1
|
Lei Z, Krishnamachary B, Khan NZ, Ji Y, Li Y, Li H, Brunner K, Faden AI, Jones JW, Wu J. Spinal cord injury disrupts plasma extracellular vesicles cargoes leading to neuroinflammation in the brain and neurological dysfunction in aged male mice. Brain Behav Immun 2024; 120:584-603. [PMID: 38986724 PMCID: PMC11269008 DOI: 10.1016/j.bbi.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.
Collapse
Affiliation(s)
- Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Balaji Krishnamachary
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Niaz Z Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kavitha Brunner
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimarães RM, Gonuguntla S, Smirnov I, Kipnis J, Herz J. Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 2023; 111:2155-2169.e9. [PMID: 37148871 PMCID: PMC10523880 DOI: 10.1016/j.neuron.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Spinal cord injury (SCI) causes lifelong debilitating conditions. Previous works demonstrated the essential role of the immune system in recovery after SCI. Here, we explored the temporal changes of the response after SCI in young and aged mice in order to characterize multiple immune populations within the mammalian spinal cord. We revealed substantial infiltration of myeloid cells to the spinal cord in young animals, accompanied by changes in the activation state of microglia. In contrast, both processes were blunted in aged mice. Interestingly, we discovered the formation of meningeal lymphatic structures above the lesion site, and their role has not been examined after contusive injury. Our transcriptomic data predicted lymphangiogenic signaling between myeloid cells in the spinal cord and lymphatic endothelial cells (LECs) in the meninges after SCI. Together, our findings delineate how aging affects the immune response following SCI and highlight the participation of the spinal cord meninges in supporting vascular repair.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland 1023, New Zealand
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan M Blackburn
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Q Dong
- Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Rafaela Mano Guimarães
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sriharsha Gonuguntla
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Lear BP, Moore DL. Moving CNS axon growth and regeneration research into human model systems. Front Neurosci 2023; 17:1198041. [PMID: 37425013 PMCID: PMC10324669 DOI: 10.3389/fnins.2023.1198041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Axon regeneration is limited in the adult mammalian central nervous system (CNS) due to both intrinsic and extrinsic factors. Rodent studies have shown that developmental age can drive differences in intrinsic axon growth ability, such that embryonic rodent CNS neurons extend long axons while postnatal and adult CNS neurons do not. In recent decades, scientists have identified several intrinsic developmental regulators in rodents that modulate growth. However, whether this developmentally programmed decline in CNS axon growth is conserved in humans is not yet known. Until recently, there have been limited human neuronal model systems, and even fewer age-specific human models. Human in vitro models range from pluripotent stem cell-derived neurons to directly reprogrammed (transdifferentiated) neurons derived from human somatic cells. In this review, we discuss the advantages and disadvantages of each system, and how studying axon growth in human neurons can provide species-specific knowledge in the field of CNS axon regeneration with the goal of bridging basic science studies to clinical trials. Additionally, with the increased availability and quality of 'omics datasets of human cortical tissue across development and lifespan, scientists can mine these datasets for developmentally regulated pathways and genes. As there has been little research performed in human neurons to study modulators of axon growth, here we provide a summary of approaches to begin to shift the field of CNS axon growth and regeneration into human model systems to uncover novel drivers of axon growth.
Collapse
Affiliation(s)
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Stewart AN, Jones LAT, Gensel JC. Improving translatability of spinal cord injury research by including age as a demographic variable. Front Cell Neurosci 2022; 16:1017153. [PMID: 36467608 PMCID: PMC9714671 DOI: 10.3389/fncel.2022.1017153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pre-clinical and clinical spinal cord injury (SCI) studies differ in study design, particularly in the demographic characteristics of the chosen population. In clinical study design, criteria such as such as motor scores, neurological level, and severity of injury are often key determinants for participant inclusion. Further, demographic variables in clinical trials often include individuals from a wide age range and typically include both sexes, albeit historically most cases of SCI occur in males. In contrast, pre-clinical SCI models predominately utilize young adult rodents and typically use only females. While it is often not feasible to power SCI clinical trials to test multi-variable designs such as contrasting different ages, recent pre-clinical findings in SCI animal models have emphasized the importance of considering age as a biological variable prior to human experiments. Emerging pre-clinical data have identified case examples of treatments that diverge in efficacy across different demographic variables and have elucidated several age-dependent effects in SCI. The extent to which these differing or diverging treatment responses manifest clinically can not only complicate statistical findings and trial interpretations but also may be predictive of worse outcomes in select clinical populations. This review highlights recent literature including age as a biological variable in pre-clinical studies and articulates the results with respect to implications for clinical trials. Based on emerging unpredictable treatment outcomes in older rodents, we argue for the importance of including age as a biological variable in pre-clinical animal models prior to clinical testing. We believe that careful analyses of how age interacts with SCI treatments and pathophysiology will help guide clinical trial design and may improve both the safety and outcomes of such important efforts.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Linda A. T. Jones
- Center for Outcomes and Measurement, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - John C. Gensel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States,*Correspondence: John C. Gensel,
| |
Collapse
|
5
|
Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, Han G, Yin N, Jiang X, Zhao C, Cheng S, Wang Z, Chen Y, Chen Q, Song K, Zhang Z, Niu J, Wang L, Shi Q, Chen L, Yang H, Hou S, Zhang S, Dai J. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. SCIENCE CHINA-LIFE SCIENCES 2021; 65:909-926. [PMID: 34406569 DOI: 10.1007/s11427-021-1985-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) often results in an inhibitory environment at the injury site. In our previous studies, transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI. Based on these preclinical studies, collagen scaffolds loaded with the patients' own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients. Fifteen patients with acute complete SCI and 51 patients with chronic complete SCI were enrolled and followed up for 2 to 5 years. No serious adverse events related to functional scaffold transplantation were observed. Among the patients with acute SCI, five patients achieved expansion of their sensory positions and six patients recovered sensation in the bowel or bladder. Additionally, four patients regained voluntary walking ability accompanied by reconnection of neural signal transduction. Among patients with chronic SCI, 16 patients achieved expansion of their sensation level and 30 patients experienced enhanced reflexive defecation sensation or increased skin sweating below the injury site. Nearly half of the patients with chronic cervical SCI developed enhanced finger activity. These long-term follow-up results suggest that functional scaffold transplantation may represent a feasible treatment for patients with complete SCI.
