1
|
Pooshani S, Azadmehr A, Saadat P, Sepidarkish M, Daraei A. Regulatory miR-SNP rs4636297A > G in miR-126 is linked to increased risk of rigidity feature in patients with Parkinson's disease. Int J Neurosci 2024:1-10. [PMID: 39207776 DOI: 10.1080/00207454.2024.2398571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION A growing body of strong evidence shows that the dysfunction of miRNAs plays key roles in the development and progression of Parkinson's disease (PD), however, little data has been reported on the association of their SNPs with PD susceptibility. In this study, we investigated the association of regulatory miR-SNP rs4636297A > G with a functional effect on the expression of miRNA-126, as a key dysregulated miRNA in the PD, with the susceptibility and clinical features of the PD. METHODS AND MATERIALS In current study, we included a population consisting of 120 patients with PD and 120 clinically healthy individuals, and their blood samples were taken. After extracting the DNAs, the genotyping of the miR-SNP rs4636297A > G was done through RFLP-PCR technique. Finally, the association of this SNP with the risk and clinical features of PD was determined. RESULTS Although the results showed that the two groups did not differ significantly in terms of allelic and genotype frequencies, it was clinically found that individuals with genotypes carrying the minor allele G (AG and GG genotypes) of the miR-SNP rs4636297A > G had an increased risk of developing rigidity feature in the PD compared to its homozygous major AA genotype (GG genotype; OR = 5.14, p = 0.038 & GA genotype; OR = 4.32, p = 0.032). CONCLUSION We report for the first time a significant association of functional regulatory SNP rs4636297A > G in the miR-126 with the Parkinson's clinicopathology. Therefore, this miR-SNP can have a potential predictive biomarker capacity for rigidity in PD, although this hypothesis needs further investigation in the future.
Collapse
Affiliation(s)
- Sheyda Pooshani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Liu X, Yao L, Ye X, Qin Y, Chen S, Jiang Q, Liu M, Chen X, Li W, Lin C, Zhu C, Zhao W, Wang Q. Danggui-Shaoyao-San (DSS) ameliorating cognitive impairment in ischemia-reperfusion vascular dementia mice through miR-124 regulating PI3K/Akt signaling pathway. Brain Res 2024; 1845:149135. [PMID: 39155035 DOI: 10.1016/j.brainres.2024.149135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Vascular dementia (VD) is a disease characterized by cognitive impairment and memory loss due to brain cell damage caused by cerebral vascular ischemia. Danggui-Shaoyao-San (DSS) has been used clinically to treat diseases for centuries. The VD model was established by bilateral common carotid artery (BCCA) repeated ischemia-reperfusion (I/R) and caudal bleeding. Target prediction of DSS and miR-124 in PI3K/Akt signaling pathway by network pharmacology. The effect of DSS on cognitive dysfunction were evaluated through methods such as behavioral experiments, cerebral blood flow monitoring, HE and Nissl staining, western blot, and q-PCR. Prediction result showed that both DSS and miR-124 could target Akt1. DSS treatment significantly reduced hippocampal cell damage, improved learning and memory ability. Mechanically, DSS treatment up-regulated the expression levels of PI3K and Akt protein, and its gene. Bcl-2/Bax index is up-regulated and cell apoptosis reduced. LC3II/LC3I index decreased and autophagy of brain cells increased. Moreover, DSS down-regulated the expression level of miR-124. And inhibition of miR-124 up-regulate the expression of PI3K, Akt. These results suggested that DSS can reduce the content of miR-124 in the hippocampus of VD mice, thus regulating the PI3K/Akt signaling pathway and improving the learning and memory ability of VD mice.
Collapse
Affiliation(s)
- Xian Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, CACMS, Beijing 100029, China.
| | - Liwei Yao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xinyi Ye
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yuyun Qin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Meng Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaotong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Chaozhan Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine 510405, China.
| | - Chenchen Zhu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine 510405, China.
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
3
|
Nguyen LD, Sengupta S, Cho K, Floru A, George RE, Krichevsky AM. Novel miRNA-inducing drugs enable differentiation of retinoic acid-resistant neuroblastoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597584. [PMID: 38895399 PMCID: PMC11185630 DOI: 10.1101/2024.06.05.597584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tumor cell heterogeneity in neuroblastoma, a pediatric cancer arising from neural crest-derived progenitor cells, poses a significant clinical challenge. In particular, unlike adrenergic (ADRN) neuroblastoma cells, mesenchymal (MES) cells are resistant to chemotherapy and retinoid therapy and thereby significantly contribute to relapses and treatment failures. Previous research suggested that overexpression or activation of miR-124, a neurogenic microRNA with tumor suppressor activity, can induce the differentiation of retinoic acid-resistant neuroblastoma cells. Leveraging our established screen for miRNA-modulatory small molecules, we validated PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, as a robust inducer of miR-124. A combination of PP121 and BDNF-activating bufalin synergistically arrests proliferation, induces differentiation, and maintains the differentiated state of MES SK-N-AS cells for 8 weeks. RNA-seq and deconvolution analyses revealed a collapse of the ADRN core regulatory circuitry (CRC) and the emergence of novel CRCs associated with chromaffin cells and Schwann cell precursors. Using a similar protocol, we differentiated and maintained MES neuroblastoma GI-ME-N and SH-EP cell lines, as well as glioblastoma LN-229 and U-251 cell lines, for over 16 weeks. In conclusion, our novel protocol suggests a promising treatment for therapy-resistant cancers of the nervous system. Moreover, these long-lived, differentiated cells provide valuable models for studying mechanisms underlying differentiation, maturation, and senescence.
Collapse
|
4
|
Carneiro BA, Franco Guerreiro-Costa LN, Lins-Silva D, Faria Guimaraes D, Souza LS, Leal GC, Caliman-Fontes AT, Beanes G, Costa RDS, Quarantini LC. MicroRNAs as Diagnostic Biomarkers and Predictors of Antidepressant Response in Major Depressive Disorder: A Systematic Review. Cureus 2024; 16:e56910. [PMID: 38665721 PMCID: PMC11043793 DOI: 10.7759/cureus.56910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the hardships of major depressive disorder (MDD), biomarkers for the diagnosis and pharmacological management of this condition are lacking. MicroRNAs are epigenetic mechanisms that could provide promising MDD biomarkers. Our aim was to summarize the findings and provide validation for the selection and use of specific microRNAs as biomarkers in the diagnosis and treatment of MDD. A systematic review was conducted using the PubMed/Medline, Cochrane, PsycINFO, Embase, and LILACS databases from March 2022 to November 2023, with clusters of terms based on "microRNA" and "antidepressant". Studies involving human subjects, animal models, and cell cultures were included, whereas those that evaluated herbal medicines, non-pharmacological therapies, or epigenetic mechanisms other than miRNA were excluded. The review revealed differences in the expression of various microRNAs when considering the time of assessment (before or after antidepressant treatment) and the population studied. However, due to the heterogeneity of the microRNAs investigated, the limited size of the samples, and the wide variety of antidepressants used, few conclusions could be made. Despite the observed heterogeneity, the following microRNAs were determined to be important factors in MDD and the antidepressant response: mir-1202, mir-135, mir-124, and mir-16. The findings indicate the potential for the use of microRNAs as biomarkers for the diagnosis and treatment of MDD; however, more homogeneous studies are needed.
