1
|
El-Gazar AA, Soubh AA, Abdallah DM, Ragab GM, El-Abhar HS. Elucidating PAR1 as a therapeutic target for delayed traumatic brain injury: Unveiling the PPAR-γ/Nrf2/HO-1/GPX4 axis to suppress ferroptosis and alleviate NLRP3 inflammasome activation in rats. Int Immunopharmacol 2024; 139:112774. [PMID: 39067398 DOI: 10.1016/j.intimp.2024.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Repetitive traumatic brain injury (RTBI) is acknowledged as a silent overlooked public health crisis, with an incomplete understanding of its pathomechanistic signaling pathways. Mounting evidence suggests the involvement of thrombin and its receptor, the protease-activated receptor (PAR)1, in the development of secondary injury in TBI; however, the consequences of PAR1 modulation and its impact on ferroptosis-redox signaling, and NLRP3 inflammasome activation in RTBI, remain unclear. Further, the utilitarian function of PAR1 as a therapeutic target in RTBI has not been elucidated. To study this crosstalk, RTBI was induced in Wistar rats by daily weight drops on the right frontal region for five days. Three groups were included: normal control, untreated RTBI, and RTBI+SCH79797 (a PAR1 inhibitor administered post-trauma at 25 μg/kg/day). The concomitant treatment of PAR1 antagonism improved altered behavior function, cortical histoarchitecture, and neuronal cell survival. Moreover, the receptor blockade downregulated mRNA expression of PAR1 but upregulatedthat of the neuroprotective receptor PPAR-γ. The anti-inflammatory impact of SCH79797 was signified by the low immune expression/levels of NF-κB p65,TNF-α, IL-1β, and IL-18. Consequently, the PAR1 blocker hindered the formation of inflammasome components NLRP3, ASC, and activated caspase-1. Ultimately, SCH79797 treatment abated ferroptosis-dependent iron redox signaling through the activation of the antioxidant Nrf2/HO-1 axis and its subsequent antioxidant machinery (GPX4, SOD) to limit lipid peroxidation, iron accumulation, and transferrin serum increment. Collectively, SCH79797 offered putative preventive mechanisms against secondary RTBI consequences in rats by impeding ferroptosis and NLRP3 inflammasome through activating the PPAR-γ/Nrf2 antioxidant cue.
Collapse
Affiliation(s)
- Amira A El-Gazar
- Department of Pharmacology & Toxicology, October 6 University, Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology & Toxicology, Ahram Canadian University, Giza, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt.
| | - Ghada M Ragab
- Department of Pharmacology & Toxicology, Misr University for Science and Technology, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology & Biochemistry, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
2
|
Liang H, Zhang X, Hou Y, Zheng K, Hao H, He B, Li H, Sun C, Yang T, Song H, Cai R, Wang Y, Jiang H, Qi L, Wang Y. Super-high procoagulant activity of gecko thrombin: A gift from sky dragon. CNS Neurosci Ther 2023; 29:3081-3093. [PMID: 37144588 PMCID: PMC10493662 DOI: 10.1111/cns.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Gecko, the "sky dragon" named by Traditional Chinese Medicine, undergoes rapid coagulation and scarless regeneration following tail amputation in the natural ecology, providing a perfect opportunity to develop the efficient and safe drug for blood clotting. Here, gecko thrombin (gthrombin) was recombinantly prepared and comparatively studied on its procoagulant activity. METHODS The 3D structure of gthrombin was constructed using the homology modeling method of I-TASSER. The active gthrombin was prepared by the expression of gecko prethrombin-2 in 293 T cells, followed by purification with Ni2+ -chelating column chromatography prior to activation by snake venom-derived Ecarin. The enzymatic activities of gthrombin were assayed by hydrolysis of synthetic substrate S-2238 and the fibrinogen clotting. The vulnerable nerve cells were used to evaluate the toxicity of gthrombin at molecular and cellular levels. RESULTS The active recombinant gthrombin showed super-high catalytic and fibrinogenolytic efficiency than those of human under different temperatures and pH conditions. In addition, gthrombin made nontoxic effects on the central nerve cells including neurons, contrary to those of mammalian counterparts, which contribute to neuronal damage, astrogliosis, and demyelination. CONCLUSIONS A super-high activity but safe procoagulant candidate drug was identified from reptiles, which provided a promising perspective for clinical application in rapid blood clotting.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Kang Zheng
- Anti‐aging & Regenerative Medicine Research Institution, School of Life Sciences and MedicineShandong University of TechnologyZiboPR China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| | - Haiyan Jiang
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Lei Qi
- Department of Emergency MedicineAffiliated Hospital of Nantong UniversityNantongPR China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongPR China
| |
Collapse
|
3
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
4
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
5
|
Which proteinase-activated receptor-1 antagonist is better?: Evaluation of vorapaxar and parmodulin-2 effects on human left internal mammary artery endothelial function. Life Sci 2021; 286:120045. [PMID: 34653426 DOI: 10.1016/j.lfs.2021.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Endothelial dysfunction occurs as an early event in cardiovascular disease. Previously, vorapaxar, a proteinase-activated receptor-1 antagonist, was shown to cause endothelial damage in a cell culture study. Therefore, our study aimed to compare the effects of vorapaxar and parmodulin-2, proteinase-activated receptor-1 biased agonist, on human left internal mammary artery endothelial function in vitro. METHOD Isolated arteries were hung in the organ baths. Acetylcholine responses (10-11-10-6 M) were obtained in endothelium-intact tissues the following incubation with vorapaxar/parmodulin-2 (10-6 M) to determine the effects of these molecules on the endothelium-dependent relaxation. Subsequently, endothelium-dependent relaxation responses of tissues were investigated in the presence of L-NAME (10-4 M), L-arginine (10-5 M), indomethacin (10-5 M), and charybdotoxin-apamin (10-7 M) in addition to vorapaxar/parmodulin-2 incubation. Besides, the effect of these molecules on endothelium-independent relaxation response was evaluated with sodium nitroprusside (10-11-10-6 M). Finally, the sections of human arteries were imaged using a transmission electron microscope, and the integrity of the endothelial layer was evaluated. RESULTS We found that vorapaxar caused significant endothelial dysfunction by disrupting nitric oxide and endothelium-derived hyperpolarizing factor-dependent relaxation mechanisms. Parmodulin-2 did not cause endothelial damage. Neither vorapaxar nor parmodulin-2 disrupted endothelium-independent relaxation responses. The effect of vorapaxar on the endothelial layer was supported by the transmission electron microscope images. CONCLUSION Parmodulin-2 may be a better option than vorapaxar in treating cardiovascular diseases since it can inhibit PAR-1 without caused endothelial dysfunction.
