1
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
2
|
Bhatt A, Bhardwaj H, Srivastava P. Mesenchymal stem cell therapy for Alzheimer's disease: A novel therapeutic approach for neurodegenerative diseases. Neuroscience 2024; 555:52-68. [PMID: 39032806 DOI: 10.1016/j.neuroscience.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most progressive and prevalent types of neurodegenerative diseases in the aging population (aged >65 years) and is considered a major factor for dementia, affecting 55 million people worldwide. In the current scenario, drug-based therapies have been employed for the treatment of Alzheimer's disease but are only able to provide symptomatic relief to patients rather than a permanent solution from Alzheimer's. Recent advancements in stem cell research unlock new horizons for developing effective and highly potential therapeutic approaches due to their self-renewal, self-replicating, regenerative, and high differentiation capabilities. Stem cells come in multiple lineages such as embryonic, neural, and induced pluripotent, among others. Among different kinds of stem cells, mesenchymal stem cells are the most investigated for Alzheimer's treatment due to their multipotent nature, low immunogenicity, ability to penetrate the blood-brain barrier, and low risk of tumorigenesis, immune & inflammatory modulation, etc. They have been seen to substantially promote neurogenesis, synaptogenesis by secreting neurotrophic growth factors, as well as in ameliorating the Aβ and tau-mediated toxicity. This review covers the pathophysiology of AD, new medications, and therapies. Further, it will focus on the advancements and benefits of Mesenchymal Stem Cell therapies, their administration methods, clinical trials concerning AD progression, along with their future prospective.
Collapse
Affiliation(s)
- Aditya Bhatt
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Harshita Bhardwaj
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
3
|
Liu J, van Beusekom H, Bu X, Chen G, Henrique Rosado de Castro P, Chen X, Chen X, Clarkson AN, Farr TD, Fu Y, Jia J, Jolkkonen J, Kim WS, Korhonen P, Li S, Liang Y, Liu G, Liu G, Liu Y, Malm T, Mao X, Oliveira JM, Modo MM, Ramos‐Cabrer P, Ruscher K, Song W, Wang J, Wang X, Wang Y, Wu H, Xiong L, Yang Y, Ye K, Yu J, Zhou X, Zille M, Masters CL, Walczak P, Boltze J, Ji X, Wang Y. Preserving cognitive function in patients with Alzheimer's disease: The Alzheimer's disease neuroprotection research initiative (ADNRI). NEUROPROTECTION 2023; 1:84-98. [PMID: 38223913 PMCID: PMC10783281 DOI: 10.1002/nep3.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 01/16/2024]
Abstract
The global trend toward aging populations has resulted in an increase in the occurrence of Alzheimer's disease (AD) and associated socioeconomic burdens. Abnormal metabolism of amyloid-β (Aβ) has been proposed as a significant pathomechanism in AD, supported by results of recent clinical trials using anti-Aβ antibodies. Nonetheless, the cognitive benefits of the current treatments are limited. The etiology of AD is multifactorial, encompassing Aβ and tau accumulation, neuroinflammation, demyelination, vascular dysfunction, and comorbidities, which collectively lead to widespread neurodegeneration in the brain and cognitive impairment. Hence, solely removing Aβ from the brain may be insufficient to combat neurodegeneration and preserve cognition. To attain effective treatment for AD, it is necessary to (1) conduct extensive research on various mechanisms that cause neurodegeneration, including advances in neuroimaging techniques for earlier detection and a more precise characterization of molecular events at scales ranging from cellular to the full system level; (2) identify neuroprotective intervention targets against different neurodegeneration mechanisms; and (3) discover novel and optimal combinations of neuroprotective intervention strategies to maintain cognitive function in AD patients. The Alzheimer's Disease Neuroprotection Research Initiative's objective is to facilitate coordinated, multidisciplinary efforts to develop systemic neuroprotective strategies to combat AD. The aim is to achieve mitigation of the full spectrum of pathological processes underlying AD, with the goal of halting or even reversing cognitive decline.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Heleen van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Xian‐Le Bu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Gong Chen
