1
|
Weng HR, Taing K, Chen L, Penney A. EZH2 Methyltransferase Regulates Neuroinflammation and Neuropathic Pain. Cells 2023; 12:1058. [PMID: 37048131 PMCID: PMC10093242 DOI: 10.3390/cells12071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Recent studies by us and others have shown that enhancer of zeste homolog-2 (EZH2), a histone methyltransferase, in glial cells regulates the genesis of neuropathic pain by modulating the production of proinflammatory cytokines and chemokines. In this review, we summarize recent advances in this research area. EZH2 is a subunit of polycomb repressive complex 2 (PRC2), which primarily serves as a histone methyltransferase to catalyze methylation of histone 3 on lysine 27 (H3K27), ultimately resulting in transcriptional repression. Animals with neuropathic pain exhibit increased EZH2 activity and neuroinflammation of the injured nerve, spinal cord, and anterior cingulate cortex. Inhibition of EZH2 with DZNep or GSK-126 ameliorates neuroinflammation and neuropathic pain. EZH2 protein expression increases upon activation of Toll-like receptor 4 and calcitonin gene-related peptide receptors, downregulation of miR-124-3p and miR-378 microRNAs, or upregulation of Lncenc1 and MALAT1 long noncoding RNAs. Genes suppressed by EZH2 include suppressor of cytokine signaling 3 (SOCS3), nuclear factor (erythroid-derived 2)-like-2 factor (NrF2), miR-29b-3p, miR-146a-5p, and brain-specific angiogenesis inhibitor 1 (BAI1). Pro-inflammatory mediators facilitate neuronal activation along pain-signaling pathways by sensitizing nociceptors in the periphery, as well as enhancing excitatory synaptic activities and suppressing inhibitory synaptic activities in the CNS. These studies collectively reveal that EZH2 is implicated in signaling pathways known to be key players in the process of neuroinflammation and genesis of neuropathic pain. Therefore, targeting the EZH2 signaling pathway may open a new avenue to mitigate neuroinflammation and neuropathic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | | | | | | |
Collapse
|
2
|
Roy TK, Uniyal A, Tiwari V. Multifactorial pathways in burn injury-induced chronic pain: novel targets and their pharmacological modulation. Mol Biol Rep 2022; 49:12121-12132. [PMID: 35842856 DOI: 10.1007/s11033-022-07748-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Burn injuries are among the highly prevalent medical conditions worldwide that occur mainly in children, military veterans and victims of fire accidents. It is one of the leading causes of temporary as well as permanent disabilities in patients. Burn injuries are accompanied by pain that persists even after recovery from tissue damage which puts immense pressure on the healthcare system. The pathophysiology of burn pain is poorly understood due to its complex nature and lack of considerable preclinical and clinical shreds of evidence, that creates a substantial barrier to the development of new analgesics. Burns damage the skin layers supplied with nociceptors such as NAV1.7, TRPV1, and TRPA1. Burn injury-mediated co-localization and simultaneous activation of TRPA1 and TRPV1 in nociceptive primary afferent C-fibers which contributes to the development and maintenance of chronic pain. Burn injuries are accompanied by central sensitization, a key feature of pain pathophysiology mainly driven by a series of cascades involving aberrations in the glutamatergic system, microglial activation, release of neuropeptides, cytokines, and chemokines. Activation of p38 mitogen-activated protein kinase, altered endogenous opioid signaling, and distorted genomic expression are other pathophysiological factors responsible for the development and maintenance of burn pain. Here we discuss comprehensive literature on molecular mechanisms of burn pain and potential targets that could be translated into near future therapeutics.
Collapse
Affiliation(s)
- Tapas Kumar Roy
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India
| | - Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, 221005, Varanasi, U.P, India.
| |
Collapse
|
3
|
Zhang Y, Zhang H, Jiang B, Tong X, Yan S, Lu J. Current views on neuropeptides in atopic dermatitis. Exp Dermatol 2021; 30:1588-1597. [PMID: 33963624 DOI: 10.1111/exd.14382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease involving skin barrier dysfunction and immune imbalance. However, the mechanism of AD is not clear completely and may be related to heredity and environment. Neuropeptides are a class of peptides secreted by nerve endings, they may play roles in promoting vasodilation, plasma extravasation, chemotaxis of inflammatory cells and mediating pruritus. Since itching and immune cell infiltration are the main manifestations of atopic dermatitis, to further investigate the impact of neuropeptides on AD, our review summarized the mechanisms of several common neuropeptides in AD and hypothesized that neuropeptides may be the novel potential targets in AD treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanyi Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Boyue Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyu Yan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
The effects of two different intensities of aerobic training protocols on pain and serum neuro-biomarkers in women migraineurs: a randomized controlled trail. Eur J Appl Physiol 2020; 121:609-620. [PMID: 33206251 DOI: 10.1007/s00421-020-04551-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES We have a weak understanding of how aerobic training may influence migraine, and the optimal parameters for exercise regimens as migraine therapy are not clear. The objectives of this study were to assess, first, effects of two different intensities of aerobic exercise on migraine headache indices; second, serum neuro-biomarker in women migraineurs. METHODS A total of 45 non-athlete female migraine patients were selected by a neurologist and randomly divided into three groups: control (CON), moderate-intensity aerobic training (MOD T), and high-intensity aerobic training (HIGH T). Before and after the training protocol, body composition factors, migraine pain indices, VO2max, and serum Adenylate-Cyclase Activating Polypeptide (PACAP) and Substance P (SP) were measured. Exercise training protocol includes two different intensities of aerobic exercise: Moderate (13-15 Borg Scale, 60-80% HRmax) and High (15-17 Borg Scale, 65-95% HRmax). RESULTS Moderate-intensity aerobic training (MOD T) reduced headache intensity, frequency, and duration in women with migraine (p < 0.001, for all). Also, high-intensity aerobic training (HIGH T) reduced headache intensity, frequency, and duration (p < 0.001, for all). However, for headache intensity and duration, MOD T was effective rather than HIGH T (p < 0.001; p ≤ 0.05, respectively). In addition, neither MOD T nor HIGH T could not alter PACAP and SP contents (p = 0.712; p = 0.249, respectively). CONCLUSIONS Our results demonstrated that either MOD T or HIGH T could modify migraine pain indices but neither MOD T nor HIGH T could not alter the PACAP and SP contents in women with migraine.