Collapse
|
6
|
Inhibition of protease-activated receptor 1 (PAR1) ameliorates cognitive performance and synaptic plasticity impairments in animal model of Alzheimer's diseases. Psychopharmacology (Berl) 2021; 238:1645-1656. [PMID: 33624157 DOI: 10.1007/s00213-021-05798-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive brain disorder accompanied with synaptic failures and decline in cognitive and learning processes. Protease-activated receptor 1 (PAR1) is the major thrombin receptor in the brain that is implicated in synaptic plasticity and memory formation. In the current study, we hypothesized that inhibition of PAR1 would theoretically prevent amyloid beta (Aβ) accumulation in the brain and then contribute to reduce risk of AD. The aim of the present study was to evaluate the effect of PAR1 inhibition by using SCH (as an inhibitor of PAR1) on spatial learning, memory, and synaptic plasticity in the CA1 region of the hippocampus in rat model of Alzheimer's disease. METHODS For the induction of Alzheimer's disease, amyloid beta (Aβ) 1-42 was injected in the CA1 region of the hippocampus. The rats were divided into four groups: group I (surgical sham); group II rat mode of Alzheimer's disease (AD); group III (SCH) (25 μg/kg) intraperitoneally (i.p.), and group IV (AD + SCH). After 14 days of protocol, the rats in group III received SCH and 30 min after injection behavioral and electrophysiological tests were performed. Learning and memory ability was assessed by Morris water maze and novel object recognition tests. Extracellular evoked field excitatory postsynaptic potentials (fEPSP) were recorded in the stratum radiatum of the CA1 area. RESULTS Our results showed that AD rats showed impairments in learning and memory, and long-term potentiation (LTP) was not induced in these rats. However, injection of SCH overcame the AD-induced impairment in LTP generation in the CA1 area of the hippocampus and improved learning and memory impairment.
Collapse
|
7
|
Triplet EM, Kim HN, Yoon H, Radulovic M, Kleppe L, Simon WL, Choi CI, Walsh PJ, Dutton JR, Scarisbrick IA. The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury. Neurobiol Dis 2021; 152:105294. [PMID: 33549720 PMCID: PMC8021459 DOI: 10.1016/j.nbd.2021.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.
Collapse
Affiliation(s)
- Erin M Triplet
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America
| | - Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Whitney L Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Chan-Il Choi
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Patrick J Walsh
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - James R Dutton
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Isobel A Scarisbrick
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America; Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America; Department of Physiology and Biomedical Engineering, Rochester, MN 55905, United States of America.
| |
Collapse
|
8
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Price R, Ferrari E, Gardoni F, Mercuri NB, Ledonne A. Protease-activated receptor 1 (PAR1) inhibits synaptic NMDARs in mouse nigral dopaminergic neurons. Pharmacol Res 2020; 160:105185. [PMID: 32891865 DOI: 10.1016/j.phrs.2020.105185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
Protease-activated receptor 1 (PAR1) is a G protein-coupled receptor (GPCR), whose activation requires a proteolytic cleavage in the extracellular domain exposing a tethered ligand, which binds to the same receptor thus stimulating Gαq/11-, Gαi/o- and Gα12-13 proteins. PAR1, activated by serine proteases and matrix metalloproteases, plays multifaceted roles in neuroinflammation and neurodegeneration, in stroke, brain trauma, Alzheimer's diseases, and Parkinson's disease (PD). Substantia nigra pars compacta (SNpc) is among areas with highest PAR1 expression, but current evidence on its roles herein is restricted to mechanisms controlling dopaminergic (DAergic) neurons survival, with controversial data showing PAR1 either fostering or counteracting degeneration in PD models. Since PAR1 functions on SNpc DAergic neurons activity are unknown, we investigated if PAR1 affects glutamatergic transmission in this neuronal population. We analyzed PAR1's effects on NMDARs and AMPARs by patch-clamp recordings from DAergic neurons from mouse midbrain slices. Then, we explored subunit composition of PAR1-sensitive NMDARs, with selective antagonists, and mechanisms underlying PAR1-induced NMDARs modulation, by quantifying NMDARs surface expression. PAR1 activation inhibits synaptic NMDARs in SNpc DAergic neurons, without affecting AMPARs. PAR1-sensitive NMDARs contain GluN2B/GluN2D subunits. Moreover, PAR1-mediated NMDARs hypofunction is reliant on NMDARs internalization, as PAR1 stimulation increases NMDARs intracellular levels and pharmacological limitation of NMDARs endocytosis prevents PAR1-induced NMDARs inhibition. We reveal that PAR1 regulates glutamatergic transmission in midbrain DAergic cells. This might have implications in brain's DA-dependent functions and in neurological/psychiatric diseases linked to DAergic dysfunctions.
Collapse
Affiliation(s)
- Rachel Price
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecolar Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systems Medicine, Università di Roma Tor Vergata, Rome, Italy
| | - Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
10
|
Thrombin contributes to the injury development and neurological deficit after acute subdural hemorrhage in rats only in collaboration with additional blood-derived factors. BMC Neurosci 2018; 19:81. [PMID: 30591020 PMCID: PMC6307215 DOI: 10.1186/s12868-018-0481-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Acute subdural hemorrhage (ASDH) is a severe consequence of traumatic brain injury. The occurrence of subdural blood increases the lethality of these patients independent of the amount of blood or elevated intracranial pressure. Thrombin is one of the potential harmful blood components. Possible harmful effects of thrombin are mediated via the Protease-activated-receptor-1 (PAR1) and thus, translating the acute Thrombin release after ASDH into cell loss. The objectives of the present study were twofold, namely to examine (1) the impact of direct thrombin inhibition in the acute phase after hemorrhage on the long-term histological and functional deficits and (2) the early inhibition of PAR1 activation by thrombin with the selective antagonist SCH79797 on lesion volume at 14 days after ASDH. The effects of thrombin on the lesion size were investigated in two separate experiments via (1) direct thrombin inhibition in the subdural infused blood (Argatroban 600 µg) as well as by (2) intraventricular injection of the PAR-1 antagonist SCH79797 (1 µg or 5 µg). Lesion volume and behavior deficits using a neurological deficit score and a motor function test (beam balance test) were analyzed as outcome parameters at 14 days after injury. Results 59 Male Sprague–Dawley rats received a subdural infusion of 300 µl autologous blood or sham operation. Lesion volume at 14 days after ASDH tended to be smaller in the Argatroban-treated group when compared to the vehicle group (8.1 ± 1.1 vs. 10.1 ± 2.3 mm2, n.s.). Motor deficits in the beam balance test were not significantly less severe in the Argatroban-treated group. Animals treated with SCH79797 also showed a trend towards dose-dependent decreased lesion volume in comparison to the vehicle-treated group (1 μg: 4.3 ± 0.7 mm3; 5 μg: 3.8 ± 1.1 mm3; vehicle: 6.5 ± 2.0 mm3, n.s). Conclusions Thrombin inhibition in the subdural blood and local cerebral blockade of PAR-1 cause a tendency towards reduced lesion volume or functional recovery. All results show a trend in favor of the acute treatment on the outcome parameters. Our results suggests that thrombin could be an important blood-derived factor during acute subdural hemorrhage that translates its deleterious effects in concert with other blood-induced factors.
