1
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
2
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
3
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Narasimhamurthy RK, Venkidesh BS, Nayak S, Reghunathan D, Mallya S, Sharan K, Rao BSS, Mumbrekar KD. Low-dose exposure to malathion and radiation results in the dysregulation of multiple neuronal processes, inducing neurotoxicity and neurodegeneration in mouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1403-1418. [PMID: 38038914 PMCID: PMC10789675 DOI: 10.1007/s11356-023-31085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangeetha Nayak
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Directorate of Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
7
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Nielsen PYØ, Okarmus J, Meyer M. Role of Deubiquitinases in Parkinson's Disease-Therapeutic Perspectives. Cells 2023; 12:651. [PMID: 36831318 PMCID: PMC9954239 DOI: 10.3390/cells12040651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins-e.g., through the PINK1/Parkin pathway-which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this paper, along with their function. Of interest, DUBs could be useful as novel therapeutic targets against PD through regulation of PD-associated defects.
Collapse
Affiliation(s)
- Pernille Y. Ø. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
9
|
Jang A, Choi GE, Kim YJ, Lee GH, Hyun KY. Neuroprotective properties of ethanolic extract of Citrus unshiu Markovich peel through NADPH oxidase 2 inhibition in chemotherapy-induced neuropathic pain animal model. Phytother Res 2021; 35:6918-6931. [PMID: 34818693 DOI: 10.1002/ptr.7304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
The present study aimed to determine the antioxidant effect of Citrus unshiu Markovich (CUM) extract in neuronal cell lines under oxidative stress and to investigate the effect of chemotherapy-induced peripheral neuropathy (CIPN) on the nociceptive response in a preclinical mice model. We tested the inhibition of H2 O2 in Neuro2A cells treated with CUM. Experimental animals were treated with oxaliplatin to induce CINP, and then administered oral CUM for 4 weeks in order to observe the effect of CUM. Animals were evaluated weekly for thermal hyperalgesia and digital motor nerve conduction velocity (NCV). Lumbar dorsal root ganglia (DRG) isolated from each animal were evaluated through immunochemical and western blot analysis for nerve damage, inflammatory response, and expression of redox signaling factors. The main mechanisms were determined to be decreased inducible nitric oxide synthase (iNOS) production due to the inhibition of NADPH oxidase 2 (NOX2). To determine the functional role of NOX2 in CINP, we administrated CUM into NOX2-deficient mice with neuropathic pain. Therefore, we suggest that CUM controls the expression levels of inflammatory factors in CINP via NOX2 inactivation. This study demonstrated that a complementary medicine such as CUM might be a potential novel therapeutic agent for the treatment of CINP.
Collapse
Affiliation(s)
- Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan, Republic of Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Republic of Korea
| | - Yoo-Jeong Kim
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Republic of Korea
| | - Gil-Hyun Lee
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Republic of Korea
| |
Collapse
|
10
|
Waddell J, Banerjee A, Kristian T. Acetylation in Mitochondria Dynamics and Neurodegeneration. Cells 2021; 10:cells10113031. [PMID: 34831252 PMCID: PMC8616140 DOI: 10.3390/cells10113031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD+-dependent deacetylation.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3418
| |
Collapse
|
11
|
Zhu JY, Hannan SB, Dräger NM, Vereshchagina N, Krahl AC, Fu Y, Elliott CJ, Han Z, Jahn TR, Rasse TM. Autophagy inhibition rescues structural and functional defects caused by the loss of mitochondrial chaperone Hsc70-5 in Drosophila. Autophagy 2021; 17:3160-3174. [PMID: 33404278 PMCID: PMC8526020 DOI: 10.1080/15548627.2020.1871211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We investigated in larval and adult Drosophila models whether loss of the mitochondrial chaperone Hsc70-5 is sufficient to cause pathological alterations commonly observed in Parkinson disease. At affected larval neuromuscular junctions, no effects on terminal size, bouton size or number, synapse size, or number were observed, suggesting that we studied an early stage of pathogenesis. At this stage, we noted a loss of synaptic vesicle proteins and active zone components, delayed synapse maturation, reduced evoked and spontaneous excitatory junctional potentials, increased synaptic fatigue, and cytoskeleton rearrangements. The adult model displayed ATP depletion, altered body posture, and susceptibility to heat-induced paralysis. Adult phenotypes could be suppressed by knockdown of dj-1β, Lrrk, DCTN2-p50, DCTN1-p150, Atg1, Atg101, Atg5, Atg7, and Atg12. The knockdown of components of the macroautophagy/autophagy machinery or overexpression of human HSPA9 broadly rescued larval and adult phenotypes, while disease-associated HSPA9 variants did not. Overexpression of Pink1 or promotion of autophagy exacerbated defects.Abbreviations: AEL: after egg laying; AZ: active zone; brp: bruchpilot; Csp: cysteine string protein; dlg: discs large; eEJPs: evoked excitatory junctional potentials; GluR: glutamate receptor; H2O2: hydrogen peroxide; mEJP: miniature excitatory junctional potentials; MT: microtubule; NMJ: neuromuscular junction; PD: Parkinson disease; Pink1: PTEN-induced putative kinase 1; PSD: postsynaptic density; SSR: subsynaptic reticulum; SV: synaptic vesicle; VGlut: vesicular glutamate transporter.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | - Shabab B. Hannan
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Nina M. Dräger
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Natalia Vereshchagina
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ann-Christin Krahl
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yulong Fu
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | | | - Zhe Han
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DCUSA
| | - Thomas R. Jahn
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Tobias M. Rasse
- Research Group Synaptic Plasticity, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany,Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany,CONTACT Tobias Rasse Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
12
|
Yin P, Bai D, Zhu L, Deng F, Guo X, Li B, Chen L, Li S, Li XJ. Cytoplasmic TDP-43 impairs the activity of the ubiquitin-proteasome system. Exp Neurol 2021; 345:113833. [PMID: 34363810 DOI: 10.1016/j.expneurol.2021.113833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
The cytoplasmic inclusions of nuclear TAR DNA-binding protein 43 (TDP-43) are a pathologic hallmark in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTD), and other neurological disorders. We reported that expressing mutant TDP-43(M337V) in rhesus monkeys can mimic the cytoplasmic mislocalization of mutant TDP-43 seen in patient brains. Here we investigated how cytoplasmic mutant TDP-43 mediates neuropathology. We found that C-terminal TDP-43 fragments are primarily localized in the cytoplasm and that the age-dependent elevated UBE2N promotes the accumulation of cytoplasmic C-terminal TDP-43 via K63 ubiquitination. Immunoprecipitation and mass spectrometry revealed that cytoplasmic mutant TDP-43 interacts with proteasome assembly proteins PSMG2 and PSD13, which might lead to the impairment of the proteasomal activity. Our findings suggest that cytoplasmic TDP-43 may participate in age-dependent accumulation of misfolded proteins in the brain by inhibiting the UPS activity.