Collapse
|
5
|
Zhan C, Huang M, Yang X, Hou J. Dental nerves: a neglected mediator of pulpitis. Int Endod J 2020; 54:85-99. [PMID: 32880979 DOI: 10.1111/iej.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
As one of the most densely innervated tissues, the dental pulp contains abundant nerve fibres, including sensory, sympathetic and parasympathetic nerve fibres. Studies in animal models and human patients with pulpitis have revealed distinct alterations in protein expression and histological appearance in all types of dental nerve fibres. Various molecules secreted by neurons, such as classical neurotransmitters, neuropeptides and amino acids, not only contribute to the induction, sensitization and maintenance of tooth pain, but also regulate non-neuronal cells, including fibroblasts, odontoblasts, immune cells and vascular endothelial cells. Dental nerves are particularly important for the microcirculatory and immune responses in pulpitis via their release of a variety of functional substances. Further, nerve fibres are found to be involved in dental soft and hard tissue repair. Thus, understanding how dental nerves participate in pulpitis could have important clinical ramifications for endodontic treatment. In this review, the roles of dental nerves in regulating pulpal inflammatory processes are highlighted and their implications for future research on this topic are discussed.
Collapse
Affiliation(s)
- C Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - M Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - X Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Dual dose-related effects evoked by CCL4 on thermal nociception after gene delivery or exogenous administration in mice. Biochem Pharmacol 2020; 175:113903. [DOI: 10.1016/j.bcp.2020.113903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
|
7
|
Conti P, Gallenga CE, Caraffa A, Ronconi G, Kritas SK. Impact of mast cells in fibromyalgia and low-grade chronic inflammation: Can IL-37 play a role? Dermatol Ther 2019; 33:e13191. [PMID: 31837249 DOI: 10.1111/dth.13191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Fibromyalgia (FM) is a disease characterized by chronic widespread pain, fatigue, aches, joint stiffness, depression, cognitive dysfunction, and nonrestorative sleep. In FM, neurotransmission and glial activation can occur with an increase in inflammatory cytokines and involvement of mast cells (MCs) in the skin. FM skin biopsies show an increase in the number of MCs, as well as the production of corticotropin releasing hormone and substance P (SP) by the neurons, which in turn activate MCs to release neurosensitizing proinflammatory substances, such as cytokines, secreted preformed mediators, and lipids, which can exacerbate low-grade inflammation. In fact, certain proinflammatory cytokines are higher in FM and mediate muscle pain, the mechanism of which is not yet clear. MC-derived tumor necrosis factor (TNF) induces nerve growth factor (NGF) and participates in nerve fiber elongation in skin hypersensitivity. IL-37 is an inhibitor of proinflammatory IL-1 family members, which are generated and released by MCs. The goal of this article is to demonstrate that inflammatory cytokines and MC products play a role in FM and that inflammation may be inhibited by IL-37. Here, we propose IL-37 as a cytokine that contributes to improve the pathogenesis of FM by blocking IL-1 family members.
Collapse
Affiliation(s)
- Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Carla Enrica Gallenga
- Department of Biomedical Sciences and Specialist Surgery, Section of Ophthalmology, University of Ferrara, Italy
| | | | - Gianpaolo Ronconi
- UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli, Rome, Italy
| | - Spyros K Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, Macedonia, Greece
| |
Collapse
|
8
|
Staunton CA, Barrett-Jolley R, Djouhri L, Thippeswamy T. Inducible nitric oxide synthase inhibition by 1400W limits pain hypersensitivity in a neuropathic pain rat model. Exp Physiol 2018; 103:535-544. [PMID: 29441689 DOI: 10.1113/ep086764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/08/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can modulation of inducible NO synthase reduce pain behaviour and pro-inflammatory cytokine signalling in a rat model of neuropathic pain? What is the main finding and its importance? Nitric oxide synthase-based therapies could be effective for the treatment of peripheral neuropathic pain. ABSTRACT Peripheral neuropathic pain (PNP), resulting from injury to or dysfunction of a peripheral nerve, is a major health problem that affects 7-8% of the population. It is inadequately controlled by current drugs and is characterized by pain hypersensitivity, which is believed to be attributable to sensitization of peripheral and CNS neurons by various inflammatory mediators. Here we examined, in a rat model of PNP: (i) whether reducing levels of nitric oxide (NO) with 1400W, a highly selective inhibitor of inducible NO synthase (iNOS), would prevent or attenuate pain hypersensitivity; and (ii) the effects of 1400W on plasma concentrations of several cytokines that are secreted after iNOS upregulation during chronic pain states. The L5 spinal nerve axotomy (SNA) model of PNP was used, and 1400W (20 mg kg-1 ) was administered i.p. at 8 h intervals for 3 days starting at 18 h post-SNA. Changes in plasma concentrations of 12 cytokines in SNA rats treated with 1400W were examined using multiplex enzyme-linked immunosorbent assay. The SNA rats developed behavioural signs of mechanical and heat hypersensitivity. Compared with the vehicle/control, 1400W significantly: (i) limited development of mechanical hypersensitivity at 66 h post-SNA and of heat hypersensitivity at 42 h and at several time points tested thereafter; and (ii) increased the plasma concentrations of interleukin (IL)-1α, IL-1β and IL-10 in the SNA rats. The findings suggest that 1400W might exert its analgesic effects by reducing iNOS and altering the balance between the pro-inflammatory (IL-1β and IL-1α) and anti-inflammatory (IL-10) cytokines and that therapies targeting NO or its enzymes might be effective for the treatment of PNP.
