pressure (BP) surges, posing severe health risks such as stroke and seizures. While anti-inflammatory neuroprotective agents have been studied for motor recovery, their impact on cardiovascular function remains under investigated. The objective was to assess the efficacy of four clinically approved neuroprotective agents in promoting cardiovascular recovery following SCI. METHODS Male Wistar rats received contusion at the third thoracic spinal segment (T3). Fluoxetine, Glyburide, Valproic acid, and Indomethacin were first administered at 1 h or 6 h post-SCI, and every 12 h for two weeks thereafter. Four weeks following SCI, hemodynamics were measured at rest and during colorectal distension. Locomotor function was assessed prior to SCI and weekly for four weeks after SCI, using the Basso-Beattie-Bresnahan (BBB) locomotor scale. Quantitative comparisons of lesion area were performed. RESULTS Contrary to the published literature, Indomethacin and Valproic acid resulted in high morbidity and mortality rates 60 % and 40 % respectively) within 2-3 days of administration. Fluoxetine, and Glyburide were well-tolerated. There were no differences in change in systolic BP with colorectal distension compared to control i.e., all experimental groups experienced severe episodes of AD [F(6, 67) = 0.94, p = 0.47]. There was no significant difference in BBB scores in any experimental group compared to control [F(18, 252) = 0.3, p = 0.99]. No between-group differences were observed in tissue sparing at the lesion epicentre [F(6, 422) = 6.98, p = 0.29]. DISCUSSION Despite promising beneficial effect reported in previous studies, none of the drugs demonstrated improvement in cardiovascular or motor function. Indomethacin and Valproic acid exhibited unexpected high mortality at doses deemed safe in the literature. This emphasizes the necessity for reproducibility studies in pre-clinical research and underscores the importance of publishing null findings to guide future investigations.
Collapse
Affiliation(s)
- Tamila Kalimullina
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada.
| | - Kiran Pawar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Steven Cao
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Arshdeep Marwaha
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Ward Plunet
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Jordan Squair
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Cell & Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada; GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada.
| |
Collapse
|
2
|
Ma X, Wang X, Ma X, Zhang X, Gong X, Sun R, Wong SH, Chan MTV, Wu WKK. An update on the roles of circular RNAs in spinal cord injury. Mol Neurobiol 2022; 59:2620-2628. [PMID: 35112318 DOI: 10.1007/s12035-021-02721-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022]
Abstract
Spinal cord injury (SCI) is a disabling condition for which therapeutic options are limited. Increasing number of microarray and next-generation sequencing studies have demonstrated that SCI coincides with altered expression of circular RNAs (circRNAs) in the damaged tissue. Emerging functional evidence further pinpointed specific differentially expressed circRNAs (e.g., circ-HIPK3, cicRNA.7079, circRNA_01477, circRNA-2960, and circ_0001723) for their effects on cellular processes relevant to SCI repair and regeneration, including neuronal apoptosis, astrocyte activation, and neuroinflammation, via sponging SCI-related microRNAs. Although circRNAs and their target microRNAs appear to be good candidates for therapeutic exploitation in SCI, further investigation into the efficient delivery of these regulatory molecules in a cell-type specific manner is a pre-requisite for translating these basic discoveries into clinical benefits.
Collapse
Affiliation(s)
- Xuezhen Ma
- Department Oncology of Qingdao Hospital Central, Central Qingdao Hospital, Qingdao, Shandong, China
| | - Xuesong Wang
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, Shandong, China.
| | - Xuexiao Ma
- Department Spinal of affiliated, Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiugong Zhang
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, Shandong, China
| | - Xiaojin Gong
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, Shandong, China
| | - Ruifu Sun
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, Shandong, China
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
McCreedy DA, Abram CL, Hu Y, Min SW, Platt ME, Kirchhoff MA, Reid SK, Jalufka FL, Lowell CA. Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury. J Neuroinflammation 2021; 18:302. [PMID: 34952603 PMCID: PMC8705173 DOI: 10.1186/s12974-021-02353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA. .,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA. .,Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA.
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Shelby K Reid
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Frank L Jalufka
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
4
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
David S, López-Vales R. Bioactive Lipid Mediators in the Initiation and Resolution of Inflammation after Spinal Cord Injury. Neuroscience 2021; 466:273-297. [PMID: 33951502 DOI: 10.1016/j.neuroscience.2021.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada.
| | - Rubén López-Vales
- Departament de Biologia Cellular, Fisiologia i Inmunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
6
|
Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS NANO 2019; 13:10015-10028. [PMID: 31454225 DOI: 10.1021/acsnano.9b01892] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Individuals with spinal cord injury (SCI) usually suffer from permanent neurological deficits, while spontaneous recovery and therapeutic efficacy are limited. Here, we demonstrate that when given intranasally, exosomes derived from mesenchymal stem cells (MSC-Exo) could pass the blood brain barrier and migrate to the injured spinal cord area. Furthermore, MSC-Exo loaded with phosphatase and tensin homolog small interfering RNA (ExoPTEN) could attenuate the expression of PTEN in the injured spinal cord region following intranasal administrations. In addition, the loaded MSC-Exo considerably enhanced axonal growth and neovascularization, while reducing microgliosis and astrogliosis. The intranasal ExoPTEN therapy could also partly improve structural and electrophysiological function and, most importantly, significantly elicited functional recovery in rats with complete SCI. The results imply that intranasal ExoPTEN may be used clinically to promote recovery for SCI individuals.
Collapse
Affiliation(s)
- Shaowei Guo
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
- The First Affiliated Hospital , Shantou University Medical College , Shantou 515041 , China
| | | | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Shahar Ben-Shaul
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | | | - Izhak Michaelevski
- Department of Molecular Biology , Ariel University , Ariel 40700 , Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | | | - Shulamit Levenberg
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
7
|
Brennan FH, Jogia T, Gillespie ER, Blomster LV, Li XX, Nowlan B, Williams GM, Jacobson E, Osborne GW, Meunier FA, Taylor SM, Campbell KE, MacDonald KP, Levesque JP, Woodruff TM, Ruitenberg MJ. Complement receptor C3aR1 controls neutrophil mobilization following spinal cord injury through physiological antagonism of CXCR2. JCI Insight 2019; 4:98254. [PMID: 31045582 DOI: 10.1172/jci.insight.98254] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) triggers an acute-phase response that leads to systemic inflammation and rapid mobilization of bone marrow (BM) neutrophils into the blood. These mobilized neutrophils then accumulate in visceral organs and the injured spinal cord where they cause inflammatory tissue damage. The receptor for complement activation product 3a, C3aR1, has been implicated in negatively regulating the BM neutrophil response to tissue injury. However, the mechanism via which C3aR1 controls BM neutrophil mobilization, and also its influence over SCI outcomes, are unknown. Here, we show that the C3a/C3aR1 axis exerts neuroprotection in SCI by acting as a physiological antagonist against neutrophil chemotactic signals. We show that C3aR1 engages phosphatase and tensin homolog (PTEN), a negative regulator of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, to restrain C-X-C chemokine receptor type 2-driven BM neutrophil mobilization following trauma. These findings are of direct clinical significance as lower circulating neutrophil numbers at presentation were identified as a marker for improved recovery in human SCI. Our work thus identifies C3aR1 and its downstream intermediary, PTEN, as therapeutic targets to broadly inhibit neutrophil mobilization/recruitment following tissue injury and reduce inflammatory pathology.