Collapse
Affiliation(s)
- Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Fuyu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
14
|
Song M, Zhao X, Song F. Aging-Dependent Mitophagy Dysfunction in Alzheimer's Disease. Mol Neurobiol 2021; 58:2362-2378. [PMID: 33417222 DOI: 10.1007/s12035-020-02248-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common late-onset dementia characterized by the deposition of extracellular amyloid plaques and formation of intracellular neurofibrillary tangles, which eventually lead to neuronal loss and cognitive deficits. Multiple lines of evidence indicate that mitochondrial dysfunction is involved in the initiation and progression of AD. As essential machinery for mitochondrial quality control, mitophagy plays a housekeeping role in neuronal cells by eliminating dysfunctional or excessive mitochondria. At present, mounting evidence support that the activity of mitophagy markedly declines in human brains during aging. Impaired mitophagy and mitochondrial dysfunction were causally linked to bioenergetic deficiency, oxidative stress, microglial activation, and chronic inflammation, thereby aggravating the Aβ and tau pathologies and leading to neuron loss in AD. This review summarizes recent evidence for age-associated mitophagy decline during human aging and provides an overview of mitochondrial dysfunction involved in the process of AD. It also discusses the underlying mechanisms through which defective mitophagy leads to neuronal cell death in AD. Therapeutic interventions aiming to restore mitophagy functions can be used as a strategy for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
16
|
Singh S. Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology. ACS Chem Neurosci 2020; 11:2407-2415. [PMID: 32564594 DOI: 10.1021/acschemneuro.0c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a versatile gasotransmitter that contributes in a range of physiological and pathological mechanims depending on its cellular levels. An appropriate concentration of NO is essentially required for cellular physiology; however, its increased level triggers pathological mechanisms like altered cellular redox regulation, functional impairment of mitochondrion, and modifications in cellular proteins and DNA. Its increased levels also exhibit post-translational modifications in protein through S-nitrosylation of their thiol amino acids, which critically affect the cellular physiology. Along with such modifications, NO could also nitrosylate the endoplasmic reticulum (ER)-membrane located sensors of ER stress, which subsequently affect the cellular protein degradation capacity and lead to aggregation of misfolded/unfolded proteins. Since protein aggregation is one of the pathological hallmarks of neurodegenerative disease, NO should be taken into account during development of disease therapies. In this Review, we shed light on the diverse role of NO in both cellular physiology and pathology and discussed its involvement in various pathological events in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarika Singh
- Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
17
|
Wiese M, Bannister AJ. Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways. Mol Metab 2020; 38:100942. [PMID: 32217072 PMCID: PMC7300384 DOI: 10.1016/j.molmet.2020.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. SCOPE OF REVIEW This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. MAJOR CONCLUSIONS Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.
Collapse
Affiliation(s)
- Meike Wiese
- Max-Planck-Institute for Immunobiology und Epigenetics, Department of Chromatin Regulation, Stübeweg 51, 79108, Freiburg im Breisgau, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
18
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Update on the association between alpha-synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease. Eur J Neurosci 2020; 53:2946-2959. [PMID: 32031280 DOI: 10.1111/ejn.14699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/26/2022]
Abstract
The critical role of mitochondrial dysfunction in the pathological mechanisms of neurodegenerative disorders, particularly Parkinson's disease (PD), is well established. Compelling evidence indicates that Parkinson's proteins (e.g., α-synuclein, Parkin, PINK1, DJ-1, and LRRK2) are associated with mitochondrial dysfunction and oxidative stress in PD. Significantly, there is a possible central role of alpha-synuclein (α-Syn) in the occurrence of mitochondrial dysfunction and oxidative stress by the mediation of different signaling pathways. Also, tau, traditionally considered as the main component of neurofibrillary tangles, aggregates and amplifies the neurotoxic effects on mitochondria by interacting with α-Syn. Moreover, oxidative stress caused by mitochondrial dysfunction favors assembly of both α-Syn and tau and also plays a key role in the formation of protein aggregates. In this review, we provide an overview of the relationship between these two pathological proteins and mitochondrial dysfunction in PD, and also summarize the underlying mechanisms in the interplay of α-Syn aggregation and phosphorylated tau targeting the mitochondria, to find new strategies to prevent PD processing.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Kumari R, Kumar R, Kumar S, Singh AK, Hanpude P, Jangir D, Maiti TK. Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic, suggesting that they contribute to the development of Parkinson's disease. J Biol Chem 2020; 295:3466-3484. [PMID: 32005664 DOI: 10.1074/jbc.ra119.009546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial malady and the second most common neurodegenerative disorder, characterized by loss of dopaminergic neurons in the midbrain. A hallmark of PD pathology is the formation of intracellular protein inclusions, termed Lewy bodies (LBs). Recent MS studies have shown that OTU deubiquitinase ubiquitin aldehyde-binding 1 (OTUB1), a deubiquitinating enzyme of the OTU family, is enriched together with α-synuclein in LBs from individuals with PD and is also present in amyloid plaques associated with Alzheimer's disease. In the present study, using mammalian cell cultures and a PD mouse model, along with CD spectroscopy, atomic force microscopy, immunofluorescence-based imaging, and various biochemical assays, we demonstrate that after heat-induced protein aggregation, OTUB1 reacts strongly with both anti-A11 and anti-osteocalcin antibodies, detecting oligomeric, prefibrillar structures or fibrillar species of amyloidogenic proteins, respectively. Further, recombinant OTUB1 exhibited high thioflavin-T and Congo red binding and increased β-sheet formation upon heat induction. The oligomeric OTUB1 aggregates were highly cytotoxic, characteristic of many amyloid proteins. OTUB1 formed inclusions in neuronal cells and co-localized with thioflavin S and with α-synuclein during rotenone-induced stress. It also co-localized with the disease-associated variant pS129-α-synuclein in rotenone-exposed mouse brains. Interestingly, OTUB1 aggregates were also associated with severe cytoskeleton damage, rapid internalization inside the neuronal cells, and mitochondrial damage, all of which contribute to neurotoxicity. In conclusion, the results of our study indicate that OTUB1 may contribute to LB pathology through its amyloidogenic properties.