Collapse
Affiliation(s)
- C A Staunton
- Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - R Barrett-Jolley
- Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - L Djouhri
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - T Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune Cytokines and Their Receptors in Inflammatory Pain. Trends Immunol 2018; 39:240-255. [DOI: 10.1016/j.it.2017.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 01/23/2023]
|
10
|
Biglycan Inhibits Capsaicin-Induced Substance P Release by Cultured Dorsal Root Ganglion Neurons. Am J Phys Med Rehabil 2017; 95:656-62. [PMID: 26945213 DOI: 10.1097/phm.0000000000000460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to examine the inhibitory effects of biglycan on substance P release from cultured sensory neurons in response to capsaicin. STUDY DESIGN In vitro study of cultured primary sensory neurons from the rabbit dorsal root ganglion (DRG). We interrogated the culture system function with capsaicin. Biglycan is an important structural component of the intervertebral disc that may regulate growth factors and inflammatory mediators. We tested the hypothesis that biglycan inhibits substance P release in response to capsaicin. RESULTS The DRG cultures were shown to contain both neurons and astrocytes by immunostaining using antibodies recognizing neuron and glial cell markers. Cultured DRG cells respond to capsaicin in a dose- and time-dependent manner (capsaicin dose ranges from 5 to 500 μmol/L; stimulation time ranges from 0 to 60 minutes). The neurons preincubated with biglycan released 27% less substance P compared with neurons without biglycan (n = 4, P = 0.036). CONCLUSION We have established a DRG cell culture system, which contains both sensory neurons and the supporting astrocytes. Biglycan, an inhibitor of substance P release by DRG cultures, may serve as an ingredient in intradiscal injectables to reduce back pain.
Collapse
|
11
|
Liu Y, Ni Y, Zhang W, Sun YE, Ma Z, Gu X. Antinociceptive effects of caloric restriction on post-incisional pain in nonobese rats. Sci Rep 2017; 7:1805. [PMID: 28496116 PMCID: PMC5431843 DOI: 10.1038/s41598-017-01909-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) increases lifespan, retards physiological signs of aging, and delays a variety of diseases. Reduction of inflammatory response was proposed as one of the molecular mechanisms for how CR exerts beneficial effects. The present study investigated the effects of CR on postoperative pain in rats. Adult nonobese rats were divided into two dietary groups, an ad libitum fed group (AL) and a caloric restriction group (CR) that was provided with 60% of the food intake of AL rats. After 6 weeks, the effects of CR on pain behaviors and inflammation induced by plantar incision were examined. CR rats displayed significantly reduced nonevoked pain, mechanical allodynia and thermal hyperalgesia induced by incision, and showed decreased levels of pro-inflammatory cytokines in serum, peri-incisional skin tissue and ipsilateral spinal cord dorsal horn at 6 h and 24 h after incision. The analgesic efficiency of parecoxib and morphine, two agents widely used for the management of postoperative pain clinically, was reinforced by CR. Together, CR generates antinociceptive effects on postoperative incisional pain in rats, perhaps providing some improvement of QOL in patients with postoperative pain, and the beneficial effects may be attributable to the inhibition of excessive inflammation induced by surgical injury.
Collapse
Affiliation(s)
- Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yuan Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu province, China
| |
Collapse
|
12
|
A. Richard S, Min W, Su Z, Xu HX. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Hu X, Jhun EH, Yao Y, He Y, Molokie RE, Wilkie DJ, Wang ZJ. IL1A rs1800587 associates with chronic noncrisis pain in sickle cell disease. Pharmacogenomics 2016; 17:1999-2006. [PMID: 27883292 DOI: 10.2217/pgs-2016-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Pain is prevalent in sickle cell disease (SCD) patients who display great heterogeneity in pain severity and frequency. Hypothesizing that inflammatory factors are involved in the pathogenesis of SCD pain, we focused on the IL1A C/T polymorphism rs1800587 that is an SNP located in a cis-transcriptional regulatory region. METHODS We genotyped IL1A rs1800587 and performed association studies with phenotype data obtained by a multidimensional pain assessment tool using the PAINReportIt® Questionnaire. RESULTS Each T allele was associated with a 3.9 increase in composite pain index score (p = 0.04) as determined by multiple linear regression. CONCLUSION IL1A rs1800587 may influence chronic pain in SCD.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Ellie H Jhun
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Yingwei Yao
- Department of Biobehavioral Health Science, University of Illinois at Chicago College of Nursing, Chicago, IL, USA.,Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| | - Ying He
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA
| | - Robert E Molokie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.,Division of Hematology/Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Diana J Wilkie
- Department of Biobehavioral Health Science, University of Illinois at Chicago College of Nursing, Chicago, IL, USA.,Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA
| | - Zaijie J Wang
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, IL, USA
| |
Collapse
|
14
|
Barker JS, Wu Z, Hunter DD, Dey RD. Ozone exposure initiates a sequential signaling cascade in airways involving interleukin-1beta release, nerve growth factor secretion, and substance P upregulation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:397-407. [PMID: 25734767 PMCID: PMC4491938 DOI: 10.1080/15287394.2014.971924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous studies demonstrated that interleukin-1β (IL-1β) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1β effects on SP. The current study specifically focused on the influence of O3 on IL-1β, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1β. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1β effects on SP. These data indicate that IL-1β is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo.