Collapse
Affiliation(s)
| | - Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine
| | | | | | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine
| | - Bianca Nowlan
- Blood and Bone Diseases Program, Mater Research Institute
| | | | | | - Geoff W Osborne
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Kate E Campbell
- Orthopaedic Department, Princess Alexandra Hospital, Brisbane, Australia.,Princess Alexandra Hospital - Southside Clinical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane Australia
| | | | | | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine.,Trauma, Critical Care and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
8
|
Squair JW, Ruiz I, Phillips AA, Zheng MM, Sarafis ZK, Sachdeva R, Gopaul R, Liu J, Tetzlaff W, West CR, Krassioukov AV. Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. J Neurotrauma 2018; 35:2861-2871. [DOI: 10.1089/neu.2018.5703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jordan W. Squair
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- MD/PhD Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Ruiz
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A. Phillips
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mei M.Z. Zheng
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoe K. Sarafis
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rayshad Gopaul
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, Bunge MB. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials 2018; 177:176-185. [PMID: 29929081 PMCID: PMC6034707 DOI: 10.1016/j.biomaterials.2018.05.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023]
Abstract
Schwann cell (SC) transplantation has been comprehensively studied as a strategy for spinal cord injury (SCI) repair. SCs are neuroprotective and promote axon regeneration and myelination. Nonetheless, substantial SC death occurs post-implantation, which limits therapeutic efficacy. The use of extracellular matrix (ECM)-derived matrices, such as Matrigel, supports transplanted SC survival and axon growth, resulting in improved motor function. Because appropriate matrices are needed for clinical translation, we test here the use of an acellular injectable peripheral nerve (iPN) matrix. Implantation of SCs in iPN into a contusion lesion did not alter immune cell infiltration compared to injury only controls. iPN implants were larger and contained twice as many SC-myelinated axons as Matrigel grafts. SC/iPN animals performed as well as the SC/Matrigel group in the BBB locomotor test, and made fewer errors on the grid walk at 4 weeks, equalizing at 8 weeks. The fact that this clinically relevant iPN matrix is immunologically tolerated and supports SC survival and axon growth within the graft offers a highly translational possibility for improving efficacy of SC treatment after SCI. To our knowledge, it is the first time that an injectable PN matrix is being evaluated to improve the efficacy of SC transplantation in SCI repair.
Collapse
Affiliation(s)
- Susana R Cerqueira
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Yee-Shuan Lee
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Robert C Cornelison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Michaela W Mertz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
David S, Kroner A, Greenhalgh AD, Zarruk JG, López-Vales R. Myeloid cell responses after spinal cord injury. J Neuroimmunol 2018; 321:97-108. [DOI: 10.1016/j.jneuroim.2018.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
|
11
|
Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018; 15:541-553. [PMID: 29717413 PMCID: PMC6095779 DOI: 10.1007/s13311-018-0631-6] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deficits in neuronal function are a hallmark of spinal cord injury (SCI) and therapeutic efforts are often focused on central nervous system (CNS) axon regeneration. However, secondary injury responses by astrocytes, microglia, pericytes, endothelial cells, Schwann cells, fibroblasts, meningeal cells, and other glia not only potentiate SCI damage but also facilitate endogenous repair. Due to their profound impact on the progression of SCI, glial cells and modification of the glial scar are focuses of SCI therapeutic research. Within and around the glial scar, cells deposit extracellular matrix (ECM) proteins that affect axon growth such as chondroitin sulfate proteoglycans (CSPGs), laminin, collagen, and fibronectin. This dense deposition of material, i.e., the fibrotic scar, is another barrier to endogenous repair and is a target of SCI therapies. Infiltrating neutrophils and monocytes are recruited to the injury site through glial chemokine and cytokine release and subsequent upregulation of chemotactic cellular adhesion molecules and selectins on endothelial cells. These peripheral immune cells, along with endogenous microglia, drive a robust inflammatory response to injury with heterogeneous reparative and pathological properties and are targeted for therapeutic modification. Here, we review the role of glial and inflammatory cells after SCI and the therapeutic strategies that aim to replace, dampen, or alter their activity to modulate SCI scarring and inflammation and improve injury outcomes.
Collapse
Affiliation(s)
- Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky College of Medicine, 741 S. Limestone, B463 BBSRB, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
12
|
Geremia NM, Hryciw T, Bao F, Streijger F, Okon E, Lee JHT, Weaver LC, Dekaban GA, Kwon BK, Brown A. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage. Exp Neurol 2017; 295:125-134. [PMID: 28587875 DOI: 10.1016/j.expneurol.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries.
Collapse
Affiliation(s)
- N M Geremia
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - T Hryciw
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Bao
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - E Okon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - J H T Lee
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - L C Weaver
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - G A Dekaban
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - B K Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - A Brown
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
13
|
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 2017; 652:3-10. [DOI: 10.1016/j.neulet.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
|
14
|
Alizadeh A, Dyck SM, Kataria H, Shahriary GM, Nguyen DH, Santhosh KT, Karimi-Abdolrezaee S. Neuregulin-1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. Glia 2017; 65:1152-1175. [DOI: 10.1002/glia.23150] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 03/12/2017] [Accepted: 03/22/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| | - Scott M. Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| | - Hardeep Kataria
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| | - Ghazaleh M. Shahriary
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| | - Dung H. Nguyen
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| | - Kallivalappil T. Santhosh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology; Spinal Cord Research Centre, University of Manitoba; Winnipeg Manitoba R3E 0J9 Canada
| |
Collapse
|
15
|
Squair JW, West CR, Popok D, Assinck P, Liu J, Tetzlaff W, Krassioukov AV. High Thoracic Contusion Model for the Investigation of Cardiovascular Function after Spinal Cord Injury. J Neurotrauma 2017; 34:671-684. [DOI: 10.1089/neu.2016.4518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jordan W. Squair
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- MD/PhD Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Popok
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Lu Q, Wang J, Jiang J, Wang S, Jia Q, Wang Y, Li W, Zhou Q, Lv L, Li Q. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats. PLoS One 2016; 11:e0165093. [PMID: 27768719 PMCID: PMC5074578 DOI: 10.1371/journal.pone.0165093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The RGD-toxin protein Lj-RGD3 is a naturally occurring 118 amino acid peptide that can be obtained from the salivary gland of the Lampetra japonica fish. This unique peptide contains 3 RGD (Arg-Gly-Asp) motifs in its primary structure. Lj-RGD3 is available in recombinant form (rLj-RGD3) and can be produced in large quantities using DNA recombination techniques. The pharmacology of the three RGD motif-containing peptides has not been studied. This study investigated the protective effects of rLj-RGD3, a novel polypeptide, against ischemia/reperfusion-induced damage to the brain caused by middle cerebral artery occlusion (MCAO) in a rat stroke model. We also explored the mechanism by which rLj-RGD3 acts by measuring protein and mRNA expression levels, with an emphasis on the FAK and integrin-PI3K/Akt anti-apoptosis pathways. METHODS rLj-RGD3 was obtained from the buccal secretions of Lampetra japonica using gene recombination technology. Sprague Dawley (SD) rats were randomly divided into the following seven groups: a sham group; a vehicle-treated (VT) group; 100.0 μg·kg-1, 50.0 μg·kg-1 and 25.0 μg·kg-1 dose rLj-RGD3 groups; and two positive controls, including 1.5 mg·kg-1 Edaravone (ED) and 100.0 μg·kg-1 Eptifibatide (EP). MCAO was induced using a model consisting of 2 h of ischemia and 24 h of reperfusion. Behavioral changes were observed in the normal and operation groups after focal cerebral ischemia/reperfusion was applied. In addition, behavioral scores were evaluated at 4 and 24 h after reperfusion. Brain infarct volumes were determined based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining. Moreover, neuronal apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. We determined the expression levels of focal adhesion kinase (FAK), phosphatidyl inositol 3-kinase (PI3K), protein kinase B (Akt, PKB), caspase-3 and Bcl-2 in the brain using western blot analysis and RT-PCR assays. The research protocol was approved by the Institutional Ethics Committee of Dalian Medical University. RESULTS The behavioral scores and cerebral infarct volumes of the rLj-RGD3 groups were markedly lower at 4 and 24 h/RF. The rLj-RGD3 protein significantly ameliorated pathological changes in the brain and reduced the number of apoptotic neurons. Furthermore, the FAK and PI3K/Akt pathways were activated. rLj-RGD3 significantly increased the expression of FAK, p-FAK and Bcl-2 proteins. In contrast, caspase-3 expression was inhibited. CONCLUSION/SIGNIFICANCE We conclude that recombinant Lampetra japonica RGD-peptide (rLj-RGD3) exerts a protective effect against cerebral ischemia/reperfusion injury in the brain. In addition, the mechanism of this protection is associated with the activation of the integrin-PI3K/Akt pathway. These results provide a theoretical foundation and an experimental basis for using RGD peptides as novel drugs for treating ischemic cerebral vascular diseases in addition to promoting the research and development of marine biotechnology drugs.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
