1
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Egido-Betancourt HX, Strowd III RE, Raab-Graham KF. Potential roles of voltage-gated ion channel disruption in Tuberous Sclerosis Complex. Front Mol Neurosci 2024; 17:1404884. [PMID: 39253727 PMCID: PMC11381416 DOI: 10.3389/fnmol.2024.1404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a lynchpin disorder, as it results in overactive mammalian target of rapamycin (mTOR) signaling, which has been implicated in a multitude of disease states. TSC is an autosomal dominant disease where 90% of affected individuals develop epilepsy. Epilepsy results from aberrant neuronal excitability that leads to recurring seizures. Under neurotypical conditions, the coordinated activity of voltage-gated ion channels keep neurons operating in an optimal range, thus providing network stability. Interestingly, loss or gain of function mutations in voltage-gated potassium, sodium, or calcium channels leads to altered excitability and seizures. To date, little is known about voltage-gated ion channel expression and function in TSC. However, data is beginning to emerge on how mTOR signaling regulates voltage-gated ion channel expression in neurons. Herein, we provide a comprehensive review of the literature describing common seizure types in patients with TSC, and suggest possible parallels between acquired epilepsies with known voltage-gated ion channel dysfunction. Furthermore, we discuss possible links toward mTOR regulation of voltage-gated ion channels expression and channel kinetics and the underlying epileptic manifestations in patients with TSC.
Collapse
Affiliation(s)
- Hailey X. Egido-Betancourt
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Roy E. Strowd III
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life (Basel) 2023; 13:life13051191. [PMID: 37240836 DOI: 10.3390/life13051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Several pharmacological therapeutic approaches targeting these channels are used or are under study. Mutations of genes encoding VGSCs are also involved in autism and in different types of even severe intellectual disability (ID). It is conceivable that in these conditions their dysfunction could indirectly cause a certain level of neurodegenerative processes; however, so far, these mechanisms have not been deeply investigated. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer's, where SCN8A expression has been shown to be negatively correlated with disease severity.
Collapse
Affiliation(s)
| | - Mario Nizzari
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Ilaria Zanardi
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| |
Collapse
|
4
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
5
|
Sodium channel expression and transcript variation in the developing brain of human, Rhesus monkey, and mouse. Neurobiol Dis 2022; 164:105622. [PMID: 35031483 DOI: 10.1016/j.nbd.2022.105622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Genetic variation in voltage-gated sodium (NaV) channels is a significant contributor to neurodevelopmental disorders. NaV channel alpha subunits are encoded by the SCNxA family and four are predominately expressed in the brain: SCN1A, SCN2A, SCN3A, and SCN8A. Gene expression is developmentally regulated, and they are known to express functionally distinct transcript variants. Precision therapies targeting these genes and their transcript variants are currently in preclinical development, yet the developmental expression of these transcripts in the human brain is yet to be fully understood. Additionally, the functional consequences of some mutations differ depending on the studied channel isoform, suggesting differential transcript variant expression can affect disease prognoses. We characterise the expression of the four SCNxAs and their transcript variants in human, Rhesus monkey and mouse brain using publicly available RNA-sequencing data and analysis tools, demonstrating that this approach can be used to answer important biological questions of gene and transcript developmental regulation. We find that gene expression and transcript variant regulation are conserved across species at similar developmental stages and determine the developmental milestones for transcript variant expression. Our study provides a guide to researchers testing therapies and clinicians advising prognoses based on the expression of channel isoforms.
Collapse
|
6
|
Huang XJ, Su GJ, Wu CW, Sha XS, Zou JF, Liu XS, Li M, He Y. Knockdown of rno_circRNA_009194 Improves Outcomes in Traumatic Brain Injury Rats through Inhibiting Voltage-Gated Sodium Channel Nav1.3. J Neurotrauma 2021; 39:196-210. [PMID: 34726508 DOI: 10.1089/neu.2020.7520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive activation of voltage-gated sodium channel Nav1.3 has been recently reported in secondary traumatic brain injury (TBI). However, the molecular mechanisms underlying regulating voltage-gated sodium channel (Nav1.3) have not been well understood. The present study used a TBI rat model induced by a fluid percussion device and performed a circular RNA (circRNA) microarray (n = 3) to profile the altered circRNAs in the hippocampus after TBI. After polymerase chain reaction (PCR) validation, certain circRNAs were selected to investigate the function and mechanism in regulating Nav1.3 in the TBI rat model by intracerebroventricular injection with lentivirus. The neurological outcome was evaluated by Morris water maze test, modified Neurological Severity Score (mNSS), brain water content measurement, and hematoxylin and eosin staining. The related molecular mechanisms were explored with PCR, Western blotting, luciferase reporter, chromatin immunoprecipitation assay, and electrophoretic mobility shift assay (EMSA). A total of 347 circRNAs were observed to be differentially expressed (fold change [FC] ≥ 1.2 and p < 0.05) after TBI, including 234 up-regulated and 113 down-regulated circRNAs. Among 10 validated circRNAs, we selected circRNA_009194 with the maximized up-regulated fold change (n = 5, FC = 4.45, p < 0.001) for the in vivo functional experiments. Down-regulation of circRNA_009194 resulted in a 27.5% reduced mNSS in rat brain (n = 6, p < 0.01) after TBI and regulated the expression levels of miR-145-3p, Sp1, and Nav1.3, which was reversed by sh-miR-145-3p or Sp1/Nav1.3 overexpression (n = 5, p < 0.05). Mechanistically, circRNA_009194 might act as a sponge for miR-145-3p to regulate Sp1-mediated Nav1.3. This study demonstrated that circRNA_009194 knockdown could improve neurological outcomes in TBI in vivo by inhibiting Nav1.3, directly or indirectly.