Collapse
Affiliation(s)
- Joshua S Barker
- a Department of Neurobiology and Anatomy , West Virginia School of Medicine , Morgantown , West Virginia , USA
| | | | | | | |
Collapse
|
15
|
Yamamoto K, Asano K, Tasaka A, Ogura Y, Kim S, Ito Y, Yamatodani A. Involvement of substance P in the development of cisplatin-induced acute and delayed pica in rats. Br J Pharmacol 2014; 171:2888-99. [PMID: 24641692 DOI: 10.1111/bph.12629] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 01/06/2014] [Accepted: 01/27/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Although substance P (SP) and neurokinin NK1 receptors have been reported to be involved in cisplatin-induced acute and delayed emesis, their precise roles remain unclear. Pica, the consumption of non-nutrient materials such as kaolin in rats, can be used as a model of nausea in humans. We investigated the time-dependent changes in cisplatin-induced pica and the involvement of SP and NK1 receptors in this behaviour. EXPERIMENTAL APPROACH Rats were administered cisplatin with or without a daily injection of a 5-HT3 receptor antagonist (granisetron) or an NK1 receptor antagonist (aprepitant), and kaolin intake was then monitored for 5 days. The effects of granisetron on the cisplatin-induced expression of preprotachykinin-A (PPT-A) mRNA, which encodes mainly for SP, and on SP release in the medulla, measured by in vivo brain microdialysis, were also investigated. KEY RESULTS Cisplatin induced pica within 8 h of its administration that continued for 5 days. Granisetron inhibited the acute phase (day 1), but not the delayed phase (days 2-5), of pica, whereas aprepitant abolished both phases. Within 24 h of the injection of cisplatin, PPT-A mRNA expression and SP release in the medulla were significantly increased; these findings lasted during the observation period and were inhibited by granisetron for up to 24 h. CONCLUSIONS AND IMPLICATIONS The profiles of cisplatin-induced pica in rats are similar to clinical findings for cisplatin-induced emesis in humans, and we showed that SP production in the medulla and activation of NK1 receptors are involved in this cisplatin-induced pica.
Collapse
Affiliation(s)
- Kouichi Yamamoto
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Bastos-Pereira AL, Leite MCG, Fraga D, Zampronio AR. Central mediators involved in the febrile response induced by polyinosinic-polycytidylic acid: lack of involvement of endothelins and substance P. J Neuroimmunol 2014; 278:100-7. [PMID: 25595258 DOI: 10.1016/j.jneuroim.2014.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022]
Abstract
The present study evaluated the involvement of interleukin(IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, interferon(IFN)-γ, prostaglandins of the E2 series, endothelins, substance P and opioids within the central nervous system in polyinosinic:polycytidylic acid (Poly I:C)-induced fever in rats. Poly I:C injection induced a febrile response which was reduced by intracerebroventricular administration of the antibodies against TNF-α, IL-6, or IFN-γ, or by IL-1 or μ receptor antagonists. Intraperitoneal injection of indomethacin or oral administration of celecoxib also reduced Poly I:C-induced fever. Poly I:C increased prostaglandin E2 levels in the cerebrospinal fluid of the animals which was also reduced by indomethacin. The intracerebroventricular injection of ETB or NK1 receptor antagonists did not alter Poly I:C-induced fever. These data suggest the involvement of IL-1β, TNF-α, IL-6, IFN-γ, prostaglandin E2, and opioids but not endothelins and substance P on Poly I:C-induced fever.
Collapse
Affiliation(s)
- A L Bastos-Pereira
- Department of Pharmacology, Federal University of Paraná, P.O. Box 19031, 81540-970 Curitiba, PR, Brazil
| | - M C G Leite
- Department of Pharmacology, Federal University of Paraná, P.O. Box 19031, 81540-970 Curitiba, PR, Brazil
| | - D Fraga
- Department of Pharmacology, Federal University of Paraná, P.O. Box 19031, 81540-970 Curitiba, PR, Brazil
| | - A R Zampronio
- Department of Pharmacology, Federal University of Paraná, P.O. Box 19031, 81540-970 Curitiba, PR, Brazil.
| |
Collapse
|
17
|
The Interleukin-1α Gene C>T Polymorphism rs1800587 is Associated With Increased Pain Intensity and Decreased Pressure Pain Thresholds in Patients With Lumbar Radicular Pain. Clin J Pain 2014; 30:869-74. [DOI: 10.1097/ajp.0000000000000048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Moen A, Schistad EI, Rygh LJ, Røe C, Gjerstad J. Role of IL1A rs1800587, IL1B rs1143627 and IL1RN rs2234677 genotype regarding development of chronic lumbar radicular pain; a prospective one-year study. PLoS One 2014; 9:e107301. [PMID: 25207923 PMCID: PMC4160243 DOI: 10.1371/journal.pone.0107301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022] Open
Abstract
Previous studies indicate that lumbar radicular pain following disc herniation may be associated with release of several pro-inflammatory mediators, including interleukin-1 (IL1). In the present study, we examined how genetic variability in IL1A (rs1800587 C>T), IL1B (rs1143627 T>C) and IL1RN (rs2234677 G>A) influenced the clinical outcome the first year after disc herniation. Patients (n = 258) with lumbar radicular pain due to disc herniation were recruited from two hospitals in Norway. Pain and disability were measured by visual analogue scale (VAS) and Oswestry Disability Index (ODI) over a 12 month period. The result showed that patients with the IL1A T allele, in combination with the IL1RN A allele had more pain and a slower recovery than other patients (VAS p = 0.049, ODI p = 0.059 rmANOVA; VAS p = 0.003, ODI p = 0.050 one-way ANOVA at 12 months). However, regarding the IL1B/IL1RN genotype, no clear effect on recovery was observed (VAS p = 0.175, ODI p = 0.055 rmANOVA; VAS p = 0.105, ODI p = 0.214 one-way ANOVA at 12 months). The data suggest that the IL1A T/IL1RN A genotype, but not the IL1B T/IL1RN A genotype, may increase the risk of a chronic outcome in patients following disc herniation.