- College of Basic Medicine, Jilin Medical College, Jilin, Jilin Province, China, 132013
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, China, 116029
- Key Laboratory of Biotechnology and Drug Discovery of Liaoning Province, Dalian, Liaoning Province, China, 116029
| | - Junshu Jiang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
| | - Shengnan Wang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
| | - Qilan Jia
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
| | - Weiping Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
| | - Qin Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China, 116044
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, China, 116029
| | - Qingwei Li
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province, China, 116029
- Key Laboratory of Biotechnology and Drug Discovery of Liaoning Province, Dalian, Liaoning Province, China, 116029
| |
Collapse
|
17
|
Rosch JC, Hollmann EK, Lippmann ES. In vitro selection technologies to enhance biomaterial functionality. Exp Biol Med (Maywood) 2016; 241:962-71. [PMID: 27188514 DOI: 10.1177/1535370216647182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells make decisions and fate choices based in part on cues they receive from their external environment. Factors that affect the interpretation of these cues include the soluble proteins that are present at any given time, the cell surface receptors that are available to bind these proteins, and the relative affinities of the soluble proteins for their cognate receptors. Researchers have identified many of the biological motifs responsible for the high-affinity interactions between proteins and their receptors, and subsequently incorporated these motifs into biomaterials to elicit control over cell behavior. Common modes of control include localized sequestration of proteins to improve bioavailability and direct inhibition or activation of a receptor by an immobilized peptide or protein. However, naturally occurring biological motifs often possess promiscuous affinity for multiple proteins and receptors or lack programmable actuation in response to dynamic stimuli, thereby limiting the amount of control they can exert over cellular decisions. These natural motifs only represent a small fraction of the biological diversity that can be assayed by in vitro selection strategies, and the discovery of "artificial" motifs with varying affinity, specificity, and functionality could greatly expand the repertoire of engineered biomaterial properties. This minireview provides a brief summary of classical and emerging techniques in peptide phage display and nucleic acid aptamer selections and discusses prospective applications in the areas of cell adhesion, angiogenesis, neural regeneration, and immune modulation.
Collapse
Affiliation(s)
- Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emma K Hollmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
18
|
Satzer D, Miller C, Maxon J, Voth J, DiBartolomeo C, Mahoney R, Dutton JR, Low WC, Parr AM. T cell deficiency in spinal cord injury: altered locomotor recovery and whole-genome transcriptional analysis. BMC Neurosci 2015; 16:74. [PMID: 26546062 PMCID: PMC4635574 DOI: 10.1186/s12868-015-0212-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/23/2015] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND T cells undergo autoimmunization following spinal cord injury (SCI) and play both protective and destructive roles during the recovery process. T cell-deficient athymic nude (AN) rats exhibit improved functional recovery when compared to immunocompetent Sprague-Dawley (SD) rats following spinal cord transection. METHODS In the present study, we evaluated locomotor recovery in SD and AN rats following moderate spinal cord contusion. To explain variable locomotor outcome, we assessed whole-genome expression using RNA sequencing, in the acute (1 week post-injury) and chronic (8 weeks post-injury) phases of recovery. RESULTS Athymic nude rats demonstrated greater locomotor function than SD rats only at 1 week post-injury, coinciding with peak T cell infiltration in immunocompetent rats. Genetic markers for T cells and helper T cells were acutely enriched in SD rats, while AN rats expressed genes for T(h)2 cells, cytotoxic T cells, NK cells, mast cells, IL-1a, and IL-6 at higher levels. Acute enrichment of cell death-related genes suggested that SD rats undergo secondary tissue damage from T cells. Additionally, SD rats exhibited increased acute expression of voltage-gated potassium (Kv) channel-related genes. However, AN rats demonstrated greater chronic expression of cell death-associated genes and less expression of axon-related genes. Immunostaining for macrophage markers revealed no T cell-dependent difference in the acute macrophage infiltrate. CONCLUSIONS We put forth a model in which T cells facilitate early tissue damage, demyelination, and Kv channel dysregulation in SD rats following contusion SCI. However, compensatory features of the immune response in AN rats cause delayed tissue death and limit long-term recovery. T cell inhibition combined with other neuroprotective treatment may thus be a promising therapeutic avenue.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Catherine Miller
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Jacob Maxon
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Joseph Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christina DiBartolomeo
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
| | - Rebecca Mahoney
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, D429 Mayo Memorial Building, MMC 96, 420 Delaware Street, SE, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma 2015; 32:1927-42. [PMID: 25962761 DOI: 10.1089/neu.2015.3903] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) issues after spinal cord injury (SCI) are of paramount importance considering they are the leading cause of death in this population. Disruption of autonomic pathways leads to a highly unstable CV system, with impaired blood pressure (BP) and heart rate regulation. In addition to low resting BP, on a daily basis the majority of those with SCI suffer from transient episodes of aberrantly low and high BP (termed orthostatic hypotension and autonomic dysreflexia, respectively). In fact, autonomic issues, including resolution of autonomic dysreflexia, are frequently ranked by individuals with high-level SCI to be of greater priority than walking again. Owing to a combination of these autonomic disturbances and a myriad of lifestyle factors, the pernicious process of CV disease is accelerated post-SCI. Unfortunately, these secondary consequences of SCI are only beginning to receive appropriate clinical attention. Immediately after high-level SCI, major CV abnormalities present in the form of neurogenic shock. After subsiding, new issues related to BP instability arise, including orthostatic hypotension and autonomic dysreflexia. This review describes autonomic control over the CV system before injury and the mechanisms underlying CV abnormalities post-SCI, while also detailing the end-organ consequences, including those of the heart, as well as the systemic and cerebral vasculature. The tertiary impact of CV dysfunction will also be discussed, such as the potential impediment of rehabilitation, and impaired cognitive function. In the recent past, our understanding of autonomic dysfunctions post-SCI has been greatly enhanced; however, it is vital to further develop our understanding of the long-term consequences of these conditions, which will equip us to better manage CV disease morbidity and mortality in this population.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Center for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia , Kelowna, British Columbia, Canada .,2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,4 Department of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Dumont CM, Park J, Shea LD. Controlled release strategies for modulating immune responses to promote tissue regeneration. J Control Release 2015; 219:155-166. [PMID: 26264833 DOI: 10.1016/j.jconrel.2015.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023]
Abstract
Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.