Collapse
Affiliation(s)
- Xian-Jian Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gao-Jian Su
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Chu-Wei Wu
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Song Sha
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jun-Feng Zou
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xian-Sheng Liu
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Min Li
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yun He
- Department of Intensive Care Unit, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Komaki A. The effect of sodium channels on neurological/neuronal disorders: A systematic review. Int J Dev Neurosci 2021; 81:669-685. [PMID: 34687079 DOI: 10.1002/jdn.10153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Neurological and neuronal disorders are associated with structural, biochemical, or electrical abnormalities in the nervous system. Many neurological diseases have not yet been discovered. Interventions used for the treatment of these disorders include avoidance measures, lifestyle changes, physiotherapy, neurorehabilitation, pain management, medication, and surgery. In the sodium channelopathies, alterations in the structure, expression, and function of voltage-gated sodium channels (VGSCs) are considered as the causes of neurological and neuronal diseases. Online databases, including Scopus, Science Direct, Google Scholar, and PubMed were assessed for studies published between 1977 and 2020 using the keywords of review, sodium channels blocker, neurological diseases, and neuronal diseases. VGSCs consist of one α subunit and two β subunits. These subunits are known to regulate the gating kinetics, functional characteristics, and localization of the ion channel. These channels are involved in cell migration, cellular connections, neuronal pathfinding, and neurite outgrowth. Through the VGSC, the action potential is triggered and propagated in the neurons. Action potentials are physiological functions and passage of impermeable ions. The electrophysiological properties of these channels and their relationship with neurological and neuronal disorders have been identified. Subunit mutations are involved in the development of diseases, such as epilepsy, multiple sclerosis, autism, and Alzheimer's disease. Accordingly, we conducted a review of the link between VGSCs and neurological and neuronal diseases. Also, novel therapeutic targets were introduced for future drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Vice-Chancellor for Research and Technology, Hamadan University of Medical Science, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Ghovanloo MR, Ruben PC. Cannabidiol and Sodium Channel Pharmacology: General Overview, Mechanism, and Clinical Implications. Neuroscientist 2021; 28:318-334. [PMID: 34027742 PMCID: PMC9344566 DOI: 10.1177/10738584211017009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels initiate action potentials in excitable tissues. Altering these channels' function can lead to many pathophysiological conditions. Nav channels are composed of several functional and structural domains that could be targeted pharmacologically as potential therapeutic means against various neurological conditions. Mutations in Nav channels have been suggested to underlie various clinical syndromes in different tissues and in association with conditions ranging from epileptic to muscular problems. Treating those mutations that increase the excitability of Nav channels requires inhibitors that could effectively reduce channel firing. The main non-psychotropic constituent of the cannabis plant, cannabidiol (CBD), has recently gained interest as a viable compound to treat some of the conditions that are associated with Nav malfunctions. In this review, we discuss an overview of Nav channels followed by an in-depth description of the interactions of CBD and Nav channels. We conclude with some clinical implications of CBD use against Nav hyperexcitability based on a series of preclinical studies published to date, with a focus on Nav/CBD interactions.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
| | - Peter C Ruben
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
10
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
11
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
13
|
Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13080174. [PMID: 32751761 PMCID: PMC7463541 DOI: 10.3390/ph13080174] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Epilepsy contributes to approximately 1% of the global disease burden. By affecting especially young children as well as older persons of all social and racial variety, epilepsy is a present disorder worldwide. Currently, only 65% of epileptic patients can be successfully treated with antiepileptic drugs. For this reason, alternative medicine receives more attention. Cannabis has been cultivated for over 6000 years to treat pain and insomnia and used since the 19th century to suppress epileptic seizures. The two best described phytocannabinoids, (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are claimed to have positive effects on different neurological as well as neurodegenerative diseases, including epilepsy. There are different cannabinoids which act through different types of receptors and channels, including the cannabinoid receptor 1 and 2 (CB1, CB2), G protein-coupled receptor 55 (GPR55) and 18 (GPR18), opioid receptor µ and δ, transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), type A γ-aminobutyric acid receptor (GABAAR) and voltage-gated sodium channels (VGSC). The mechanisms and importance of the interaction between phytocannabinoids and their different sites of action regarding epileptic seizures and their clinical value are described in this review.
Collapse
|
14
|
Zaman T, Helbig KL, Clatot J, Thompson CH, Kang SK, Stouffs K, Jansen AE, Verstraete L, Jacquinet A, Parrini E, Guerrini R, Fujiwara Y, Miyatake S, Ben‐Zeev B, Bassan H, Reish O, Marom D, Hauser N, Vu T, Ackermann S, Spencer CE, Lippa N, Srinivasan S, Charzewska A, Hoffman‐Zacharska D, Fitzpatrick D, Harrison V, Vasudevan P, Joss S, Pilz DT, Fawcett KA, Helbig I, Matsumoto N, Kearney JA, Fry AE, Goldberg EM. SCN3A
‐Related Neurodevelopmental Disorder: A Spectrum of Epilepsy and Brain Malformation. Ann Neurol 2020; 88:348-362. [DOI: 10.1002/ana.25809] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Tariq Zaman
- Division of Neurology, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Katherine L. Helbig
- Division of Neurology, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Jérôme Clatot
- Division of Neurology, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Christopher H. Thompson
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Seok Kyu Kang
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Katrien Stouffs
- Center for Medical Genetics/Research Center for Reproduction and Genetics University Hospital Brussels, Free University of Brussels Brussels Belgium
| | - Anna E. Jansen
- Pediatric Neurology Unit, Department of Pediatrics University Hospital Brussels Brussels Belgium
- Neurogenetics Research Group Free University of Brussels Brussels Belgium
| | | | - Adeline Jacquinet
- Human Genetics Service Sart Tilman University Hospital Center Liege Belgium
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Department of Neuroscience A. Meyer Children's Hospital, University of Florence Florence Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Department of Neuroscience A. Meyer Children's Hospital, University of Florence Florence Italy
| | - Yuh Fujiwara
- Department of Pediatrics Yokohama City University Medical Center Yokohama Japan
| | - Satoko Miyatake
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Bruria Ben‐Zeev
- Pediatric Neurology Unit Edmond and Lili Safra Children's Hospital, Haim Sheba Medical Center Ramat Gan Israel
- Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Haim Bassan
- Sackler School of Medicine Tel Aviv University Tel Aviv Israel
- Pediatric Neurology & Development Center Shamir Medical Center (Assaf Harofe) Zerifin Israel
| | - Orit Reish
- Sackler School of Medicine Tel Aviv University Tel Aviv Israel
- Genetics Institute Shamir Medical Center (Assaf Harofe) Zerifin Zerifin Israel
| | - Daphna Marom
- Sackler School of Medicine Tel Aviv University Tel Aviv Israel
- Genetics Institute Shamir Medical Center (Assaf Harofe) Zerifin Zerifin Israel
| | - Natalie Hauser
- Inova Translational Medicine Institute Inova Health System Fairfax Virginia USA