Collapse
|
11
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
12
|
MMP-1 overexpression selectively alters inhibition in D1 spiny projection neurons in the mouse nucleus accumbens core. Sci Rep 2018; 8:16230. [PMID: 30385861 PMCID: PMC6212422 DOI: 10.1038/s41598-018-34551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Protease activated receptor-1 (PAR-1) and its ligand, matrix metalloproteinase-1 (MMP-1), are altered in several neurodegenerative diseases. PAR-1/MMP-1 signaling impacts neuronal activity in various brain regions, but their role in regulating synaptic physiology in the ventral striatum, which is implicated in motor function, is unknown. The ventral striatum contains two populations of GABAergic spiny projection neurons, D1 and D2 SPNs, which differ with respect to both synaptic inputs and projection targets. To evaluate the role of MMP-1/PAR-1 signaling in the regulation of ventral striatal synaptic function, we performed whole-cell recordings (WCR) from D1 and D2 SPNs in control mice, mice that overexpress MMP-1 (MMP-1OE), and MMP-1OE mice lacking PAR-1 (MMP-1OE/PAR-1KO). WCRs from MMP1-OE mice revealed an increase in spontaneous inhibitory post-synaptic current (sIPSC), miniature IPSC, and miniature excitatory PSC frequency in D1 SPNs but not D2 SPNs. This alteration may be partially PAR-1 dependent, as it was not present in MMP-1OE/PAR-1KO mice. Morphological reconstruction of D1 SPNs revealed increased dendritic complexity in the MMP-1OE, but not MMP-1OE/PAR-1KO mice. Moreover, MMP-1OE mice exhibited blunted locomotor responses to amphetamine, a phenotype also observed in MMP-1OE/PAR-1KO mice. Our data suggest PAR-1 dependent and independent MMP-1 signaling may lead to alterations in striatal neuronal function.
Collapse
|
13
|
Bushi D, Chapman J, Wohl A, Stein ES, Feingold E, Tanne D. Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke. J Neurosci Res 2018; 96:1406-1411. [PMID: 29761540 DOI: 10.1002/jnr.24253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anton Wohl
- Department of Neurosurgery, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
15
|
Flaumenhaft R, De Ceunynck K. Targeting PAR1: Now What? Trends Pharmacol Sci 2017; 38:701-716. [PMID: 28558960 PMCID: PMC5580498 DOI: 10.1016/j.tips.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Protease-activated receptors (PARs) are a ubiquitously expressed class of G-protein-coupled receptors (GPCRs) that enable cells to respond to proteases in the extracellular environment in a nuanced and dynamic manner. PAR1 is the archetypal family member and has been the object of large-scale drug development programs since the 1990s. Vorapaxar and drotrecogin-alfa are approved PAR1-targeted therapeutics, but safety concerns have limited the clinical use of vorapaxar and questions regarding the efficacy of drotrecogin-alfa led to its withdrawal from the market. New understanding of mechanisms of PAR1 function, discovery of improved strategies for modifying PAR1 function, and identification of novel indications for PAR1 modulators have provided new opportunities for therapies targeting PAR1. In this review, we critically evaluate prospects for the next generation of PAR1-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
17
|
Bushi D, Stein ES, Golderman V, Feingold E, Gera O, Chapman J, Tanne D. A Linear Temporal Increase in Thrombin Activity and Loss of Its Receptor in Mouse Brain following Ischemic Stroke. Front Neurol 2017; 8:138. [PMID: 28443061 PMCID: PMC5385331 DOI: 10.3389/fneur.2017.00138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). METHODS Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo (n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique (n = 4). Levels of PAR1 were determined using western blot. RESULTS Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly (r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. CONCLUSION In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Valery Golderman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ekaterina Feingold
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Gera
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology, The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Zhen X, Ng ESK, Lam FFY. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide. Eur J Pharmacol 2016; 786:36-46. [DOI: 10.1016/j.ejphar.2016.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
19
|
Radulovic M, Yoon H, Wu J, Mustafa K, Scarisbrick IA. Targeting the thrombin receptor modulates inflammation and astrogliosis to improve recovery after spinal cord injury. Neurobiol Dis 2016; 93:226-42. [PMID: 27145117 PMCID: PMC4930708 DOI: 10.1016/j.nbd.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
The deregulation of serine protease activity is a common feature of neurological injury, but little is known regarding their mechanisms of action or whether they can be targeted to facilitate repair. In this study we demonstrate that the thrombin receptor (Protease Activated Receptor 1, (PAR1)) serves as a critical translator of the spinal cord injury (SCI) proteolytic microenvironment into a cascade of pro-inflammatory events that contribute to astrogliosis and functional decline. PAR1 knockout mice displayed improved locomotor recovery after SCI and reduced signatures of inflammation and astrogliosis, including expression of glial fibrillary acidic protein (GFAP), vimentin, and STAT3 signaling. SCI-associated elevations in pro-inflammatory cytokines such as IL-1β and IL-6 were also reduced in PAR1-/- mice and co-ordinate improvements in tissue sparing and preservation of NeuN-positive ventral horn neurons, and PKCγ corticospinal axons, were observed. PAR1 and its agonist's thrombin and neurosin were expressed by perilesional astrocytes and each agonist increased the production of IL-6 and STAT3 signaling in primary astrocyte cultures in a PAR1-dependent manner. In turn, IL-6-stimulated astrocytes increased expression of PAR1, thrombin, and neurosin, pointing to a model in which PAR1 activation contributes to increased astrogliosis by feedforward- and feedback-signaling dynamics. Collectively, these findings identify the thrombin receptor as a key mediator of inflammation and astrogliosis in the aftermath of SCI that can be targeted to reduce neurodegeneration and improve neurobehavioral recovery.
Collapse
Affiliation(s)
- Maja Radulovic
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States
| | - Karim Mustafa
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States
| | - Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester 55905, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States; Department of Physiology and Biomedical Engineering, Mayo Medical and Graduate School, Rehabilitation Medicine Research Center, Rochester, MN 55905, United States.
| |
Collapse
|
20
|
Wang S, Reeves B, Sparkenbaugh EM, Russell J, Soltys Z, Zhang H, Faber JE, Key NS, Kirchhofer D, Granger DN, Mackman N, Pawlinski R. Protective and detrimental effects of neuroectodermal cell-derived tissue factor in mouse models of stroke. JCI Insight 2016; 1. [PMID: 27489885 DOI: 10.1172/jci.insight.86663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Within the CNS, a dysregulated hemostatic response contributes to both hemorrhagic and ischemic strokes. Tissue factor (TF), the primary initiator of the extrinsic coagulation cascade, plays an essential role in hemostasis and also contributes to thrombosis. Using both genetic and pharmacologic approaches, we characterized the contribution of neuroectodermal (NE) cell TF to the pathophysiology of stroke. We used mice with various levels of TF expression and found that astrocyte TF activity reduced to ~5% of WT levels was still sufficient to maintain hemostasis after hemorrhagic stroke but was also low enough to attenuate inflammation, reduce damage to the blood-brain barrier, and improve outcomes following ischemic stroke. Pharmacologic inhibition of TF during the reperfusion phase of ischemic stroke attenuated neuronal damage, improved behavioral deficit, and prevented mortality of mice. Our data demonstrate that NE cell TF limits bleeding complications associated with the transition from ischemic to hemorrhagic stroke and also contributes to the reperfusion injury after ischemic stroke. The high level of TF expression in the CNS is likely the result of selective pressure to limit intracerebral hemorrhage (ICH) after traumatic brain injury but, in the modern era, poses the additional risk of increased ischemia-reperfusion injury after ischemic stroke.