Collapse
Affiliation(s)
- Aurora Moen
- National Institute of Occupational Health, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Ullevaal, Oslo, Norway
- * E-mail:
| | - Elina Iordanova Schistad
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Ullevaal, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars Jørgen Rygh
- Department of Anesthesiology and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Cecilie Røe
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Ullevaal, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Johannes Gjerstad
- National Institute of Occupational Health, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Increased interleukin-1α and prostaglandin E2 expression in the spinal cord at 1 day after painful facet joint injury: evidence of early spinal inflammation. Spine (Phila Pa 1976) 2014; 39:207-12. [PMID: 24253784 PMCID: PMC3946680 DOI: 10.1097/brs.0000000000000107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used immunohistochemistry and an enzyme immunoassay to quantify interleukin-1α (IL-1α) and prostaglandin E2 (PGE2) levels in the spinal cord of rats at 1 day after painful cervical facet joint injury. OBJECTIVE The objective of this study was to determine to what extent spinal inflammation is initiated early after a painful loading-induced injury of the C6-C7 facet joint in a rat model. SUMMARY OF BACKGROUND DATA A common source of neck pain, the cervical facet joint is susceptible to loading-induced injury, which can lead to persistent pain. IL-1α and PGE2 are associated with joint inflammation and pain, both locally in the joint and centrally in the spinal cord. Joint inflammation has been shown to contribute to pain after facet joint injury. Although spinal neuronal hyperactivity is evident within 1 day of painful facet injury, it is unknown if inflammatory mediators, such as IL-1α and PGE2, are also induced early after painful injury. METHODS Rats underwent either a painful C6-C7 facet joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical and enzyme immunoassay techniques were used to quantify IL-1α and PGE2 expression in the spinal cord at day 1. RESULTS Both IL-1α and PGE2 were significantly elevated (P≤ 0.04) at day 1 after painful injury. Moreover, although both spinal IL-1α and PGE2 levels were correlated with the withdrawal threshold in response to mechanical stimulation of the forepaw, this correlation was only significant (P = 0.01) for PGE2. CONCLUSION The increased expression of 2 inflammatory markers in the spinal cord at 1 day after painful joint injury suggests that spinal inflammation may contribute to the initiation of pain after cervical facet joint injury. Further studies will help identify functional roles of both spinal IL-1α and PGE2 in loading-induced joint pain. LEVEL OF EVIDENCE N/A.
Collapse
|
20
|
Astiz M, Acaz-Fonseca E, Garcia-Segura LM. Sex Differences and Effects of Estrogenic Compounds on the Expression of Inflammatory Molecules by Astrocytes Exposed to the Insecticide Dimethoate. Neurotox Res 2013; 25:271-85. [DOI: 10.1007/s12640-013-9417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
|
21
|
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013; 2013:480739. [PMID: 23997430 PMCID: PMC3753746 DOI: 10.1155/2013/480739] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/18/2023] Open
Abstract
Cytokines and chemokines are proteins that coordinate the immune response throughout the body. The dysregulation of cytokines and chemokines is a central feature in the development of neuroinflammation, neurodegeneration, and demyelination both in the central and peripheral nervous systems and in conditions of neuropathic pain. Pathological states within the nervous system can lead to activation of microglia. The latter may mediate neuronal and glial cell injury and death through production of proinflammatory factors such as cytokines and chemokines. These then help to mobilize the adaptive immune response. Although inflammation may induce beneficial effects such as pathogen clearance and phagocytosis of apoptotic cells, uncontrolled inflammation can result in detrimental outcomes via the production of neurotoxic factors that exacerbate neurodegenerative pathology. In states of prolonged inflammation, continual activation and recruitment of effector cells can establish a feedback loop that perpetuates inflammation and ultimately results in neuronal injury. A critical balance between repair and proinflammatory factors determines the outcome of a neurodegenerative process. This review will focus on how cytokines and chemokines affect neuroinflammation and disease pathogenesis in bacterial meningitis and brain abscesses, Lyme neuroborreliosis, human immunodeficiency virus encephalitis, and neuropathic pain.
Collapse
Affiliation(s)
- Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | |
Collapse
|
22
|
Goravanahally MP, Hubbs AF, Fedan JS, Kashon ML, Battelli LA, Mercer RR, Goldsmith WT, Jackson MC, Cumpston A, Frazer DG, Dey RD. Diacetyl increases sensory innervation and substance P production in rat trachea. Toxicol Pathol 2013; 42:582-90. [PMID: 23847039 DOI: 10.1177/0192623313493689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 ± 0.002 in controls to 0.05 ± 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 ± 3.0% in controls to 25.5 ± 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis.