Collapse
Affiliation(s)
- Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abhishek Kumar Singh
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Deepak Jangir
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
20
|
Maccallini C, Gallorini M, Cataldi A, Amoroso R. Targeting iNOS As a Valuable Strategy for the Therapy of Glioma. ChemMedChem 2020; 15:339-344. [PMID: 31851765 DOI: 10.1002/cmdc.201900580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022]
Abstract
Gliomas are the most prevalent primary tumors of the brain and spinal cord. Histologically, they share features of normal glial cells, but whether gliomas originate from normal glial cells, glial or neural precursors, stem cells, or other cell types remains a topic of investigation. The enhanced expression of inducible nitric oxide synthase (iNOS) has been reported as a hallmark of chemoresistance in gliomas, and several lines of evidence have reported that a decreased proliferation of glioma cells could be related to the selective inhibition of iNOS. This review aims to summarize the current understanding of iNOS expression and activity modulation in the regulation of glioma pathogenesis, along with compounds that could act as therapeutic agents against glioma.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
21
|
Klimova N, Fearnow A, Long A, Kristian T. NAD + precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol 2019; 325:113144. [PMID: 31837320 DOI: 10.1016/j.expneurol.2019.113144] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
Global cerebral ischemia depletes brain tissue NAD+, an essential cofactor for mitochondrial and cellular metabolism, leading to bioenergetics failure and cell death. The post-ischemic NAD+ levels can be replenished by the administration of nicotinamide mononucleotide (NMN), which serves as a precursor for NAD+ synthesis. We have shown that NMN administration shows dramatic protection against ischemic brain damage and inhibits post-ischemic hippocampal mitochondrial fragmentation. To understand the mechanism of NMN-induced modulation of mitochondrial dynamics and neuroprotection we used our transgenic mouse models that express mitochondria targeted yellow fluorescent protein in neurons (mito-eYFP) and mice that carry knockout of mitochondrial NAD+-dependent deacetylase sirt3 gene (SIRT3KO). Following ischemic insult, the mitochondrial NAD+ levels were depleted leading to an increase in mitochondrial protein acetylation, high reactive oxygen species (ROS) production, and excessive mitochondrial fragmentation. Administration of a single dose of NMN normalized hippocampal mitochondria NAD+ pools, protein acetylation, and ROS levels. These changes were dependent on SIRT3 activity, which was confirmed using SIRT3KO mice. Ischemia induced increase in acetylation of the key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) that resulted in inhibition of its activity. This was reversed after NMN treatment followed by reduction of ROS generation and suppression of mitochondrial fragmentation. Specifically, we found that the interaction of mitochondrial fission protein, pDrp1(S616), with neuronal mitochondria was inhibited in NMN treated ischemic mice. Our data thus provide a novel link between mitochondrial NAD+ metabolism, ROS production, and mitochondrial fragmentation. Using NMN to target these mechanisms could represent a new therapeutic approach for treatment of acute brain injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina Klimova
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam Fearnow
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Gao W, Wang W, Zhang J, Deng P, Hu J, Yang J, Deng Z. Allicin ameliorates obesity comorbid depressive-like behaviors: involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice. Metab Brain Dis 2019; 34:1267-1280. [PMID: 31201726 DOI: 10.1007/s11011-019-00443-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The increased prevalence of obesity has been a major medical and public health problem in the past decades. In obese status, insulin resistance and sustained oxidative stress damage might give rise to behavioral deficits. The anti-obesity and anti-oxidant effects of allicin have been previously reported in peripheral tissues. In the present study, the functions and mechanisms of allicin involved in the prevention of high-fat diet (HFD)-induced depressive-like behaviors were investigated to better understand the pharmacological activities of allicin. Obese mice (five weeks of age) were treated with allicin (50, 100, and 200 mg/kg) by gavage for 15 weeks and behavioral test (sucrose preference, open field, and tail suspension) were performed. Furthermore, markers of oxidative stress, mitochondrial function, autophagy, and insulin resistance were measured in the hippocampal tissue. Finally, the levels of NADPH oxidase (NOX2, NOX4) and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were evaluated in the hippocampus. The body weight, metabolic disorders, and depressive-like behaviors in obese mice were ameliorated by allicin. The depressive-like behaviors presented in the obese mice were accompanied by remarkably excessive reactive oxygen species (ROS) production and oxidative stress, damaged mitochondrial function, imbalanced autophagy, and enhanced insulin resistance in the hippocampus. We found that allicin improved the above undesirable effects in the obese mice. Furthermore, allicin significantly decreased NOX2 and NOX4 levels and activated the Nrf2 pathway. Allicin attenuated depressive-like behaviors triggered by long-term HFD consumption by inhibiting ROS production and oxidative stress, improving mitochondrial function, regulating autophagy, and reducing insulin resistance in the hippocampus via optimization of NOX/Nrf2 imbalance.