Collapse
Affiliation(s)
- Shaobin Wang
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brandi Reeves
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erica M Sparkenbaugh
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Janice Russell
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Zbigniew Soltys
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Hua Zhang
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - James E Faber
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nigel S Key
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, California, USA
| | - D Neil Granger
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Nigel Mackman
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rafal Pawlinski
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Duan ZZ, Zhang F, Li FY, Luan YF, Guo P, Li YH, Liu Y, Qi SH. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH). Sci Rep 2016; 6:29246. [PMID: 27385592 PMCID: PMC4935874 DOI: 10.1038/srep29246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Duan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Feng Zhang
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Feng-Ying Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yi-Fei Luan
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yi-Hang Li
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Yong Liu
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| | - Su-Hua Qi
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, 221002, P. R. China
| |
Collapse
|
22
|
Askenase MH, Sansing LH. Stages of the Inflammatory Response in Pathology and Tissue Repair after Intracerebral Hemorrhage. Semin Neurol 2016; 36:288-97. [PMID: 27214704 DOI: 10.1055/s-0036-1582132] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a major health concern, with high rates of mortality and morbidity and no highly effective clinical interventions. Basic research in animal models of ICH has provided insight into its complex pathology, in particular revealing the role of inflammation in driving neuronal death and neurologic deficits after hemorrhage. The response to ICH occurs in four distinct phases: (1) initial tissue damage and local activation of inflammatory factors, (2) inflammation-driven breakdown of the blood-brain barrier, (3) recruitment of circulating inflammatory cells and subsequent secondary immunopathology, and (4) engagement of tissue repair responses that promote tissue repair and restoration of neurologic function. The development of CNS inflammation occurs over many days after initial hemorrhage and thus may represent an ideal target for treatment of the disease, but further research is required to identify the mechanisms that promote engagement of inflammatory versus anti-inflammatory pathways. In this review, the authors examine how experimental models of ICH have uncovered critical mediators of pathology in each of the four stages of the inflammatory response, and focus on the role of the immune system in these processes.
Collapse
Affiliation(s)
- Michael H Askenase
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Lauren H Sansing
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Bushi D, Gera O, Kostenich G, Shavit-Stein E, Weiss R, Chapman J, Tanne D. A novel histochemical method for the visualization of thrombin activity in the nervous system. Neuroscience 2016; 320:93-104. [PMID: 26851772 DOI: 10.1016/j.neuroscience.2016.01.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023]
Abstract
Although thrombin has an important role in both central and peripheral nerve diseases, characterization of the anatomical distribution of its proteolytic activity has been limited by available methods. This study presents the development, challenges, validation and implementation of a novel histochemical method for visualization of thrombin activity in the nervous system. The method is based on the cleavage of the substrate, Boc-Asp(OBzl)-Pro-Arg-4MβNA by thrombin to liberate free 4-methoxy-2-naphthylamine (4MβNA). In the presence of 5-nitrosalicylaldehyde, free 4MβNA is captured, yielding an insoluble yellow fluorescent precipitate which marks the site of thrombin activity. The sensitivity of the method was determined in vitro using known concentrations of thrombin while the specificity was verified using a highly specific thrombin inhibitor. Using this method we determined the spatial distribution of thrombin activity in mouse brain following transient middle cerebral artery occlusion (tMCAo) and in mouse sciatic nerve following crush injury. Fluorescence microscopy revealed well-defined thrombin activity localized to the right ischemic hemisphere in cortical areas and in the striatum compared to negligible thrombin activity contralaterally. The histochemical localization of thrombin activity following tMCAo was in good correlation with the infarct areas per triphenyltetrazolium chloride staining and to thrombin activity measured biochemically in tissue punches (85 ± 35 and 20 ± 3 mU/ml, in the cortical and striatum areas respectively, compared to 7 ± 2 and 13 ± 2 mU/ml, in the corresponding contralateral areas; mean ± SEM; p<0.05). In addition, 24 h following crush injury, focal areas of highly elevated thrombin activity were detected in teased sciatic fibers. This observation was supported by the biochemical assay and western blot technique. The histochemical method developed in this study can serve as an important tool for studying the role of thrombin in physiological and pathological conditions.
Collapse
Affiliation(s)
- D Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - O Gera
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - G Kostenich
- Advanced Technology Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - E Shavit-Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - R Weiss
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - J Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - D Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Bushi D, Ben Shimon M, Shavit Stein E, Chapman J, Maggio N, Tanne D. Increased thrombin activity following reperfusion after ischemic stroke alters synaptic transmission in the hippocampus. J Neurochem 2015; 135:1140-8. [PMID: 26390857 DOI: 10.1111/jnc.13372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
Abstract
Thrombin, a key player in thrombogenesis, affects cells in the brain through activation of its receptors. Low levels of thrombin activity are protective while high levels are toxic. We sought to quantify thrombin activity levels and their spatial distribution in brains of mice following reperfusion after ischemic stroke focusing on infarct, peri-infarct and contralateral areas. In order to find out the contribution of brain-derived thrombin, mRNA levels of both prothrombin and factor X were determined. Furthermore, we assessed the effect of thrombin levels that were measured in the ischemic brain on synaptic transmission. We found that in the brains of mice following transient middle cerebral artery occlusion, thrombin activity is elevated throughout the ischemic hemisphere, including in peri-infarct areas (90 ± 33 and 60 ± 18 mU/mL, in the infarct and peri-infarct areas, respectively, compared to 11 ± 3 and 12 ± 5 mU/mL, in the corresponding contralateral areas; mean ± SE; p < 0.05). Brain mRNA levels of prothrombin and, in particular, factor X are up-regulated in the ischemic core. Hippocampal slices treated with thrombin concentrations as found in the ischemic hemisphere show altered synaptic responses. We conclude that high thrombin activity following reperfusion after ischemic stroke may cause synaptic dysfunction. Following transient middle cerebral artery occlusion in mice, thrombin activity is elevated throughout the ischemic hemisphere, including in peri-infarct areas. Brain mRNA levels of prothrombin and factor X are up-regulated in the ischemic core. Thrombin is known to affect synaptic function in a concentration dependent manner and hippocampal slices treated with the concentrations found in the ischemic hemisphere show altered synaptic responses. We conclude that in ischemic stroke, the high brain thrombin activity found after reperfusion may cause synaptic dysfunction.