- Guangdong‐HongKong‐Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouGuangdongChina
| | | | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Institute of NeuroscienceFujian Medical UniversityFuzhouFujianChina
| | - Xiaowei Chen
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Tracy D. Farr
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Yuhong Fu
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Woojin Scott Kim
- Brain and Mind Centre & School of Medical SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Guang‐Hui Liu
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yu‐Hui Liu
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
- ICVS/3B's—PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Mike M. Modo
- Department of Bioengineering, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Radiology, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pedro Ramos‐Cabrer
- Magnetic Resonance Imaging LaboratoryCIC BiomaGUNE Research Center, Basque Research and Technology Alliance (BRTA)Donostia‐San SebastianSpain
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical SciencesLund UniversityLundSweden
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Medical UniversityZhejiangChina
| | - Jun Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Xuanyue Wang
- School of Optometry and Vision ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic, Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National, Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingChina
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Haitao Wu
- Department of NeurobiologyBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yi Yang
- Department of NeurologyThe First Hospital of Jilin University, Chang ChunJilinChina
| | - Keqiang Ye
- Faculty of Life and Health SciencesBrain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced TechnologyShenzhenChina
| | - Jin‐Tai Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xin‐Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Sciences and Sansom InstituteUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Suzhou Auzone BiotechSuzhouJiangsuChina
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and ToxicologyUniversity of ViennaViennaAustria
| | - Colin L. Masters
- The Florey InstituteThe University of Melbourne, ParkvilleVictoriaAustralia
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Xunming Ji
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yan‐Jiang Wang
- Department of Neurology, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
4
|
Qiao G, Gulisashvili D, Jablonska A, Zhao G, Janowski M, Walczak P, Liang Y. 3D printing-based frugal manufacturing of glass pipettes for minimally invasive delivery of therapeutics to the brain. NEUROPROTECTION 2023; 1:58-65. [PMID: 37771648 PMCID: PMC10538625 DOI: 10.1002/nep3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 09/30/2023]
Abstract
Objective Intracerebral delivery of agents in liquid form is usually achieved through commercially available and durable metal needles. However, their size and texture may contribute to mechanical brain damage. Glass pipettes with a thin tip may significantly reduce injection-associated brain damage but require access to prohibitively expensive programmable pipette pullers. This study is to remove the economic barrier to the application of minimally invasive delivery of therapeutics to the brain, such as chemical compounds, viral vectors, and cells. Methods We took advantage of the rapid development of free educational online resources and emerging low-cost 3D printers by designing an affordable pipette puller (APP) to remove the cost obstacle. Results We showed that our APP could produce glass pipettes with a sharp tip opening down to 20 μm or less, which is sufficiently thin for the delivery of therapeutics into the brain. A pipeline from pipette pulling to brain injection using low-cost and open-source equipment was established to facilitate the application of the APP. Conclusion In the spirit of frugal science, our device may democratize glass pipette-puling and substantially promote the application of minimally invasive and precisely controlled delivery of therapeutics to the brain for finding more effective therapies of brain diseases.