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University&Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jing Zhang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Pengyi Deng
- Department of Nuclear medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jun Hu
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jian Yang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
| | - Zhifang Deng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. Proc Natl Acad Sci U S A 2019; 116:7471-7476. [PMID: 30910969 DOI: 10.1073/pnas.1820245116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation of histone H2AX is a major contributor to efficient DNA repair. We recently reported neurobehavioral deficits in mice lacking H2AX. Here we establish that this neural failure stems from impairment of mitochondrial function and repression of the mitochondrial biogenesis gene PGC-1α. H2AX loss leads to reduced levels of the major subunits of the mitochondrial respiratory complexes in mouse embryonic fibroblasts and in the striatum, a brain region particularly vulnerable to mitochondrial damage. These defects are substantiated by disruption of the mitochondrial shape in H2AX mutant cells. Ectopic expression of PGC-1α restores mitochondrial oxidative phosphorylation complexes and mitigates cell death. H2AX knockout mice display increased neuronal death in the brain when challenged with 3-nitropronionic acid, which targets mitochondria. This study establishes a role for H2AX in mitochondrial homeostasis associated with neuroprotection.
Collapse
|
24
|
Rodríguez-Bolaños M, Perez-Montfort R. Medical and Veterinary Importance of the Moonlighting Functions of Triosephosphate Isomerase. Curr Protein Pept Sci 2019; 20:304-315. [DOI: 10.2174/1389203719666181026170751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the
reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the
last decade multiple other functions, that may not necessarily always involve catalysis, have been described.
These include variations in the degree of its expression in many types of cancer and participation
in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and
in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important
allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation
of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It
also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate
isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| |
Collapse
|
25
|
Zhao Y, Xi G. Safranal-promoted differentiation and survival of dopaminergic neurons in an animal model of Parkinson's disease. PHARMACEUTICAL BIOLOGY 2018; 56:450-454. [PMID: 30354840 PMCID: PMC6201804 DOI: 10.1080/13880209.2018.1501705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT Safranal (SAF) is verified to have potential effects in promoting nerve growth. OBJECTIVES This study verifies the role of SAF in promoting dopaminergic neurons growth in vitro and in vivo. MATERIAL AND METHODS Rat neural stem cells (NSC) were treated with 1, 20, or 100 ng/mL of SAF, and the expression levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) were assayed by flow cytometry and real-time PCR and the secretion of dopamine (DA) was assayed by ELISA. Then, 2 × 106 cells of SAF-treated NSC was administrated into PD rat models induced by 6-OHDA. The differentiation and survival of dopaminergic neurons was identified by fluorescence microscope and TH+ cells by immunostaining and DA secretion by ELISA at week 2 and week 4, respectively. RESULTS After being treated with SAF at 20 and 100 ng/mL for 1 week, TH and DAT positive rates increased 1.4- and 1.7-fold (p < 0.01, respectively). TH and DAT mRNA also increased 8.05- and 4.41-fold, respectively. And the release of DA statistically increased 1.5-fold (p < 0.01). In vivo, the number of rotations decreased to 4.33 ± 0.97 rpm (p < 0.01) and the survival rates increased to 77.66 ± 7.87% (p < 0.05) at week 4 after transplantation of SAF-treated NSC. Moreover, the transplanted cells increased three-fold, TH fluorescence density increased four-fold and DA releases increased 1.4-fold (p < 0.01) at week 4 after transplantation. CONCLUSIONS SAF promoted the production of functional DA cells and alleviated PD, which may contribute to a new therapy for PD patients.