Collapse
Affiliation(s)
- Fengwu Tang
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Jiaguang Tang
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.,Department of Orthopaedics, Beijing Tongren Hospital, Beijing, 100730, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing ZhongKeZaiKang Biotechnology Co., Ltd, Beijing, 101407, China
| | - Jiaojiao Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing ZhongKeZaiKang Biotechnology Co., Ltd, Beijing, 101407, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guang Han
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Na Yin
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China.,Department of Rehabilitation, the 983rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, 300141, China
| | - Xianfeng Jiang
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Changyu Zhao
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Shixiang Cheng
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China
| | - Ziqiang Wang
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Yumei Chen
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Qiaoling Chen
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Keran Song
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Zhiwei Zhang
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China
| | - Junjie Niu
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lingjun Wang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qin Shi
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Liang Chen
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Shuxun Hou
- Fourth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, 100048, China.
| | - Sai Zhang
- Characteristics Medical Center of the Chinese People's Armed Police Forces (CAPF), Tianjin, 300162, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
6
|
Mayhew JA, Cummins MJ, Cresswell ET, Callister RJ, Smith DW, Graham BA. Age-related gene expression changes in lumbar spinal cord: Implications for neuropathic pain. Mol Pain 2021; 16:1744806920971914. [PMID: 33241748 DOI: 10.1177/1744806920971914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.
Collapse
Affiliation(s)
- Jack A Mayhew
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mitchell J Cummins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
7
|
Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev 2020; 62:101086. [PMID: 32492480 DOI: 10.1016/j.arr.2020.101086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
The effects of mouse strain and age on a model of unilateral cervical contusion spinal cord injury. PLoS One 2020; 15:e0234245. [PMID: 32542053 PMCID: PMC7295191 DOI: 10.1371/journal.pone.0234245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
There are approximately 1.2 million people currently living with spinal cord injury (SCI), with a majority of cases at the cervical level and half involving incomplete injuries. Yet, as most preclinical research has been focused on bilateral thoracic models, there remains a disconnect between bench and bedside that limits translational success. Here, we profile a clinically relevant model of unilateral cervical contusion injury in the mouse (30kD with 0, 2, 5, or 10 second dwell time). We demonstrate sustained behavioral deficits in performance on grip strength, cylinder reaching, horizontal ladderbeam and CatWalk automated gait analysis tasks. Beyond highlighting reliable parameters for injury assessment, we also explored the effect of mouse strain and age on injury outcome, including evaluation of constitutively immunodeficient mice relevant for neurotransplantation and cellular therapy testing. Comparison of C57Bl/6 and immunodeficient Rag2gamma(c)-/- as well as Agouti SCIDxRag2Gamma(c)-/- hybrid mouse strains revealed fine differences in post-injury ipsilateral grip strength as well as total number of rearings on the cylinder task. Differences in post-SCI contralateral forepaw duty cycle and regularity index as measured by CatWalk gait analysis between the two immunodeficient strains were also observed. Further, assessment of young (3–4 months old) and aging (16–17 months old) Rag2gamma(c)-/- mice identified age-related pre-injury differences in strength and rearing that were largely masked following cervical contusion injury; observations that may help interpret previous results in aged rodents as well as human clinical trials. Collectively, the work provides useful insight for experimental design and analysis of future pre-clinical studies in a translational unilateral cervical contusion injury model.