Collapse
Affiliation(s)
- Madhusudan P Goravanahally
- 1Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Interleukin-1β increased the expression of protease-activated receptor 4 mRNA and protein in dorsal root ganglion neurons. Neurochem Res 2013; 38:1895-903. [PMID: 23775412 DOI: 10.1007/s11064-013-1095-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Protease-activated receptor-4 (PAR4) is localized in primary sensory neurons and is believed to implicate in the modulation of nociceptive mechanisms. The pro-inflammatory cytokine interleukin-1β (IL-1β) is involved in the generation of hyperalgesia in pathological states such as neuropathy and inflammation. Previous studies have shown that IL-1β enhances the expression of PAR4 in many cell types but the effect of this cytokine on primary sensory neuron PAR4 expression is less clear. In the present study, we evaluated in rat dorsal root ganglion (DRG) neurons the influence of IL-1β on PAR4 mRNA and protein levels after IL-1β intraplantar injection into the hind-paw or treatment of cultured DRG neurons. The expression of PAR4 in cultured DRG neurons was also assessed after treatment with IL-1β with pre-addition of phorbol-12-myristate 13-acetate (PMA, a PKC activator) or chelerythrine chloride (a PKC inhibitor). We found that IL-1β intraplantar injection into the hind-paw or long-term exposure of cultured DRG neurons to IL-1β significantly increased the proportion of DRG neurons expressing PAR4 immunoreactivity. Real-time PCR and western blotting showed that IL-1β treatment also significantly elevated PAR4 mRNA and protein levels in DRG neurons. This IL-1β effect was enhanced in DRG neurons when DRG cultures were pre-treatment with the PMA. But pre-incubation with chelerythrine chloride strongly inhibited the IL-1β-induced increase of PAR4 mRNA and protein levels. These results demonstrate that the expression of PAR4 mRNA and protein induced by IL-1β is PKC signaling pathway dependent.
Collapse
|
24
|
McKinnon BD, Evers J, Bersinger NA, Mueller MD. Induction of the neurokinin 1 receptor by TNFα in endometriotic tissue provides the potential for neurogenic control over endometriotic lesion growth. J Clin Endocrinol Metab 2013; 98:2469-77. [PMID: 23553861 DOI: 10.1210/jc.2013-1019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Endometriosis is characterized by the growth of ectopic endometrial tissue. Nerve fibers are frequently associated with ectopic lesions, and neurogenic inflammation may play a role in endometriosis. OBJECTIVE The purpose of this study was to determine the presence of tachykinin receptors in endometriotic lesions and the role of TNFα on their expression. DESIGN This study was an assessment of matching eutopic and ectopic endometrial tissue and peritoneal fluid from patients with endometriosis and an in vitro analysis of primary endometrial cells. SETTING The setting was a university hospital. PATIENTS Participants were premenopausal women undergoing laparoscopy. INTERVENTIONS Endometriotic lesions were removed surgically. MAIN OUTCOME MEASURES Tachykinin mRNA (TACR1/2) and protein (neurokinin 1 receptor [NK1R]) expression in both eutopic and ectopic endometrial tissue from patients with endometriosis and the correlation to peritoneal fluid TNFα were measured. Primary endometrial epithelial and stromal cells were assessed in vitro to determine the induction of TACR1/2 and NK1R expression after TNFα treatment. Cell viability of endometrial stromal cells after substance P exposure was also assessed. RESULTS Expression of both TACR1 and TACR2 mRNA was significantly higher in the ectopic than in the eutopic tissue. Both TACR1 mRNA and NK1R protein expression was significantly correlated with peritoneal fluid TNFα, and in vitro studies confirmed that TNFα treatment induced both TACR1 mRNA and NK1R protein expression in endometrial stromal cells. In endometrial stromal cells, substance P treatment enhanced cell viability, which was inhibited by a specific NK1R antagonist. CONCLUSIONS NK1R expression is induced in ectopic endometrial tissue by peritoneal TNFα. Induction of NK1R expression may permit endometriotic lesion maintenance via exposure to substance P.
Collapse
Affiliation(s)
- Brett D McKinnon
- Department of Obstetrics and Gynaecology, Inselspital, University of Berne, Berne, CH-3010, Switzerland.
| | | | | | | |
Collapse
|
25
|
Diz-Chaves Y, Astiz M, Bellini MJ, Garcia-Segura LM. Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice. Brain Behav Immun 2013. [PMID: 23207108 DOI: 10.1016/j.bbi.2012.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early life experiences, such as prenatal stress, may result in permanent alterations in the function of the nervous and immune systems. In this study we have assessed whether prenatal stress affects the inflammatory response of the hippocampal formation of male mice to an inflammatory challenge during adulthood. Pregnant C57BL/6 mice were randomly assigned to stress (n=10) or non-stress (n=10) groups. Animals of the stress group were placed in plastic transparent cylinders and exposed to bright light for 3 sessions of 45min every day from gestational day 12 to parturition. Non-stressed pregnant mice were left undisturbed. At four months of age, non stressed and prenatally stressed male offspring were killed, 24h after the systemic administration of lipopolysaccharide (LPS) or vehicle. Under basal conditions, prenatally stressed animals showed increased expression of interleukin 1β and tumor necrosis factor-α (TNF-α) in the hippocampus and an increased percentage of microglia cells with reactive morphology in CA1 compared to non-stressed males. Furthermore, prenatally stressed mice showed increased TNF-α immunoreactivity in CA1 and increased number of Iba-1 immunoreactive microglia and GFAP-immunoreactive astrocytes in the dentate gyrus after LPS administration. In contrast, LPS did not induce such changes in non-stressed animals. These findings indicate that prenatal stress induces a basal proinflammatory status in the hippocampal formation during adulthood that results in an enhanced activation of microglia and astrocytes in response to a proinflammatory insult.