| | - Thuy‐Anh Vu
- Department of Pediatric Neurology Children's National Medical Center, Washington, District of Columbia, and Pediatric Specialists of Virginia Fairfax Virginia USA
| | - Sally Ackermann
- Division of Paediatric Neurology, Department of Paediatrics and Child Health Red Cross War Memorial Children's Hospital, University of Cape Town Cape Town South Africa
| | - Careni E. Spencer
- Division of Human Genetics, Department of Medicine University of Cape Town, South Africa and Groote Schuur Hospital Cape Town South Africa
| | - Natalie Lippa
- Institute for Genomic Medicine Columbia University Medical Center New York New York USA
| | - Shraddha Srinivasan
- Department of Neurology Columbia University Medical Center New York New York USA
| | | | | | - David Fitzpatrick
- Medical Research Council Human Genetics Unit Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh Edinburgh United Kingdom
| | - Victoria Harrison
- Wessex Clinical Genetics Service Princess Anne Hospital Southampton United Kingdom
| | - Pradeep Vasudevan
- Department of Clinical Genetics University Hospitals Leicester National Health Service Trust Leicester United Kingdom
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service Queen Elizabeth University Hospital Glasgow United Kingdom
| | - Daniela T. Pilz
- West of Scotland Clinical Genetics Service Queen Elizabeth University Hospital Glasgow United Kingdom
- Division of Cancer and Genetics School of Medicine, Cardiff University Cardiff United Kingdom
| | - Katherine A. Fawcett
- Medical Research Council (MRC) Computational Genomics Analysis and Training Programme, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Oxford United Kingdom
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Neurology, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Biomedical and Health Informatics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Naomichi Matsumoto
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Jennifer A. Kearney
- Department of Pharmacology Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Andrew E. Fry
- Division of Cancer and Genetics School of Medicine, Cardiff University Cardiff United Kingdom
- Institute of Medical Genetics University Hospital of Wales Cardiff United Kingdom
| | - Ethan M. Goldberg
- Division of Neurology, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Epilepsy NeuroGenetics Initiative Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Neurology, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Neuroscience Perelman School of Medicine, University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
15
|
Smith RS, Walsh CA. Ion Channel Functions in Early Brain Development. Trends Neurosci 2020; 43:103-114. [PMID: 31959360 PMCID: PMC7092371 DOI: 10.1016/j.tins.2019.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
During prenatal brain development, ion channels are ubiquitous across several cell types, including progenitor cells and migrating neurons but their function has not been clear. In the past, ion channel dysfunction has been primarily studied in the context of postnatal, differentiated neurons that fire action potentials - notably ion channels mutated in the epilepsies - yet data now support a surprising role in prenatal human brain disorders as well. Modern gene discovery approaches have identified defective ion channels in individuals with cerebral cortex malformations, which reflect abnormalities in early-to-middle stages of embryonic development (prior to ubiquitous action potentials). These human genetics studies and recent in utero animal modeling work suggest that precise control of ionic flux (calcium, sodium, and potassium) contributes to in utero developmental processes such as neural proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Richard S Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Sodium Channel Nav1.3 Is Expressed by Polymorphonuclear Neutrophils during Mouse Heart and Kidney Ischemia In Vivo and Regulates Adhesion, Transmigration, and Chemotaxis of Human and Mouse Neutrophils In Vitro. Anesthesiology 2019; 128:1151-1166. [PMID: 29509584 DOI: 10.1097/aln.0000000000002135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Voltage-gated sodium channels generate action potentials in excitable cells, but they have also been attributed noncanonical roles in nonexcitable cells. We hypothesize that voltage-gated sodium channels play a functional role during extravasation of neutrophils. METHODS Expression of voltage-gated sodium channels was analyzed by polymerase chain reaction. Distribution of Nav1.3 was determined by immunofluorescence and flow cytometry in mouse models of ischemic heart and kidney injury. Adhesion, transmigration, and chemotaxis of neutrophils to endothelial cells and collagen were investigated with voltage-gated sodium channel inhibitors and lidocaine in vitro. Sodium currents were examined with a whole cell patch clamp. RESULTS Mouse and human neutrophils express multiple voltage-gated sodium channels. Only Nav1.3 was detected in neutrophils recruited to ischemic mouse heart (25 ± 7%, n = 14) and kidney (19 ± 2%, n = 6) in vivo. Endothelial adhesion of mouse neutrophils was reduced by tetrodotoxin (56 ± 9%, unselective Nav-inhibitor), ICA121431 (53 ± 10%), and Pterinotoxin-2 (55 ± 9%; preferential inhibitors of Nav1.3, n = 10). Tetrodotoxin (56 ± 19%), ICA121431 (62 ± 22%), and Pterinotoxin-2 (59 ± 22%) reduced transmigration of human neutrophils through endothelial cells, and also prevented chemotactic migration (n = 60, 3 × 20 cells). Lidocaine reduced neutrophil adhesion to 60 ± 9% (n = 10) and transmigration to 54 ± 8% (n = 9). The effect of lidocaine was not increased by ICA121431 or Pterinotoxin-2. CONCLUSIONS Nav1.3 is expressed in neutrophils in vivo; regulates attachment, transmigration, and chemotaxis in vitro; and may serve as a relevant target for antiinflammatory effects of lidocaine.
Collapse
|
17
|
Functional Nutrients for Epilepsy. Nutrients 2019; 11:nu11061309. [PMID: 31185666 PMCID: PMC6628163 DOI: 10.3390/nu11061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a common neurological disorder of which seizures are a core symptom. Approximately one third of epileptic patients are resistant to antiepileptic drugs and therefore require alternative therapeutic options. Dietary and nutritional supplements can in some cases replace drugs, but with the exception of ketogenic diets, there are no officially recommended dietary considerations for patients with epilepsy. In this review we summarize a selection of nutritional suggestions that have proved beneficial in treating different types of epilepsy. We describe the types of seizures and epilepsy and follow this with an introduction to basic molecular mechanisms. We then examine several functional nutrients for which there is clinical evidence of therapeutic efficacy in reducing seizures or epilepsy-associated sudden death. We also discuss experimental results that demonstrate possible molecular mechanisms elicited by the administration of various nutrients. The availability of multiple dietary and nutritional candidates that show favorable outcomes in animals implies that assessing the clinical potential of these substances will improve translational medicine, ultimately benefitting epilepsy patients.
Collapse
|
18
|
Feng Y, Zhang S, Zhang Z, Guo J, Tan Z, Zhu Y, Tao J, Ji YH. Understanding Genotypes and Phenotypes of the Mutations in Voltage- Gated Sodium Channel α Subunits in Epilepsy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 18:266-272. [PMID: 30370865 DOI: 10.2174/1871527317666181026164825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & OBJECTIVE Voltage-gated sodium channels (VGSCs) are responsible for the generation and propagation of action potentials in most excitable cells. In general, a VGSC consists of one pore-forming α subunit and two auxiliary β subunits. Genetic alterations in VGSCs genes, including both α and β subunits, are considered to be associated with epileptogenesis as well as seizures. This review aims to summarize the mutations in VGSC α subunits in epilepsy, particularly the pathophysiological and pharmacological properties of relevant VGSC mutants. CONCLUSION The review of epilepsy-associated VGSC α subunits mutants may not only contribute to the understanding of disease mechanism and genetic modifiers, but also provide potential theoretical targets for the precision and individualized medicine for epilepsy.