Collapse
|
9
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
10
|
Yildirim MA, Topkara B, Aydin T, Paker N, Soy D, Coskun E, Ones K, Bardak A, Kesiktas N, Ozyurt MG, Celik B, Onder B, Kılıc A, Kucuk HC, Karacan I, Türker KS. Exploring the receptor origin of vibration-induced reflexes. Spinal Cord 2020; 58:716-723. [PMID: 31942042 DOI: 10.1038/s41393-020-0419-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN An experimental design. OBJECTIVES The aim of this study was to determine the latencies of vibration-induced reflexes in individuals with and without spinal cord injury (SCI), and to compare these latencies to identify differences in reflex circuitries. SETTING A tertiary rehabilitation center in Istanbul. METHODS Seventeen individuals with chronic SCI (SCI group) and 23 participants without SCI (Control group) were included in this study. Latency of tonic vibration reflex (TVR) and whole-body vibration-induced muscular reflex (WBV-IMR) of the left soleus muscle was tested for estimating the reflex origins. The local tendon vibration was applied at six different vibration frequencies (50, 85, 140, 185, 235, and 265 Hz), each lasting for 15 s with 3-s rest intervals. The WBV was applied at six different vibration frequencies (35, 37, 39, 41, 43, and 45 Hz), each lasting for 15 s with 3-s rest intervals. RESULTS Mean (SD) TVR latency was 39.7 (5.3) ms in the SCI group and 35.9 (2.7) ms in the Control group with a mean (95% CI) difference of -3.8 (-6.7 to -0.9) ms. Mean (SD) WBV-IMR latency was 45.8 (7.4) ms in the SCI group and 43.3 (3.0) ms in the Control group with a mean (95% CI) difference of -2.5 (-6.5 to 1.4) ms. There were significant differences between TVR latency and WBV-IMR latency in both the groups (mean (95% CI) difference; -6.2 (-9.3 to -3.0) ms, p = 0.0001 for the SCI group and -7.4 (-9.3 to -5.6) ms, p = 0.011 for Control group). CONCLUSIONS The results suggest that the receptor of origin of TVR and WBV-IMR may be different.
Collapse
Affiliation(s)
- Mustafa A Yildirim
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Betilay Topkara
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| | - Tugba Aydin
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Nurdan Paker
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Derya Soy
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Evrim Coskun
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kadriye Ones
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Aysenur Bardak
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Nur Kesiktas
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Mustafa G Ozyurt
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| | - Berna Celik
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Burcu Onder
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Kılıc
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Habib C Kucuk
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ilhan Karacan
- İstanbul Physical Medicine Rehabilitation Training and Research Hospital, Istanbul, Turkey.
| | - Kemal S Türker
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Aging alters glucose uptake in the naïve and injured rodent spinal cord. Neurosci Lett 2018; 690:23-28. [PMID: 30296507 DOI: 10.1016/j.neulet.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022]
Abstract
Aging results in increased activation of inflammatory glial cells and decreased neuronal viability following spinal cord injury (SCI). Metabolism and transport of glucose is also decreased with age, although the influence of age on glucose transporter (GLUT) expression or glucose uptake in SCI is currently unknown. We therefore performed [18F]Fluorodeoxyglucose (FDG) PET imaging of young (3 month) and middle-aged (12 month) rats. Glucose uptake in middle-aged rats was decreased compared to young rats at baseline, followed by increased uptake 14 days post contusion SCI. qRT-PCR and protein analysis revealed an association between 14 day glucose uptake and 14 day post-injury inflammation. Further, gene expression analysis of neuron-specific GLUT3 and non-specific GLUT4 (present on glial cells) revealed an inverse relationship between GLUT3/4 gene expression and glucose uptake patterns. Protein expression revealed increased GLUT3 in 3 month rats only, consistent with age related decreases in glucose uptake, and increased GLUT4 in 12 month rats only, consistent with age related increases in inflammatory activity and glucose uptake. Inconsistencies between gene and protein suggest an influence of age-related impairment of translation and/or protein degradation. Overall, our findings show that age alters glucose uptake and GLUT3/4 expression profiles before and after SCI, which may be dependent on level of inflammatory response, and may suggest a therapeutic avenue in addressing glucose uptake in the aging population.