Collapse
Affiliation(s)
- Beatriz A Carneiro
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | | | - Daniel Lins-Silva
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Daniela Faria Guimaraes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Lucca S Souza
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Gustavo C Leal
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Ana Teresa Caliman-Fontes
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Graziele Beanes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Ryan Dos S Costa
- Medicine, Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BRA
| | | |
Collapse
|
5
|
Jiang W, Jia Q, Ma H, Han S, Bi S, Zhu K, Chen L, Liang G. MicroRNA-124 conducts neuroprotective effect via inhibiting AK4/ATF3 after subarachnoid hemorrhage. Exp Brain Res 2024; 242:33-45. [PMID: 37932484 DOI: 10.1007/s00221-023-06682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 11/08/2023]
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for approximately 5% of all cases of stroke. SAH is correlated with elevated rates of mortality and disability. Despite significant advancements in comprehending the pathogenesis and surgical management, efficacious clinical interventions remain restricted, and the prognosis is yet to be enhanced. MicroRNAs play a crucial role in various pathological processes in organisms. Revealing these regulatory processes is conducive to the development of new treatment methods. MicroRNA-124 is highly expressed in the nervous system and has significant research value for SAH. This study aims to explore the role of miR-124 in the early post-SAH period on neural function and verify whether it is involved in the pathological and physiological processes of SAH. In this study, we used methods such as comparing the expression levels of miR-124 in cerebrospinal fluid, establishing a rat SAH model, and a mouse embryonic primary neuron hemoglobin stimulation model to verify the downstream proteins of miR-124 in SAH. Through transfection techniques, we adjusted the expression of this small RNA in Vitro and in Vivo models using miR-124 inhibitor and mimic in the primary neuron hemoglobin stimulation model and rat SAH model, and observed the phenotype. Finally, by consulting the literature and verifying in Vivo and in Vitro methods, AK4 and downstream molecule ATF3 were identified as downstream targets of miR-124.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Hongxin Ma
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Song Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
6
|
Rizavi HS, Gavin HE, Krishnan HR, Gavin DP, Sharma RP. Ethanol- and PARP-Mediated Regulation of Ribosome-Associated Long Non-Coding RNA (lncRNA) in Pyramidal Neurons. Noncoding RNA 2023; 9:72. [PMID: 37987368 PMCID: PMC10661276 DOI: 10.3390/ncrna9060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Although, by definition, long noncoding RNAs (lncRNAs) are not translated, they are sometimes associated with ribosomes. In fact, some estimates suggest the existence of more than 50 K lncRNA molecules that could encode for small peptides. We examined the effects of an ethanol and Poly-ADP Ribose Polymerase (PARP) inhibitor (ABT-888) on ribosome-bound lncRNAs. Mice were administered via intraperitoneal injection (i.p.) either normal saline (CTL) or ethanol (EtOH) twice a day for four consecutive days. On the fourth day, a sub-group of mice administered with ethanol also received ABT-888 (EtOH+ABT). Ribosome-bound lncRNAs in CaMKIIα-expressing pyramidal neurons were measured using the Translating Ribosome Affinity Purification (TRAP) technique. Our findings show that EtOH altered the attachment of 107 lncRNA transcripts, while EtOH+ABT altered 60 lncRNAs. Among these 60 lncRNAs, 49 were altered by both conditions, while EtOH+ABT uniquely altered the attachment of 11 lncRNA transcripts that EtOH alone did not affect. To validate these results, we selected eight lncRNAs (Mir124-2hg, 5430416N02Rik, Snhg17, Snhg12, Snhg1, Mir9-3hg, Gas5, and 1110038B12Rik) for qRT-PCR analysis. The current study demonstrates that ethanol-induced changes in lncRNA attachment to ribosomes can be mitigated by the addition of the PARP inhibitor ABT-888.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Hannah E. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
| | - Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - David P. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
| | - Rajiv P. Sharma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Behera JK, Bhattacharya M, Mishra P, Mishra A, Dash AA, Kar NB, Behera B, Patra BC. Regulatory role of miRNAs in Wnt signaling pathway linked with cardiovascular diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100133. [PMID: 36568258 PMCID: PMC9780067 DOI: 10.1016/j.crphar.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are discovered in science about 23 years ago. These are short, a series of non-coding, single-stranded and evolutionary conserved RNA molecules found in eukaryotic cells. It involved post-transcriptional fine-tune protein expression and repressing the target of mRNA in different biological processes. These miRNAs binds with the 3'-UTR region of specific mRNAs to phosphorylate the mRNA degradation and inhibit the translation process in various tissues. Therefore, aberrant expression in miRNAs induces numerous cardiovascular diseases and developmental defects. Subsequently, the miRNAs and Wnt singling pathway are regulating a cellular process in cardiac development and regeneration, maintain the homeostasis and associated heart diseases. In Wnt signaling pathway majority of the signaling components are expressed and regulated by miRNAs, whereas the inhibition or dysfunction of the Wnt signaling pathway induces cardiovascular diseases. Moreover, inadequate studies about the important role of miRNAs in heart development and diseases through Wnt signaling pathway has been exist still now. For this reason in present review we summarize and update the involvement of miRNAs and the role of Wnt signaling in cardiovascular diseases. We have discussed the mechanism of miRNA functions which regulates the Wnt components in cellular signaling pathway. The fundamental understanding of Wnt signaling regulation and mechanisms of miRNAs is quite essential for study of heart development and related diseases. This approach definitely enlighten the future research to provide a new strategy for formulation of novel therapeutic approaches against cardiovascular diseases.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Akansha Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Adya Anindita Dash
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Niladri Bhusan Kar
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| |
Collapse
|
8
|
Lang W, Han X, Cai J, Chen F, Xu L, Zhong H, Zhong J. Ectopic viral integration Site-1 oncogene promotes NRAS pathway through epigenetic silencing of microRNA-124 in acute myeloid leukemia. Cell Signal 2022; 99:110402. [PMID: 35835333 DOI: 10.1016/j.cellsig.2022.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by genetic mutations that promote proliferation of myeloid progenitors and prevent their differentiation. Over-expression of Ectopic Viral Integration site-1(EVI-1) is related to the poor prognosis in myeloid leukemia, but the underlying mechanism remains unclear. METHODS Using qRT-PCR and western blotting, we quantified expressions of EVI-1, NRAS and ERK/p-ERK in leukemia cell lines and PBMCs. Using WTS-8 and cell cycle analysis, we further investigated whether downregulation of EVI-1 by siRNA can inhibit cell proliferation. Microscopic observation of peripheral blood cells from EVI-1 transgenic zebrafish and WT control were analyzed by Wright Giemsa staining. Using miR-seq, qPCR, dual-luciferase reporter and coimmunoprecipitation assays, we revealed the relationship between EVI-1, miR-124 and NRAS. RESULTS EVI-1 was highly expressed in both primary AML and leukemia cell lines (THP-1 and K562). In a transgenic zebrafish model, EVI-1 mediated higher mortality and induced immature hematopoietic cells in the blood circulation, suggesting its oncogenic role. Furthermore, our results suggested that EVI-1 upregulated NRAS expression, thereby activating the RAS/ERK pathway through epigenetic silencing of a potent NRAS suppressor, miR-124. In this study, we found that EVI1 physically interacts with Dnmt3a to form a protein complex that targets and binds to regulatory elements of miR-124. CONCLUSIONS Overall, the current findings demonstrate that EVI-1 overexpression converges on the regulation of miR-124 promoter methylation and activation of the RAS/ERK pathway in AML carcinogenesis, and suggest EVI-1 and/or miR-124 as therapeutic targets for this dismal disease.
Collapse
Affiliation(s)
- Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Xiaofeng Han
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University.
| | - Lan Xu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
9
|
Khan FZ, Mostaid MS, Apu MNH. Molecular Signaling Pathway Targeted Therapeutic Potential of Thymoquinone in Alzheimer’s disease. Heliyon 2022; 8:e09874. [PMID: 35832342 PMCID: PMC9272348 DOI: 10.1016/j.heliyon.2022.e09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with rapid progression. Black cumin (Nigella sativa) is a nutraceutical that has been investigated as a prophylactic and therapeutic agent for this disease due to its ability to prevent or retard the progression of neurodegeneration. Thymoquinone (TQ) is the main bioactive compound isolated from the seeds of black cumin. Several reports have shown that it has promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory, and antiapoptotic properties along with several other mechanisms that target the altered signaling pathways due to the disease pathogenesis. In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage. The aim of this review is to summarize the potential aspects and mechanisms by which TQ imparts its action in AD.
Collapse
|
10
|
Garcia G, Fernandes A, Stein F, Brites D. Protective Signature of IFNγ-Stimulated Microglia Relies on miR-124-3p Regulation From the Secretome Released by Mutant APP Swedish Neuronal Cells. Front Pharmacol 2022; 13:833066. [PMID: 35620289 PMCID: PMC9127204 DOI: 10.3389/fphar.2022.833066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia-associated inflammation and miRNA dysregulation are key players in Alzheimer’s disease (AD) pathophysiology. Previously, we showed miR-124 upregulation in APP Swedish SH-SY5Y (SWE) and PSEN1 iPSC-derived neurons and its propagation by the secretome (soluble and exosomal fractions). After modulation with miR-124 mimic/inhibitor, we identified common responsive mechanisms between such models. We also reported miR-124 colocalization with microglia in AD patient hippocampi. Herein, we determined how miR-124 modulation in SWE cells influences microglia polarized subtypes in the context of inflammation. We used a coculture system without cell-to-cell contact formed by miR-124 modulated SWE cells and human CHME3 microglia stimulated with interferon-gamma (IFNγ-MG), in which we assessed their adopted gene/miRNA profile and proteomic signature. The increase of miR-124 in SWE cells/secretome (soluble and exosomal) was mimicked in IFNγ-MG. Treatment of SWE cells with the miR-124 inhibitor led to RAGE overexpression and loss of neuronal viability, while the mimic caused RAGE/HMGB1 downregulation and prevented mitochondria membrane potential loss. When accessing the paracrine effects on microglia, SWE miR-124 inhibitor favored their IFNγ-induced inflammatory signature (upregulated RAGE/HMGB1/iNOS/IL-1β; downregulated IL-10/ARG-1), while the mimic reduced microglia activation (downregulated TNF-α/iNOS) and deactivated extracellular MMP-2/MMP-9 levels. Microglia proteomics identified 113 responsive proteins to SWE miR-124 levels, including a subgroup of 17 proteins involved in immune function/inflammation and/or miR-124 targets. A total of 72 proteins were downregulated (e.g., MAP2K6) and 21 upregulated (e.g., PAWR) by the mimic, while the inhibitor also upregulated 21 proteins and downregulated 17 (e.g., TGFB1, PAWR, and EFEMP1). Other targets were associated with neurodevelopmental mechanisms, synaptic function, and vesicular trafficking. To examine the source of miR-124 variations in microglia, we silenced the RNase III endonuclease Dicer1 to block miRNA canonical biogenesis. Despite this suppression, the coculture with SWE cells/exosomes still raised microglial miR-124 levels, evidencing miR-124 transfer from neurons to microglia. This study is pioneer in elucidating that neuronal miR-124 reshapes microglia plasticity and in revealing the relevance of neuronal survival in mechanisms underlying inflammation in AD-associated neurodegeneration. These novel insights pave the way for the application of miRNA-based neuropharmacological strategies in AD whenever miRNA dysregulated levels are identified during patient stratification.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Liu ZSJ, Kidnapillai S, Richardson M, Gray L, Smith CM, Dean OM, Kim JH, Berk M, Walder K. Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Front Pharmacol 2022; 13:873271. [PMID: 35462908 PMCID: PMC9024411 DOI: 10.3389/fphar.2022.873271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.