Collapse
Affiliation(s)
- Courtney M Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghyuck Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
21
|
Weaver LC, Bao F, Dekaban GA, Hryciw T, Shultz SR, Cain DP, Brown A. CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Exp Neurol 2015; 271:409-22. [PMID: 26169930 DOI: 10.1016/j.expneurol.2015.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/04/2015] [Indexed: 12/15/2022]
Abstract
Traumatic CNS injury triggers a systemic inflammatory response syndrome (SIRS), in which circulating inflammatory cells invade body organs causing local inflammation and tissue damage. We have shown that the SIRS caused by spinal cord injury is greatly reduced by acute intravenous treatment with an antibody against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocyte/macrophages, a treatment that reduces their efflux from the circulation. Traumatic brain injury (TBI) is a frequently occurring injury after motor vehicle accidents, sporting and military injuries, and falls. Our studies have shown that the anti-CD11d treatment diminishes brain inflammation and oxidative injury after moderate or mild TBI, improving neurological outcomes. Accordingly, we examined the impact of this treatment on the SIRS triggered by TBI. The anti-CD11d treatment was given at 2h after a single moderate (2.5-3.0 atm) or 2 and 24h after each of three consecutive mild (1.0-1.5 atm) fluid percussion TBIs. Sham-injured, saline-treated rats served as controls. At 24h, 72 h, and 4 or 8 weeks after the single TBI and after the third of three TBIs, lungs of rats were examined histochemically, immunocytochemically and biochemically for downstream effects of SIRS including inflammation, tissue damage and expression of oxidative enzymes. Lung sections revealed that both the single moderate and repeated mild TBI caused alveolar disruption, thickening of inter-alveolar tissue, hemorrhage into the parenchyma and increased density of intra-and peri-alveolar macrophages. The anti-CD11d treatment decreased the intrapulmonary influx of neutrophils and the density of activated macrophages and the activity of myeloperoxidase after these TBIs. Moreover, Western blotting studies showed that the treatment decreased lung protein levels of oxidative enzymes gp91(phox), inducible nitric oxide synthase and cyclooxygenase-2, as well as the apoptotic pathway enzyme caspase-3 and levels of 4-hydroxynonenal-bound proteins (an indicator of lipid peroxidation). Decreased expression of the cytoprotective transcription factor Nrf2 reflected decreased lung oxidative stress. Anti-CD11d treatment also diminished the lung concentration of free radicals and tissue aldehydes. In conclusion, the substantial lung component of the SIRS after single or repeated TBIs is significantly decreased by a simple, minimally invasive and short-lasting anti-inflammatory treatment.
Collapse
Affiliation(s)
- Lynne C Weaver
- Spinal Cord Injury Team, Molecular Medicine, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | - Feng Bao
- Spinal Cord Injury Team, Molecular Medicine, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Gregory A Dekaban
- Spinal Cord Injury Team, Molecular Medicine, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Todd Hryciw
- Spinal Cord Injury Team, Molecular Medicine, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sandy R Shultz
- Program in Neuroscience, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Donald P Cain
- Program in Neuroscience, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Psychology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Arthur Brown
- Spinal Cord Injury Team, Molecular Medicine, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Program in Neuroscience, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
22
|
Squair JW, West CR, Krassioukov AV. Neuroprotection, Plasticity Manipulation, and Regenerative Strategies to Improve Cardiovascular Function following Spinal Cord Injury. J Neurotrauma 2015; 32:609-21. [PMID: 25582334 DOI: 10.1089/neu.2014.3743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Damage to the central nervous system, as in the case of spinal cord injury (SCI), results in disrupted supraspinal sympathetic influence and subsequent cardiovascular control impairments. Consequently, people with SCI suffer from disordered basal hemodynamics and devastating fluctuations in blood pressure, as in the case of autonomic dysreflexia (AD), which likely contribute to this population's leading cause of mortality: cardiovascular disease. The development of AD is related, at least in part, to neuroanatomical changes that include disrupted descending supraspinal sympathetic control, changes in propriospinal circuitry, and inappropriate afferent sprouting in the dorsal horn. These anatomical mechanisms may thus be targeted by neural regenerative and protective therapies to improve cardiovascular control and reduce AD. Here, we discuss the relationship between abnormal cardiovascular control and its underlying neuroanatomy. We then review current studies investigating biochemical strategies to reduce the severity of AD through: 1) reducing aberrant calcitonin gene-related peptide immunoreactive afferent sprouting; 2) inhibiting inflammatory processes; and 3) re-establishing descending supraspinal sympathetic control. Finally, we discuss why additional biochemical agents and combinational approaches may be needed to completely ameliorate this condition.
Collapse
Affiliation(s)
- Jordan W Squair
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
23
|
Singh PL, Agarwal N, Barrese JC, Heary RF. Current therapeutic strategies for inflammation following traumatic spinal cord injury. Neural Regen Res 2015; 7:1812-21. [PMID: 25624806 PMCID: PMC4302532 DOI: 10.3969/j.issn.1673-5374.2012.23.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Damage from spinal cord injury occurs in two phases – the trauma of the initial mechanical insult and a secondary injury to nervous tissue spared by the primary insult. Apart from damage sustained as a result of direct trauma to the spinal cord, the post-traumatic inflammatory response contributes significantly to functional motor deficits exacerbated by the secondary injury. Attenuating the detrimental aspects of the inflammatory response is a promising strategy to potentially ameliorate the secondary injury, and promote significant functional recovery. This review details how the inflammatory component of secondary injury to the spinal cord can be treated currently and in the foreseeable future.
Collapse
Affiliation(s)
- Priyanka L Singh
- Department of Neurological Surgery, UMDNJ - New Jersey Medical School, Newark, NJ 07101-1709, USA ; Reynolds Family Spine Laboratory, Newark, NJ 07101-1709, USA
| | - Nitin Agarwal
- Department of Neurological Surgery, UMDNJ - New Jersey Medical School, Newark, NJ 07101-1709, USA ; Reynolds Family Spine Laboratory, Newark, NJ 07101-1709, USA
| | - James C Barrese
- Department of Neurological Surgery, UMDNJ - New Jersey Medical School, Newark, NJ 07101-1709, USA
| | - Robert F Heary
- Department of Neurological Surgery, UMDNJ - New Jersey Medical School, Newark, NJ 07101-1709, USA ; Reynolds Family Spine Laboratory, Newark, NJ 07101-1709, USA
| |
Collapse
|
24
|
Hooshmand MJ, Galvan MD, Partida E, Anderson AJ. Characterization of recovery, repair, and inflammatory processes following contusion spinal cord injury in old female rats: is age a limitation? IMMUNITY & AGEING 2014; 11:15. [PMID: 25512759 PMCID: PMC4265993 DOI: 10.1186/1742-4933-11-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/12/2014] [Indexed: 01/14/2023]
Abstract
Background Although the incidence of spinal cord injury (SCI) is steadily rising in the elderly human population, few studies have investigated the effect of age in rodent models. Here, we investigated the effect of age in female rats on spontaneous recovery and repair after SCI. Young (3 months) and aged (18 months) female rats received a moderate contusion SCI at T9. Behavioral recovery was assessed, and immunohistocemical and stereological analyses performed. Results Aged rats demonstrated greater locomotor deficits compared to young, beginning at 7 days post-injury (dpi) and lasting through at least 28 dpi. Unbiased stereological analyses revealed a selective increase in percent lesion area and early (2 dpi) apoptotic cell death caudal to the injury epicenter in aged versus young rats. One potential mechanism for these differences in lesion pathogenesis is the inflammatory response; we therefore assessed humoral and cellular innate immune responses. No differences in either acute or chronic serum complement activity, or acute neutrophil infiltration, were observed between age groups. However, the number of microglia/macrophages present at the injury epicenter was increased by 50% in aged animals versus young. Conclusions These data suggest that age affects recovery of locomotor function, lesion pathology, and microglia/macrophage response following SCI.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel D Galvan
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA.,Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth Partida
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Sakurai K, Matsuoka T, Suzuki C, Kinoshita J, Takayama G, Shimomura K. Investigation of the teratogenic potential of VLA-4 antagonist derivatives in rats. Reprod Toxicol 2014; 49:162-70. [PMID: 25194688 DOI: 10.1016/j.reprotox.2014.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
Very late antigen-4 (VLA-4), which is concerned with cell-cell adhesion, plays important roles in development of the heart, and some VLA-4 antagonists cause cardiac anomalies. In this study, we evaluated the teratogenic potential of VLA-4 antagonist derivatives as screening, and investigated the conditions that induce cardiac anomalies. Seventeen compounds were orally administered to pregnant rats throughout the organogenesis period, and fetal examinations were performed. In addition, drug concentrations in the embryos were assayed. As a result, the incidence of ventricular septal defect (VSD) ranged from 0 to 100% depending on the compound. Plasma drug concentrations in the dams were related to increased incidence of VSD; however, these incidences were not increased when the concentration of the compound in the embryos at 24h after dosing was low. It is considered that continuous pharmacological activity in the embryo for more than 24h might disrupt closure of the ventricular septum.