Collapse
Affiliation(s)
- Yi Zhao
- Neurology Department of Xuhui Central Hospital, ShangHai, China
| | - Gangming Xi
- Neurology Department of Xuhui Central Hospital, ShangHai, China
| |
Collapse
|
26
|
Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomed Pharmacother 2018; 106:1236-1242. [DOI: 10.1016/j.biopha.2018.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
|
27
|
Kurtishi A, Rosen B, Patil KS, Alves GW, Møller SG. Cellular Proteostasis in Neurodegeneration. Mol Neurobiol 2018; 56:3676-3689. [PMID: 30182337 DOI: 10.1007/s12035-018-1334-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
The term proteostasis reflects the fine-tuned balance of cellular protein levels, mediated through a vast network of biochemical pathways. This requires the regulated control of protein folding, post-translational modification, and protein degradation. Due to the complex interactions and intersection of proteostasis pathways, exposure to stress conditions may lead to a disruption of the entire network. Incorrect protein folding and/or modifications during protein synthesis results in inactive or toxic proteins, which may overload degradation mechanisms. Further, a disruption of autophagy and the endoplasmic reticulum degradation pathway may result in additional cellular stress which could ultimately lead to cell death. Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis all share common risk factors such as oxidative stress, aging, environmental stress, and protein dysfunction; all of which alter cellular proteostasis. The differing pathologies observed in neurodegenerative diseases are determined by factors such as location-specific neuronal death, source of protein dysfunction, and the cell's ability to counter proteotoxicity. In this review, we discuss how the disruption in cellular proteostasis contributes to the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberim Kurtishi
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA
| | - Benjamin Rosen
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA
| | - Ketan S Patil
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA
| | - Guido W Alves
- Norwegian Center for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Simon G Møller
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, 11439, USA. .,Norwegian Center for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
28
|
Trovato Salinaro A, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, Ontario ML, Tomasello M, Uva M, Maiolino L, Calabrese EJ, Cuzzocrea S, Calabrese V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. IMMUNITY & AGEING 2018; 15:8. [PMID: 29456585 PMCID: PMC5813410 DOI: 10.1186/s12979-017-0108-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Human life develops and expands not only in time and space, but also in the retrograde permanent recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered or lost under pathological conditions such as Alzheimer’s disease, including recently associated oxidant pathologies, such as ocular neural degeneration occurring in glaucoma or neurosensorial degeneration occurring in Menière’s disease. Oxidative stress and altered antioxidant systems have been suggested to play a role in the aetiology of major neurodegenerative disorders, and altered expression of genes sensing oxidative stress, as well as decreased cellular stress response mechanisms could synergistically contribute to the course of these oxidant disorders. Thus, the theory that low levels of stress can produce protective responses against the pathogenic processes is a frontier area of neurobiological research focal to understanding and developing therapeutic approaches to neurodegenerative disorders. Herein, we discuss cellular mechanisms underlying AD neuroinflammatory pathogenesis that are contributory to Alzheimer’s disease. We describe endogenous cellular defence mechanism modulation and neurohormesis as a potentially innovative approach to therapeutics for AD and other neurodegenerative conditions that are associated with mitochondrial dysfunction and neuroinflammation. Particularly, we consider the emerging role of the inflammasome as an important component of the neuroprotective network, as well as the importance of Coriolus and Hericium nutritional mushrooms in redox stress responsive mechanisms and neuroprotection.
Collapse
Affiliation(s)
- Angela Trovato Salinaro
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro", Catania, Italy
| | - Rosanna Di Paola
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Maria Scuto
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rosalia Crupi
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Maria Teresa Cambria
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Maria Laura Ontario
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Mario Tomasello
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Maurizio Uva
- 3Department of Medical and Surgery Sciences and Advanced Technology, University of Catania, Catania, Italy
| | - Luigi Maiolino
- 3Department of Medical and Surgery Sciences and Advanced Technology, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Salvatore Cuzzocrea
- 2Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Messina, Italy
| | - Vittorio Calabrese
- 1Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
29
|
Engel DF, de Oliveira J, Lieberknecht V, Rodrigues ALS, de Bem AF, Gabilan NH. Duloxetine Protects Human Neuroblastoma Cells from Oxidative Stress-Induced Cell Death Through Akt/Nrf-2/HO-1 Pathway. Neurochem Res 2017; 43:387-396. [DOI: 10.1007/s11064-017-2433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022]
|
30
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
31
|
The Role of Nitric Oxide from Neurological Disease to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:71-88. [PMID: 28840553 DOI: 10.1007/978-3-319-60733-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death. PLoS One 2017; 12:e0180953. [PMID: 28732061 PMCID: PMC5521772 DOI: 10.1371/journal.pone.0180953] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/23/2017] [Indexed: 01/14/2023] Open
Abstract
Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of platinum compounds in cancer treatment.
Collapse
|
33
|
Xiao R, Li S, Cao Q, Wang X, Yan Q, Tu X, Zhu Y, Zhu F. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase. Virol Sin 2017; 32:216-225. [PMID: 28656540 DOI: 10.1007/s12250-017-3997-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 01/21/2023] Open
Abstract
Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran Xiao
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shan Li
- Department of Integrated Medicine, Dongfeng Hospital, Hubei University of Medicine, Wuhan, 442000, China
| | - Qian Cao
- Department of Neurology Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiuling Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiujin Yan
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoning Tu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan, 430071, China. .,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| |
Collapse
|
34
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
35
|