Collapse
Affiliation(s)
- Trang TT. Truong
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Briana Spolding
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Zoe SJ. Liu
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Srisaiyini Kidnapillai
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Mark Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Laura Gray
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Craig M. Smith
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Olivia M. Dean
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jee Hyun Kim
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
12
|
Fu X, Liu Y, Baranova A, Zhang F. Deregulatory miRNA-BDNF Network Inferred from Dynamic Expression Changes in Schizophrenia. Brain Sci 2022; 12:brainsci12020167. [PMID: 35203931 PMCID: PMC8870107 DOI: 10.3390/brainsci12020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Brain-derived neurotrophic factor (BDNF) is one of the promising risk genes for schizophrenia (SZ), a disease with prominent dysregulation of miRNA networks. Here, we present a study of miRNA-BDNF co-expression changes in peripheral blood of SZ patients. (2) Methods: The expression levels of the BDNF mRNA and three validated binding miRNAs—miR-124-3p, miR-132-3p, and miR-206—were quantified in the blood of 48 healthy controls and 32 SZ patients before and after 12 weeks of treatment. The co-expression patterns were evaluated in the three groups. (3) Results: The expression levels of BDNF were significantly downregulated in SZ patients compared to the controls. After the treatment, the expression levels of BDNF were upregulated, while the expression levels of the three miRNAs were downregulated. Co-expression analyses showed positive correlations of this network in the SZ patients, while weak negative correlations were observed in the healthy controls. After the 12-week treatment, the overall correlation between BDNF and the three miRNAs reached the levels comparable to the healthy controls. (4) Conclusions: Our findings suggest the involvement of the miRNA-BDNF network in the onset and treatment of SZ.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China; (X.F.); (Y.L.)
| | - Yansong Liu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, China; (X.F.); (Y.L.)
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
- Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence:
| |
Collapse
|
13
|
Serafini G, Trabucco A, Corsini G, Escelsior A, Amerio A, Aguglia A, Nasrallah H, Amore M. The potential of microRNAs as putative biomarkers in major depressive disorder and suicidal behavior. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
14
|
Zhao J, He Z, Wang J. MicroRNA-124: A Key Player in Microglia-Mediated Inflammation in Neurological Diseases. Front Cell Neurosci 2021; 15:771898. [PMID: 34795564 PMCID: PMC8593194 DOI: 10.3389/fncel.2021.771898] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Neurological disorders are mainly characterized by progressive neuron loss and neurological deterioration, which cause human disability and death. However, many types of neurological disorders have similar pathological mechanisms, including the neuroinflammatory response. Various microRNAs (miRs), such as miR-21, miR-124, miR-146a, and miR-132 were recently shown to affect a broad spectrum of biological functions in the central nervous system (CNS). Microglia are innate immune cells with important roles in the physiological and pathological activities of the CNS. Recently, abnormal expression of miR-124 was shown to be associated with the occurrence and development of various diseases in CNS via regulating microglia function. In addition, miR-124 is a promising biomarker and therapeutic target. Studies on the role of miR-124 in regulating microglia function involved in pathogenesis of neurological disorders at different stages will provide new ideas for the use of miR-124 as a therapeutic target for different CNS diseases.
Collapse
Affiliation(s)
- Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Ghosh S, Kumar V, Mukherjee H, Lahiri D, Roy P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon 2021; 7:e07262. [PMID: 34195404 PMCID: PMC8225984 DOI: 10.1016/j.heliyon.2021.e07262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/24/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
The human brain is a well-connected, intricate network of neurons and supporting glial cells. Neurodegenerative diseases arise as a consequence of extensive loss of neuronal cells leading to disruption of their natural structure and function. On the contrary, rapid proliferation and growth of glial as well as neuronal cells account for the occurrence of malignancy in brain. In both cases, the molecular microenvironment holds pivotal importance in the progression of the disease. MicroRNAs (miRNA) are one of the major components of the molecular microenvironment. miRNAs are small, noncoding RNAs that control gene expression post-transcriptionally. As compared to other tissues, the brain expresses a substantially high number of miRNAs. In the early stage of neurodegeneration, miRNA expression upregulates, while in oncogenesis, miRNA expression is gradually lost. Neurodegeneration and brain cancer is presumed to be under the influence of identical pathways of cell proliferation, differentiation and cell death which are tightly regulated by miRNAs. It has been confirmed experimentally that miRNA expression can be regulated by nutraceuticals - macronutrients, micronutrients or natural products derived from food; thereby making dietary supplements immensely significant for targeting miRNAs having altered expression patterns during neurodegeneration or oncogenesis. In this review, we will discuss in detail, about the common miRNAs involved in brain cancers and neurodegenerative diseases along with the comprehensive list of miRNAs involved separately in both pathological conditions. We will also discuss the role of nutraceuticals in the regulation of those miRNAs which are involved in both of these pathological conditions.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
16
|
Epigenetics: A Missing Link Between Early Life Stress and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33834398 DOI: 10.1007/978-981-33-6044-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exposure to early life stress (ELS) represents a major risk factor for the development of psychiatric disorders, including depression. The susceptibility associated with ELS may result from persistent changes in gene transcription, which can occur through epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNA expression. Animal models and reports in humans described that negative stimuli can alter the neurodevelopment of an individual, affecting their behavior and cognitive development. It is currently hypothesized that levels of environmental adversity in this early developmental period are able to shape the experience-dependent maturation of stress-regulating pathways leading to long-lasting alterations in stress responsivity during adulthood. Here, we review key findings from animal and clinical studies examining the effects of prenatal and postnatal environment in shaping development of the neuroendocrine regulation of stress and the role of epigenetic mechanisms in the predisposition of depression.
Collapse
|
17
|
Giuliani A, Gaetani S, Sorgentoni G, Agarbati S, Laggetta M, Matacchione G, Gobbi M, Rossi T, Galeazzi R, Piccinini G, Pelliccioni G, Bonfigli AR, Procopio AD, Albertini MC, Sabbatinelli J, Olivieri F, Fazioli F. Circulating Inflamma-miRs as Potential Biomarkers of Cognitive Impairment in Patients Affected by Alzheimer's Disease. Front Aging Neurosci 2021; 13:647015. [PMID: 33776746 PMCID: PMC7990771 DOI: 10.3389/fnagi.2021.647015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the growing population of elderly people, is still lacking minimally-invasive circulating biomarkers that could facilitate the diagnosis and the monitoring of disease progression. MicroRNAs (miRNAs) are emerging as tissue-specific and/or circulating biomarkers of several age-related diseases, but evidence on AD is still not conclusive. Since a systemic pro-inflammatory status was associated with an increased risk of AD development and progression, we focused our investigation on a subset of miRNAs modulating the inflammatory process, namely inflamma-miRNAs. The expression of inflamma-miR-17-5p, -21-5p, -126-3p, and -146a-5p was analyzed in plasma samples from 116 patients with AD compared with 41 age-matched healthy control (HC) subjects. MiR-17-5p, miR-21-5p, and miR-126-3p plasma levels were significantly increased in AD patients compared to HC. Importantly, a strong inverse relationship was observed between miR-21-5p and miR-126-3p, and the cognitive impairment, assessed by Mini-Mental State Examination (MMSE). Notably, miR-126-3p was able to discriminate between mild and severe cognitive impairment. Overall, our results reinforce the hypothesis that circulating inflamma-miRNAs could be assessed as minimally invasive tools associated with the development and progression of cognitive impairment in AD.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Sorgentoni
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Maristella Laggetta
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | | | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Gina Piccinini
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | | | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Francesca Fazioli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
18
|
Dalla Costa E, Dai F, Lecchi C, Ambrogi F, Lebelt D, Stucke D, Ravasio G, Ceciliani F, Minero M. Towards an improved pain assessment in castrated horses using facial expressions (HGS) and circulating miRNAs. Vet Rec 2021; 188:e82. [PMID: 33960478 DOI: 10.1002/vetr.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/11/2020] [Accepted: 12/26/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pain in horses is an emergent welfare concern, and its assessment represents a challenge for equine clinicians. This study aimed at improving pain assessment in horses through a convergent validation of existing tools: we investigated whether an effective analgesic treatment influences the horse grimace scale (HGS) and the concentration of specific circulating microRNAs (miRNAs). METHODS Eleven stallions underwent routine surgical castration under general anaesthesia. They were divided into two analgesic treatment groups: castration with the administration of preoperative flunixin and castration with preoperative flunixin plus a local injection of mepivacaine into the spermatic cords. HGS and levels of seven circulating miRNAs were evaluated pre-, 8 and 20 hours post-procedure. RESULTS Compared to pre-castration, HGS, miR-126-5p, miR-145 and miR-let7e increased significantly in horses receiving flunixin at 8 hours post-castration (Friedman test, p < 0.05). Both behavioural and molecular changes occurred in horses receiving flunixin only, confirming that the addition of local mepivacaine is an effective analgesic treatment. CONCLUSIONS Combining the use of HGS and circulating miRNAs, particularly miR-145, could be meaningful to monitor acute pain conditions in horses. Our results further validate the HGS as a method to assess acute pain in horses and point out miR-145 as a promising biomarker to identify pain.