Collapse
Affiliation(s)
- Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan.
| | - Toshiki Matsuoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Chiharu Suzuki
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Junzo Kinoshita
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Gensuke Takayama
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd., 2-58, Hiromachi 1-Chome, Shinagawa-Ku, Tokyo 140-0005, Japan
| | - Kazuhiro Shimomura
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| |
Collapse
|
26
|
Saunders NR, Noor NM, Dziegielewska KM, Wheaton BJ, Liddelow SA, Steer DL, Ek CJ, Habgood MD, Wakefield MJ, Lindsay H, Truettner J, Miller RD, Smith AI, Dietrich WD. Age-dependent transcriptome and proteome following transection of neonatal spinal cord of Monodelphis domestica (South American grey short-tailed opossum). PLoS One 2014; 9:e99080. [PMID: 24914927 PMCID: PMC4051688 DOI: 10.1371/journal.pone.0099080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/09/2014] [Indexed: 01/08/2023] Open
Abstract
This study describes a combined transcriptome and proteome analysis of Monodelphis domestica response to spinal cord injury at two different postnatal ages. Previously we showed that complete transection at postnatal day 7 (P7) is followed by profuse axon growth across the lesion with near-normal locomotion and swimming when adult. In contrast, at P28 there is no axon growth across the lesion, the animals exhibit weight-bearing locomotion, but cannot use hind limbs when swimming. Here we examined changes in gene and protein expression in the segment of spinal cord rostral to the lesion at 24 h after transection at P7 and at P28. Following injury at P7 only forty genes changed (all increased expression); most were immune/inflammatory genes. Following injury at P28 many more genes changed their expression and the magnitude of change for some genes was strikingly greater. Again many were associated with the immune/inflammation response. In functional groups known to be inhibitory to regeneration in adult cords the expression changes were generally muted, in some cases opposite to that required to account for neurite inhibition. For example myelin basic protein expression was reduced following injury at P28 both at the gene and protein levels. Only four genes from families with extracellular matrix functions thought to influence neurite outgrowth in adult injured cords showed substantial changes in expression following injury at P28: Olfactomedin 4 (Olfm4, 480 fold compared to controls), matrix metallopeptidase (Mmp1, 104 fold), papilin (Papln, 152 fold) and integrin α4 (Itga4, 57 fold). These data provide a resource for investigation of a priori hypotheses in future studies of mechanisms of spinal cord regeneration in immature animals compared to lack of regeneration at more mature stages.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- * E-mail:
| | - Natassya M. Noor
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | | | - Benjamin J. Wheaton
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Shane A. Liddelow
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Neurobiology, Stanford University, Stanford, California, United States of America
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - C. Joakim Ek
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mark D. Habgood
- Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - Matthew J. Wakefield
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Genetics, The University of Melbourne, Victoria, Australia
| | - Helen Lindsay
- Walter & Eliza Hall Institute of Medical Research, Victoria, Australia
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jessie Truettner
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Robert D. Miller
- Center for Evolutionary & Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Ian Smith
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
27
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Weaver LC, Fleming JC, Mathias CJ, Krassioukov AV. Disordered cardiovascular control after spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2013; 109:213-33. [PMID: 23098715 DOI: 10.1016/b978-0-444-52137-8.00013-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Damage to the spinal cord disrupts autonomic pathways, perturbing cardiovascular homeostasis. Cardiovascular dysfunction increases with higher levels of injury and greater severity. Disordered blood pressure control after spinal cord injury (SCI) has significant ramifications as cord-injured people have an increased risk of developing heart disease and stroke; cardiovascular dysfunction is currently a leading cause of death among those with SCI. Despite the clinical significance of abnormal cardiovascular control following SCI, this problem has been generally neglected by both the clinical and research community. Both autonomic dysreflexia and orthostatic hypotension are known to prevent and delay rehabilitation, and significantly impair the overall quality of life after SCI. Starting with neurogenic shock immediately after a higher SCI, ensuing cardiovascular dysfunctions include orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. Disordered temperature regulation accompanies these autonomic dysfunctions. This chapter reviews the human and animal studies that have furthered our understanding of the pathophysiology and mechanisms of orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. The cardiovascular dysfunction that occurs during sexual function and exercise is elaborated. New awareness of cardiovascular dysfunction after SCI has led to progress toward inclusion of this important autonomic problem in the overall assessment of the neurological condition of cord-injured people.
Collapse
|
29
|
Vaughn CN, Iafrate JL, Henley JB, Stevenson EK, Shlifer IG, Jones TB. Cellular Neuroinflammation in a Lateral Forceps Compression Model of Spinal Cord Injury. Anat Rec (Hoboken) 2013; 296:1229-46. [DOI: 10.1002/ar.22730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/31/2013] [Accepted: 05/17/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Chloe N. Vaughn
- Biomedical Sciences Program; Midwestern University; Glendale Arizona
| | - Julia L. Iafrate
- College of Osteopathic Medicine; Midwestern University; Glendale Arizona
| | | | | | - Igor G. Shlifer
- College of Osteopathic Medicine; Midwestern University; Glendale Arizona
| | - T. Bucky Jones
- College of Osteopathic Medicine; Midwestern University; Glendale Arizona
- Department of Anatomy; Midwestern University; Glendale Arizona
| |
Collapse
|
30
|
Blomster LV, Brennan FH, Lao HW, Harle DW, Harvey AR, Ruitenberg MJ. Mobilisation of the splenic monocyte reservoir and peripheral CX₃CR1 deficiency adversely affects recovery from spinal cord injury. Exp Neurol 2013; 247:226-40. [PMID: 23664962 DOI: 10.1016/j.expneurol.2013.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Macrophages in the injured spinal cord originate from resident microglia and blood monocytes. Whether this diversity in origins contributes to their seemingly dual role in immunopathology and repair processes has remained poorly understood. Here we took advantage of Cx₃cr1(gfp) mice to visualise monocyte-derived macrophages in the injured spinal cord via adoptive cell transfer and bone marrow (BM) chimera approaches. We show that the majority of infiltrating monocytes at 7 days post-injury originate from the spleen and only to a lesser extent from the BM. Prevention of early monocyte infiltration via splenectomy was associated with improved recovery at 42 days post-SCI. In addition, an increased early presence of infiltrating monocytes/macrophages, as a result of CX₃CR1 deficiency within the peripheral immune compartment, correlated with worsened injury outcomes. Adoptive transfer of identified Cx₃cr1(gfp/+) monocytes confirmed peak infiltration at 7 days post-injury, with inflammatory (Ly6C(high)) monocytes being most efficiently recruited. Focal SCI also changed the composition of the two major monocyte subsets in the blood, with more Ly6C(high) cells present during peak recruitment. Adoptive transfer experiments further suggested high turnover of inflammatory monocytes in the spinal cord at 7 days post-injury. Consistent with this, only a small proportion of infiltrating cells unequivocally expressed polarisation markers for pro-inflammatory (M1) or alternatively activated (M2) macrophages at this time point. Our findings offer new insights into the origins of monocyte-derived macrophages after SCI and their contribution to functional recovery, providing a basis for further scrutiny and selective targeting of Ly6C(high) monocytes to improve outcomes from neurotraumatic events.