Collapse
Affiliation(s)
- Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Gulisashvili
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Guiling Zhao
- Laboratory of Molecular Cardiology, Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Li H, Gan X, Pan L, Zhang Y, Hu X, Wang Z. EGF/bFGF promotes survival, migration and differentiation into neurons of GFP-labeled rhesus monkey neural stem cells xenografted into the rat brain. Biochem Biophys Res Commun 2022; 620:76-82. [DOI: 10.1016/j.bbrc.2022.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
6
|
Zhao H, Wei J, Du Y, Chen P, Liu X, Liu H. Improved cognitive impairments by silencing DMP1 via enhancing the proliferation of neural progenitor cell in Alzheimer-like mice. Aging Cell 2022; 21:e13601. [PMID: 35366382 PMCID: PMC9124312 DOI: 10.1111/acel.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is age-related progressive neurological dysfunction. Limited clinical benefits for current treatments indicate an urgent need for novel therapeutic strategies. Previous transcriptomic analysis showed that DMP1 expression level was increased in AD model animals whereas it can induce cell-cycle arrest in several cell lines. However, whether the cell-cycle arrest of neural progenitor cell induced by DMP1 affects cognitive function in Alzheimer-like mice still remains unknown. The objective of our study is to explore the issue. We found that DMP1 is correlated with cognitive function based on the clinical genomic analysis of ADNI database. The negative role of DMP1 on neural progenitor cell (NPC) proliferation was revealed by silencing and overexpressing DMP1 in vitro. Furthermore, silencing DMP1 could increase the number of NPCs and improve cognitive function in Alzheimer-like mice, through decreasing P53 and P21 levels, which suggested that DMP1-induced cell-cycle arrest could influence cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yanan Du
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | | |
Collapse
|
7
|
Korshunova I, Rhein S, García-González D, Stölting I, Pfisterer U, Barta A, Dmytriyeva O, Kirkeby A, Schwaninger M, Khodosevich K. Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells. JCI Insight 2020; 5:126268. [PMID: 31999645 DOI: 10.1172/jci.insight.126268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell therapy raises hopes high for better treatment of brain disorders. However, the majority of transplanted cells often die soon after transplantation, and those that survive initially continue to die in the subacute phase, diminishing the impact of transplantations. In this study, we genetically modified transplanted human neural stem cells (hNSCs), from 2 distant embryonic stem cell lines (H9 and RC17), to express 1 of 4 prosurvival factors - Hif1a, Akt1, Bcl-2, or Bcl-xl - and studied how these modifications improve short- and long-term survival of transplanted hNSCs. All genetic modifications dramatically increased survival of the transplanted hNSCs. Importantly, 3 out of 4 modifications also enhanced the exit of hNSCs from the cell cycle, thus avoiding aberrant growth of the transplants. Bcl-xl expression provided the strongest protection of transplanted cells, reducing both immediate and delayed cell death, and stimulated hNSC differentiation toward neuronal and oligodendroglial lineages. By designing hNSCs with drug-controlled expression of Bcl-xl, we demonstrated that short-term expression of a prosurvival factor can ensure the long-term survival of transplanted cells. Importantly, transplantation of Bcl-xl-expressing hNSCs into mice suffering from stroke improved behavioral outcome and recovery of motor activity in mice.
Collapse
Affiliation(s)
- Irina Korshunova
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ulrich Pfisterer
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anna Barta
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Department of Biomedical Sciences.,Novo Nordisk Foundation Center for Basic Metabolic Research, and
| | - Agnete Kirkeby
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Experimental Medical Science and Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
8
|
Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. Int J Mol Sci 2019; 20:ijms20174272. [PMID: 31480448 PMCID: PMC6747457 DOI: 10.3390/ijms20174272] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer’s disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.
Collapse
|
9
|
Quattrocolo G, Isaac M, Zhang Y, Petros TJ. Homochronic Transplantation of Interneuron Precursors into Early Postnatal Mouse Brains. J Vis Exp 2018:57723. [PMID: 29939182 PMCID: PMC6101640 DOI: 10.3791/57723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Neuronal fate determination and maturation requires an intricate interplay between genetic programs and environmental signals. However, disentangling the roles of intrinsic vs. extrinsic mechanisms that regulate this differentiation process is a conundrum for all developmental neurobiologists. This issue is magnified for GABAergic interneurons, an incredibly heterogeneous cell population that is born from transient embryonic structures and undergo a protracted migratory phase to disperse throughout the telencephalon. To explore how different brain environments affect interneuron fate and maturation, we developed a protocol for harvesting fluorescently labeled immature interneuron precursors from specific brain regions in newborn mice (P0-P2). At this age, interneuron migration is nearly complete and these cells are residing in their final resting environments with relatively little synaptic integration. Following collection of single cell solutions via flow cytometry, these interneuron precursors are transplanted into P0-P2 wildtype postnatal pups. By performing both homotopic (e.g., cortex-to-cortex) or heterotopic (e.g., cortex-to-hippocampus) transplantations, one can assess how challenging immature interneurons in new brain environments affects their fate, maturation, and circuit integration. Brains can be harvested in adult mice and assayed with a wide variety of posthoc analysis on grafted cells, including immunohistochemical, electrophysiological and transcriptional profiling. This general approach provides investigators with a strategy to assay how distinct brain environments can influence numerous aspects of neuron development and identify if specific neuronal characteristics are primarily driven by hardwired genetic programs or environmental cues.