Collapse
Affiliation(s)
- Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Dai
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - Dirk Lebelt
- Equine Research and Consulting, Sencelles, Spain
| | | | - Giuliano Ravasio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Michela Minero
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
19
|
Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A, Mirowska-Guzel D. The Relation of the Brain-Derived Neurotrophic Factor with MicroRNAs in Neurodegenerative Diseases and Ischemic Stroke. Mol Neurobiol 2021; 58:329-347. [PMID: 32944919 PMCID: PMC7695657 DOI: 10.1007/s12035-020-02101-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 03/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that plays a crucial role in the development of the nervous system while supporting the survival of existing neurons and instigating neurogenesis. Altered levels of BDNF, both in the circulation and in the central nervous system (CNS), have been reported to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), multiple sclerosis (MS), and ischemic stroke. MicroRNAs (miRNAs) are a class of non-coding RNAs found in body fluids such as peripheral blood and cerebrospinal fluid. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of neurodegenerative and neurovascular diseases. Thus, they present as promising biomarkers and a novel treatment approach for CNS disorders. Currently, limited studies provide viable evidence of miRNA-mediated post-transcriptional regulation of BDNF. The aim of this review is to provide a comprehensive assessment of the current knowledge regarding the potential diagnostic and prognostic values of miRNAs affecting BDNF expression and its role as a CNS disorders and neurovascular disease biomarker. Moreover, a novel therapeutic approach in neurodegenerative diseases and ischemic stroke targeting miRNAs associated with BDNF will be discussed.
Collapse
Affiliation(s)
- Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Lucia Sharif
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Aleksandra Soplinska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| | - Anna Czlonkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B Str., 02-097 Warsaw, Poland
| |
Collapse
|
20
|
Gerasymchuk D, Hubiernatorova A, Domanskyi A. MicroRNAs Regulating Cytoskeleton Dynamics, Endocytosis, and Cell Motility-A Link Between Neurodegeneration and Cancer? Front Neurol 2020; 11:549006. [PMID: 33240194 PMCID: PMC7680873 DOI: 10.3389/fneur.2020.549006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton is one of the most mobile and complex cell structures. It is involved in cellular transport, cell division, cell shape formation and adaptation in response to extra- and intracellular stimuli, endo- and exocytosis, migration, and invasion. These processes are crucial for normal cellular physiology and are affected in several pathological processes, including neurodegenerative diseases, and cancer. Some proteins, participating in clathrin-mediated endocytosis (CME), play an important role in actin cytoskeleton reorganization, and formation of invadopodia in cancer cells and are also deregulated in neurodegenerative disorders. However, there is still limited information about the factors contributing to the regulation of their expression. MicroRNAs are potent negative regulators of gene expression mediating crosstalk between different cellular pathways in cellular homeostasis and stress responses. These molecules regulate numerous genes involved in neuronal differentiation, plasticity, and degeneration. Growing evidence suggests the role of microRNAs in the regulation of endocytosis, cell motility, and invasiveness. By modulating the levels of such microRNAs, it may be possible to interfere with CME or other processes to normalize their function. In malignancy, the role of microRNAs is undoubtful, and therefore changing their levels can attenuate the carcinogenic process. Here we review the current advances in our understanding of microRNAs regulating actin cytoskeleton dynamics, CME and cell motility with a special focus on neurodegenerative diseases, and cancer. We investigate whether current literature provides an evidence that microRNA-mediated regulation of essential cellular processes, such as CME and cell motility, is conserved in neurons, and cancer cells. We argue that more research effort should be addressed to study the neuron-specific functions on microRNAs. Disease-associated microRNAs affecting essential cellular processes deserve special attention both from the view of fundamental science and as future neurorestorative or anti-cancer therapies.
Collapse
Affiliation(s)
- Dmytro Gerasymchuk
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Andrii Domanskyi
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Chiang S, Huang MLH, Park KC, Richardson DR. Antioxidant defense mechanisms and its dysfunctional regulation in the mitochondrial disease, Friedreich's ataxia. Free Radic Biol Med 2020; 159:177-188. [PMID: 32739593 DOI: 10.1016/j.freeradbiomed.2020.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Redox stress is associated with the pathogenesis of a wide variety of disease states. This can be amplified potentially through redox active iron deposits in oxidatively active organelles such as the mitochondrion. There are a number of disease states, including Friedreich's ataxia (FA) and sideroblastic anemia, where iron metabolism is dysregulated and leads to mitochondrial iron accumulation. Considering FA, which is due to the decreased expression of the mitochondrial protein, frataxin, this iron accumulation does not occur within protective storage proteins such as mitochondrial ferritin. Instead, it forms unbound biomineral aggregates composed of high spin iron(III), phosphorous and sulfur, which probably contributes to the observed redox stress. There is also a dysregulated response to the ensuing redox assault, as the master regulator of oxidative stress, nuclear factor erythroid 2-related factor-2 (Nrf2), demonstrates marked down-regulation. The dysfunctional response of Nrf2 in FA is due to multiple mechanisms including: (1) up-regulation of Keap1 that is involved in Nrf2 degradation; (2) activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling; and (3) inhibited nuclear translocation of Nrf2. More recently, increased microRNA (miRNA) 144 expression has been demonstrated to down-regulate Nrf2 in several disease states, including an animal model of FA. Other miRNAs have also demonstrated to be dysregulated upon frataxin depletion in vivo in humans and animal models of FA. Collectively, frataxin depletion results in multiple, complex responses that lead to detrimental redox effects that could contribute to the mechanisms involved in the pathogenesis of FA.
Collapse
Affiliation(s)
- S Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia
| | - M L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia
| | - K C Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia
| | - D R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
22
|
MicroRNAs Dysregulation and Mitochondrial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175986. [PMID: 32825273 PMCID: PMC7504116 DOI: 10.3390/ijms21175986] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are debilitating and currently incurable conditions causing severe cognitive and motor impairments, defined by the progressive deterioration of neuronal structure and function, eventually causing neuronal loss. Understand the molecular and cellular mechanisms underlying these disorders are essential to develop therapeutic approaches. MicroRNAs (miRNAs) are short non-coding RNAs implicated in gene expression regulation at the post-transcriptional level. Moreover, miRNAs are crucial for different processes, including cell growth, signal transmission, apoptosis, cancer and aging-related neurodegenerative diseases. Altered miRNAs levels have been associated with the formation of reactive oxygen species (ROS) and mitochondrial dysfunction. Mitochondrial dysfunction and ROS formation occur in many neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. The crosstalk existing among oxidative stress, mitochondrial dysfunction and miRNAs dysregulation plays a pivotal role in the onset and progression of neurodegenerative diseases. Based on this evidence, in this review, with a focus on miRNAs and their role in mitochondrial dysfunction in aging-related neurodegenerative diseases, with a focus on their potential as diagnostic biomarkers and therapeutic targets.
Collapse
|
23
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
24
|
Fessel J. The paradox of opposite directions of gene expressions in MCI and AD suggests possible therapy to prevent progression of MCI to AD. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12003. [PMID: 32258360 PMCID: PMC7111579 DOI: 10.1002/trc2.12003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023]
Abstract
One of the puzzling observations concerning mild cognitive impairment (MCI) and Alzheimer's disease (AD), is that many gene expressions in MCI may be in the opposite direction of those seen in AD. Several examples of this paradox are provided. The likely explanation lies in in the control mechanisms of gene transcription. These mechanisms include (1) modification of DNA and histones by methylation or acetylation, affecting the balance between the Compass group of proteins that enhances mRNA formation, and the Polycomb group that suppresses it; (2) compensation for the loss of one gene's function by another gene with overlapping functions; (3) reduced control of the entire neural RNA production; and (4) response to microRNAs (miRNA). Although data are inadequate to exclude with certainty any one of the indicated mechanisms, the available evidence favors overall reduced control of neural mRNA production, including the effect of miRNA. The switch occurs at a specific stage, somewhere between Braak 0-1 and Braak 2-3, in the progression from MCI to AD, which reduces the number of its likely causes. Two strong but related candidates are the repressor element-1 silencing transcription factor (REST), which in adult neurons impairs plasticity; and a miRNA, for example, miRNA124, that represses REST. Another possible explanation is that only those patients with MCI who will not progress to AD are the ones that have gene expressions in the opposite direction as in AD. The solution to the paradox may have pragmatic value.