Collapse
Affiliation(s)
- Yijun Feng
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Shuzhang Zhang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Zhiping Zhang
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Jingkang Guo
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Zhiyong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Yudan Zhu
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Tao
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
19
|
Ghovanloo MR, Shuart NG, Mezeyova J, Dean RA, Ruben PC, Goodchild SJ. Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem 2018; 293:16546-16558. [PMID: 30219789 PMCID: PMC6204917 DOI: 10.1074/jbc.ra118.004929] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1-1.7 currents, with an IC50 of 1.9-3.8 μm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- From the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada and
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Noah Gregory Shuart
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Janette Mezeyova
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Richard A Dean
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| | - Peter C Ruben
- From the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada and
| | - Samuel J Goodchild
- the Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
20
|
The role of Mean Platelet Volume/platelet count Ratio and Neutrophil to Lymphocyte Ratio on the risk of Febrile Seizure. Sci Rep 2018; 8:15123. [PMID: 30310107 PMCID: PMC6181908 DOI: 10.1038/s41598-018-33373-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammatory response has been implicated as a contributor to the onset of febrile seizures (FS). The four novel indices of the inflammatory response such as, neutrophil-to-lymphocyte ratio (NLR), mean platelet volume (MPV), platelet count (PLT) ratio and red blood cell distribution width (RDW) have been investigated in FS susceptibility and FS types (simple febrile seizure and complex febrile seizure). However, the potential role of these inflammatory markers and MPV/PLT ratio (MPR) in Chinese children with FS has yet to be fully determined. This study investigated the relevance of NLR, MPV, PLT, MPR and RDW in febrile children with and without seizures. 249 children with FS and 249 age matched controls were included in this study. NLR and MPR were calculated from complete blood cell counts prior to therapy. Differences in age, gender and these inflammatory markers between the FS group and the control group were evaluated using the chi-square test, t-test or logistic regression analysis. Receiver Operating Characteristic (ROC) curve was used to determine the optimal cut-off value of NLR and MPR for FS risk. Interactions between NLR and MPR on the additive scale were calculated by using the relative excess risk due to interaction (RERI), the proportion attributable to interaction (AP), and the synergy index (S). It has been shown that the elevated NLR and MPR levels were associated with increased risk of FS. The optimal cut-off values of NLR and MPR for FS risk were 1.13 and 0.0335 with an area under the curve (AUC) of 0.768 and 0.689, respectively. Additionally, a significant synergistic interaction between NLR and MPR was found on an additive scale. The mean levels of MPV were lower and NLR levels were higher in complex febrile seizure (CFS) than simple febrile seizure (SFS), and the differences were statistically significant. ROC analysis showed that the optimal cut-off value for NLR was 2.549 with 65.9% sensitivity and 57.5% specificity. However, no statistically significant differences were found regarding average values of MPR and RDW between CFS and SFS. In conclusion, elevated NLR and MPR add evidence to the implication of white cells subsets in FS risk, and our results confirmed that NLR is an independent, albeit limited, predictor in differentiating between CFS and SFS. Moreover, NLR and MPR may have a synergistic effect that can influence the occurrence of FS.
Collapse
|
21
|
Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, Hill RS, Shin T, Chen AY, Doan RN, Anttonen AK, Ignatius J, Medne L, Bönnemann CG, Hecht JL, Salonen O, Barkovich AJ, Poduri A, Wilke M, de Wit MCY, Mancini GMS, Sztriha L, Im K, Amrom D, Andermann E, Paetau R, Lehesjoki AE, Walsh CA, Lehtinen MK. Sodium Channel SCN3A (Na V1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. Neuron 2018; 99:905-913.e7. [PMID: 30146301 DOI: 10.1016/j.neuron.2018.07.052] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/05/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel NaV1.3. Pathogenic NaV1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (NaV1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.
Collapse
Affiliation(s)
- Richard S Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay Ganesh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebeca Borges-Monroy
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Y Chen
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna-Kaisa Anttonen
- The Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Medical and Clinical Genetics, Neuroscience Center and Research Programs Unit, Molecular Neurology, 00014, University of Helsinki, Helsinki, Finland
| | - Jaakko Ignatius
- Department of Clinical Genetics, Turku University Hospital, Turku, 20521, Finland
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carsten G Bönnemann
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Oili Salonen
- Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | - A James Barkovich
- Benioff Children's Hospital, Departments of Radiology, Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA 94117, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC Rotterdam 3015CN, Netherlands
| | - Marie Claire Y de Wit
- Neurogenetics Joint Clinic in Sophia Children's Hospital, Erasmus MC Rotterdam 3015CN, Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC Rotterdam 3015CN, Netherlands
| | - Laszlo Sztriha
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Kiho Im
- Division of Newborn Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dina Amrom
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Institute and Hospital; and the Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group, Montreal Neurological Institute and Hospital; and the Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ritva Paetau
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | - Anna-Elina Lehesjoki
- The Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Medical and Clinical Genetics, Neuroscience Center and Research Programs Unit, Molecular Neurology, 00014, University of Helsinki, Helsinki, Finland
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Zaman T, Helbig I, Božović IB, DeBrosse SD, Bergqvist AC, Wallis K, Medne L, Maver A, Peterlin B, Helbig KL, Zhang X, Goldberg EM. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol 2018; 83:703-717. [PMID: 29466837 DOI: 10.1002/ana.25188] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Voltage-gated sodium (Na+ ) channels underlie action potential generation and propagation and hence are central to the regulation of excitability in the nervous system. Mutations in the genes SCN1A, SCN2A, and SCN8A, encoding the Na+ channel pore-forming (α) subunits Nav1.1, 1.2, and 1.6, respectively, and SCN1B, encoding the accessory subunit β1 , are established causes of genetic epilepsies. SCN3A, encoding Nav1.3, is known to be highly expressed in brain, but has not previously been linked to early infantile epileptic encephalopathy. Here, we describe a cohort of 4 patients with epileptic encephalopathy and heterozygous de novo missense variants in SCN3A (p.Ile875Thr in 2 cases, p.Pro1333Leu, and p.Val1769Ala). METHODS All patients presented with treatment-resistant epilepsy in the first year of life, severe to profound intellectual disability, and in 2 cases (both with the variant p.Ile875Thr), diffuse polymicrogyria. RESULTS Electrophysiological recordings of mutant channels revealed prominent gain of channel function, with a markedly increased amplitude of the slowly inactivating current component, and for 2 of 3 mutants (p.Ile875Thr and p.Pro1333Leu), a leftward shift in the voltage dependence of activation to more hyperpolarized potentials. Gain of function was not observed for Nav1.3 variants known or presumed to be inherited (p.Arg1642Cys and p.Lys1799Gln). The antiseizure medications phenytoin and lacosamide selectively blocked slowly inactivating over transient current in wild-type and mutant Nav1.3 channels. INTERPRETATION These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.
Collapse
Affiliation(s)
- Tariq Zaman
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian Albrecht University, Kiel, Germany.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivana Babić Božović
- Department of Biology and Medical Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Suzanne D DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
| | - A Christina Bergqvist
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kimberly Wallis
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katherine L Helbig
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Ghovanloo MR, Peters CH, Ruben PC. Effects of acidosis on neuronal voltage-gated sodium channels: Nav1.1 and Nav1.3. Channels (Austin) 2018; 12:367-377. [PMID: 30362397 PMCID: PMC6284583 DOI: 10.1080/19336950.2018.1539611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated sodium channels are key contributors to membrane excitability. These channels are expressed in a tissue-specific manner. Mutations and modulation of these channels underlie various physiological and pathophysiological manifestations. The effects of changes in extracellular pH on channel gating have been studied on several sodium channel subtypes. Among these, Nav1.5 is the most pH-sensitive channel, with Nav1.2 and Nav1.4 being mostly pH-resistant channels. However, pH effects have not been characterized on other sodium channel subtypes. In this study, we sought to determine whether Nav1.1 and Nav1.3 display resistance or sensitivity to changes in extracellular pH. These two sodium channel subtypes are predominantly found in inhibitory neurons. The expression of these channels highly depends on age and the developmental stage of neurons, with Nav1.3 being found mostly in neonatal neurons, and Nav1.1 being found in adult neurons. Our present results indicate that, during extracellular acidosis, both channels show a depolarization in the voltage-dependence of activation and moderate reduction in current density. Voltage-dependence of steady-state fast inactivation and recovery from fast inactivation were unchanged. We conclude that Nav1.1 and Nav1.3 have similar pH-sensitivities.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
24
|
Peters CH, Ghovanloo MR, Gershome C, Ruben PC. pH Modulation of Voltage-Gated Sodium Channels. Handb Exp Pharmacol 2018; 246:147-160. [PMID: 29460150 DOI: 10.1007/164_2018_99] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.In this chapter, we review the mechanisms of proton block of the sodium channel pore and a suggested mode of action by which protons alter channel gating. We discuss the available data on isoform specificity of proton effects and tissue level effects. Finally, we review the role that protons play in disease and our own recent studies on proton-sensitizing mutants in cardiac and skeletal muscle sodium channels.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Cynthia Gershome
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
25
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
26
|
Yang R, Fang S, Wang J, Zhang C, Zhang R, Liu D, Zhao Y, Hu X, Li N. Genome-wide analysis of structural variants reveals genetic differences in Chinese pigs. PLoS One 2017; 12:e0186721. [PMID: 29065176 PMCID: PMC5655481 DOI: 10.1371/journal.pone.0186721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/08/2017] [Indexed: 11/19/2022] Open
Abstract
Pigs have experienced long-term selections, resulting in dramatic phenotypic changes. Structural variants (SVs) are reported to exert extensive impacts on phenotypic changes. We built a high resolution and informative SV map based on high-depth sequencing data from 66 Chinese domestic and wild pigs. We inferred the SV formation mechanisms in the pig genome and used SVs as materials to perform a population-level analysis. We detected the selection signals on chromosome X for northern Chinese domestic pigs, as well as the differentiated loci across the whole genome. Analysis showed that these loci differ between southern and northern Chinese domestic pigs. Our results based on SVs provide new insights into genetic differences in Chinese pigs.