Collapse
Affiliation(s)
- Linda V Blomster
- The University of Queensland, School of Biomedical Sciences, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury. J Trauma Acute Care Surg 2012; 72:1194-201;discussion 1202. [PMID: 22673245 DOI: 10.1097/ta.0b013e31824d68bd] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) triggers a systemic inflammatory response (SIR) that contributes to a high incidence of secondary organ complications, particularly after a cervical or high-level thoracic injury. Because liver plays a key role in initiating and propagating the SIR, the aim of this study was to assess the effects that SCI at differing segmental levels has on the intensity of the inflammatory response in the liver. METHODS Using male Wistar rats, clip compression SCI was performed at the 4th thoracic (T4 SCI; high-level SCI) or the 12th thoracic (T12 SCI; low-level SCI) spinal cord segment. Sham-injured rats had a partial laminectomy, but no SCI. Leukocyte recruitment to the liver, hepatic blood flow, and hepatocellular injury/death were assessed using intravital microscopy and histology. Chemokine and cytokine concentrations were assessed in the liver. Outcomes were measured at 1.5 hours, 12 hours, and 24 hours after SCI. RESULTS At 12 hours after injury, T4 SCI caused a threefold increase in hepatic leukocyte recruitment compared with T12 SCI (p < 0.05). T4 SCI induced 50% more hepatocyte injury than T12 SCI at 12 hours (p < 0.05). Hepatic blood flow decreased after SCI, but not after sham injury, and stayed decreased only after T4 SCI at 24 hours after injury. The T4 SCI-induced changes were accompanied by increases in the hepatic concentrations of interleukin-1β, leptin, interleukin 10, and cytokine-induced neutrophil chemoattractant-1 at 1.5 hours. CONCLUSIONS Our findings indicate that traumatic SCI triggers an acute SIR that contributes to hepatocellular injury. SCI-induced remote injury/dysfunction to the liver appears to be transient and is more robust after an upper thoracic SCI compared with a lower thoracic SCI.
Collapse
|
32
|
Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma 2012; 29:2375-92. [PMID: 22676851 DOI: 10.1089/neu.2012.2408] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is an international health concern often resulting in chronic neurological abnormalities, including cognitive deficits, emotional disturbances, and motor impairments. An anti-CD11d monoclonal antibody that blocks the CD11d/CD18 integrin and vascular cell adhesion molecule (VCAM)-1 interaction following experimental spinal cord injury improves functional recovery, while reducing the intraspinal number of neutrophils and macrophages, oxidative activity, and tissue damage. Since the mechanisms of secondary injury in the brain and spinal cord are similar, we designed a study to evaluate fully the effects of anti-CD11d treatment after a moderate lateral fluid percussion TBI in the rat. Rats were treated at 2 h after TBI with either the anti-CD11d antibody or an isotype-matched control antibody 1B7, and both short (24- to 72-h) and long (4-week) recovery periods were examined. The anti-CD11d integrin treatment reduced neutrophil and macrophage levels in the injured brain, with concomitant reductions in lipid peroxidation, astrocyte activation, amyloid precursor protein accumulation, and neuronal loss. The reduced neuroinflammation seen in anti-CD11d-treated rats correlated with improved performance on a number of behavioral tests. At 24 h, the anti-CD11d group performed significantly better than the 1B7 controls on several water maze measures of spatial cognition. At 4 weeks post-injury the anti-CD11d-treated rats had better sensorimotor function as assessed by the beam task, and reduced anxiety-like behaviors, as evidenced by elevated-plus maze testing, compared to 1B7 controls. These findings suggest that neuroinflammation is associated with behavioral deficits after TBI, and that anti-CD11d antibody treatment is a viable strategy to improve neurological outcomes after TBI.
Collapse
Affiliation(s)
- Feng Bao
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Gensel J, Kigerl K, Mandrekar-Colucci S, Gaudet A, Popovich P. Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell Tissue Res 2012; 349:201-13. [PMID: 22592625 PMCID: PMC10881271 DOI: 10.1007/s00441-012-1425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.
Collapse
Affiliation(s)
- J.C. Gensel
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - K.A. Kigerl
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - S. Mandrekar-Colucci
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - A.D. Gaudet
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - P.G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
34
|
Hall JCE, Priestley JV, Perry VH, Michael-Titus AT. Docosahexaenoic acid, but not eicosapentaenoic acid, reduces the early inflammatory response following compression spinal cord injury in the rat. J Neurochem 2012; 121:738-50. [DOI: 10.1111/j.1471-4159.2012.07726.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Bao F, Omana V, Brown A, Weaver LC. The systemic inflammatory response after spinal cord injury in the rat is decreased by α4β1 integrin blockade. J Neurotrauma 2012; 29:1626-37. [PMID: 22150233 DOI: 10.1089/neu.2011.2190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Abstract The systemic inflammatory response syndrome (SIRS) follows spinal cord injury (SCI) and causes damage to the lungs, kidney, and liver due to an influx of inflammatory cells from the circulation. After SCI in rats, the SIRS develops within 12 h and is sustained for at least 3 days. We have previously shown that blockade of CD11d/CD18 integrin reduces inflammation-driven secondary damage to the spinal cord. This treatment reduces the SIRS after SCI. In another study we found that blockade of α4β1 integrin limited secondary cord damage more effectively than blockade of CD11d/CD18. Therefore we considered it important to assess the effects of anti-α4β1 treatment on the SIRS in the lung, kidney, and liver after SCI. An anti-α4 antibody was given IV at 2 h after SCI at the fourth thoracic segment and the effects on the organs were evaluated at 24 h post-injury. The migration of neutrophils into the lungs and liver was markedly reduced and all three organs contained fewer macrophages. In the lungs and liver, the activation of the oxidative enzymes myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and gp91(phox), the production of free radicals, lipid peroxidation, and cell death were substantially and similarly reduced. Treatment effects were less robust in the kidney. Overall, the efficacy of the anti-α4β1 treatment did not differ greatly from that of the anti-CD11d antibody, although details of the results differed. The SIRS after SCI impedes recovery, and attenuation of the SIRS with an anti-integrin treatment is an important, clinically-relevant finding.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Team, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. Biotechniques 2012; 51:239-40, 242, 244 passim. [PMID: 21988690 DOI: 10.2144/000113754] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2001] [Accepted: 09/12/2011] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering scaffolds have emerged as a powerful tool within regenerative medicine. These materials are being designed to create environments that promote regeneration through a combination of: (i) scaffold architecture, (ii) the use of scaffolds as vehicles for transplanting progenitor cells, and/or (iii) localized delivery of inductive factors or genes encoding for these inductive factors. This review describes the techniques associated with each of these components. Additionally, the immune response is increasingly recognized as a factor influencing regeneration. The immune reaction to an implant begins with an acute response to the injury and innate recognition of foreign materials, with the subsequent chronic immune response involving specific recognition of antigens (e.g., transplanted cells) by the adaptive immune response, which can eventually lead to rejection of the implant. Thus, we also describe the impact of each component on the immune response, and strategies (e.g., material design, anti-inflammatory cytokine delivery, and immune cell recruitment/transplantation) to modulate, yet not eliminate, the local immune response in order to promote regeneration, which represents another important tool for regenerative medicine.
Collapse
|
37
|
Lin CY, Lee YS, Lin VW, Silver J. Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma 2012; 29:589-99. [PMID: 22022865 DOI: 10.1089/neu.2011.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. By applying various fibronectin fragments as well as competitive inhibitors, these effects were shown to be dependent on the connecting segment-1 (CS-1) motif of fibronectin. Furthermore, we found that acute fibronectin treatment diminished inflammation and blood-spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neuroscience, Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
38
|
Chew DJ, Fawcett JW, Andrews MR. The challenges of long-distance axon regeneration in the injured CNS. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186719 DOI: 10.1016/b978-0-444-59544-7.00013-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | |
Collapse
|
39
|
David S, López-Vales R, Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:485-502. [PMID: 23098732 DOI: 10.1016/b978-0-444-52137-8.00030-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Spinal cord injury (SCI) results in immediate damage followed by a secondary phase of tissue damage that occurs over a period of several weeks. The mechanisms underlying this secondary damage are multiple and not fully understood. A number of studies suggest that the local inflammatory response in the spinal cord that occurs after SCI contributes importantly to secondary damage. This response is mediated by cells normally found in the central nervous system (CNS) as well as infiltrating leukocytes. While the inflammatory response mediated by these cells is required for efficient clearance of tissue debris, and promotes wound healing and tissue repair, they also release various factors that can be detrimental to neurons, glia, axons, and myelin. In this chapter we provide an overview of the inflammatory response at the cell and molecular level after SCI, and review the current state of knowledge about its contribution to tissue damage and repair. Additionally, we discuss how some of this work is leading to the development and testing of drugs that modulate inflammation to treat acute SCI in humans.