Collapse
|
25
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Lee SS, Chakraborty C. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. J Cell Biochem 2020; 121:4654-4666. [PMID: 32100920 DOI: 10.1002/jcb.29683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea.,Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Allen L, Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry 2020; 25:308-320. [PMID: 31740756 PMCID: PMC6974433 DOI: 10.1038/s41380-019-0597-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Childhood environment can have a profound impact on brain structure and function. Epigenetic mechanisms have been shown to play a critical role in adaptive and maladaptive processes by regulating gene expression without changing the genome. Over the past few years, early life stress (ELS) has been established as a major risk factor for major depression and suicidal behavior along with other psychiatric illnesses in adulthood. In recent years, the emergence of small noncoding RNAs as a mega controller of gene expression has gained attention for their role in various disease processes. Among various noncoding RNAs, microRNAs (miRNAs) are the most studied and well characterized and have emerged as a major regulator of neural plasticity and higher brain functioning. More recently, although limited in number, studies are focusing on how miRNAs can play a role in the maladaptive processes associated with ELS both at adolescent and adult age and whether these processes are critical in developing depression and suicidal behavior. In this review, we critically evaluate how postnatal ELS relates to abnormalities in miRNA expression and functions from both animal and human literature and draw connections from these findings to depression and suicidal behavior later in life.
Collapse
Affiliation(s)
- Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
28
|
Fang QH, Shen QL, Li JJ, Yang Y, Guo JJ, Cheng Y, Zhou HC, Niu WY, Chen LM, Li CJ, Sun B. Inhibition of microRNA-124a attenuates non-alcoholic fatty liver disease through upregulation of adipose triglyceride lipase and the effect of liraglutide intervention. Hepatol Res 2019; 49:743-757. [PMID: 30861258 DOI: 10.1111/hepr.13330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Abstract
AIM Glucagon-like peptide-1 receptor agonists (GLP-1Ras) have been reported to prevent non-alcoholic fatty liver disease (NAFLD), but the potential mechanisms are still debated. MicroRNAs (miRNAs) play a prominent role in the field of metabolic disorders, including NAFLD. Our study was designed to further evaluate the effect of GLP-1Ra liraglutide on NAFLD in terms of miRNAs. METHODS MicroRNA expression was evaluated by clustering analysis of microRNA arrays in high fat diet-fed mice. The luciferase reporter assay was carried out to validate the cross-talk between adipose triglyceride lipase (ATGL) and miR-124a. MicroRNA-124a mimics and inhibitor plasmids were transfected to study the role of miR-124a in palmitate-treated normal human liver cell line (HL-7702). Liraglutide treatment was used to observe the effect of GLP-1Ra on the miR-124a/ATGL pathway. RESULTS Expression of ATGL decreased and miR-124a expression increased in hepatosteatosis in vivo and in vitro. Mechanistically, miR-124a interacted with the 3'-untranslated region of ATGL mRNA and induced its degradation. MicroRNA-124a overexpression antagonized the effect of liraglutide on NAFLD by inhibiting ATGL expression, whereas miR-124a knockdown led to elevated ATGL and sirtuin 1 (Sirt1) expression, and subsequently decreased lipid accumulation and inflammation in cells. CONCLUSIONS MicroRNA-124a overexpression contributes to the progression of NAFLD through reduction of ATGL expression, whereas miR-124a knockdown can reverse this trend, suggesting that miR-124a and its downstream target ATGL can be novel therapeutic targets of NAFLD. We reveal a novel mechanism by which liraglutide attenuates NAFLD by the miR-124a/ATGL/Sirt1 pathway.
Collapse
Affiliation(s)
- Qian-Hua Fang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Qi-Ling Shen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Jin-Jin Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Yang Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Juan-Juan Guo
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Han-Chi Zhou
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Wen-Yan Niu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Li-Ming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Chun-Jun Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
29
|
Kim T, Valera E, Desplats P. Alterations in Striatal microRNA-mRNA Networks Contribute to Neuroinflammation in Multiple System Atrophy. Mol Neurobiol 2019; 56:7003-7021. [PMID: 30968343 DOI: 10.1007/s12035-019-1577-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Multiple systems atrophy (MSA) is a rare neurodegenerative disorder characterized by the accumulation of α-synuclein in glial cells and neurodegeneration in the striatum, substantia nigra, and cerebellum. Aberrant miRNA regulation has been associated with neurodegeneration, including alterations of specific miRNAs in brain tissue, serum, and cerebrospinal fluid from MSA patients. Still, a causal link between deregulation of miRNA networks and pathological changes in the transcriptome remains elusive. We profiled ~ 800 miRNAs in the striatum of MSA patients in comparison to healthy individuals to identify specific miRNAs altered in MSA. In addition, we performed a parallel screening of 700 transcripts associated with neurodegeneration to determine the impact of miRNA deregulation on the transcriptome. We identified 60 miRNAs with abnormal levels in MSA brains that are involved in extracellular matrix receptor interactions, prion disease, inflammation, ubiquitin-mediated proteolysis, and addiction pathways. Using the correlation between miRNA expression and the abundance of their known targets, miR-124-3p, miR-19a-3p, miR-27b-3p, and miR-29c-3p were identified as key regulators altered in MSA, mainly contributing to neuroinflammation. Finally, our study also uncovered a potential link between Alzheimer's disease (AD) and MSA pathologies that involves miRNAs and deregulation of BACE1. Our results provide a comprehensive appraisal of miRNA alterations in MSA and their effect on the striatal transcriptome, supporting that aberrant miRNA expression is highly correlated with changes in gene transcription associated with MSA neuropathology, in particular those driving inflammation, disrupting myelination, and potentially impacting α-synuclein accumulation via deregulation of autophagy and prion mechanisms.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Elvira Valera
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Paula Desplats
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA. .,Department of Pathology, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
30
|
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018; 29:161-182. [PMID: 28941357 DOI: 10.1515/revneuro-2017-0042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
Pathology of Alzheimer's disease (AD) goes far beyond neurotoxicity resulting from extracellular deposition of amyloid β (Aβ) plaques. Aberrant cleavage of amyloid precursor protein and accumulation of Aβ in the form of the plaque or neurofibrillary tangles are the known primary culprits of AD pathogenesis and target for various regulatory mechanisms. Hyper-phosphorylation of tau, a major component of neurofibrillary tangles, precipitates its aggregation and prevents its clearance. Lipid particles, apolipoproteins and lipoprotein receptors can act in favor or against Aβ and tau accumulation by altering neural membrane characteristics or dynamics of transport across the blood-brain barrier. Lipids also alter the oxidative/anti-oxidative milieu of the central nervous system (CNS). Irregular cell cycle regulation, mitochondrial stress and apoptosis, which follow both, are also implicated in AD-related neuronal loss. Dysfunction in synaptic transmission and loss of neural plasticity contribute to AD. Neuroinflammation is a final trail for many of the pathologic mechanisms while playing an active role in initiation of AD pathology. Alterations in the expression of microRNAs (miRNAs) in AD and their relevance to AD pathology have long been a focus of interest. Herein we focused on the precise pathomechanisms of AD in which miRNAs were implicated. We performed literature search through PubMed and Scopus using the search term: ('Alzheimer Disease') OR ('Alzheimer's Disease') AND ('microRNAs' OR 'miRNA' OR 'MiR') to reach for relevant articles. We show how a limited number of common dysregulated pathways and abnormal mechanisms are affected by various types of miRNAs in AD brain.
Collapse
Affiliation(s)
- Reihaneh Dehghani
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| | - Farzaneh Rahmani
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| |
Collapse
|
31
|
Luo L, Chi H, Ling J. MiR-124-3p suppresses glioma aggressiveness via targeting of Fra-2. Pathol Res Pract 2018; 214:1825-1834. [PMID: 30243808 DOI: 10.1016/j.prp.2018.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
Malignant glioma is the most common and deadly primary brain tumor in adults. However, the mechanisms underlying the malignancy of glioma remain unclear. In the present study, we found that Fos-related antigen-2 (Fra-2) was overexpressed in most glioma cells, and knockdown of Fra-2 prevented cell proliferation, migration, and invasion. Mechanistically, Fra-2 silencing led to a significant reduction in cell-cycle drivers (Cyclin D1 and Cyclin E1), one invasion-associated gene (MMP9), the mesenchymal marker (Vimentin), and induction of the epithelial marker (E-cadherin). Further study confirmed that miR-124-3p decreased the expression of Fra-2 via directly targeting the 3'-UTR, and transfection with miR-124-3p in glioma cells inhibited expression of the above cell-cycle and EMT promoters. Phenotypic experiments also showed that overexpression of Fra-2 weakened the inhibitory effects of miR-124-3p on the proliferation, migration, and invasion of glioma cells. In addition, Fra-2 knockdown impaired the malignant phenotypes enhanced by miR-124-3p inhibition, which suggested a crucial role for the miR-124-3p/Fra-2 pathway in glioma development. Consistently, high expression of Fra-2 was closely associated with low miR-124-3p level and indicated a poor prognosis in patients with glioma. In conclusion, this study indicates the existence of an aberrant miR-124-3p/Fra-2 pathway that results in glioma aggressiveness, which suggests novel therapeutic opportunities for this fatal disease.