Collapse
Affiliation(s)
- Giulia Quattrocolo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology
| | - Maria Isaac
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Yajun Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Timothy J Petros
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health;
| |
Collapse
|
10
|
Pediatric glioblastoma cells inhibit neurogenesis and promote astrogenesis, phenotypic transformation and migration of human neural progenitor cells within cocultures. Exp Cell Res 2017; 362:159-171. [PMID: 29129566 DOI: 10.1016/j.yexcr.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022]
Abstract
Neural progenitor cell (NPC) fate is influenced by a variety of biological cues elicited from the surrounding microenvironment and recent studies suggest their possible role in pediatric glioblastoma multiforme (GBM) development. Since a few GBM cells also display NPC characteristics, it is not clear whether NPCs transform to tumor cell phenotype leading to the onset of GBM formation, or NPCs migrate to developing tumor sites in response to paracrine signaling from GBM cells. Elucidating the paracrine interactions between GBM cells and NPCs in vivo is challenging due to the inherent complexity of the CNS. Here, we investigated the interactions between human NPCs (ReNcell) and human pediatric GBM-derived cells (SJ-GBM2) using a Transwell® coculture setup to assess the effects of GBM cells on ReNcells (cytokine and chemokine release, viability, phenotype, differentiation, migration). Standalone ReNcell or GBM cultures served as controls. Qualitative and quantitative results from ELISA®, Live/Dead® and BrdU assays, immunofluorescence labeling, western blot analysis, and scratch test suggests that although ReNcell viability remained unaffected in the presence of pediatric GBM cells, their morphology, phenotype, differentiation patterns, neurite outgrowth, migration patterns (average speed, distance, number of cells) and GSK-3β expression were significantly influenced. The cumulative distance migrated by the cells in each condition was fit to Furth's formula, derived formally from Ornstein-Uhlenbeck process. ReNcell differentiation into neural lineage was compromised and astrogenesis promoted within cocultures. Such coculture platform could be extended to identify the specific molecules contributing to the observed phenomena, to investigate whether NPCs could be transplanted to replace lesions of excised tumor sites, and to elucidate the underlying molecular pathways involved in GBM-NPC interactions within the tumor microenvironment.
Collapse
|
11
|
Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, Prieskorn DM, Miller RJ, Chan C, Loomis BR, Corey JM, Miller JM, Duncan RK. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One 2017; 12:e0180427. [PMID: 28672008 PMCID: PMC5495534 DOI: 10.1371/journal.pone.0180427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/15/2017] [Indexed: 01/13/2023] Open
Abstract
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Samuel J. Tuck
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Long He
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Departments of Otorhinolaryngology, Guangzhou First Peoples' Hospital and First Affiliated Hospital, School of Medicine, Jinan University, Guangdong, China
| | - Arjun Rastogi
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
| | - Christina White
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Liqian Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Diane M. Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan J. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Che Chan
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Benjamin R. Loomis
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Joseph M. Corey
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Josef M. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - R. Keith Duncan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
12
|
Dunnett SB, Björklund A. Mechanisms and use of neural transplants for brain repair. PROGRESS IN BRAIN RESEARCH 2017; 230:1-51. [PMID: 28552225 DOI: 10.1016/bs.pbr.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery.