Collapse
Affiliation(s)
- Doron Bushi
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Ben Shimon
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Joab Chapman
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Tel Ha Shomer, Israel
| | - David Tanne
- Comprehensive Stroke Center, Department of Neurology and The J. Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, Tanne D, Pick CG, Blatt I, Neufeld M, Vlachos A, Maggio N. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 2015; 9:151. [PMID: 25954157 PMCID: PMC4404867 DOI: 10.3389/fncel.2015.00151] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Maximilian Lenz
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Benno Ikenberg
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Efrat Shavit Stein
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Joab Chapman
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - David Tanne
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Ilan Blatt
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Miri Neufeld
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel ; Department of Neurology and Epilepsy Unit, The Tel Aviv Sourasky Medical Center Tel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center Tel HaShomer, Israel
| |
Collapse
|
26
|
PAR1-activated astrocytes in the nucleus of the solitary tract stimulate adjacent neurons via NMDA receptors. J Neurosci 2015; 35:776-85. [PMID: 25589770 DOI: 10.1523/jneurosci.3105-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker DL-threo-β-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (DL-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals.
Collapse
|
27
|
Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis 2015; 78:68-76. [PMID: 25843668 DOI: 10.1016/j.nbd.2015.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/28/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Clinical observations and studies on different animal models of acquired epilepsy consistently demonstrate that blood-brain barrier (BBB) leakage can be an important risk factor for developing recurrent seizures. However, the involved signaling pathways remain largely unclear. Given the important role of thrombin and its major receptor in the brain, protease-activated receptor 1 (PAR1), in the pathophysiology of neurological injury, we hypothesized that PAR1 may contribute to status epilepticus (SE)-induced epileptogenesis and that its inhibition shortly after SE will have neuroprotective and antiepileptogenic effects. Adult rats subjected to lithium-pilocarpine SE were administrated with SCH79797 (a PAR1 selective antagonist) after SE termination. Thrombin and PAR1 levels and neuronal cell survival were evaluated 48h following SE. The effect of PAR1 inhibition on animal survival, interictal spikes (IIS) and electrographic seizures during the first two weeks after SE and behavioral seizures during the chronic period was evaluated. SE resulted in a high mortality rate and incidence of IIS and seizures in the surviving animals. There was a marked increase in thrombin, decrease in PAR1 immunoreactivity and hippocampal cell loss in the SE-treated rats. Inhibition of PAR1 following SE resulted in a decrease in mortality and morbidity, increase in neuronal cell survival in the hippocampus and suppression of IIS, electrographic and behavioral seizures following SE. These data suggest that the PAR1 signaling pathway contributes to epileptogenesis following SE. Because breakdown of the BBB occurs frequently in brain injuries, PAR1 inhibition may have beneficial effects in a variety of acquired injuries leading to epilepsy.
Collapse
|
28
|
Yuan H, Myers SJ, Wells G, Nicholson KL, Swanger SA, Lyuboslavsky P, Tahirovic YA, Menaldino DS, Ganesh T, Wilson LJ, Liotta DC, Snyder JP, Traynelis SF. Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron 2015; 85:1305-1318. [PMID: 25728572 DOI: 10.1016/j.neuron.2015.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/12/2015] [Accepted: 01/29/2015] [Indexed: 01/09/2023]
Abstract
Stroke remains a significant problem despite decades of work on neuroprotective strategies. NMDA receptor (NMDAR) antagonists are neuroprotective in preclinical models, but have been clinically unsuccessful, in part due to side effects. Here we describe a prototypical GluN2B-selective antagonist with an IC50 value that is 10-fold more potent at acidic pH 6.9 associated with ischemic tissue compared to pH 7.6, a value close to the pH in healthy brain tissue. This should maximize neuroprotection in ischemic tissue while minimizing on-target side effects associated with NMDAR blockade in noninjured brain regions. We have determined the mechanism underlying pH-dependent inhibition and demonstrate the utility of this approach in vivo. We also identify dicarboxylate dimers as a novel proton sensor in proteins. These results provide insight into the molecular basis of pH-dependent neuroprotective NMDAR block, which could be beneficial in a wide range of neurological insults associated with tissue acidification.
Collapse
Affiliation(s)
- Hongjie Yuan
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | - Scott J Myers
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | - Gordon Wells
- Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Katherine L Nicholson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sharon A Swanger
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | | | | | | | - Thota Ganesh
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | | | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | | |
Collapse
|
29
|
Mao X, Del Bigio MR. Interference with protease-activated receptor 1 does not reduce damage to subventricular zone cells of immature rodent brain following exposure to blood or blood plasma. J Negat Results Biomed 2015; 14:3. [PMID: 25649264 PMCID: PMC4327806 DOI: 10.1186/s12952-014-0022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prior work showed that whole blood, plasma, and serum injections are damaging to the neonatal rodent brain in a model of intracerebral/periventricular hemorrhage. Thrombin alone is also damaging. In adult animal models of hemorrhagic stroke, the protease-activated (thrombin) receptor PAR1 mediates some of the brain damage. We hypothesized that PAR1 interference will reduce the adverse effects of blood products on immature rodent brain and cells. RESULTS Cultured oligodendrocyte precursor cells from rats and mice were exposed to blood plasma with and without the PAR1 antagonists SCH-79797 or BMS-200261. In concentrations previously shown to have activity on brain cells, neither drug showed evidence of protection against the toxicity of blood plasma. Newborn mice (wild type, heterozygous, and PAR1 knockout) were subjected to intracerebral injection of autologous whole blood into the periventricular region of the frontal lobe. Cell proliferation, measured by Ki67 immunoreactivity in the subventricular zone, was suppressed at 1 and 2 days, and was not normalized in the knockout mice. Cell apoptosis, measured by activated caspase 3 immunoreactivity, was not apparent in the subventricular zone. Increased apoptosis in periventricular striatal cells was not normalized in the knockout mice. CONCLUSION Interference with the thrombin-PAR1 system does not reduce the adverse effects of blood on germinal cells of the immature rodent brain. PAR1 interference is unlikely to be a useful treatment for reducing the brain damage that accompanies periventricular (germinal matrix) hemorrhage, a common complication of premature birth.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Department of Pathology, University of Manitoba, and Children's Hospital Research Institute of Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Children's Hospital Research Institute of Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| |
Collapse
|
30
|
Yoon H, Radulovic M, Drucker KL, Wu J, Scarisbrick IA. The thrombin receptor is a critical extracellular switch controlling myelination. Glia 2015; 63:846-59. [PMID: 25628003 DOI: 10.1002/glia.22788] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023]
Abstract