Chen CH, Joshi AU, Mochly-Rosen D. The Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration. ACTA NEUROLOGICA TAIWANICA 2016; 25(4):111-123. [PMID: 28382610 PMCID: PMC10618051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aldehydes-induced toxicity has been implicated in many neurodegenerative diseases. Exposure to reactive aldehydes from (1) alcohol and food metabolism; (2) environmental pollutants, including car, factory exhausts, smog, pesticides, herbicides; (3) metabolism of neurotransmitters, amino acids and (4) lipid peroxidation of biological membrane from excessive ROS, all contribute to 'aldehydic load' that has been linked to the pathology of neurodegenerative diseases. In particular, the α, β-unsaturated aldehydes derived from lipid peroxidation, 4-hydroxynonenal (4-HNE), DOPAL (MAO product of dopamine), malondialdehyde, acrolein and acetaldehyde, all readily form chemical adductions with proteins, DNA and lipids, thus causing neurotoxicity. Mitochondrial aldehyde dehydrogenase 2 (ALDH 2) is a major aldehyde metabolizing enzyme that protects against deleterious aldehyde buildup in brain, a tissue that has a particularly high mitochondrial content. In this review, we highlight the deleterious effects of increased aldehydic load in the neuropathology of ischemic stroke, Alzheimer's disease and Parkinson's disease. We also discuss evidence for the association between ALDH2 deficiency, a common East Asianspecific mutation, and these neuropathologies. A novel class of small molecule aldehyde dehydrogenase activators (Aldas), represented by Alda-1, reduces neuronal cell death in models of ischemic stroke, Alzheimer's disease and Parkinson's disease. Together, these data suggest that reducing aldeydic load by enhancing the activity of aldehyde dehydrogenases, such as ALDH2, represents as a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Amit U. Joshi
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| |
Collapse
|
36
|
Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics. Neurochem Int 2016; 101:132-143. [PMID: 27840125 DOI: 10.1016/j.neuint.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, Second University of Naples, Naples, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| |
Collapse
|
37
|
Chen SD, Zhen YY, Lin JW, Lin TK, Huang CW, Liou CW, Chan SHH, Chuang YC. Dynamin-Related Protein 1 Promotes Mitochondrial Fission and Contributes to The Hippocampal Neuronal Cell Death Following Experimental Status Epilepticus. CNS Neurosci Ther 2016; 22:988-999. [PMID: 27577016 DOI: 10.1111/cns.12600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
AIMS Prolonged seizure activity may result in mitochondrial dysfunction and lead to cell death in the hippocampus. Mitochondrial fission may occur in an early stage of neuronal cell death. This study examined the role of the mitochondrial fission protein dynamin-related protein 1 (Drp1) in the hippocampus following status epilepticus. METHODS Kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 area in Sprague Dawley rats to induce prolonged seizure activity. Biochemical analysis, electron microscopy, and immunofluorescence staining were performed to evaluate the subsequent molecular and cellular events. The effects of pretreatment with a mitochondrial fission protein inhibitor, Mdivi-1 (2 nmol), were also evaluated. RESULTS Phosphorylation of Drp1 at serine 616 (p-Drp1(Ser616)) was elevated from 1 to 24 h after the elicited seizure activity. Pretreatment with Mdivi-1 decreased the Drp1 phosphorylation at Ser616 and limited the mitochondrial fission. Mdivi-1 rescued the Complex I dysfunction, decreased the levels of oxidized proteins, decreased the activation of cytochrome c/caspase-3 signaling, and blunted cell death in CA3 neurons. CONCLUSION Our findings suggest that activation of p-Drp1(Ser616) is related to seizure-induced neuronal damage. Modulation of p-Drp1(Ser616) expression is accompanied by decreases in mitochondrial fission, mitochondrial dysfunction, and oxidation, providing a neuroprotective effect against seizure-induced hippocampal neuronal damage.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui-Wei Lin
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
38
|
Kitamura K, Kawaguchi M, Ieda N, Miyata N, Nakagawa H. Visible Light-Controlled Nitric Oxide Release from Hindered Nitrobenzene Derivatives for Specific Modulation of Mitochondrial Dynamics. ACS Chem Biol 2016; 11:1271-8. [PMID: 26878937 DOI: 10.1021/acschembio.5b00962] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a physiological signaling molecule, whose biological production is precisely regulated at the subcellular level. Here, we describe the design, synthesis, and evaluation of novel mitochondria-targeted NO releasers, Rol-DNB-mor and Rol-DNB-pyr, that are photocontrollable not only in the UV wavelength range but also in the biologically favorable visible wavelength range (530-590 nm). These caged NO compounds consist of a hindered nitrobenzene as the NO-releasing moiety and a rhodamine chromophore. Their NO-release properties were characterized by an electron spin resonance (ESR) spin trapping method and fluorometric analysis using NO probes, and their mitochondrial localization in live cells was confirmed by costaining. Furthermore, we demonstrated visible light control of mitochondrial fragmentation via activation of dynamin-related protein 1 (Drp1) by means of precisely controlled NO delivery into mitochondria of cultured HEK293 cells, utilizing Rol-DNB-pyr.
Collapse
Affiliation(s)
- Kai Kitamura
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical
Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
39
|
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, Zhang Z, Xu J. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem 2016; 291:14373-14384. [PMID: 27226613 DOI: 10.1074/jbc.m116.729343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Fuxiao Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated People's No.6 Hospital, Shanghai 200233, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,.
| |
Collapse
|
40
|
Zhang D, Zhao N, Ma B, Wang Y, Zhang G, Yan X, Hu S, Xu T. Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats. Sci Rep 2016; 6:24203. [PMID: 27052476 PMCID: PMC4823698 DOI: 10.1038/srep24203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Transnitrosylation is an important mechanism by which nitric oxide (NO) modulates cell signaling pathways. For instance, SNO-caspase-3 can transnitrosylate the X-linked inhibitor of apoptosis (XIAP) to enhance apoptosis. XIAP is a potent antagonist of caspase apoptotic activity. Decrease in XIAP activity via nitrosylation results in SNO-XIAP-mediated caspase activation. Considering the functional liaison of procaspase-9 and XIAP, we hypothesized that procaspase-9 nitrosylates XIAP directly. Our data confirmed that cerebral ischemia-reperfusion induced XIAP nitrosylation, procaspase-9 denitrosylation and cleavage. Interestingly, the time courses of the nitrosylation of procaspase-9 and XIAP were negatively correlated, which was more prominent after cerebral ischemia-reperfusion, suggesting a direct interaction. The nitrosylation of XIAP, as well as the denitrosylation and cleavage of procaspase-9, were inhibited by DNCB, TrxR1 AS-ODNs, or TAT-AVPY treatment. Meanwhile, DNCB, TrxR1 AS-ODNs, or TAT-AVPY also inhibited the decrease in hippocampal CA1 neurons induced by ischemia-reperfusion in rats. The denitrosylation and cleavage of procaspase-9 induced by OGD/reoxygenation in SH-SY5Y cells were inhibited when cells were co-transfected with wild-type procaspase-9 and XIAP mutant (C449G). These data suggest that cerebral ischemia-reperfusion induces a transnitrosylation from procaspase-9 to XIAP via the Trx system to consequently cause apoptosis. Additionally, Cys325 is a critical S-nitrosylation site of procaspase-9.