Collapse
|
12
|
Hao M, Ji XR, Chen H, Zhang W, Zhang LC, Zhang LH, Tang PF, Lu N. Cell cycle and complement inhibitors may be specific for treatment of spinal cord injury in aged and young mice: Transcriptomic analyses. Neural Regen Res 2018; 13:518-527. [PMID: 29623939 PMCID: PMC5900517 DOI: 10.4103/1673-5374.226405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies have reported age-specific pathological and functional outcomes in young and aged patients suffering spinal cord injury, but the mechanisms remain poorly understood. In this study, we examined mice with spinal cord injury. Gene expression profiles from the Gene Expression Omnibus database (accession number GSE93561) were used, including spinal cord samples from 3 young injured mice (2-3-months old, induced by Impactor at Th9 level) and 3 control mice (2-3-months old, no treatment), as well as 2 aged injured mice (15-18-months old, induced by Impactor at Th9 level) and 2 control mice (15-18-months old, no treatment). Differentially expressed genes (DEGs) in spinal cord tissue from injured and control mice were identified using the Linear Models for Microarray data method, with a threshold of adjusted P < 0.05 and |logFC(fold change)| > 1.5. Protein-protein interaction networks were constructed using data from the STRING database, followed by module analysis by Cytoscape software to screen crucial genes. Kyoto encyclopedia of genes and genomes pathway and Gene Ontology enrichment analyses were performed to investigate the underlying functions of DEGs using Database for Annotation, Visualization and Integrated Discovery. Consequently, 1,604 and 1,153 DEGs were identified between injured and normal control mice in spinal cord tissue of aged and young mice, respectively. Furthermore, a Venn diagram showed that 960 DEGs were shared among aged and young mice, while 644 and 193 DEGs were specific to aged and young mice, respectively. Functional enrichment indicates that shared DEGs are involved in osteoclast differentiation, extracellular matrix-receptor interaction, nuclear factor-kappa B signaling pathway, and focal adhesion. Unique genes for aged and young injured groups were involved in the cell cycle (upregulation of PLK1) and complement (upregulation of C3) activation, respectively. These findings were confirmed by functional analysis of genes in modules (common, 4; aged, 2; young, 1) screened from protein-protein interaction networks. Accordingly, cell cycle and complement inhibitors may be specific treatments for spinal cord injury in aged and young mice, respectively.
Collapse
Affiliation(s)
- Ming Hao
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Xin-Ran Ji
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Hua Chen
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Wei Zhang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Li-Cheng Zhang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Li-Hai Zhang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Pei-Fu Tang
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| | - Ning Lu
- Department of Orthopedic Surgery, General Hospital of People's Liberation Army (301 Hospital), Beijing, China
| |
Collapse
|
13
|
Takano M, Kawabata S, Shibata S, Yasuda A, Nori S, Tsuji O, Nagoshi N, Iwanami A, Ebise H, Horiuchi K, Okano H, Nakamura M. Enhanced Functional Recovery from Spinal Cord Injury in Aged Mice after Stem Cell Transplantation through HGF Induction. Stem Cell Reports 2017; 8:509-518. [PMID: 28216143 PMCID: PMC5355635 DOI: 10.1016/j.stemcr.2017.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022] Open
Abstract
The number of elderly patients with spinal cord injury (SCI) is increasing worldwide, representing a serious burden for both the affected patients and the community. Previous studies have demonstrated that neural stem cell (NSC) transplantation is an effective treatment for SCI in young animals. Here we show that NSC transplantation is as effective in aged mice as it is in young mice, even though aged mice exhibit more severe neurological deficits after SCI. NSCs grafted into aged mice exhibited better survival than those grafted into young mice. Furthermore, we show that the neurotrophic factor HGF plays a key role in the enhanced functional recovery after NSC transplantation observed in aged mice with SCI. The unexpected results of the present study suggest that NSC transplantation is a potential therapeutic modality for SCI, even in elderly patients.
Collapse
Affiliation(s)
- Morito Takano
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akimasa Yasuda
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hayao Ebise
- Genomic Science Laboratories, Dainippon Sumitomo Pharma Co., Ltd., 2-6-8 Doshoumachi, Chuo-ku, Osaka 541-0045, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
14
|
The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms. Neurosci Lett 2016; 652:41-49. [PMID: 27818358 DOI: 10.1016/j.neulet.2016.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 11/27/2022]
Abstract
Age is an important consideration for recovery and repair after spinal cord injury. Spinal cord injury is increasingly affecting the middle-aged and aging populations. Despite rapid progress in research to promote axonal regeneration and repair, our understanding of how age can modulate this repair is rather limited. In this review, we discuss the literature supporting the notion of an age-dependent decline in axonal growth after central nervous system (CNS) injury. While both neuron-intrinsic and extrinsic factors are involved in the control of axon growth after injury, here we focus on possible intrinsic mechanisms for this age-dependent decline.
Collapse
|
15
|
Zhang B, Bailey WM, McVicar AL, Gensel JC. Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging 2016; 47:157-167. [PMID: 27596335 DOI: 10.1016/j.neurobiolaging.2016.07.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023]
Abstract
Age potentiates neurodegeneration and impairs recovery from spinal cord injury (SCI). Previously, we observed that age alters the balance of destructive (M1) and protective (M2) macrophages; however, the age-related pathophysiology in SCI is poorly understood. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) contributes to reactive oxygen species (ROS)-mediated damage and macrophage activation in neurotrauma. Further, NOX and ROS increase with central nervous system age. Here, we found significantly higher ROS generation in 14 versus 4-month-old (MO) mice after contusion SCI. Notably, NOX2 increased in 14 MO ROS-producing macrophages suggesting that macrophages and NOX contribute to SCI oxidative stress. Indicators of lipid peroxidation, a downstream cytotoxic effect of ROS accumulation, were significantly higher in 14 versus 4 MO SCI mice. We also detected a higher percentage of ROS-producing M2 (Arginase-1-positive) macrophages in 14 versus 4 MO mice, a previously unreported SCI phenotype, and increased M1 (CD16/32-positive) macrophages with age. Thus, NOX and ROS are age-related mediators of SCI pathophysiology and normally protective M2 macrophages may potentiate secondary injury through ROS generation in the aged injured spinal cord.