Hemorrhagic white matter injuries in the perinatal period are a growing cause of cerebral palsy yet no neuroprotective strategies exist to prevent the devastating motor and cognitive deficits that ensue. We demonstrate that the thrombin receptor (protease-activated receptor 1, PAR1) exhibits peak expression levels in the spinal cord at term and is a critical regulator of the myelination continuum from initiation to the final levels achieved. Specifically, PAR1 gene deletion resulted in earlier onset of spinal cord myelination, including substantially more Olig2-positive oligodendrocytes, more myelinated axons, and higher proteolipid protein (PLP) levels at birth. In vitro, the highest levels of PAR1 were observed in oligodendrocyte progenitor cells (OPCs), being reduced with differentiation. In parallel, the expression of PLP and myelin basic protein (MBP), in addition to Olig2, were all significantly higher in cultures of PAR1-/- oligodendroglia. Moreover, application of a small molecule inhibitor of PAR1 (SCH79797) to OPCs in vitro increased PLP and MBP expression. Enhancements in myelination associated with PAR1 genetic deletion were also observed in adulthood as evidenced by higher amounts of MBP and thickened myelin sheaths across large, medium, and small diameter axons. Enriched spinal cord myelination in PAR1-/- mice was coupled to increases in extracellular-signal-regulated kinase 1/2 and AKT signaling developmentally. Nocturnal ambulation and rearing activity were also elevated in PAR1-/- mice. These studies identify the thrombin receptor as a powerful extracellular regulatory switch that could be readily targeted to improve myelin production in the face of white matter injury and disease.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
31
|
Gerace E, Masi A, Resta F, Felici R, Landucci E, Mello T, Pellegrini-Giampietro DE, Mannaioni G, Moroni F. PARP-1 activation causes neuronal death in the hippocampal CA1 region by increasing the expression of Ca(2+)-permeable AMPA receptors. Neurobiol Dis 2014; 70:43-52. [PMID: 24954469 DOI: 10.1016/j.nbd.2014.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 01/22/2023] Open
Abstract
An excessive activation of poly(ADP-ribose) polymerases (PARPs) may trigger a form of neuronal death similar to that occurring in neurodegenerative disorders. To investigate this process, we exposed organotypic hippocampal slices to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG, 100μM for 5min), an alkylating agent widely used to activate PARP-1. MNNG induced a pattern of degeneration of the CA1 pyramidal cells morphologically similar to that observed after a brief period of oxygen and glucose deprivation (OGD). MNNG exposure was also associated with a dramatic increase in PARP-activity and a robust decrease in NAD(+) and ATP content. These effects were prevented by PARP-1 but not PARP-2 inhibitors. In our experimental conditions, cell death was not mediated by AIF translocation (parthanatos) or caspase-dependent apoptotic processes. Furthermore, we found that PARP activation was followed by a significant deterioration of neuronal membrane properties. Using electrophysiological recordings we firstly investigated the suggested ability of ADP-ribose to open TRPM2 channels in MNNG-induced cells death, but the results we obtained showed that TRPM2 channels are not involved. We then studied the involvement of glutamate receptor-ion channel complex and we found that NBQX, a selective AMPA receptor antagonist, was able to effectively prevent CA1 neuronal loss while MK801, a NMDA antagonist, was not active. Moreover, we observed that MNNG treatment increased the ratio of GluA1/GluA2 AMPAR subunit expression, which was associated with an inward rectification of the IV relationship of AMPA sEPSCs in the CA1 but not in the CA3 subfield. Accordingly, 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca(2+)-permeable GluA2-lacking AMPA receptors, reduced MNNG-induced CA1 pyramidal cell death. In conclusion, our results show that activation of the nuclear enzyme PARP-1 may change the expression of membrane proteins and Ca(2+) permeability of AMPA channels, thus affecting the function and survival of CA1 pyramidal cells.
Collapse
Affiliation(s)
- E Gerace
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - A Masi
- Department of Neuroscience, Section of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - F Resta
- Department of Neuroscience, Section of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - R Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - E Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - T Mello
- Department of Experimental and Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - D E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - G Mannaioni
- Department of Neuroscience, Section of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - F Moroni
- Department of Neuroscience, Section of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
32
|
Maggio N, Itsekson Z, Ikenberg B, Strehl A, Vlachos A, Blatt I, Tanne D, Chapman J. The anticoagulant activated protein C (aPC) promotes metaplasticity in the hippocampus through an EPCR-PAR1-S1P1 receptors dependent mechanism. Hippocampus 2014; 24:1030-8. [PMID: 24753100 DOI: 10.1002/hipo.22288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/23/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Abstract
Thrombin and other clotting factors regulate long-term potentiation (LTP) in the hippocampus through the activation of the protease activated receptor 1 (PAR1) and consequent potentiation of N-methyl-d-aspartate receptor (NMDAR) functions. We have recently shown that the activation of PAR1 either by thrombin or the anticoagulant factor activated protein C (aPC) has differential effects on LTP. While thrombin activation of PAR1 induces an NMDAR-mediated slow onset LTP, which saturates the ability to induce further LTP in the exposed network, aPC stimulation of PAR1 enhances tetanus induced LTP through a voltage-gated calcium channels mediated mechanism. In this study, we addressed the mechanisms by which aPC enhances LTP in hippocampal slices. Using extracellular recordings, we show that a short tetanic stimulation, which does not induce LTP, is able to enhance plasticity in the presence of aPC through a mechanism that requires the activation of sphingosine-1 phosphate receptor 1 and intracellular Ca(2+) stores. These data identify aPC as a "metaplastic molecule", capable of shifting the threshold of LTP towards further potentiation. Our findings propose novel strategies to enhance plasticity in neurological diseases associated with the breakdown of the blood brain barrier and alterations in synaptic plasticity.
Collapse
Affiliation(s)
- Nicola Maggio
- Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel; Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
34
|
Burda JE, Radulovic M, Yoon H, Scarisbrick IA. Critical role for PAR1 in kallikrein 6-mediated oligodendrogliopathy. Glia 2013; 61:1456-70. [PMID: 23832758 DOI: 10.1002/glia.22534] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/10/2022]
Abstract
Kallikrein 6 (KLK6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of KLK6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke, and glioblastoma. Taken with recent evidence establishing KLK6 as a CNS-endogenous activator of protease-activated receptors (PARs), we hypothesized that KLK6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1-deficient mice and the murine oligodendrocyte cell line, Oli-neu, were used to demonstrate that Klk6 (rodent form) mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1-dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1-activating peptides (PAR1-APs). Klk6 also exacerbated ATP-mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1-mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1-APs, into the dorsal column white matter of PAR1(+/+) but not PAR1(-/-) mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC-1(+) oligodendrocytes. These results demonstrate a functional role for Klk6-PAR1 signaling in oligodendroglial pathophysiology and suggest that antagonists of PAR1 or its protease agonists may represent new modalities to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease.