Collapse
Affiliation(s)
- Ruifei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Suyun Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chunyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Di Liu
- Institute of Animal Industry, Heilongjiang Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (XH); (YZ)
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
- * E-mail: (XH); (YZ)
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
27
|
Avanzini G, Mantegazza M, Terragni B, Canafoglia L, Scalmani P, Franceschetti S. The impact of genetic and experimental studies on classification and therapy of the epilepsies. Neurosci Lett 2017; 667:17-26. [PMID: 28522348 DOI: 10.1016/j.neulet.2017.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
Abstract
Different types of epilepsy are associated with gene mutations, in which seizures can be the only symptom (genetic epilepsies) or be one of the elements of complex clinical pictures that are often progressive over time (epileptic or epileptogenic encephalopathies). In epileptogenic encephalopathies, epileptic seizures and other neurological and cognitive signs are symptoms of genetically determined neuropathological or neurochemical disorders. In epileptic encephalopathies, epileptic activity itself is thought to contribute to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone. The distinction is conceptually clear and clinically relevant, as the different categories have a different prognosis in terms of both epilepsy and associated neurological and cognitive picture, but the boundaries are sometimes difficult to define in the clinical practice. Here we review the genetic epilepsies from the clinician perspective. A monogenic inheritance has been defined only in a minority of idiopathic epilepsies making improper to rename genetic the category of idiopathic epilepsies, until the presumptive multigenic mechanism will be demonstrated. A search for gene mutations must be done in any patient with candidate genetic types of epilepsy or epileptic/epileptogenic encephalopathy (e.g. familial forms) to complete the diagnostic process, define the prognosis and optimize the therapy. Advanced methods are available to express the gene variant in experimental model systems and test its effect on the properties of the affected protein, on neuronal excitability and on phenotypes in model organisms, and may help in identifying treatments with compatible action mechanisms. The influence of genetic studies on epilepsy taxonomy is now a matter of discussion: their impact on the international classification of the epilepsies will hopefully be defined soon.
Collapse
Affiliation(s)
- Giuliano Avanzini
- Dept. of Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy.
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia, Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia, Antipolis, France
| | - Benedetta Terragni
- Dept. of Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Laura Canafoglia
- Dept. of Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Paolo Scalmani
- Dept. of Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Silvana Franceschetti
- Dept. of Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| |
Collapse
|
28
|
Su S, Shao J, Zhao Q, Ren X, Cai W, Li L, Bai Q, Chen X, Xu B, Wang J, Cao J, Zang W. MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats. Front Mol Neurosci 2017; 10:126. [PMID: 28529474 PMCID: PMC5418349 DOI: 10.3389/fnmol.2017.00126] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
Nav1.3 is a tetrodotoxin-sensitive isoform among voltage-gated sodium channels that are closely associated with neuropathic pain. It can be up-regulated following nerve injury, but its biological function remains uncertain. MicroRNAs (miRNAs) are endogenous non-coding RNAs that can regulate post-transcriptional gene expression by binding with their target mRNAs. Using Target Scan software, we discovered that SCN3A is the major target of miR-30b, and we then determined whether miR-30b regulated the expression of Nav1.3 by transfecting miR-30b agomir through the stimulation of TNF-α or by transfecting miR-30b antagomir in primary dorsal root ganglion (DRG) neurons. The spinal nerve ligation (SNL) model was used to determine the contribution of miR-30b to neuropathic pain, to evaluate changes in Nav1.3 mRNA and protein expression, and to understand the sensitivity of rats to mechanical and thermal stimuli. Our results showed that miR-30b agomir transfection down-regulated Nav1.3 mRNA stimulated with TNF-α in primary DRG neurons. Moreover, miR-30b overexpression significantly attenuated neuropathic pain induced by SNL, with decreases in the expression of Nav1.3 mRNA and protein both in DRG neurons and spinal cord. Activation of Nav1.3 caused by miR-30b antagomir was identified. These data suggest that miR-30b is involved in the development of neuropathic pain, probably by regulating the expression of Nav1.3, and might be a novel therapeutic target for neuropathic pain. Perspective: This study is the first to explore the important role of miR-30b and Nav1.3 in spinal nerve ligation-induced neuropathic pain, and our evidence may provide new insight for improving therapeutic approaches to pain.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Jinping Shao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Qingzan Zhao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Weihua Cai
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Lei Li
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Xuemei Chen
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Guangzhou Military Command of People's Liberation ArmyGuangzhou, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, USA
| | - Jing Cao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
29
|
Pryde DC, Swain NA, Stupple PA, West CW, Marron B, Markworth CJ, Printzenhoff D, Lin Z, Cox PJ, Suzuki R, McMurray S, Waldron GJ, Payne CE, Warmus JS, Chapman ML. The discovery of a potent Na v1.3 inhibitor with good oral pharmacokinetics. MEDCHEMCOMM 2017; 8:1255-1267. [PMID: 30108836 DOI: 10.1039/c7md00131b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
In this article, we describe the discovery of an aryl ether series of potent and selective Nav1.3 inhibitors. Based on structural analogy to a similar series of compounds we have previously shown bind to the domain IV voltage sensor region of Nav channels, we propose this series binds in the same location. We describe the development of this series from a published starting point, highlighting key selectivity and potency data, and several studies designed to validate Nav1.3 as a target for pain.
Collapse
Affiliation(s)
- D C Pryde
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - N A Swain
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - P A Stupple
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - C W West
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - B Marron
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - C J Markworth
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - D Printzenhoff
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - Z Lin
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - P J Cox
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - R Suzuki
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - S McMurray
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - G J Waldron
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - C E Payne
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - J S Warmus
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Groton , CT , USA
| | - M L Chapman
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| |
Collapse
|
30
|
Lamar T, Vanoye CG, Calhoun J, Wong JC, Dutton SBB, Jorge BS, Velinov M, Escayg A, Kearney JA. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis 2017; 102:38-48. [PMID: 28235671 DOI: 10.1016/j.nbd.2017.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility.