Collapse
Affiliation(s)
- Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Anna Leigh McVicar
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
16
|
Perturbed cholesterol homeostasis in aging spinal cord. Neurobiol Aging 2016; 45:123-135. [PMID: 27459933 DOI: 10.1016/j.neurobiolaging.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.
Collapse
|
17
|
Zhang B, Bailey WM, Braun KJ, Gensel JC. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 2015; 273:83-91. [PMID: 26263843 DOI: 10.1016/j.expneurol.2015.08.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. Here we investigate the effect of age on IL-10, a key indicator of M2 macrophage activation. Following mild-moderate SCI in 4 and 14 month old (MO) mice we detected significantly reduced IL-10 expression with age in the injured spinal cord. Specifically, CD86/IL-10 positive macrophages, also known as M2b or regulatory macrophages, were reduced in 14 vs. 4 MO SCI animals. This age-dependent shift in macrophage phenotype was associated with impaired functional recovery and enhanced tissue damage in 14-month-old SCI mice. In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - Kaitlyn J Braun
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
18
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
19
|
Lim JH, Muguet-Chanoit AC, Smith DT, Laber E, Olby NJ. Potassium channel antagonists 4-aminopyridine and the T-butyl carbamate derivative of 4-aminopyridine improve hind limb function in chronically non-ambulatory dogs; a blinded, placebo-controlled trial. PLoS One 2014; 9:e116139. [PMID: 25551385 PMCID: PMC4281252 DOI: 10.1371/journal.pone.0116139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/04/2014] [Indexed: 01/05/2023] Open
Abstract
4-Aminopyridine (4-AP) blocks voltage gated potassium channels, restoring conduction to demyelinated axons and improving function in demyelinating conditions, but its use is associated with adverse effects and benefit in spinal cord injury is limited. Derivatives of 4-AP have been developed to improve clinical efficacy while reducing toxicity. We compared the therapeutic effects of orally administered 4-AP and its t-butyl carbamate derivative (t-butyl) with placebo in dogs that had suffered an acute spinal cord injury that left them chronically paralyzed. Nineteen dogs were entered into the trial, conducted in two-week treatment blocks starting with placebo, followed by random assignment to 4-AP or t-butyl, a washout and then the opposite medication followed by placebo. Investigators and owners were blinded to treatment group. Primary outcome measures included open field gait score (OFS), and treadmill based stepping score and regularity index, with additional secondary measures also considered. Thirteen of 19 dogs completed the protocol. Two were euthanized due to unrelated heath problems, two developed side effects and two were unable to complete for unrelated reasons. Dogs showed significant improvement in supported stepping score (from 17.39 to 37.24% with 4-AP; 16.85 to 29.18% with t-butyl p<0.0001) and OFS (from 3.63 to 4.73 with 4-AP; 3.78 to 4.45 with t-butyl, p = 0.005). Response was individually variable and most dramatic in three dogs that were able to walk without support with treatment. No significant difference was found between 4-AP and t-butyl. No adverse effects were reported with t-butyl but gastrointestinal upset and seizures were observed in two dogs with 4-AP. In conclusion, both 4-AP and t-butyl significantly improved supported stepping ability in dogs with chronic spinal cord injury with no adverse effects noted with t-butyl. Drug response varied widely between individuals, highlighting the need to understand the factors that influence canine and human patients' response to therapy.
Collapse
Affiliation(s)
- Ji-Hey Lim
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Audrey C. Muguet-Chanoit
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Daniel T. Smith
- Department Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Eric Laber
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Natasha J. Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hooshmand MJ, Galvan MD, Partida E, Anderson AJ. Characterization of recovery, repair, and inflammatory processes following contusion spinal cord injury in old female rats: is age a limitation? IMMUNITY & AGEING 2014; 11:15. [PMID: 25512759 PMCID: PMC4265993 DOI: 10.1186/1742-4933-11-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/12/2014] [Indexed: 01/14/2023]
Abstract
Background Although the incidence of spinal cord injury (SCI) is steadily rising in the elderly human population, few studies have investigated the effect of age in rodent models. Here, we investigated the effect of age in female rats on spontaneous recovery and repair after SCI. Young (3 months) and aged (18 months) female rats received a moderate contusion SCI at T9. Behavioral recovery was assessed, and immunohistocemical and stereological analyses performed. Results Aged rats demonstrated greater locomotor deficits compared to young, beginning at 7 days post-injury (dpi) and lasting through at least 28 dpi. Unbiased stereological analyses revealed a selective increase in percent lesion area and early (2 dpi) apoptotic cell death caudal to the injury epicenter in aged versus young rats. One potential mechanism for these differences in lesion pathogenesis is the inflammatory response; we therefore assessed humoral and cellular innate immune responses. No differences in either acute or chronic serum complement activity, or acute neutrophil infiltration, were observed between age groups. However, the number of microglia/macrophages present at the injury epicenter was increased by 50% in aged animals versus young. Conclusions These data suggest that age affects recovery of locomotor function, lesion pathology, and microglia/macrophage response following SCI.