Collapse
Affiliation(s)
- Lifei Luo
- Clinical Laboratory, Enze Hospital, Taizhou Enze Medical Center, Luqiao 318050, China
| | - Hongbo Chi
- Clinical Laboratory, Enze Hospital, Taizhou Enze Medical Center, Luqiao 318050, China
| | - Jie Ling
- Clinical Laboratory, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Huangyan 318020, China.
| |
Collapse
|
32
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 57:1-9. [PMID: 30213688 DOI: 10.1016/j.semcancer.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor initiation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
33
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 83:596-604. [PMID: 30208341 DOI: 10.1016/j.semcancer.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor imitation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
34
|
TOM1 Regulates Neuronal Accumulation of Amyloid-β Oligomers by FcγRIIb2 Variant in Alzheimer's Disease. J Neurosci 2018; 38:9001-9018. [PMID: 30185465 DOI: 10.1523/jneurosci.1996-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023] Open
Abstract
Emerging evidences suggest that intraneuronal Aβ correlates with the onset of Alzheimer's disease (AD) and highly contributes to neurodegeneration. However, critical mediator responsible for Aβ uptake in AD pathology needs to be clarified. Here, we report that FcγRIIb2, a variant of Fcγ-receptor IIb (FcγRIIb), functions in neuronal uptake of pathogenic Aβ. Cellular accumulation of oligomeric Aβ1-42, not monomeric Aβ1-42 or oligomeric Aβ1-40, was blocked by Fcgr2b knock-out in neurons and partially in astrocytes. Aβ1-42 internalization was FcγRIIb2 di-leucine motif-dependent and attenuated by TOM1, a FcγRIIb2-binding protein that repressed the receptor recycling. TOM1 expression was downregulated in the hippocampus of male 3xTg-AD mice and AD patients, and regulated by miR-126-3p in neuronal cells after exposure to Aβ1-42 In addition, memory impairments in male 3xTg-AD mice were rescued by the lentiviral administration of TOM1 gene. Augmented Aβ uptake into lysosome caused its accumulation in cytoplasm and mitochondria. Moreover, neuronal accumulation of Aβ in both sexes of 3xTg-AD mice and memory deficits in male 3xTg-AD mice were ameliorated by forebrain-specific expression of Aβ-uptake-defective Fcgr2b mutant. Our findings suggest that FcγRIIb2 is essential for neuropathic uptake of Aβ in AD.SIGNIFICANCE STATEMENT Accumulating evidences suggest that intraneuronal Aβ is found in the early step of AD brain and is implicated in the pathogenesis of AD. However, the critical mediator involved in these processes is uncertain. Here, we describe that the FcγRIIb2 variant is responsible for both neuronal uptake and intraneuronal distribution of pathogenic Aβ linked to memory deficits in AD mice, showing a pathologic significance of the internalized Aβ. Further, Aβ internalization is attenuated by TOM1, a novel FcγRIIb2-binding protein. Together, we provide a molecular mechanism responsible for neuronal uptake of pathogenic Aβ found in AD.
Collapse
|
35
|
Lang WJ, Chen FY. The reciprocal link between EVI1 and miRNAs in human malignancies. Gene 2018; 672:56-63. [DOI: 10.1016/j.gene.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/26/2022]
|
36
|
Dalli T, Beker M, Terzioglu-Usak S, Akbas F, Elibol B. Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model. Biomed Pharmacother 2018; 99:391-401. [PMID: 29367108 DOI: 10.1016/j.biopha.2018.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Streptozotocin (STZ), a glucosamine-nitrosourea compound, produces deficiencies in learning, memory, and cognitive functions when it was administered intracerebroventricularly (i.c.v). In molecular level, increase in neuroinflammation and oxidative stress in brain, and decrease in the number of surviving neurons are the outcomes of STZ administration. Herein, we aimed to investigate the effect of thymoquinone (TQ), an anti-inflammatory, immunomodulatory and neuroprotective agent, on STZ-induced neurodegeneration in rats. For this purpose, bilateral i.c.v. injection of STZ (3 mg/kg) was given to adult female rats on days 1 and 3. TQ (20 mg/kg/day in cornoil) was administered intragastrically to rats for 15 days starting from the 15th day of STZ injection. The Morris water maze test and passive avoidance test were applied to measure the learning and memory performance of animals. Following the behavioral tests, all of the rats were sacrificed for evaluation of molecular alterations. Rats in the STZ-TQ group showed higher performance in passive avoidance test than rats in the STZ group whose memory performance declined compared to control group. The worse memory performance in STZ group was correlated with low number of surviving neurons and high number of degenerating neurons. In addition, an increase in APOE expression and a decrease in NGF expression were observed with STZ injection. Administration of TQ reversed these STZ-triggered cognitive and molecular alterations. In the present study, we observed the neuroregenerative effects of TQ by activation of JNK protein, upregulation of mir-124, and downregulation of ERK1/2 and NOS enzymes. The same ameliorative effect of TQ was also observed in the pTau protein expression. To sum up, we can say that the healing effect of TQ on STZ induced neurodegeneration opens a new door for the development of Alzheimer's disease treatment using natural products as an adjuvant when their action mechanism was explained in detail.
Collapse
Affiliation(s)
- Tugce Dalli
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Sule Terzioglu-Usak
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey.
| |
Collapse
|
37
|
Habib R, Noureen N, Nadeem N. Decoding Common Features of Neurodegenerative Disorders: From Differentially Expressed Genes to Pathways. Curr Genomics 2018; 19:300-312. [PMID: 29755292 PMCID: PMC5930451 DOI: 10.2174/1389202918666171005100549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurodegeneration is a progressive/irreversible loss of neurons, building blocks of our nervous system. Their degeneration gradually collapses the entire structural and functional system manifesting in myriads of clinical disorders categorized as Neurodegenerative Disorders (NDs) such as Alzheimer's Disease, (AD), Parkinson's Disease (PD), Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). NDs are characterized by a puzzling interplay of molecular and cellular defects affecting subset of neuronal populations in specific affected brain areas. OBJECTIVE In present study, comparative in silico analysis was performed by utilizing gene expression datasets of AD, PD, FTD and ALS to identify potential common features to gain insights into complex molecular pathophysiology of the selected NDs. METHODS Gene expression data of four disorders were subjected to the identification of Differential Gene Expression (DEG) and their mapping on biological processes, KEGG pathways and molecular functions. Detailed comparative analysis was performed to highlight the common grounds of these dis-orders at various stages. RESULTS Astoundingly, 106 DEGs were found to be common across all disorders. Alongwith in total 100 GO terms and 7 KEGG pathways were found to be significantly enriched across all disorders. EGFR, CDC42 and CREBBP have been identified as the significantly interacting nodes in gene-gene in-teraction and in Protein-Protein Interaction (PPI) network as well. Furthermore, interaction of common DEGs targets with miRNA's has been scrutinized. CONCLUSION The complex molecular underpinnings of these disorders are currently elusive. Despite heterogeneous clinical and pathological expressions, common features have been recognized in many NDs which provide evidence of their convergence.
Collapse
Affiliation(s)
| | - Nighat Noureen
- Address correspondence to this author at the Biosciences Department, COMSATS Institute of Information Technology, Islamabad, Pakistan; Tel: + (051) 9247000-6104; E-mail:
| | - Neha Nadeem
- Biosciences Department, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
38
|
Ambrogini P, Albertini MC, Betti M, Galati C, Lattanzi D, Savelli D, Di Palma M, Saccomanno S, Bartolini D, Torquato P, Ruffolo G, Olivieri F, Galli F, Palma E, Minelli A, Cuppini R. Neurobiological Correlates of Alpha-Tocopherol Antiepileptogenic Effects and MicroRNA Expression Modulation in a Rat Model of Kainate-Induced Seizures. Mol Neurobiol 2018; 55:7822-7838. [PMID: 29468563 PMCID: PMC6132771 DOI: 10.1007/s12035-018-0946-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Seizure-triggered maladaptive neural plasticity and neuroinflammation occur during the latent period as a key underlying event in epilepsy chronicization. Previously, we showed that α-tocopherol (α-T) reduces hippocampal neuroglial activation and neurodegeneration in the rat model of kainic acid (KA)-induced status epilepticus (SE). These findings allowed us to postulate an antiepileptogenic potential for α-T in hippocampal excitotoxicity, in line with clinical evidence showing that α-T improves seizure control in drug-resistant patients. To explore neurobiological correlates of the α-T antiepileptogenic role, rats were injected with such vitamin during the latent period starting right after KA-induced SE, and the effects on circuitry excitability, neuroinflammation, neuronal death, and microRNA (miRNA) expression were investigated in the hippocampus. Results show that in α-T-treated epileptic rats, (1) the number of population spikes elicited by pyramidal neurons, as well as the latency to the onset of epileptiform-like network activity recover to control levels; (2) neuronal death is almost prevented; (3) down-regulation of claudin, a blood-brain barrier protein, is fully reversed; (4) neuroinflammation processes are quenched (as indicated by the decrease of TNF-α, IL-1β, GFAP, IBA-1, and increase of IL-6); (5) miR-146a, miR-124, and miR-126 expression is coherently modulated in hippocampus and serum by α-T. These findings support the potential of a timely intervention with α-T in clinical management of SE to reduce epileptogenesis, thus preventing chronic epilepsy development. In addition, we suggest that the analysis of miRNA levels in serum could provide clinicians with a tool to evaluate disease evolution and the efficacy of α-T therapy in SE.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy.