Collapse
Affiliation(s)
- Tyra Lamar
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey Calhoun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Benjamin S Jorge
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Milen Velinov
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 2017; 8:401-438. [PMID: 28150151 PMCID: PMC5445024 DOI: 10.1007/s13238-017-0372-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav) channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.
Collapse
|
32
|
Lara-Valderrábano L, Rocha L, Galván EJ. Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels. Neurotoxicology 2016; 57:183-193. [DOI: 10.1016/j.neuro.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|
33
|
Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability. Nat Commun 2016; 7:13470. [PMID: 27841351 PMCID: PMC5114562 DOI: 10.1038/ncomms13470] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks. It is not clear how circadian biochemical cascades are encoded into neural electrical signals. Here, using a combination of electrophysiology and modelling approaches in mice, the authors show activation of glycogen synthase kinase 3 modulates neural activity in the suprachiasmatic nuclei via regulation of the persistent sodium current, INaP.
Collapse
|
34
|
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Physiology and Pathophysiology of Sodium Channel Inactivation. CURRENT TOPICS IN MEMBRANES 2016; 78:479-509. [PMID: 27586293 DOI: 10.1016/bs.ctm.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications.
Collapse
Affiliation(s)
- M-R Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - K Aimar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R Ghadiry-Tavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - A Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
35
|
Yavorsky VA, Lukyanetz EA. [USING THE SERIAL RAMP RECORDINGS FOR RAPID TESTING OF THE GENERATING ABILITY OF IMPULSE ACTIVITY OF ISOLATED HIPPOCAMPAL NEURONS]. ACTA ACUST UNITED AC 2015; 61:19-27. [PMID: 26495732 DOI: 10.15407/fz61.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study we investigated changes of impulse activity of hippocampal neurons of the hippocampus by using ramp recordings. We have described the usage of serial ramp recordings of neuronal electrical activity for rapid testing of the generating ability of isolated hippocampal neurons. An analysis of the data has shown that the proposed protocol of serial ramp recordings allows to define additional characteristics of the neuronal impulse activity: (i) the thresholds for initiation of generation and suppression of the generation, (ii) the shape and amplitude of relationship between the interpulse intervals and neuronal depolarizations. The suggested stimulation protocols and related analysis are tools that can be effectively used to justify influence of chemicals or other experimental factors on the impulse activity of neurons.
Collapse
|
36
|
Makinson CD, Dutt K, Lin F, Papale LA, Shankar A, Barela AJ, Liu R, Goldin AL, Escayg A. An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior. Exp Neurol 2015; 275 Pt 1:46-58. [PMID: 26410685 DOI: 10.1016/j.expneurol.2015.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 11/26/2022]
Abstract
Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8a(med) and Scn8a(med-jo) mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.
Collapse
Affiliation(s)
| | - Karoni Dutt
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Frank Lin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA
| | - Anupama Shankar
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA
| | - Arthur J Barela
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Robert Liu
- Department of Biology, Emory University, Atlanta, GA 30022, USA
| | - Alan L Goldin
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA.
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA.
| |
Collapse
|
37
|
Samartzis D, Borthakur A, Belfer I, Bow C, Lotz JC, Wang HQ, Cheung KMC, Carragee E, Karppinen J. Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J 2015; 15:1919-32. [PMID: 26303178 PMCID: PMC5473425 DOI: 10.1016/j.spinee.2014.09.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China; The Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China.
| | - Ari Borthakur
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Mezzanine, Philadelphia, PA, 19104, USA
| | - Inna Belfer
- Department of Anesthesiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Cora Bow
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Jeffrey C Lotz
- Department of Orthopaedic Surgery, University of California at San Francisco, 500 Parnassus Ave, San Francisco, CA 94143, USA
| | - Hai-Qiang Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No. 169, Changle West Road, Xi'an, Shaanxi, 710032, P.R. China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Professorial Block, 5th Floor, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, China
| | - Eugene Carragee
- Department of Orthopaedic Surgery, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Jaro Karppinen
- Medical Research Center Oulu, University of Oulu, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland
| |
Collapse
|
38
|
Camargos TS, Bosmans F, Rego SC, Mourão CBF, Schwartz EF. The Scorpion Toxin Tf2 from Tityus fasciolatus Promotes Nav1.3 Opening. PLoS One 2015; 10:e0128578. [PMID: 26083731 PMCID: PMC4470819 DOI: 10.1371/journal.pone.0128578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
We identified Tf2, the first β-scorpion toxin from the venom of the Brazilian scorpion Tityus fasciolatus. Tf2 is identical to Tb2-II found in Tityus bahiensis. We found that Tf2 selectively activates human (h)Nav1.3, a neuronal voltage-gated sodium (Nav) subtype implicated in epilepsy and nociception. Tf2 shifts hNav1.3 activation voltage to more negative values, thereby opening the channel at resting membrane potentials. Seven other tested mammalian Nav channels (Nav1.1-1.2; Nav1.4-1.8) expressed in Xenopus oocytes are insensitive upon application of 1 μM Tf2. Therefore, the identification of Tf2 represents a unique addition to the repertoire of animal toxins that can be used to investigate Nav channel function.
Collapse
Affiliation(s)
- Thalita S. Camargos
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Frank Bosmans
- Department of Physiology, Johns Hopkins University—School of Medicine, Baltimore, MD, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University—School of Medicine, Baltimore, MD, United States of America
| | - Solange C. Rego
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Caroline B. F. Mourão
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Elisabeth F. Schwartz
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
39
|
Wagnon JL, Meisler MH. Recurrent and Non-Recurrent Mutations of SCN8A in Epileptic Encephalopathy. Front Neurol 2015; 6:104. [PMID: 26029160 PMCID: PMC4432670 DOI: 10.3389/fneur.2015.00104] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023] Open
Abstract
Mutations of the voltage-gated sodium channel SCN8A have been identified in approximately 1% of nearly 1,500 children with early-infantile epileptic encephalopathies (EIEE) who have been tested by DNA sequencing. EIEE caused by mutation of SCN8A is designated EIEE13 (OMIM #614558). Affected children have seizure onset before 18 months of age as well as developmental and cognitive disabilities, movement disorders, and a high incidence of sudden death (SUDEP). EIEE13 is caused by de novo missense mutations of evolutionarily conserved residues in the Nav1.6 channel protein. One-third of the mutations are recurrent, and many occur at CpG dinucleotides. In this review, we discuss the effect of pathogenic mutations on the structure of the channel protein, the rate of recurrent mutation, and changes in channel function underlying this devastating disorder.