Collapse
|
26
|
Spofford CM, Brennan TJ. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology 2012; 117:161-72. [PMID: 22617252 PMCID: PMC3389501 DOI: 10.1097/aln.0b013e31825a2a2b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Treating postoperative pain remains a significant challenge for perioperative medicine. Recent studies have shown that nerve growth factor is up-regulated and contributes to incisional pain. To date, few studies have examined expression of other neurotrophin-related mediators that may contribute to the development and/or maintenance of incisional pain. METHODS Male Sprague-Dawley rats underwent a plantar incision, and pain behaviors were examined (n = 6). In a separate group of rats, expression of neurotrophic factors were studied. At various times after incision (n = 4) or sham surgery (n = 4), the skin, muscle, and dorsal root ganglia were harvested and total RNA isolated. Real-time reverse transcription polymerase chain reaction was performed and the fold change in gene expression was analyzed using significance analysis of microarrays. RESULTS Several genes were changed (P < 0.05) as early as 1 h after incision. Expression of artemin and nerve growth factor were increased in both incised skin and muscle. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-5 were all down-regulated in the skin but up-regulated in the muscle 48 h after incision. Few genes changed in the dorsal root ganglion. Most changes in expression occurred in the first 48 h after incision, a timeframe when pain behavior was the greatest. CONCLUSION Surgical incision is associated with pain-related gene expression changes in skin, muscle, and, to a lesser extent, dorsal root ganglion. The gene expression profile provides clues as to mediators that are involved in peripheral sensitization and pain transmission after surgical incision and also suggest mechanisms for resolution of postoperative pain when more persistent pain syndromes like neuropathic pain continue.
Collapse
|
27
|
|
28
|
Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Armijo LM, Kuhn MN, Thakur GA, Makriyannis A, Milligan ED. Intrathecal cannabilactone CB(2)R agonist, AM1710, controls pathological pain and restores basal cytokine levels. Pain 2012; 153:1091-1106. [PMID: 22425445 DOI: 10.1016/j.pain.2012.02.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 12/30/2022]
Abstract
Spinal glial and proinflammatory cytokine actions are strongly implicated in pathological pain. Spinal administration of the anti-inflammatory cytokine interleukin (IL)-10 abolishes pathological pain and suppresses proinflammatory IL-1β and tumor necrosis factor alpha (TNF-α). Drugs that bind the cannabinoid type-2 receptor (CB(2)R) expressed on spinal glia reduce mechanical hypersensitivity. To better understand the CB(2)R-related anti-inflammatory profile of key anatomical nociceptive regions, we assessed mechanical hypersensitivity and protein profiles following intrathecal application of the cannabilactone CB(2)R agonist, AM1710, in 2 animal models; unilateral sciatic nerve chronic constriction injury (CCI), and spinal application of human immunodeficiency virus-1 glycoprotein 120 (gp120), a model of peri-spinal immune activation. In CCI animals, lumbar dorsal spinal cord and corresponding dorsal root ganglia (DRG) were evaluated by immunohistochemistry for expression of IL-10, IL-1β, phosphorylated p38-mitogen-activated-kinase (p-p38MAPK), a pathway associated with proinflammatory cytokine production, glial cell markers, and degradative endocannabinoid enzymes, including monoacylglycerol lipase (MAGL). AM1710 reversed bilateral mechanical hypersensitivity. CCI revealed decreased IL-10 expression in dorsal spinal cord and DRG, while AM1710 resulted in increased IL-10, comparable to controls. Adjacent DRG and spinal sections revealed increased IL-1β, p-p38MAPK, glial markers, and/or MAGL expression, while AM1710 suppressed all but spinal p-p38MAPK and microglial activation. In spinal gp120 animals, AM1710 prevented bilateral mechanical hypersensitivity. For comparison to immunohistochemistry, IL-1β and TNF-α protein quantification from lumbar spinal and DRG homogenates was determined, and revealed increased DRG IL-1β protein levels from gp120, that was robustly prevented by AM1710 pretreatment. Cannabilactone CB(2)R agonists are emerging as anti-inflammatory agents with pain therapeutic implications.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA Department of Anesthesiology and Critical Care Medicine, Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wilkerson JL, Milligan ED. The Central Role of Glia in Pathological Pain and the Potential of Targeting the Cannabinoid 2 Receptor for Pain Relief. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22442754 DOI: 10.5402/2011/593894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Under normal conditions, acute pain processing consists of well-characterized neuronal signaling events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and their released factors participate in the mediation of pathological pain. The use of cannabinoid compounds for pain relief is currently an area of great interest for both basic scientists and physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB(1)R) or cannabinoid receptor subtype 2 (CB(2)R) and are able to modulate pain. Although cannabinoids were initially only thought to modulate pain via neuronal mechanisms within the central nervous system, strong evidence now supports that CB(2)R cannabinoid compounds are capable of modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body of evidence supports that CB(2)R agonist compounds may prove to be powerful novel therapeutic candidates for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Neurosciences, School of Medicine, University of New Mexico, HSC, MSC08-4740, Albuquerque, NM 87131, USA
| | | |
Collapse
|
30
|
McLaren ID, Jerde TJ, Bushman W. Role of interleukins, IGF and stem cells in BPH. Differentiation 2011; 82:237-43. [PMID: 21864972 DOI: 10.1016/j.diff.2011.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 12/22/2022]
Abstract
The condition known as benign prostatic hyperplasia may be defined as a benign enlargement of the prostate gland resulting from a proliferation of both benign epithelial and stromal elements. It might also be defined clinically as a constellation of lower urinary tract symptoms (LUTSs) in aging men. The purpose of this review is to consider the ways in which inflammatory cytokines belonging to the interleukin family, members of the IFG family, and stem cells may contribute to the development and progression of BPH-LUTS. This might occur in three mechanisms: One, interleukin signaling, IFG signaling and stem cells may contribute to reactivation of developmental growth mechanisms in the adult prostate leading to tissue growth. Two, given that epidemiologic studies indicate an increased incidence of BPH-LUTS in association with obesity and diabetes, IFG signaling may provide the mechanistic basis for the effect of diabetes and obesity on prostate growth. Three, expression of interleukins in association with inflammation in the prostate may induce sensitization of afferent fibers innervating the prostate and result in increased sensitivity to pain and noxious sensations in the prostate and bladder and heightened sensitivity to bladder filling.