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Claudia Galati
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Michael Di Palma
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Stefania Saccomanno
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Fabiola Olivieri
- Department of Molecular and Clinical Sciences, Marche Polytechnic University, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, INRCA-IRCCS, Ancona, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Andrea Minelli
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, Section of Physiology, University of Urbino Carlo Bo, I-61029, Urbino, Italy
| |
Collapse
|
39
|
Du M, Chen W, Zhang W, Tian XK, Wang T, Wu J, Gu J, Zhang N, Lu ZW, Qian LX, Fei Q, Wang Y, Peng F, He X, Yin L. TGF-? regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma. Biomed Pharmacother 2018; 99:688-696. [PMID: 29710466 DOI: 10.1016/j.biopha.2018.01.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGF-?), a pleiotropic cytokine, promotes cell proliferation and migration in multiple cancers, including nasopharyngeal carcinoma (NPC). microRNA-124 (miR-124) becomes downregulated in NPC and inhibits the tumorigenesis of this disease. However, the role of miR-124 in TGF-?-induced NPC development remains unknown. In this study, constant TGF-? stimulation repressed miR-124 expression, whereas miR-124 overexpression antagonized TGF-?-promoted NPC cell growth and migration. miR-124 overexpression decreased p-SMAD2/3, SMAD4, and p-ERK levels, indicating that ectopic miR-124 overexpression inhibited SMAD and non-SMAD pathways. Pro-oncogenic lncRNA MALAT1 was targeted by miR-124 that regulated ERK/MAPK by targeting MALAT1 independent of the SMAD signaling pathway. In conclusion, our work clarified the significant role of miR-124 in TGF-? signaling pathways independent of the SMAD signaling pathway and showed the potential of miR-124 as a new therapeutic target against NPC.
Collapse
Affiliation(s)
- Mingyu Du
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China; Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Wei Chen
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Wenjun Zhang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Xiao-Kang Tian
- Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China
| | - Tingting Wang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Jing Wu
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Jiajia Gu
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Nan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China
| | - Zhi-Wei Lu
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu-Xi Qian
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Fei
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanyu Peng
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China; Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, China.
| | - Li Yin
- Jiangsu Cancer Hospital & Jiangsu Institue of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, 42 Bai Zi Ting Road, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
40
|
Fang Y, Qiu Q, Zhang S, Sun L, Li G, Xiao S, Li X. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord 2018; 227:745-751. [PMID: 29689690 DOI: 10.1016/j.jad.2017.11.090] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neurotrophins including brain-derived neurotropic factor (BDNF) are implicated in the pathogenesis of major depressive disorder (MDD). Yet, the roles of brain-specific BDNF-related miRNAs miR-132 and miR-124 are unclear. METHODS We enrolled 45 treatment-free patients with MDD, 32 citalopram-treated patients with MDD, and 32 healthy control subjects. Participants were assessed with the Hamilton Depression Scale (HAMD) and Hamilton Anxiety Scale (HAMA). In a case-control sub-study, we followed 14 treatment-free patients who were subsequently treated with citalopram for 2 months. Enzyme-linked immunosorbent assay was used to detect plasma BDNF, and real-time polymerase chain reaction was used to quantify relative plasma miR-132 and miR-124 expression. RESULTS Patients with MDD had significantly higher HAMA and HAMD scores than the control group, with the highest scores in the treatment-free MDD group. Plasma miR-132 in the treatment-free MDD group was 2.4-fold that in the control group and significantly higher than that in the citalopram-treated MDD group. Plasma miR-124 in the treatment-free MDD and citalopram-treated MDD groups was 1.8-fold and 4-fold that in the control group, respectively. Compared to the control group, plasma BDNF levels were increased in both MDD groups, but not significantly different between them. There was a positive correlation between miR-132 and HAMD and HAMA scores, whereas no significant correlations were identified for plasma miR-124 or BDNF. LIMITATIONS The range of neurotrophin-related MiRNAs and the number of follow-up cases were limited. CONCLUSIONS BDNF and miR-124 in plasma increase with depression and antidepressants. Plasma MiR-132 might be an indication for depression status.
Collapse
Affiliation(s)
- Yuan Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Qi Qiu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Shengyu Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, No. 1347, Guangfu West Road, Putuo District, Shanghai 200063, China
| | - Lin Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Guanjun Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Shifu Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
41
|
Cai WL, Huang WD, Li B, Chen TR, Li ZX, Zhao CL, Li HY, Wu YM, Yan WJ, Xiao JR. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer 2018; 17:9. [PMID: 29343249 PMCID: PMC5773190 DOI: 10.1186/s12943-017-0746-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
Background Most patients with breast cancer in advanced stages of the disease suffer from bone metastases which lead to fractures and nerve compression syndromes. microRNA dysregulation is an important event in the metastases of breast cancer to bone. microRNA-124 (miR-124) has been proved to inhibit cancer progression, whereas its effect on bone metastases of breast cancer has not been reported. Therefore, this study aimed to investigate the role and underlying mechanism of miR-124 in bone metastases of breast cancer. Methods In situ hybridization (ISH) was used to detect the expression of miR-124 in breast cancer tissues and bone metastatic tissues. Ventricle injection model was constructed to explore the effect of miR-124 on bone metastasis in vivo. The function of cancer cell derived miR-124 in the differentiation of osteoclast progenitor cells was verified in vitro. Dual-luciferase reporter assay was conducted to confirm Interleukin-11 (IL-11) as a miR-124 target. The involvement of miR-124/IL-11 in the prognosis of breast cancer patients with bone metastasis was determined by Kaplan-Meier analysis. Results Herein, we found that miR-124 was significantly reduced in metastatic bone tissues from breast cancers. Down-regulation of miR-124 was associated with aggressive clinical characteristics and shorter bone metastasis-free survival and overall survival. Restoration of miR-124 suppressed, while inhibition of miR-124 promoted the bone metastasis of breast cancer cells in vivo. At the cellular level, gain of function and loss-of function assays indicated that cancer cell-derived miR-124 inhibited the survival and differentiation of osteoclast progenitor cells. At the molecular level, we demonstrated that IL-11 partially mediated osteoclastogenesis suppression by miR-124 using in vitro and in vivo assays. Furthermore, IL-11 levels were inversely correlated with miR-124, and up-regulation IL-11 in bone metastases was associated with a poor prognosis. Conclusions Thus, the identification of a dysregulated miR-124/IL-11 axis helps elucidate mechanisms of breast cancer metastases to bone, uncovers new prognostic markers, and facilitates the development of novel therapeutic targets to treat and even prevent bone metastases of breast cancer. Electronic supplementary material The online version of this article (10.1186/s12943-017-0746-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Luo Cai
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China
| | - Wen-Ding Huang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China
| | - Bo Li
- Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China
| | - Tian-Rui Chen
- Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China
| | - Zhen-Xi Li
- Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China
| | - Cheng-Long Zhao
- Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China
| | - Heng-Yu Li
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan-Mei Wu
- Department of Breast and Thyroid Surgery, General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wang-Jun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China.
| | - Jian-Ru Xiao
- Spine Tumor Center, Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
42
|
Abstract
Epigenetics is a growing field of knowledge that is changing our understanding of pathologic processes. For many cerebellar disorders, recent discoveries of epigenetic mechanisms help us to understand their pathophysiology. In this chapter, a short explanation of each epigenetic mechanism (including methylation, histone modification, and miRNA) is followed by references to those cerebellar disorders in which relevant epigenetic advances have been made. The importance of normal timing and distribution of methylation during neurodevelopment is explained. Abnormal methylation and altered gene expression in the developing cerebellum have been related to neurodevelopmental disorders such as autism, Rett syndrome, and fragile X syndrome. DNA packaging by histones is another important epigenetic mechanism in cerebellar functioning. Current knowledge of histone abnormalities in cerebellar diseases such as Friedreich ataxia and spinocerebellar ataxias is reviewed, including implications for new therapeutic approaches to these degenerative diseases. Finally, micro RNAs, the third mechanism to modulate DNA expression, and their role in normal cerebellar development and disease are described. Understanding how genetic and epigenetic mechanisms interact not only in normal cerebellar development but also in disease is a great challenge. However, such understanding will lead to promising new therapeutic possibilities as is already occurring in other areas of medicine.