Collapse
Affiliation(s)
- Samuel David
- McGill University Health Centre, Montreal, Canada.
| | | | | |
Collapse
|
40
|
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:463-484. [PMID: 23098731 DOI: 10.1016/b978-0-444-52137-8.00029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The direct primary mechanical trauma to neurons, glia and blood vessels that occurs with spinal cord injury (SCI) is followed by a complex cascade of biochemical and cellular changes which serve to increase the size of the injury site and the extent of cellular and axonal loss. The aim of neuroprotective strategies in SCI is to limit the extent of this secondary cell loss by inhibiting key components of the evolving injury cascade. In this review we will briefly outline the pathophysiological events that occur in SCI, and then review the wide range of neuroprotective agents that have been evaluated in preclinical SCI models. Agents will be considered under the following categories: antioxidants, erythropoietin and derivatives, lipids, riluzole, opioid antagonists, hormones, anti-inflammatory agents, statins, calpain inhibitors, hypothermia, and emerging strategies. Several clinical trials of neuroprotective agents have already taken place and have generally had disappointing results. In attempting to identify promising new treatments, we will therefore highlight agents with (1) low known risks or established clinical use, (2) behavioral data gained in clinically relevant animal models, (3) efficacy when administered after the injury, and (4) robust effects seen in more than one laboratory and/or more than one model of SCI.
Collapse
|
41
|
Stammers A, Liu J, Kwon B. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res 2011; 90:782-90. [DOI: 10.1002/jnr.22820] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Brown A, Dekaban GA, Weaver LC. Human spinal cord injury causes specific increases in surface expression of β integrins on leukocytes. J Neurotrauma 2011; 28:269-80. [PMID: 21142687 DOI: 10.1089/neu.2010.1618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) activates circulating leukocytes that migrate into the injured cord and bystander organs using adhesion molecule-mediated mechanisms. These cells cause oxidative damage, resulting in secondary injury to the spinal cord, as well as injury to bystander organs. This study was designed to examine, over a 6-h to 2-week period, changes in adhesion molecule surface expression on human peripheral leukocytes after SCI (9 subjects), using as controls 10 uninjured subjects and 6 general trauma patients (trauma controls, TC). Both the percentage of cells expressing a given adhesion molecule and the average level of its expression was quantified for both circulating neutrophils and monocytes. The percentage of neutrophils and monocytes expressing the selectin CD62L was unchanged in TC and SCI patients after injury compared to uninjured subjects. Concurrently, the amount of surface CD62L on neutrophils was decreased in SCI and TC subjects, and on monocytes after SCI. The percentage of neutrophils expressing α4 decreased in TC, but not in SCI, subjects. Likewise, the percentage of neutrophils and monocytes expressing CD11d decreased markedly in TC subjects, but not after SCI. In contrast, the mean surface expression of α4 and CD11d by neutrophils and monocytes increased after SCI compared with uninjured and TC subjects. The percentage of cells and surface expression of CD11b were similar in neutrophils of all three groups, whereas CD11b surface expression increased after SCI in monocytes. In summary, unlike changes found after general trauma, the proinflammatory stimulation induced by SCI increases the surface expression of adhesion molecules on circulating neutrophils and monocytes before they infiltrate the injured spinal cord and multiple organs of patients. Integrins may be excellent targets for anti-inflammatory treatment after human SCI.
Collapse
Affiliation(s)
- Feng Bao
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ. Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J Neurotrauma 2011; 28:1893-907. [PMID: 21657851 DOI: 10.1089/neu.2011.1860] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Strategies that block infiltration of leukocytes into the injured spinal cord improve sparing of white matter and neurological recovery. In this article, we examine the dependency of recovery on hematogenous depletion of neutrophils and monocytes. Mice were depleted of neutrophils or monocytes by systemic administration of anti-Ly6G or clodronate-liposomes. A third group was depleted of both subsets. Neurological improvement, based on a battery of tests of performance, and white matter sparing, occurred only in animals depleted of both neutrophils and monocytes. We also attempted to define the nature of the environment that was favorable to recovery. Hemeoxygenase-1 and malondialdehyde, markers of oxidative stress and lipid peroxidation, respectively, were reduced to similar levels in animals depleted of both neutrophils and monocytes, or only monocytes, but remained elevated in the group only depleted of neutrophils. Matrix metalloproteinase-9, a protease involved in early damage, was most strongly reduced in animals depleted of both leukocyte subsets. Finally, disruption of the blood-spinal cord barrier and abnormal nonheme iron accumulation were reduced only in animals depleted of both neutrophils and monocytes. Together, these findings indicate cooperation between neutrophils and monocytes in mediating early pathogenesis in the contused spinal cord and defining long-term neurological recovery.
Collapse
Affiliation(s)
- Sang Mi Lee
- Department of Neurological Surgery, University of California, San Francisco, California 94143-0112, USA.
| | | | | | | | | |
Collapse
|
44
|
CD11d integrin blockade reduces the systemic inflammatory response syndrome after spinal cord injury. Exp Neurol 2011; 231:272-83. [PMID: 21784069 DOI: 10.1016/j.expneurol.2011.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/26/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Traumatic injury to the spinal cord triggers a systemic inflammatory response syndrome (SIRS), in which inflammatory cells from the circulation invade organs such as the liver, lung and kidney, leading to damage of these organs. Our previous study (Gris, et al, Exp. Neurol, 2008) demonstrated that spinal cord injury (SCI) activates circulating neutrophils that then invade the lung and kidney from 2 to 24 h after injury, increasing myeloperoxidase activity, cyclooxygenase-2 and matrix metalloproteinase-9 expression and lipid peroxidation in these organs. The present study was designed to ascertain whether a treatment that limits the influx of leukocytes into the injured spinal cord would also be effective in reducing the SIRS after SCI. This treatment is intravenous delivery of a monoclonal antibody (mAb) against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocytes. We delivered the anti-CD11d mAb at 2 h post moderate clip compression SCI at the 4th or 12th thoracic segments and assessed inflammation, oxidative activity and cellular damage within the lung, kidney and liver at 12 h post-injury. In some analyses we compared high and low thoracic injuries to evaluate the importance of injury level on the intensity of the SIRS. After T4 injury, treatment with the anti-integrin mAb reduced the presence of neutrophils and macrophages in the lung, with associated decreases in expression of NF-κB and oxidative enzymes and in the concentration of free radicals in this organ. The treatment also reduced lipid peroxidation, protein nitration and cell death in the lung. The anti-CD11d treatment also reduced the inflammatory cells within the kidney after T4 injury, as well as the free radical concentration and amount of lipid peroxidation. In the liver, the mAb treatment reduced the influx of neutrophils but most of the other measures examined were unaffected by SCI. The inflammatory responses within the lung and kidney were often greater after T4 than T12 injury. Clinical studies show that SIRS, with its associated organ failure, contributes significantly to the morbidity and mortality of SCI patients. This anti-integrin treatment may block the onset of SIRS after SCI.
Collapse
|
45
|
Skarica M, Eckstein C, Whartenby KA, Calabresi PA. Novel mechanisms of immune modulation of natalizumab in multiple sclerosis patients. J Neuroimmunol 2011; 235:70-6. [PMID: 21550672 DOI: 10.1016/j.jneuroim.2011.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 11/17/2022]
Abstract
The goal of this study was to investigate the effects of natalizumab therapy on the immune cell composition and phenotype in the blood of relapsing MS patients treated over the course of 12 months. We collected peripheral blood from 26 RRMS patients before treatment onset, and then 6 and 12 months after therapy. PBMC was isolated and then analyzed for phenotypic characteristics by FACS and for cytokine production by ELISA. The results of our studies showed changes in both numbers and activation states of immune cells following therapy. These changes were observed at the 6 month timepoint and generally persisted through the 12 month timepoint. The proportions of NK cells (CD3⁻CD56+) and hematopoetic stem cells (CD34+lin⁻) were increased after natalizumab treatment. Decreases were noted in numbers of CD14+ monocytes, and possibly their migratory potential, since their expression levels of α4β1 were decreased. Relative numbers of CD20+ B cells were increased, but the proportion of CD20+ cells expressing high levels of α4β1 integrin was decreased. While proportions of CD4+ and CD8+ T cells did not change, the percentage of cells expressing α4β1 integrin was significantly decreased for both subsets. Natalizumab therapy produces a number of phenotypic changes in the immune composition of peripheral blood. These changes may help to explain both the mechanisms of action of natalizumab and also shed light on the potential for the observed increase in PML in these patients.