Collapse
Affiliation(s)
- Jacy L Wagnon
- Department of Human Genetics, University of Michigan , Ann Arbor, MI , USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
40
|
Cioli C, Abdi H, Beaton D, Burnod Y, Mesmoudi S. Differences in human cortical gene expression match the temporal properties of large-scale functional networks. PLoS One 2014; 9:e115913. [PMID: 25546015 PMCID: PMC4278769 DOI: 10.1371/journal.pone.0115913] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
We explore the relationships between the cortex functional organization and genetic expression (as provided by the Allen Human Brain Atlas). Previous work suggests that functional cortical networks (resting state and task based) are organized as two large networks (differentiated by their preferred information processing mode) shaped like two rings. The first ring–Visual-Sensorimotor-Auditory (VSA)–comprises visual, auditory, somatosensory, and motor cortices that process real time world interactions. The second ring–Parieto-Temporo-Frontal (PTF)–comprises parietal, temporal, and frontal regions with networks dedicated to cognitive functions, emotions, biological needs, and internally driven rhythms. We found–with correspondence analysis–that the patterns of expression of the 938 genes most differentially expressed across the cortex organized the cortex into two sets of regions that match the two rings. We confirmed this result using discriminant correspondence analysis by showing that the genetic profiles of cortical regions can reliably predict to what ring these regions belong. We found that several of the proteins–coded by genes that most differentiate the rings–were involved in neuronal information processing such as ionic channels and neurotransmitter release. The systematic study of families of genes revealed specific proteins within families preferentially expressed in each ring. The results showed strong congruence between the preferential expression of subsets of genes, temporal properties of the proteins they code, and the preferred processing modes of the rings. Ionic channels and release-related proteins more expressed in the VSA ring favor temporal precision of fast evoked neural transmission (Sodium channels SCNA1, SCNB1 potassium channel KCNA1, calcium channel CACNA2D2, Synaptotagmin SYT2, Complexin CPLX1, Synaptobrevin VAMP1). Conversely, genes expressed in the PTF ring favor slower, sustained, or rhythmic activation (Sodium channels SCNA3, SCNB3, SCN9A potassium channels KCNF1, KCNG1) and facilitate spontaneous transmitter release (calcium channel CACNA1H, Synaptotagmins SYT5, Complexin CPLX3, and synaptobrevin VAMP2).
Collapse
Affiliation(s)
- Claudia Cioli
- Laboratoire d’Imagerie Biomédicale. UMR 7371/UMR S 1146, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- ISC-PIF (Institut des Systèmes Complexes de Paris-Île-de-France), Paris, France
- * E-mail:
| | - Hervé Abdi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, United States of America
| | - Derek Beaton
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, United States of America
| | - Yves Burnod
- Laboratoire d’Imagerie Biomédicale. UMR 7371/UMR S 1146, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- ISC-PIF (Institut des Systèmes Complexes de Paris-Île-de-France), Paris, France
| | - Salma Mesmoudi
- ISC-PIF (Institut des Systèmes Complexes de Paris-Île-de-France), Paris, France
- Sorbonne Universités, Paris-1 Université, Equipement d’Excellence MATRICE, Paris, France
| |
Collapse
|
41
|
Rubinstein M, Westenbroek RE, Yu FH, Jones CJ, Scheuer T, Catterall WA. Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiol Dis 2014; 73:106-17. [PMID: 25281316 DOI: 10.1016/j.nbd.2014.09.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 01/23/2023] Open
Abstract
Dominant loss-of-function mutations in voltage-gated sodium channel NaV1.1 cause Dravet Syndrome, an intractable childhood-onset epilepsy. NaV1.1(+/-) Dravet Syndrome mice in C57BL/6 genetic background exhibit severe seizures, cognitive and social impairments, and premature death. Here we show that Dravet Syndrome mice in pure 129/SvJ genetic background have many fewer seizures and much less premature death than in pure C57BL/6 background. These mice also have a higher threshold for thermally induced seizures, fewer myoclonic seizures, and no cognitive impairment, similar to patients with Genetic Epilepsy with Febrile Seizures Plus. Consistent with this mild phenotype, mutation of NaV1.1 channels has much less physiological effect on neuronal excitability in 129/SvJ mice. In hippocampal slices, the excitability of CA1 Stratum Oriens interneurons is selectively impaired, while the excitability of CA1 pyramidal cells is unaffected. NaV1.1 haploinsufficiency results in increased rheobase and threshold for action potential firing and impaired ability to sustain high-frequency firing. Moreover, deletion of NaV1.1 markedly reduces the amplification and integration of synaptic events, further contributing to reduced excitability of interneurons. Excitability is less impaired in inhibitory neurons of Dravet Syndrome mice in 129/SvJ genetic background. Because specific deletion of NaV1.1 in forebrain GABAergic interneuons is sufficient to cause the symptoms of Dravet Syndrome in mice, our results support the conclusion that the milder phenotype in 129/SvJ mice is caused by lesser impairment of sodium channel function and electrical excitability in their forebrain interneurons. This mild impairment of excitability of interneurons leads to a milder disease phenotype in 129/SvJ mice, similar to Genetic Epilepsy with Febrile Seizures Plus in humans.
Collapse
Affiliation(s)
- Moran Rubinstein
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Ruth E Westenbroek
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Frank H Yu
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Christina J Jones
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Todd Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
42
|
Brunklaus A, Ellis R, Reavey E, Semsarian C, Zuberi SM. Genotype phenotype associations across the voltage-gated sodium channel family. J Med Genet 2014; 51:650-8. [PMID: 25163687 DOI: 10.1136/jmedgenet-2014-102608] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in genes encoding voltage-gated sodium channels have emerged as the most clinically relevant genes associated with epilepsy, cardiac conduction defects, skeletal muscle channelopathies and peripheral pain disorders. Geneticists in partnership with neurologists and cardiologists are often asked to comment on the clinical significance of specific mutations. We have reviewed the evidence relating to genotype phenotype associations among the best known voltage-gated sodium channel related disorders. Comparing over 1300 sodium channel mutations in central and peripheral nervous system, heart and muscle, we have identified many similarities in the genetic and clinical characteristics across the voltage-gated sodium channel family. There is evidence, that the level of impairment a specific mutation causes can be anticipated by the underlying physico-chemical property change of that mutation. Across missense mutations those with higher Grantham scores are associated with more severe phenotypes and truncating mutations underlie the most severe phenotypes. Missense mutations are clustered in specific areas and are associated with distinct phenotypes according to their position in the protein. Inherited mutations tend to be less severe than de novo mutations which are usually associated with greater physico-chemical difference. These findings should lead to a better understanding of the clinical significance of specific voltage-gated sodium channel mutations, aiding geneticists and physicians in the interpretation of genetic variants and counselling individuals and their families.