Collapse
Affiliation(s)
- Mitra J Hooshmand
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Manuel D Galvan
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA.,Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Elizabeth Partida
- Reeve-Irvine Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Aileen J Anderson
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, 2001 Sue and Bill Gross Stem Cell Research, Irvine, CA 92697-4292, USA.,Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Laing AC, Brenneman EC, Yung A, liu J, Kozlowski P, Oxland T. The Effects of Age on the Morphometry of the Cervical Spinal Cord and Spinal Column in Adult Rats: An MRI-Based Study. Anat Rec (Hoboken) 2014; 297:1885-95. [PMID: 25044631 DOI: 10.1002/ar.22995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 05/04/2014] [Accepted: 05/28/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Andrew C. Laing
- Injury Biomechanics and Aging Laboratory, Department of Kinesiology; University of Waterloo, 200 University Ave West; Waterloo Ontario N2L 3G1 Canada
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; 818 West 10th Avenue Vancouver British Columbia V5Z 1M9 Canada
| | - Elora C. Brenneman
- Injury Biomechanics and Aging Laboratory, Department of Kinesiology; University of Waterloo, 200 University Ave West; Waterloo Ontario N2L 3G1 Canada
| | - Andrew Yung
- MRI Research Centre, University of British Columbia; 2221 Westbrook Mall Vancouver British Columbia V6T 2B5 Canada
| | - Jie liu
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; 818 West 10th Avenue Vancouver British Columbia V5Z 1M9 Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; 818 West 10th Avenue Vancouver British Columbia V5Z 1M9 Canada
- MRI Research Centre, University of British Columbia; 2221 Westbrook Mall Vancouver British Columbia V6T 2B5 Canada
| | - Thomas Oxland
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; 818 West 10th Avenue Vancouver British Columbia V5Z 1M9 Canada
- Orthopaedics and Injury Biomechanics Group, Departments of Orthopaedics and Mechanical Engineering; University of British Columbia; 818 West 10th Avenue Vancouver British Columbia V5Z 1M9 Canada
| |
Collapse
|
22
|
Thomas CK, Grumbles RM. Age at spinal cord injury determines muscle strength. Front Integr Neurosci 2014; 8:2. [PMID: 24478643 PMCID: PMC3899581 DOI: 10.3389/fnint.2014.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022] Open
Abstract
As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4-6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity.
Collapse
Affiliation(s)
- Christine K. Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of MedicineMiami, FL, USA
| | - Robert M. Grumbles
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA
| |
Collapse
|
23
|
Medalha CC, Jin Y, Yamagami T, Haas C, Fischer I. Transplanting neural progenitors into a complete transection model of spinal cord injury. J Neurosci Res 2014; 92:607-18. [PMID: 24452691 DOI: 10.1002/jnr.23340] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/18/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022]
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for spinal cord injury (SCI) because of the potential for cell replacement and restoration of connectivity. Our previous studies have shown that transplants of NPC, composed of neuron- and glia-restricted progenitors derived from the embryonic spinal cord, survived well in partial lesion models and generated graft-derived neurons, which could be used to form a functional relay. We have now examined the properties of a similar NPC transplant using a complete transection model in juvenile and adult rats. We found poor survival of grafted cells despite using a variety of lesion methods, matrices, and delays of transplantation. If, instead of cultured progenitor cells, the transplants were composed of segmental or dissociated segments of fetal spinal cord (FSC) derived from similar-staged embryos, grafted cells survived and integrated well with host tissue in juvenile and adult rats. FSC transplants differentiated into neurons and glial cells, including astrocytes and oligodendrocytes. Graft-derived neurons expressed glutaminergic and GABAergic markers. Grafted cells also migrated and extended processes into host tissue. Analysis of axon growth from the host spinal cord showed serotonin-positive fibers and biotinylated dextran amine-traced propriospinal axons growing into the transplants. These results suggest that in treating severe SCI, such as complete transection, NPC grafting faces major challenges related to cell survival and formation of a functional relay. Lessons learned from the efficacy of FSC transplants could be used to develop a therapeutic strategy based on neural progenitor cells for severe SCI.