Collapse
Affiliation(s)
- Mercedes Serrano
- Pediatric Neurology Department and Pediatric Institute for Genetic Medicine and Rare Diseases, Hospital Sant Joan de Déu; and Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
43
|
Sonntag KC, Woo TUW. Laser microdissection and gene expression profiling in the human postmortem brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:263-272. [PMID: 29496145 DOI: 10.1016/b978-0-444-63639-3.00018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Laser microdissection in combination with gene expression profiling using postmortem human brain tissue provides a powerful approach to interrogating cell type-specific pathologies within neural circuits that are known to be dysfunctional in neuropsychiatric disorders. The success of these experiments critically depends on a number of factors, such as the cellular purity of the sample, the quality of the RNA, the methodologies of data normalization and computational data analysis, and how data are interpreted. Data obtained from these experiments should be validated at the protein level. Furthermore, from the perspective of disease mechanism discovery, it would be ideal to investigate whether manipulation of the expression of genes identified as differentially expressed can rescue or ameliorate the neurobiologic or behavioral phenotypes associated with the specific disease. Thus, the ultimate value of this approach rests upon the fact that the generation of novel disease-related pathophysiologic hypotheses may lead to deeper understanding of disease mechanisms and possible development of effective targeted treatments.
Collapse
Affiliation(s)
- Kai-Christian Sonntag
- Laboratory for Translational Research on Neurodegeneration, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
44
|
Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM. Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand 2017; 136:594-606. [PMID: 28975998 DOI: 10.1111/acps.12821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE MicroRNAs are short, non-coding molecules that regulate gene expression. Here, we investigate the role of microRNAs in depression and electroconvulsive therapy (ECT). METHODS We performed three studies: a deep sequencing discovery-phase study of miRNA changes in whole blood following ECT (n = 16), followed by a validation study in a separate cohort of patients pre-/post-ECT (n = 37) and matched healthy controls (n = 34). Changes in an experimentally validated gene target (VEGFA) were then analysed in patients pre-/post-ECT (n = 97) and in matched healthy controls (n = 53). RESULTS In the discovery-phase study, we found no statistically significant differences in miRNA expression from baseline to end of treatment in the group as a whole, but post hoc analysis indicated a difference in patients with psychotic depression (n = 3). In a follow-up validation study, patients with psychotic depression (n = 7) had elevated baseline levels of miR-126-3p (t = 3.015, P = 0.006) and miR-106a-5p (t = 2.598, P = 0.025) compared to healthy controls. Following ECT, these differences disappeared. Baseline VEGFA levels were significantly higher in depressed patients compared to healthy controls (F(1,144) = 27.688, P = <0.001). Following ECT, there was a significant change in VEGFA levels in the psychotic group only (t = 2.915, P = 0.010). CONCLUSION Molecular differences (miRNA and VEGFA) may exist between psychotic and non-psychotic depression treated with ECT.
Collapse
Affiliation(s)
- E Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - K M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - G Blackshields
- Department of Histopathology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - P Smyth
- Department of Histopathology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - O Sheils
- Department of Histopathology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - D M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| |
Collapse
|
45
|
Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, El Bissati K, Mui E, Fraczek L, Rajagopala SV, Roberts CW, Henriquez FL, Montpetit A, Blackwell JM, Jamieson SE, Wheeler K, Begeman IJ, Naranjo-Galvis C, Alliey-Rodriguez N, Davis RG, Soroceanu L, Cobbs C, Steindler DA, Boyer K, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Withers S, Soteropoulos P, Hood L, McLeod R. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer. Sci Rep 2017; 7:11496. [PMID: 28904337 PMCID: PMC5597608 DOI: 10.1038/s41598-017-10675-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Collapse
Affiliation(s)
- Huân M Ngô
- The University of Chicago, Chicago, IL, 60637, USA.,Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.,BrainMicro LLC, New Haven, CT, 06511, USA
| | - Ying Zhou
- The University of Chicago, Chicago, IL, 60637, USA
| | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ernest Mui
- The University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | - Fiona L Henriquez
- The University of Chicago, Chicago, IL, 60637, USA.,FLH, IBEHR School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Alexandre Montpetit
- Genome Quebec, Montréal, QC H3B 1S6, Canada; McGill University, Montréal, QC H3A 0G4, Canada
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.,Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | - Charles Cobbs
- California Pacific Medical Center, San Francisco, CA, 94114, USA
| | - Dennis A Steindler
- JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Kenneth Boyer
- Rush University Medical Center, Chicago, IL, 60612, USA
| | - A Gwendolyn Noble
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Charles N Swisher
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Peter Rabiah
- Northshore University Health System, Evanston, IL, 60201, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rima McLeod
- The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
46
|
Chmielarz P, Konovalova J, Najam SS, Alter H, Piepponen TP, Erfle H, Sonntag KC, Schütz G, Vinnikov IA, Domanskyi A. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis 2017; 8:e2813. [PMID: 28542144 PMCID: PMC5520729 DOI: 10.1038/cddis.2017.214] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRs) are important post-transcriptional regulators of gene expression implicated in neuronal development, differentiation, aging and neurodegenerative diseases, including Parkinson’s disease (PD). Several miRs have been linked to PD-associated genes, apoptosis and stress response pathways, suggesting that deregulation of miRs may contribute to the development of the neurodegenerative phenotype. Here, we investigate the cell-autonomous role of miR processing RNAse Dicer in the functional maintenance of adult dopamine (DA) neurons. We demonstrate a reduction of Dicer in the ventral midbrain and altered miR expression profiles in laser-microdissected DA neurons of aged mice. Using a mouse line expressing tamoxifen-inducible CreERT2 recombinase under control of the DA transporter promoter, we show that a tissue-specific conditional ablation of Dicer in DA neurons of adult mice led to decreased levels of striatal DA and its metabolites without a reduction in neuronal body numbers in hemizygous mice (DicerHET) and to progressive loss of DA neurons with severe locomotor deficits in nullizygous mice (DicerCKO). Moreover, we show that pharmacological stimulation of miR biosynthesis promoted survival of cultured DA neurons and reduced their vulnerability to thapsigargin-induced endoplasmic reticulum stress. Our data demonstrate that Dicer is crucial for maintenance of adult DA neurons, whereas a stimulation of miR production can promote neuronal survival, which may have direct implications for PD treatment.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, Krakow, Poland
| | - Julia Konovalova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Heike Alter
- Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| | | | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Kai C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, USA
| | - Günther Schütz
- Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| | - Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| | - Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
47
|
Dwivedi Y. microRNA-124: a putative therapeutic target and biomarker for major depression. Expert Opin Ther Targets 2017; 21:653-656. [PMID: 28490207 DOI: 10.1080/14728222.2017.1328501] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yogesh Dwivedi
- a Department of Psychiatry and Behavioral Neurobiology , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
48
|
Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol 2017; 7:170019. [PMID: 28381629 PMCID: PMC5413909 DOI: 10.1098/rsob.170019] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
In the post-genomic era, the goal of personalized medicine is to determine the correlation between genotype and phenotype. Developing high-throughput genotyping technologies such as genome-wide association studies (GWAS) and the 1000 Genomes Project (http://www.internationalgenome.org/about/#1000G_PROJECT) has dramatically enhanced our ability to map where changes in the genome occur on a population level by identifying millions of single nucleotide polymorphisms (SNPs). Polymorphisms, particularly those within the coding regions of proteins and at splice junctions, have received the most attention, but it is also now clear that polymorphisms in the non-coding regions are important. In these non-coding regions, the enhancer and promoter regions have received the most attention, whereas the 3'-UTR regions have until recently been overlooked. In this review, we examine how SNPs affect microRNA-binding sites in these regions, and how mRNA stability changes can lead to disease pathogenesis.
Collapse
Affiliation(s)
- Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
49
|
Romano GL, Platania CBM, Drago F, Salomone S, Ragusa M, Barbagallo C, Di Pietro C, Purrello M, Reibaldi M, Avitabile T, Longo A, Bucolo C. Retinal and Circulating miRNAs in Age-Related Macular Degeneration: An In vivo Animal and Human Study. Front Pharmacol 2017; 8:168. [PMID: 28424619 PMCID: PMC5371655 DOI: 10.3389/fphar.2017.00168] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023] Open
Abstract
Age related macular degeneration (AMD) is the leading cause of blindness among people aged 50 and over. Retinal deposition of amyloid-β (Aβ) aggregates in AMD patients has suggested a potential link between AMD and Alzheimer's disease (AD). We have evaluated the differential retinal expression profile of miRNAs in a rat model of AMD elicited by Aβ. A serum profile of miRNAs in AMD patients has been also assessed using single TaqMan assay. Analysis of retina from rats intravitreally injected with Aβ revealed that miR-27a, miR-146a, and miR-155 were up-regulated in comparison to control rats. Seven miRNA (miR-9, miR-23a, miR-27a, miR-34a, miR-126, miR-146a, and miR-155) have been found to be dysregulated in serum of AMD patients in comparison to control group. Analysis of pathways has revealed that dysregulated miRNAs, both in the AMD animal model and in AMD patients, can target genes regulating pathways linked to neurodegeneration and inflammation, reinforcing the hypothesis that AMD is a protein misfolding disease similar to AD. In fact, miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155 have been found to be dysregulated both in AMD and AD. In conclusion, we suggest that miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155 represent potential biomarkers and new pharmacological targets for AMD.
Collapse
Affiliation(s)
- Giovanni L Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Chiara B M Platania
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Antonio Longo
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| |
Collapse
|
50
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|