Collapse
Affiliation(s)
- Dengyue Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou 221004, China
| | - Ningjun Zhao
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Bin Ma
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou 221004, China.,Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China
| | - Yan Wang
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China
| | - Gongliang Zhang
- Department of Physiology, College of Basic Medical Science, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xianliang Yan
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Shuqun Hu
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | - Tie Xu
- Institute of Emergency Rescue Medicine, Xuzhou Medical College, Xuzhou 221002, China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
41
|
Turillazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardò FP, Pomara C, Riezzo I, Fineschi V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-kB. J Cell Mol Med 2016; 20:601-12. [PMID: 26828721 PMCID: PMC5125979 DOI: 10.1111/jcmm.12748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra-physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), Bcl-2 (B-cell lymphoma 2), SMAC/DIABLO (second mitochondria-derived activator of caspases/direct IAP-binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long-term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF-κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF-κB. It has been argued that one of the pathways leading to the activation of NF-κB could be under reactive oxygen species (ROS)-mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF-κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF-κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF-κB, and that this negative regulation of ROS is the means through which NF-κB counters programmed cells.
Collapse
Affiliation(s)
- Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Daniela Cerretani
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Santina Cantatore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy.,Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Pozzilli, Isernia, Italy
| | - Laura Moltoni
- Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Francesco Paolo Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| | - Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
42
|
Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q. The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett 2015; 366:150-9. [PMID: 26170166 DOI: 10.1016/j.canlet.2015.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Peroxiredoxin (Prx) is a family of thiol-based peroxidase that acts as a regulator of redox signaling. Members of Prx family can act as antioxidants and chaperones. Sulfiredoxin (Srx) is an antioxidant protein that exclusively reduces over-oxidized typical 2-Cys Prx. Srx has different affinities for individual Prx and it also catalyzes the deglutathionylation of variety of substrates. Individual component of the Srx-Prx system plays critical role in carcinogenesis by modulating cell signaling pathways involved in cell proliferation, migration and metastasis. Expression levels of individual component of the Srx-Prx axis have been correlated with patient survival outcome in multiple cancer types. This review will summarize the molecular basis of differences in the affinity of Srx for individual Prx and the role of individual component of the Srx-Prx system in tumor progression and metastasis. This enhanced understanding of molecular aspects of Srx-Prx interaction and its role in cell signal transduction will help define the Srx-Prx system as a future therapeutic target in human cancer.
Collapse
Affiliation(s)
- Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Lisha Wu
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
43
|
Surgucheva I, He S, Rich MC, Sharma R, Ninkina NN, Stahel PF, Surguchov A. Role of synucleins in traumatic brain injury — an experimental in vitro and in vivo study in mice. Mol Cell Neurosci 2015; 63:114-23. [PMID: 25447944 DOI: 10.1016/j.mcn.2014.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 11/25/2022] Open
Abstract
Synucleins are small prone to aggregate proteins associated with several neurodegenerative diseases (NDDs), however their role in traumatic brain injury (TBI) is an emerging area of investigation. Using in vitro scratch injury model and in vivo mouse weight-drop model we have found that the injury causes alterations in the expression and localization of synucleins near the damaged area. Before injury, α-synuclein is diffused in the cytoplasm of neurons and γ-synuclein is both in the cytoplasm and nucleus of oligodendrocytes. After the scratch injury of the mixed neuronal and glial culture, α-synuclein forms punctate structures in the cytoplasm of neurons and γ-synuclein is almost completely localized to the nucleus of the oligodendrocytes. Furthermore, the amount of post-translationally modified Met38-oxidized γ-synuclein is increased 3.8 fold 24 h after the scratch. α- and γ-synuclein containing cells increased in the initially cell free scratch zone up to 24 h after the scratch.Intracellular expression and localization of synucleins are also changed in a mouse model of focal closed head injury, using a standardized weight drop device. γ-Synuclein goes from diffuse to punctate staining in a piriform cortex near the amygdala, which may reflect the first steps in the formation of deposits/inclusions. Surprisingly, oxidized γ-synuclein co-localizes with cofilin-actin rods in the thalamus, which are absent in all other regions of the brain. These structures reach their peak amounts 7 days after injury. The changes in γ-synuclein localization are accompanied by injury-induced alterations in the morphology of both astrocytes and neurons.
Collapse
|
44
|
Zhong J, Xiao C, Gu W, Du G, Sun X, He QY, Zhang G. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress. PLoS Genet 2015; 11:e1005302. [PMID: 26090660 PMCID: PMC4474833 DOI: 10.1371/journal.pgen.1005302] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. All organisms need to respond quickly to sudden environmental changes. Translational regulation can occur in response to environmental stresses within minutes, which is much faster than transcriptional regulation, and thus normally provides immediate adaptation. Eukaryotic cells can manipulate their tRNA molecules, mainly in a reversible manner, to suppress translation. Here, we showed for the first time that bacteria respond to oxidative stress by adjusting the translational system in a manner that differs from that of eukaryotes. The bacteria nonspecifically, irreversibly, and enzymatically degrade tRNAs to block protein synthesis. Interestingly, we showed that elevated tRNA concentrations lead to opposing effects by causing increased protein aggregation, which impairs fitness under normal conditions but facilitates adaptation under oxidative stress, including that caused by antibiotics. Our results provide a new understanding of the role of global adjustments to the entire translation system during stress adaptation in bacteria. This mechanism may also be involved in the development of antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Jiayong Zhong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chuanle Xiao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei Gu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gaofei Du
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (QYH); (GZ)
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (QYH); (GZ)
| |
Collapse
|
45
|
Protein flexibility and cysteine reactivity: influence of mobility on the H-bond network and effects on pKa prediction. Protein J 2015; 33:323-36. [PMID: 24809821 DOI: 10.1007/s10930-014-9564-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thanks to its chemical plasticity, cysteine (Cys) is a very versatile player in proteins. A major determinant of Cys reactivity is pKa: the ability to predict it is deemed critical in redox bioinformatics. I considered different computational methods for pKa predictions and ultimately applied one (propka, ppka1) to various datasets; for all residues I assessed the effect of (1) hydrogen bonding, electrostatics and solvation on predictions and (2) protein mobility on pKa variability. Particularly for Cys, exposure and H-bond contributions heavily dictated propka predictions. The prominence of H-bond contributions was previously reported: this may explain the effectiveness of ppka1 (with Cys, tested in a benchmark). However ppka1 was also very sensitive to protein mobility; I assessed the effects of mobility on particularly large (compared to previous studies) datasets of structural ensembles; I found that exposed Cys presented the highest pKa variability, ascribable to correspondingly high H-bond fluctuations associated with protein flexibility. The benefit of including protein dynamics in pKa predictions was previously proposed, but empirical methods were never tested in this sense; instead, giving their outstanding speed, they could lend particularly well to this purpose. I devised a strategy combining short range molecular dynamics with ppka1; the protocol aimed to mitigate high ppka1 variability by including a "statistical view" of fast conformational changes. Tested in a benchmark, the strategy lead to improved performances. These results provide new insights on Cys bioinformatics (pKa prediction protocols) and Cys biology (effect of mobility on exposed Cys properties).