Collapse
Affiliation(s)
- Joshua E Burda
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
35
|
Yoon H, Radulovic M, Wu J, Blaber SI, Blaber M, Fehlings MG, Scarisbrick IA. Kallikrein 6 signals through PAR1 and PAR2 to promote neuron injury and exacerbate glutamate neurotoxicity. J Neurochem 2013; 127:283-98. [PMID: 23647384 DOI: 10.1111/jnc.12293] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 01/19/2023]
Abstract
CNS trauma generates a proteolytic imbalance contributing to secondary injury, including axonopathy and neuron degeneration. Kallikrein 6 (Klk6) is a serine protease implicated in neurodegeneration, and here we investigate the role of protease-activated receptors 1 (PAR1) and PAR2 in mediating these effects. First, we demonstrate Klk6 and the prototypical activator of PAR1, thrombin, as well as PAR1 and PAR2, are each elevated in murine experimental traumatic spinal cord injury (SCI) at acute or subacute time points. Recombinant Klk6 triggered extracellular signal-regulated kinase (ERK1/2) signaling in cerebellar granule neurons and in the NSC34 spinal cord motoneuron cell line, in a phosphoinositide 3-kinae and MEK-dependent fashion. Importantly, lipopeptide inhibitors of PAR1 or PAR2, and PAR1 genetic deletion, each reduced Klk6-ERK1/2 activation. In addition, Klk6 and thrombin promoted degeneration of cerebellar neurons and exacerbated glutamate neurotoxicity. Moreover, genetic deletion of PAR1 blocked thrombin-mediated cerebellar neurotoxicity and reduced the neurotoxic effects of Klk6. Klk6 also increased glutamate-mediated Bim signaling, poly-ADP-ribose polymerase cleavage and lactate dehydrogenase release in NSC34 motoneurons and these effects were blocked by PAR1 and PAR2 lipopeptide inhibitors. Taken together, these data point to a novel Klk6-signaling axis in CNS neurons that is mediated by PAR1 and PAR2 and is positioned to contribute to neurodegeneration.
Collapse
Affiliation(s)
- Hyesook Yoon
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rochester, Minnesota, USA; Department of Physical Medicine and Rehabilitation, Mayo Medical and Graduate School, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Plasmin Activation of Glial Cells through Protease-Activated Receptor 1. PATHOLOGY RESEARCH INTERNATIONAL 2013; 2013:314709. [PMID: 23431500 PMCID: PMC3568866 DOI: 10.1155/2013/314709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
Abstract
The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury.
Collapse
|
37
|
Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 2012; 32:E8. [PMID: 22463118 DOI: 10.3171/2012.1.focus11366] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stoke that may cause significant morbidity and mortality. Brain injury due to ICH initially occurs within the first few hours as a result of mass effect due to hematoma formation. However, there is increasing interest in the mechanisms of secondary brain injury as many patients continue to deteriorate clinically despite no signs of rehemorrhage or hematoma expansion. This continued insult after primary hemorrhage is believed to be mediated by the cytotoxic, excitotoxic, oxidative, and inflammatory effects of intraparenchymal blood. The main factors responsible for this injury are thrombin and erythrocyte contents such as hemoglobin. Therapies including thrombin inhibitors, N-methyl-D-aspartate antagonists, chelators to bind free iron, and antiinflammatory drugs are currently under investigation for reducing this secondary brain injury. This review will discuss the molecular mechanisms of brain injury as a result of intraparenchymal blood, potential targets for therapeutic intervention, and treatment strategies currently in development.
Collapse
Affiliation(s)
- Ranjith Babu
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
38
|
Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 2012; 124:109-22. [PMID: 23113835 DOI: 10.1111/jnc.12075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Scarisbrick IA, Radulovic M, Burda JE, Larson N, Blaber SI, Giannini C, Blaber M, Vandell AG. Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol Chem 2012; 393:355-67. [PMID: 22505518 DOI: 10.1515/hsz-2011-0241] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/20/2012] [Indexed: 01/02/2023]
Abstract
Kallikrein-related peptidase 6 (KLK6) is a trypsin-like serine protease upregulated at sites of central nervous system (CNS) injury, including de novo expression by reactive astrocytes, yet its physiological actions are largely undefined. Taken with recent evidence that KLK6 activates G-protein-coupled protease-activated receptors (PARs), we hypothesized that injury-induced elevations in KLK6 contribute to the development of astrogliosis and that this occurs in a PAR-dependent fashion. Using primary murine astrocytes and the Neu7 astrocyte cell line, we show that KLK6 causes astrocytes to transform from an epitheliod to a stellate morphology and to secrete interleukin 6 (IL-6). By contrast, KLK6 reduced expression of glial fibrillary acidic protein (GFAP). The stellation-promoting activities of KLK6 were shown to be dependent on activation of the thrombin receptor, PAR1, as a PAR1-specific inhibitor, SCH79797, blocked KLK6-induced morphological changes. The ability of KLK6 to promote astrocyte stellation was also shown to be linked to activation of protein kinase C (PKC). These studies indicate that KLK6 is positioned to serve as a molecular trigger of select physiological processes involved in the development of astrogliosis and that this is likely to occur at least in part by activation of the G-protein-coupled receptor, PAR1.