Collapse
Affiliation(s)
- Mario Skarica
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
46
|
Bao F, Fleming JC, Golshani R, Pearse DD, Kasabov L, Brown A, Weaver LC. A selective phosphodiesterase-4 inhibitor reduces leukocyte infiltration, oxidative processes, and tissue damage after spinal cord injury. J Neurotrauma 2011; 28:1035-49. [PMID: 21355819 DOI: 10.1089/neu.2010.1575] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that a selective phosphodiesterase type 4 inhibitor (PDE4-I; IC486051) would attenuate early inflammatory and oxidative processes following spinal cord injury (SCI) when delivered during the first 3 days after injury. Rats receiving a moderately severe thoracic-clip-compression SCI were treated with the PDE4-I (0.5, 1.0, and 3.0 mg/kg IV) in bolus doses from 2-60 h post-injury. Doses at 0.5 mg/kg and 1.0 mg/kg significantly decreased myeloperoxidase (MPO) enzymatic activity (neutrophils), expression of a neutrophil-associated protein and of ED-1 (macrophages), and estimates of lipid peroxidation in cord lesion homogenates at 24 h and 72 h post-injury by 25-40%. The 3.0 mg/kg dose had small or no effects on these measures. The PDE4-I treatment (0.5 or 1.0 mg/kg) reduced expression of the oxidative enzymes gp91(phox), inducible nitric oxide synthase, and cyclooxygenase-2, and diminished free radical generation by up to 40%. Treatment with 0.5 mg/kg PDE4-I improved motor function (as assessed by the Basso-Beattie-Bresnahan scale) significantly from 4-8 weeks after SCI (average difference 1.3 points). Mechanical allodynia elicited from the hindpaw decreased by up to 25%. The PDE4-I treatment also increased white matter volume near the lesion at 8 weeks after SCI. In conclusion, the PDE4-I reduced key markers of oxidative stress and leukocyte infiltration, producing cellular protection, locomotor improvements, and a reduction in neuropathic pain. Early inhibition of PDE4 is neuroprotective after SCI when given acutely and briefly at sufficient doses.
Collapse
Affiliation(s)
- Feng Bao
- Spinal Cord Injury Team, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.
Collapse
Affiliation(s)
- Alicia L. Hawthorne
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, 460 W. 12th Ave., 770 Biomedical Research Tower, Columbus, Ohio 43210 USA
| | - Phillip G. Popovich
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, 460 W. 12th Ave., 770 Biomedical Research Tower, Columbus, Ohio 43210 USA
| |
Collapse
|
48
|
Jakeman LB, Hoschouer EL, Basso DM. Injured mice at the gym: review, results and considerations for combining chondroitinase and locomotor exercise to enhance recovery after spinal cord injury. Brain Res Bull 2010; 84:317-26. [PMID: 20558254 DOI: 10.1016/j.brainresbull.2010.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 01/08/2023]
Abstract
Exercise provides a number of important benefits after spinal cord injury in clinical studies and animal models. However, the amount of functional improvement in overground locomotion obtained with exercise alone has been limited thus far, for reasons that are still poorly understood. One hypothesis is that the complex network of endogenous extracellular matrix components, including chondroitin sulfate proteoglycans (CSPGs), can inhibit exercise-induced remodeling and limit plasticity of spared circuitry in the adult central nervous system. Recent animal studies have shown that chondroitinase ABC (ChABC) can enhance plasticity in the adult nervous system by cleaving glycosaminoglycan sidechains from CSPGs. In this article we review the current literature on plasticity observed with locomotor training and following degradation of CSPGs with ChABC and then present a rationale for the use of exercise combined with ChABC to promote functional recovery after spinal cord injury. We also present results of a preliminary study that tested the simplest approach for combining these treatments; use of a single intraparenchymal injection of ChABC administered to the lumbar enlargement of mice with voluntary wheel running exercise after a mid-thoracic spinal contusion injury. The results are negative, yet serve to highlight limitations in our understanding of the most effective protocols for combining these approaches. Further work is directed to identify the timing, type, and quantity of exercise and pharmacological interventions that can be used to maximize functional improvements by strengthening appropriate synaptic connections.
Collapse
Affiliation(s)
- Lyn B Jakeman
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, USA.
| | | | | |
Collapse
|
49
|
Anti-alpha4beta1 integrin antibody induces receptor internalization and does not impair the function of circulating neutrophilic leukocytes. Inflamm Res 2010; 59:647-57. [PMID: 20213330 DOI: 10.1007/s00011-010-0177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/11/2010] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE A compelling strategy for treatment of spinal cord injury is the blockade of integrin-mediated leukocyte extravasation using a monoclonal antibody (mAb) against the alpha4 subunit of the alpha4beta1-integrin. However, little is known with respect to neutrophil function following anti-alpha4 mAb treatment. This study assessed the effects of anti-alpha4 mAb binding on neutrophil activation [reactive oxygen species (ROS) production], function (phagocytic activity) and anti-alpha4-mAb/alpha4beta1-integrin-complex internalization. METHODS Resting, primed or stimulated rat neutrophils were incubated ex vivo with anti-alpha4 mAb or isotype-control antibody. ROS production, phagocytic activity, and anti-alpha4-mAb/alpha4beta1-integrin-complex internalization were determined by flow cytometry using dihydrorhodamine (DHR1,2,3), fluorescent microspheres, and indirect immunolabeling, respectively. RESULTS Brief (0.5 h) incubation of resting, primed or activated neutrophils with anti-alpha4 mAb had no effect on ROS production and did not change neutrophil phagocytic activity. However, prolonged incubation (2 h), assessed only in resting neutrophils, increased ROS production. The anti-alpha4-mAb/alpha4beta1-integrin-complex was internalized after 1 h of anti-alpha4 mAb treatment and remained internalized up to 6 h. CONCLUSION Neutrophil ROS production and phagocytic function remain unaltered after brief anti-alpha4 mAb exposure, demonstrating that use of this mAb as a treatment should not adversely affect important beneficial roles of these cells.
Collapse
|
50
|
Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 2010; 30:1657-76. [PMID: 20130176 DOI: 10.1523/jneurosci.3111-09.2010] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The transplantation of neural stem/progenitor cells (NPCs) is a promising therapeutic strategy for spinal cord injury (SCI). However, to date NPC transplantation has exhibited only limited success in the treatment of chronic SCI. Here, we show that chondroitin sulfate proteoglycans (CSPGs) in the glial scar around the site of chronic SCI negatively influence the long-term survival and integration of transplanted NPCs and their therapeutic potential for promoting functional repair and plasticity. We targeted CSPGs in the chronically injured spinal cord by sustained infusion of chondroitinase ABC (ChABC). One week later, the same rats were treated with transplants of NPCs and transient infusion of growth factors, EGF, bFGF, and PDGF-AA. We demonstrate that perturbing CSPGs dramatically optimizes NPC transplantation in chronic SCI. Engrafted NPCs successfully integrate and extensively migrate within the host spinal cord and principally differentiate into oligodendrocytes. Furthermore, this combined strategy promoted the axonal integrity and plasticity of the corticospinal tract and enhanced the plasticity of descending serotonergic pathways. These neuroanatomical changes were also associated with significantly improved neurobehavioral recovery after chronic SCI. Importantly, this strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. For the first time, we demonstrate key biological and functional benefits for the combined use of ChABC, growth factors, and NPCs to repair the chronically injured spinal cord. These findings could potentially bring us closer to the application of NPCs for patients suffering from chronic SCI or other conditions characterized by the formation of a glial scar.
Collapse
|