Collapse
Affiliation(s)
- Carla Christina Medalha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Biosciences, Federal University of São Paulo, Santos-São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Tateda S, Yahata K, Itoi E. The role of mTOR signaling pathway in spinal cord injury. Cell Cycle 2012; 11:3175-9. [PMID: 22895182 DOI: 10.4161/cc.21262] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in multiple cellular functions, such as cell metabolism, proliferation and survival. Many previous studies have shown that mTOR regulates both neuroprotective and neuroregenerative functions in trauma and various diseases in the central nervous system (CNS). Recently, we reported that inhibition of mTOR using rapamycin reduces neural tissue damage and locomotor impairment after spinal cord injury (SCI) in mice. Our results demonstrated that the administration of rapamycin at four hours after injury significantly increases the activity of autophagy and reduces neuronal loss and cell death in the injured spinal cord. Furthermore, rapamycin-treated mice show significantly better locomotor function in the hindlimbs following SCI than vehicle-treated mice. These findings indicate that the inhibition of mTOR signaling using rapamycin during the acute phase of SCI produces neuroprotective effects and reduces secondary damage at lesion sites. However, the role of mTOR signaling in injured spinal cords has not yet been fully elucidated. Various functions are regulated by mTOR signaling in the CNS, and multiple pathophysiological processes occur following SCI. Here, we discuss several unresolved issues and review the evidence from related articles regarding the role and mechanisms of the mTOR signaling pathway in neuroprotection and neuroregeneration after SCI.
Collapse
Affiliation(s)
- Haruo Kanno
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sorani MD, Beattie MS, Bresnahan JC. A quantitative analysis of clinical trial designs in spinal cord injury based on ICCP guidelines. J Neurotrauma 2012; 29:1736-46. [PMID: 22369673 DOI: 10.1089/neu.2011.2162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Clinical studies of spinal cord injury (SCI) have evolved into multidisciplinary programs that investigate multiple types of neurological deficits and sequelae. In 2007, the International Campaign for Cures of SCI Paralysis (ICCP) proposed best practices for interventional trial designs, end-points, and inclusion criteria. Here we quantitatively assessed the extent to which SCI trials follow ICCP guidelines and reflect the overall patient population. We obtained data for all 288 SCI trials in ClinicalTrials.gov. We calculated summary statistics and observed trends pre-2007 versus 2007 onward. To compare the trial population to the overall SCI population, we obtained statistics from the National SCI Statistical Center. We generated tag clouds to describe heterogeneous trial outcomes. Most interventional studies were randomized (147, 73.1%), and utilized active (55, 36.7%) or placebo controls (49, 32.7%), both increasing trends (p=0.09). Most trials were open label (116, 53.5%), rather than double- (62, 28.6%) or single-blinded (39, 18.0%), but blinding has increased (p=0.01). Tag clouds of outcomes suggest an emphasis on assessment using scores and scales. Inclusion criteria related to American Spinal Injury Association (ASIA) status and neurological level allowed inclusion of most SCI patients. Age inclusion criteria were most commonly 18-65 or older. Consistent with ICCP recommendations, most trials were randomized and controlled, and blinding has increased. Age inclusion criteria skew older than the overall population. ASIA status criteria reflect the population, but neurological lesion criteria could be broadened. Investigators should make trial designs and results available in a complete manner to enable comparisons of populations and outcomes.
Collapse
Affiliation(s)
- Marco D Sorani
- University of California, Department of Neurological Surgery, San Francisco, California 94110-0899, USA.
| | | | | |
Collapse
|
26
|
Kumamaru H, Saiwai H, Ohkawa Y, Yamada H, Iwamoto Y, Okada S. Age-related differences in cellular and molecular profiles of inflammatory responses after spinal cord injury. J Cell Physiol 2012; 227:1335-46. [PMID: 21604270 DOI: 10.1002/jcp.22845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous experimental and clinical studies have suggested that the behavioral and pathological outcomes of spinal cord injury (SCI) are affected by the individual's age at the time of injury. However, the underlying mechanism responsible for these differences remains elusive because it is difficult to match injuries of similar severities between young and adult animals due to differences in the sizes of their respective spinal cords. In this study, the spinal cord size-matched young (4-week-old) and adult (10-week-old) mice were compared to evaluate their locomotor functions and inflammatory cellular/molecular responses after standardized contusion SCI. During the acute phase of SCI, young mice showed better functional recovery and lower pro-inflammatory cytokines/chemokines compared to adult mice. Flow-cytometric analysis revealed that the time courses of leukocyte infiltration were comparable between both groups, while the number of infiltrating neutrophils significantly decreased from 6 h after SCI in young mice. By combining flow-cytometric isolation and gene expression analysis of each inflammatory cell fraction, we found that microglial cells immediately initiate the production of several cytokines in response to SCI, which serve as major sources of IL-6, TNFa, and CXCL1 in injured spinal cord. Interestingly, the secretion of pro-inflammatory cytokines/chemokines but not anti-inflammatory cytokines by microglia was significantly lower in young mice compared to that in adult mice at 3 h after SCI, which will be attributed to the attenuation of the subsequent neutrophil infiltration. These results highlight age-related differences in pro-inflammatory properties of microglial cells that contribute to the amplification of detrimental inflammatory responses after SCI.