Collapse
|
46
|
Pomara C, Neri M, Bello S, Fiore C, Riezzo I, Turillazzi E. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review. Curr Neuropharmacol 2015; 13:132-45. [PMID: 26074748 PMCID: PMC4462038 DOI: 10.2174/1570159x13666141210221434] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future.
Collapse
Affiliation(s)
- Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Anatomy, University of Malta. Msida, Malta
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Bello
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carmela Fiore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
47
|
Feligioni M, Marcelli S, Knock E, Nadeem U, Arancio O, E. Fraser P. SUMO modulation of protein aggregation and degradation. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.4.382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Correani V, Francesco LD, Cera I, Mignogna G, Giorgi A, Mazzanti M, Fumagalli L, Fabrizi C, Maras B, Schininà ME. Reversible redox modifications in the microglial proteome challenged by beta amyloid. MOLECULAR BIOSYSTEMS 2015; 11:1584-93. [DOI: 10.1039/c4mb00703d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reversible redox modifications of the microglial proteome contribute to switching of these neuronal sentinel cells toward a neuroinflammatory phenotype.
Collapse
Affiliation(s)
- Virginia Correani
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Isabella Cera
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Giuseppina Mignogna
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - Michele Mazzanti
- Dipartimento di Bioscienze
- Università degli Studi di Milano
- Milan
- Italy
| | - Lorenzo Fumagalli
- Dipartimento di Scienze Anatomiche
- Istologiche
- Medico-Legali e dell'Apparato Locomotore
- Sapienza University of Rome
- Rome
| | - Cinzia Fabrizi
- Dipartimento di Scienze Anatomiche
- Istologiche
- Medico-Legali e dell'Apparato Locomotore
- Sapienza University of Rome
- Rome
| | - Bruno Maras
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| | - M. Eugenia Schininà
- Dipartimento di Scienze Biochimiche
- Sapienza University of Rome
- 00185 Rome
- Italy
| |
Collapse
|
49
|
Hasel P, Mckay S, Qiu J, Hardingham GE. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2066-76. [PMID: 25541281 PMCID: PMC4547083 DOI: 10.1016/j.bbamcr.2014.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022]
Abstract
Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca2+. Interestingly, while mitochondrial Ca2+ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca2+ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Dendrites exhibit a greater shift in redox potential than the soma, following an oxidative insult. Dendritic mitochondria depolarise less than somatic ones during excitotoxicity. Nevertheless ATP falls faster in dendritic regions during excitotoxicity. Energetically demanding AP bursting induces adaptive metabolic responses. These responses are weaker in dendrites, and ATP levels are suppressed more strongly.
Collapse
Affiliation(s)
- Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean Mckay
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jing Qiu
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
50
|
Yin P, Tu Z, Yin A, Zhao T, Yan S, Guo X, Chang R, Zhang L, Hong Y, Huang X, Zhou J, Wang Y, Li S, Li XJ. Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal accumulation of mutant huntingtin. Hum Mol Genet 2014; 24:1350-62. [PMID: 25343992 DOI: 10.1093/hmg/ddu544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although misfolded proteins are ubiquitinated and cleared by the proteasome, they can accumulate in synapses in aged neurons to promote synaptic dysfunction in a variety of neurodegenerative diseases, including Huntington's disease (HD), which is caused by polyglutamine expansion in huntingtin. The mechanism behind this aging-related phenomenon is unknown and has been difficult to investigate using animals with short life spans. With brain tissues from longer-lived rhesus monkeys of different ages, we found that aging reduces ubiquitin-proteasomal activity and also increases the level of ubiquitin-conjugating enzyme UBE2N (Ubc13) in synaptosomes. Synaptosomal fractions from aged monkey brain increase in vitro ubiquitinated huntingtin, whereas depletion of UBE2N markedly reduces this increase. Overexpressing UBE2N increases the aggregation of mutant huntingtin, and reducing UBE2N attenuates huntingtin aggregation in cellular and mouse models of HD. Our studies suggest that increased UBE2N plays a critical role in the synaptosomal accumulation of mutant huntingtin with age.
Collapse
Affiliation(s)
- Peng Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Zhuchi Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - An Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Ting Zhao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 347, Atlanta, GA 30322, USA
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 347, Atlanta, GA 30322, USA
| | - Xiangyu Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Renbao Chang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Lianhe Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yan Hong
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 347, Atlanta, GA 30322, USA
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Junxia Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 347, Atlanta, GA 30322, USA
| | - Xiao-Jiang Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing 100101, China Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 347, Atlanta, GA 30322, USA
| |
Collapse
|