Collapse
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, UK
| | - Rachael Ellis
- The Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, UK Molecular Diagnostics, West of Scotland Genetic Services, Southern General Hospital, Glasgow, UK
| | - Eleanor Reavey
- The Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, UK Molecular Diagnostics, West of Scotland Genetic Services, Southern General Hospital, Glasgow, UK
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia Sydney Medical School, University of Sydney, Australia
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Sick Children, Glasgow, UK School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| |
Collapse
|
43
|
Mutational Consequences of Aberrant Ion Channels in Neurological Disorders. J Membr Biol 2014; 247:1083-127. [DOI: 10.1007/s00232-014-9716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
|
44
|
Anderson LL, Thompson CH, Hawkins NA, Nath RD, Petersohn AA, Rajamani S, Bush WS, Frankel WN, Vanoye CG, Kearney JA, George AL. Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 2014; 55:1274-83. [PMID: 24862204 PMCID: PMC4126848 DOI: 10.1111/epi.12657] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Evidence from basic neurophysiology and molecular genetics has implicated persistent sodium current conducted by voltage-gated sodium (NaV ) channels as a contributor to the pathogenesis of epilepsy. Many antiepileptic drugs target NaV channels and modulate neuronal excitability, mainly by a use-dependent block of transient sodium current, although suppression of persistent current may also contribute to the efficacy of these drugs. We hypothesized that a drug or compound capable of preferential inhibition of persistent sodium current would have antiepileptic activity. METHODS We examined the antiepileptic activity of two selective persistent sodium current blockers ranolazine, a U.S. Food and Drug Administration (FDA)-approved drug for treatment of angina pectoris, and GS967, a novel compound with more potent effects on persistent current, in the epileptic Scn2a(Q54) mouse model. We also examined the effect of GS967 in the maximal electroshock model and evaluated effects of the compound on neuronal excitability, propensity for hilar neuron loss, development of mossy fiber sprouting, and survival of Scn2a(Q54) mice. RESULTS We found that ranolazine was capable of reducing seizure frequency by approximately 50% in Scn2a(Q54) mice. The more potent persistent current blocker GS967 reduced seizure frequency by >90% in Scn2a(Q54) mice and protected against induced seizures in the maximal electroshock model. GS967 greatly attenuated abnormal spontaneous action potential firing in pyramidal neurons acutely isolated from Scn2a(Q54) mice. In addition to seizure suppression in vivo, GS967 treatment greatly improved the survival of Scn2a(Q54) mice, prevented hilar neuron loss, and suppressed the development of hippocampal mossy fiber sprouting. SIGNIFICANCE Our findings indicate that the selective persistent sodium current blocker GS967 has potent antiepileptic activity and that this compound could inform development of new agents.
Collapse
Affiliation(s)
| | | | | | - Ravi D. Nath
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | - William S. Bush
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | | | - Carlos G. Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Alfred L. George
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and SCN3A. Mol Neurobiol 2014; 51:1263-70. [PMID: 24990319 DOI: 10.1007/s12035-014-8802-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
Mutations in the sodium channel gene, SCN1A (NaV1.1), have been linked to a spectrum of epilepsy syndromes, and many of these mutations occur in the pore region of the channel. Electrophysiological characterization has revealed that most SCN1A mutations in the pore region result in complete loss of function. SCN3A mutations have also been identified in patients with epilepsy; however, mutations in this pore region maintain some degree of electrophysiological function. It is thus speculated that compared to SCN3A disruptions, SCN1A mutations have a more pronounced effect on electrophysiological function. In this study, we identified a novel mutation, N302S, in the SCN3A pore region of a child with epilepsy. To investigate if mutations at the pore regions of SCN3A and SCN1A have different impacts on channel function, we studied the electrophysiological properties of N302S in NaV1.3 and its homologous mutation (with the same amino acid substitution) in NaV1.1 (N301S). Functional analysis demonstrated that SCN1A-N301S had no measurable sodium current, indicating a complete loss of function, while SCN3A-N302S slightly reduced channel activity. This observation indicates that the same pore region mutation affects SCN1A more than SCN3A. Our study further revealed a huge difference in electrophysiological function between SCN1A and SCN3A mutations in the pore region; this might explain the more common SCN1A mutations detected in patients with epilepsy and the more severe phenotypes associated with these mutations.
Collapse
|
46
|
Estacion M, O'Brien JE, Conravey A, Hammer MF, Waxman SG, Dib-Hajj SD, Meisler MH. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 2014; 69:117-23. [PMID: 24874546 DOI: 10.1016/j.nbd.2014.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/21/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022] Open
Abstract
Rare de novo mutations of sodium channels are thought to be an important cause of sporadic epilepsy. The well established role of de novo mutations of sodium channel SCN1A in Dravet Syndrome supports this view, but the etiology of many cases of epileptic encephalopathy remains unknown. We sought to identify the genetic cause in a patient with early onset epileptic encephalopathy by whole exome sequencing of genomic DNA. The heterozygous mutation c. 2003C>T in SCN8A, the gene encoding sodium channel Nav1.6, was detected in the patient but was not present in either parent. The resulting missense substitution, p.Thr767Ile, alters an evolutionarily conserved residue in the first transmembrane segment of channel domain II. The electrophysiological effects of this mutation were assessed in neuronal cells transfected with mutant or wildtype cDNA. The mutation causes enhanced channel activation, with a 10mV depolarizing shift in voltage dependence of activation as well as increased ramp current. In addition, pyramidal hippocampal neurons expressing the mutant channel exhibit increased spontaneous firing with PDS-like complexes as well as increased frequency of evoked action potentials. The identification of this new gain-of-function mutation of Nav1.6 supports the inclusion of SCN8A as a causative gene in infantile epilepsy, demonstrates a novel mechanism for hyperactivity of Nav1.6, and further expands the role of de novo mutations in severe epilepsy.
Collapse
Affiliation(s)
- Mark Estacion
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT 06520, USA; The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Janelle E O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | | | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen G Waxman
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT 06520, USA; The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT 06520, USA; The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
47
|
Gilchrist J, Dutton S, Diaz-Bustamante M, McPherson A, Olivares N, Kalia J, Escayg A, Bosmans F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem Biol 2014; 9:1204-12. [PMID: 24635129 PMCID: PMC4027953 DOI: 10.1021/cb500108p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure-activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects.
Collapse
Affiliation(s)
- John Gilchrist
- Department
of Physiology, Johns Hopkins University,
School of Medicine, Baltimore, Maryland 21205, United States
| | - Stacey Dutton
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Marcelo Diaz-Bustamante
- Lieber
Institute for Brain Development, Johns Hopkins
University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Annie McPherson
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Nicolas Olivares
- Lieber
Institute for Brain Development, Johns Hopkins
University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeet Kalia
- Indian
Institute of Science Education and Research Pune, Pune, Maharashtra 411 008, India
| | - Andrew Escayg
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Frank Bosmans
- Department
of Physiology, Johns Hopkins University,
School of Medicine, Baltimore, Maryland 21205, United States
- Solomon
H. Snyder Department of Neuroscience, Johns
Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
48
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 2014; 108:995-1012. [PMID: 24818957 DOI: 10.1016/j.eplepsyres.2014.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bruno Maraviglia
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy; Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
49
|
Liu ZR, Tao J, Dong BQ, Ding G, Cheng ZJ, He HQ, Ji YH. Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3. Neurosci Bull 2014; 28:209-21. [PMID: 22622820 DOI: 10.1007/s12264-012-1234-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Na(v)1.3 expressed in Xenopus oocytes. METHODS Two-electrode voltage clamp was used to record the whole-cell sodium current. RESULTS The peak currents of Na(v)1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Na(v)1.3 at all concentrations. CONCLUSION This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Na(v)1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Na(v)1.3-targeted pathology.
Collapse
Affiliation(s)
- Zhi-Rui Liu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Steinlein OK. Mechanisms underlying epilepsies associated with sodium channel mutations. PROGRESS IN BRAIN RESEARCH 2014; 213:97-111. [DOI: 10.1016/b978-0-444-63326-2.00005-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|