Collapse
Affiliation(s)
- Isobel A Scarisbrick
- Neurobiology of Disease Program, Mayo Medical and Graduate School, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang J, Wang Y, Zhu P, Wang X, Lv M, Feng H. siRNA-mediated silence of protease-activated receptor-1 minimizes ischemic injury of cerebral cortex through HSP70 and MAP2. J Neurol Sci 2012; 320:6-11. [PMID: 22831762 DOI: 10.1016/j.jns.2012.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 04/21/2012] [Accepted: 05/15/2012] [Indexed: 12/15/2022]
Abstract
Cerebral ischemic stroke is a prevalent disease in senior individuals. The anticoagulation and thrombolysis to recover blood supply as well as the diminution of neural excitotoxicity to protect brain cells have not shown to fully improve stroke patients. The comprehensive mechanisms and medication specificity remain to be addressed. The silence of specific mRNAs by RNA interference provides revenues for such goals. We examined whether the silence of protease-activated receptor-1 (PAR-1) by siRNA protects brain tissues from ischemic injury. In three groups of Wistar rats, their lateral ventricles received the injections of lentiviral vectors carrying siRNA for PAR1, small RNA in mismatching PAR1 or saline. A week after the injections, these rats were treated by one side of middle cerebral artery occlusion (MCAO). The scores of neurological deficits, the volume of ischemic infarction and the expressions of PAR-1, HSP-70 and MAP-2 were measured in 24h of MCAO. Our results show that the silence of PAR-1 significantly reduces neurological deficits and infarction volume, as well as elevates HSP-70 and MAP-2 expressions. Thus, the knock-down of PAR1 minimizes the ischemic impairments of cerebral cortex via HSP70 and MAP-2 pathways.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke 2012; 43:2476-82. [PMID: 22811450 DOI: 10.1161/strokeaha.112.661819] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Evidence suggests that the protease-activated receptor-1 (PAR-1), a thrombin receptor, mediates neuronal injury in experimental cerebral ischemia. The present study investigated whether PAR-1 plays a role in brain injury after global cerebral ischemia. METHODS Adult male wild-type or PAR-1 knockout mice underwent a 20-minute bilateral common carotid artery occlusion or a sham operation. Behavior tests were performed before ischemia and 1, 2, and 3 days after bilateral common carotid artery occlusion. Mice were euthanized at different time points for thrombin activity, brain edema, Western blot analysis, and brain histology. RESULTS Thrombin activity and PAR-1 expression were increased in the brain after bilateral common carotid artery occlusion. Compared with wild-type mice, PAR-1 knockout mice had less brain edema formation, neuronal death, and behavior impairment after bilateral common carotid artery occlusion. In addition, bilateral common carotid artery occlusion-induced activation of mitogen-activated protein kinases was absent in PAR-1 knockout mice. CONCLUSIONS PAR-1 contributes to the brain injury induced by global cerebral ischemia, which may be related to activation of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Jinhu Wang
- Department of Neurosurgery, Room 5018 BSRB, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
42
|
Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 2012; 11:69-86. [PMID: 22212680 DOI: 10.1038/nrd3615] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteinase-activated receptors (PARs), a family of four seven-transmembrane G protein-coupled receptors, act as targets for signalling by various proteolytic enzymes. PARs are characterized by a unique activation mechanism involving the proteolytic unmasking of a tethered ligand that stimulates the receptor. Given the emerging roles of these receptors in cancer as well as in disorders of the cardiovascular, musculoskeletal, gastrointestinal, respiratory and central nervous system, PARs have become attractive targets for the development of novel therapeutics. In this Review we summarize the mechanisms by which PARs modulate cell function and the roles they can have in physiology and diseases. Furthermore, we provide an overview of possible strategies for developing PAR antagonists.
Collapse
|
43
|
Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 2011; 4:32. [PMID: 21827709 PMCID: PMC3170262 DOI: 10.1186/1756-6606-4-32] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Protease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors. In the hippocampal formation, PAR1 mRNA appears to be expressed by a subset of neurons, including granule cells in the dentate gyrus. In this study we investigate the role of PAR activation in controlling neuronal excitability of dentate granule cells. We confirm that PAR1 protein is expressed in neurons of the dentate cell body layer as well as in astrocytes throughout the dentate. Activation of PAR1 receptors by the selective peptide agonist TFLLR increased the intracellular Ca2+ concentration in a subset of acutely dissociated dentate neurons as well as non-neuronal cells. Bath application of TFLLR in acute hippocampal slices depolarized the dentate gyrus, including the hilar region in wild type but not in the PAR1-/- mice. PAR1 activation increased the frequency of action potential generation in a subset of dentate granule neurons; cells in which PAR1 activation triggered action potentials showed a significant depolarization. The activation of PAR1 by thrombin increased the amplitude of NMDA receptor-mediated component of EPSPs. These data suggest that activation of PAR1 during normal function or pathological conditions, such as during ischemia or hemorrhage, can increase the excitability of dentate granule cells.
Collapse
Affiliation(s)
- Kyung-Seok Han
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Ma L, Dorling A. The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 2011; 34:63-72. [PMID: 21809138 DOI: 10.1007/s00281-011-0281-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022]
Abstract
Inflammation and coagulation constitute two host defence systems with complementary physiological roles in limiting tissue damage, restoring homeostasis and eliminating invading pathogens, functions reliant on effective regulation of both processes at a variety of levels. Dysfunctional activation or regulation of either pathway may lead to pathology and contribute to human diseases as diverse as myocardial infarction and septic shock. The serine protease thrombin, a key protein in the coagulation pathway, can activate cellular signalling directly via proteolytic cleavage of the N-terminal domain of a family of G protein-coupled receptors or indirectly through the generation of molecules such as activated protein C. These events transmit signals to many cell types and can elicit the production of various pro-inflammatory mediators such as cytokines, chemokines and growth factors, thereby influencing cell activation, differentiation, survival and migration. This review discusses recent progress in understanding how thrombin and protease-activated receptors influence biological processes, highlighting the detrimental and protective cellular effects of thrombin and its signalling pathways.
Collapse
Affiliation(s)
- Liang Ma
- Medical Research Council (MRC) Centre for Transplantation, King's College London, King's Health Partners, Guy's Hospital, London, UK
| | | |
Collapse
|
45
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
McCoy KL, Traynelis SF, Hepler JR. PAR1 and PAR2 couple to overlapping and distinct sets of G proteins and linked signaling pathways to differentially regulate cell physiology. Mol Pharmacol 2010; 77:1005-15. [PMID: 20215560 PMCID: PMC2879918 DOI: 10.1124/mol.109.062018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/09/2010] [Indexed: 01/02/2023] Open
Abstract
The protease-activated receptors (PAR1 and PAR2) are unusual G protein-coupled receptors that are activated by distinct serine proteases and are coexpressed in many different cell types. Limited recent evidence suggests these closely related receptors regulate different physiological outputs in the same cell, although little is known about the comparative signaling pathways used by these receptors. Here we report that PAR1 and PAR2 couple to overlapping and distinct sets of G proteins to regulate receptor-specific signaling pathways involved in cell migration. In functionally PAR-null COS-7 cells, ectopically expressed PAR1 and PAR2 both form stable complexes with G alpha(q), G alpha(11), G alpha(14), G alpha(12), and G alpha(13). It is surprising that PAR1 but not PAR2 coupled to G alpha(o), G alpha(i1), and G alpha(i2). Consistent with these observations, PAR1 and PAR2 stimulation of inositol phosphate production and RhoA activation was blocked by specific inhibitors of G(q/11) and G(12/13) signaling, respectively. Both receptors stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, but only PAR1 inhibited adenylyl cyclase activity, and pertussis toxin blocked PAR1 effects on both adenylyl cyclase and ERK1/2 signaling. Neu7 astrocytes express native PAR1 and PAR2 receptors that activate inositol phosphate, RhoA, and ERK1/2 signaling. However, only PAR1 inhibited adenylyl cyclase activity. PAR1 and PAR2 also stimulate Neu7 cell migration. PAR1 effects on ERK1/2 phosphorylation and cell migration were blocked both by pertussis toxin and by the mitogen-activated protein kinase kinase/ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126)], whereas PAR2 effects were only blocked by U0126. These studies demonstrate that PAR1 and PAR2 physically and functionally link to overlapping and distinct profiles of G proteins to differentially regulate downstream signaling pathways and cell physiology.
Collapse
Affiliation(s)
- Kelly L McCoy
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|