Collapse
Affiliation(s)
- Ian D McLaren
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | | | | |
Collapse
|
31
|
Shi X, Wang L, Li X, Sahbaie P, Kingery WS, Clark JD. Neuropeptides contribute to peripheral nociceptive sensitization by regulating interleukin-1β production in keratinocytes. Anesth Analg 2011; 113:175-83. [PMID: 21596883 DOI: 10.1213/ane.0b013e31821a0258] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It is increasingly evident that there is a close connection between the generation of cutaneous inflammatory cytokines and elevated neuropeptide signaling in complex regional pain syndrome (CRPS) patients. Previously, we observed in the rat tibia fracture model of CRPS that activation of caspase-1 containing NALP1 inflammasomes was required for interleukin (IL)-1β production in keratinocytes, and that administration of an IL-1 receptor antagonist (anakinra) reduced the fracture-induced hindpaw mechanical allodynia. We therefore hypothesized that neuropeptides lead to nociceptive sensitization through activation of the skin's innate immune system by enhancing inflammasome expression and caspase-1 activity. METHODS We determined whether the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) require IL-1β to support nociceptive sensitization when injected into mouse hindpaw skin by testing mechanical allodynia. We then investigated whether these neuropeptides could stimulate production of IL-1β in a keratinocyte cell line (REKs), and could increase the expression of inflammasome component proteins including NALP1 and caspase-1. Finally, we determined whether neuropeptide-stimulated IL-1β production required activation of caspase-1 and cathepsin B. RESULTS Intraplantar injections of SP and CGRP lead to allodynia in mouse hindpaws but CGRP was approximately 10-fold less potent in causing this response. Moreover, systemic administration of the IL-1 receptor (IL-1R) antagonist anakinra prevented sensitization after neuropeptide injection. Also, mouse skin keratinocytes express IL-1R, which is up-regulated after local neuropeptide application. In vitro data demonstrated that both SP and CGRP increased IL-1β gene and protein expression in REKs in a dose-dependent manner. Furthermore, SP time- and dose-dependently up-regulated NALP1 and caspase-1 mRNA and protein levels in REKs. In contrast, CGRP time- and dose-dependently enhanced NALP1 and caspase-1 mRNA levels without causing a significant change in NALP1 or caspase-1 protein expression in REKs. Inhibition of caspase-1 activity using the selective inhibitor Ac-YVAD-CHO reduced SP and, less effectively, CGRP induced increases in IL-1β production in REK cells. The selective cathepsin B inhibitor CA-74Me inhibited neuropeptide induced IL-1β production in REKs as well. CONCLUSIONS Collectively, these results demonstrate that neuropeptides induce nociceptive sensitization by enhancing IL-1 β production in keratinocytes. Neuropeptides rely on both caspase-1 and cathepsin B for this enhanced production. Neurocutaneous signaling involving neuropeptide activation of the innate immunity may contribute to pain in CRPS patients.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | | | | | | | | | | |
Collapse
|
32
|
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. ACTA ACUST UNITED AC 2011; 67:282-310. [PMID: 21440003 DOI: 10.1016/j.brainresrev.2011.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/16/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. A mechanism-based treatment approach may prove to be successful in effective treatment of neuropathic pain, but requires more detailed insights into the persistence of cellular and molecular pain mechanisms which renders neuropathic pain unremitting. Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
Collapse
Affiliation(s)
- Julie V Berger
- Department of Anesthesiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Bellini MJ, Hereñú CB, Goya RG, Garcia-Segura LM. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide. J Neuroinflammation 2011; 8:21. [PMID: 21371294 PMCID: PMC3056784 DOI: 10.1186/1742-2094-8-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 03/03/2011] [Indexed: 12/14/2022] Open
Abstract
Background Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells.
Collapse
|
34
|
Xie L, Takahara M, Nakahara T, Oba J, Uchi H, Takeuchi S, Moroi Y, Furue M. CD10-bearing fibroblasts may inhibit skin inflammation by down-modulating substance P. Arch Dermatol Res 2011; 303:49-55. [PMID: 21076839 DOI: 10.1007/s00403-010-1093-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/27/2022]
Abstract
Substance P (SP) is a multipotent neuropeptide that affects the proliferation, activation and motility of keratinocytes and fibroblasts (Fbs). SP in pulmonary and synovial cells is degraded by CD10, a 90- to 110-kDa cell surface zinc-dependent metalloprotease. However, the expression and function of CD10 in human dermal Fbs have not yet been investigated in vivo and in vitro specifically with reference to SP. Our immunohistologic study revealed moderate to strong fibroblastic CD10 expression in the majority of psoriasis vulgaris (16/16), chronic eczema (15/16), lichen planus (18/20) and atopic dermatitis (4/5). Keratinocytes showed no CD10 expression in vivo and in vitro. Cultured Fbs constitutively expressed CD10 and SP. CD10 expression was augmented by external interleukin (IL)-1β and IL-22, but not by IL-8 and IL-17A in Fbs. SP production was enhanced in CD10 knockdown-Fbs (CD10ND-Fbs) compared with control-Fbs. In the presence of IL-1β or IL-22, the enhancement of SP production was more prominent in CD10ND-Fbs than in control-Fbs, suggesting the down-modulating activity of CD10 on SP in cytokine-mediated inflammation. In conclusion, fibroblastic CD10 expression may down-regulate skin inflammation by degrading SP or reducing its level in the dermal microenvironment.
Collapse
Affiliation(s)
- Lining Xie
- Department of Dermatology, Kyushu University, Higashiku, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Adler JE, Nico L, VandeVord P, Skoff AM. Modulation of Neuropathic Pain by a Glial-Derived Factor. PAIN MEDICINE 2009; 10:1229-36. [DOI: 10.1111/j.1526-4637.2009.00708.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|