Collapse
Affiliation(s)
- Hiromi Kumamaru
- Department of Orthopedic Surgery, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Jaerve A, Schiwy N, Schmitz C, Mueller HW. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol 2011; 231:284-94. [PMID: 21806987 DOI: 10.1016/j.expneurol.2011.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 12/22/2022]
Abstract
The demographics of acute spinal cord injury (SCI) are changing with an increased incidence in older age. However, the influence of aging on the regenerative growth potential of central nervous system (CNS) axons following SCI is not known. We investigated axonal sprouting along with the efficiency of the infusion of the stromal cell-derived growth factor-1 (SDF-1/CXCL12) and regenerative growth along with the anti-scarring treatment (AST) in young (2-3 months) and geriatric (22-28 months) female rats following SCI. AST included local injection of iron chelator (2,2'-dipyridine-5,5'-dicarboxylic acid) and 8-bromo-cyclic adenosine monophosphate solution into the lesion core. Axon outgrowth was investigated by immunohistological methods at 5 weeks after a partial dorsal hemisection at thoracic level T8. We found that aging significantly reduces spontaneous axon sprouting of corticospinal (CST), serotonergic (5-HT) raphespinal and catecholaminergic (TH) coerulospinal tracts in distinct regions of the spinal cord rostral to the lesion. However, impairment of axon sprouting could be markedly attenuated in geriatric animals by local infusion of SDF-1. Unexpectedly and in contrast to rostral sprouting, aging does not diminish the regenerative growth capacity of 5-HT-, TH- and calcitonin gene-related peptide (CGRP)-immunoreactive axons at 5 weeks after SCI. Moreover, 5-HT and TH axons maintain the ability to react upon AST with significantly enhanced regeneration in aged animals. These data are the first to demonstrate, that old age compromises axonal plasticity, but not regenerative growth, after SCI in a fiber tract-specific manner. Furthermore, AST and SDF-1 infusions remain efficient, which implicates that therapy in elderly patients is still feasible.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
28
|
Laing AC, Cox R, Tetzlaff W, Oxland T. Effects of advanced age on the morphometry and degenerative state of the cervical spine in a rat model. Anat Rec (Hoboken) 2011; 294:1326-36. [PMID: 21714115 DOI: 10.1002/ar.21436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/31/2010] [Accepted: 03/26/2011] [Indexed: 11/08/2022]
Abstract
Aging causes changes in the geometry of the human cervical spine that may influence the tissue response to applied loads. Rat models are often used to study spinal cord injuries (SCI) and have the potential to enhance our understanding of the effect of age on SCI. The goal of this study was to characterize the morphometry and degenerative state of the cervical spine in Fisher 344 rats, and to determine the influence of age on these variables. Fifteen rats were split into three age groups: young adult (3 months of age), aged (12-18 months) and geriatric (30 months). Following tissue harvest we used a μCT scanner to image the cervical and upper thoracic spine from each specimen. Analysis software was used to measure variables including canal pinch diameter (the most rostral point on the dorsal aspect of a vertebral body to the most caudal aspect of the lamina on the immediately rostral vertebra), vertebral canal depth, width, and area, vertebral body height, depth, width, and area, and intervertebral disc thickness. Orthopaedic surgeons used midsagittal images to rate the degenerative state of the intervertebral discs. For all measures except disc thickness there was a significant increase (mean (SD) = 15.0 (9.7)%) for the aged compared to young specimens (P < 0.05). There were significant differences between the aged and geriatric specimens for only vertebral body depth (P = 0.016) and area (P = 0.020). Intervertebral disc degeneration was significantly greater on the ventral aspect of the spinal column (P < 0.001), with a trend toward increased degeneration in the geriatric specimens (P = 0.069). The results suggest that age-related morphometric differences may need to be accounted for in experimental aging models of SCI in rats.
Collapse
Affiliation(s)
- Andrew C Laing
- Injury Biomechanics and Aging Laboratory, Department of Kinesiology, University of Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
29
|
Cizkova D, Cizek M, Nagyova M, Slovinska L, Novotna I, Jergova S, Radonak J, Hlucilova J, Vanicky I. Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting. J Neurosci Methods 2009; 184:88-94. [DOI: 10.1016/j.jneumeth.2009.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/08/2009] [Accepted: 07/28/2009] [Indexed: 01/17/2023]
|
30
|
Lasiene J, Matsui A, Sawa Y, Wong F, Horner PJ. Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 2009; 8:201-13. [PMID: 19338498 DOI: 10.1111/j.1474-9726.2009.00462.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aging is associated with many functional and morphological central nervous system changes. It is important to distinguish between changes created by normal aging and those caused by disease. In the present study we characterized myelin changes within the murine rubrospinal tract and found that internode lengths significantly decrease as a function of age which suggests active remyelination. We also analyzed the proliferation, distribution and phenotypic fate of dividing cells with Bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU). The data reveal a decrease in glial cell proliferation from 1 to 6, 14 and 21 months of age in gray matter 4 weeks post-BrdU injections. However, we found an increase in gliogenesis at 21st month in white matter of the spinal cord. Half of newly generated cells expressed NG2. Most cells were positive for the early oligodendrocyte marker Olig2 and a few also expressed CC1. Very few cells ever became positive for the astrocytic markers S100beta or GFAP. These data demonstrate ongoing oligodendrogenesis and myelinogenesis as a function of age in the spinal cord.
Collapse
Affiliation(s)
- Jurate Lasiene
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|