Collapse
|
13
|
Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Gran B, Curtis M, Rostami A, Zhang GX. RETRACTED: Neural Stem Cells Engineered to Express Three Therapeutic Factors Mediate Recovery from Chronic Stage CNS Autoimmunity. Mol Ther 2016; 24:1456-1469. [PMID: 27203442 PMCID: PMC5023377 DOI: 10.1038/mt.2016.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the editor-in-chief. Similarities were found between images in this article and a previously published article in Scientific Reports (Zhang et al., 2015, Sci. Rep. 30, 17407, https://doi.org/10.1038/srep17407). Similarities were also found between images within this article. These concerns were initially reported in a PubPeer thread (https://pubpeer.com/publications/11D757FEEACDC81ACAF60BD0A32607). Image analysis performed by the editorial office confirmed findings of image reuse in Figures 2C and 5C of the Molecular Therapy article. In addition, some of the original data provided by the authors do not match the published article. This reuse (and in part misrepresentation) of data without appropriate attribution represents a severe abuse of the scientific publishing system. The authors disagree with this retraction and maintain that these mistakes do not alter the conclusions of the study.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Cell Differentiation
- Cell Engineering
- Cell Proliferation
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression
- Genetic Vectors/genetics
- Interleukin-10/genetics
- Lentivirus/genetics
- Macrophages/metabolism
- Mice
- Microglia/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Myelin Basic Protein/biosynthesis
- Myelin Proteins/metabolism
- Nerve Growth Factors/genetics
- Neural Stem Cells/cytology
- Neural Stem Cells/metabolism
- Neurons/metabolism
- Neurons/pathology
- Oligodendroglia/cytology
- Oligodendroglia/metabolism
- Stem Cell Transplantation
- Transduction, Genetic
- Transgenes
Collapse
Affiliation(s)
- Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaping Yan
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong, China
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK
| | - Mark Curtis
- Department of Neuropathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
14
|
Qiu L, Lim YM, Chen AK, Reuveny S, Oh SKW, Tan EK, Zeng L. Microcarrier-Expanded Neural Progenitor Cells Can Survive, Differentiate, and Innervate Host Neurons Better When Transplanted as Aggregates. Cell Transplant 2016; 25:1343-57. [DOI: 10.3727/096368915x690378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuronal progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) are an excellent cell source for transplantation therapy due to their availability and ethical acceptability. However, the traditional method of expansion and differentiation of hESCs into NPCs in monolayer cultures requires a long time, and the cell yield is low. A microcarrier (MC) platform can improve the expansion of hESCs and increase the yield of NPCs. In this study, for the first time, we transplanted microcarrier-expanded hESC-derived NPCs into the striatum of adult NOD-SCID IL2Rgc null mice, either as single cells or as cell aggregates. The recipient mice were perfused, and the in vivo survival, differentiation, and targeted innervation of the transplanted cells were assessed by immunostaining. We found that both the transplanted single NPCs and aggregate NPCs were able to survive 1 month posttransplantation, as revealed by human-specific neural cell adhesion molecule (NCAM) and human nuclear antigen staining. Compared to the single cells, the transplanted cell aggregates showed better survival over a 3-month period. In addition, both the transplanted single NPCs and the aggregate NPCs were able to differentiate into DCX-positive immature neurons and Tuj1-positive neurons in vivo by 1 month posttransplantation. However, only the transplantation of aggregate NPCs was shown to result in mature neurons at 3 months posttransplantation. Furthermore, we found that the cell aggregates were able to send long axons to innervate their targets. Our study provides preclinical evidence that the use of MCs to expand and differentiate hESC-derived NPCs and transplantation of these cells as aggregates produce longer survival in vivo.
Collapse
Affiliation(s)
- Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
| | - Yu Ming Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Allen K. Chen
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Steve K. W. Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Singapore
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore
| |
Collapse
|
15
|
Li X, Zhang Y, Yan Y, Ciric B, Ma CG, Chin J, Curtis M, Rostami A, Zhang GX. LINGO-1-Fc-Transduced Neural Stem Cells Are Effective Therapy for Chronic Stage Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2016; 54:4365-4378. [PMID: 27344330 DOI: 10.1007/s12035-016-9994-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
The chronic stage multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), remains refractory to current treatments. This refractory nature may be due to the fact that current treatments are primarily immunomodulatory, which prevent further demyelination but lack the capacity to promote remyelination. Several approaches, including transplantation of neural stem cells (NSCs) or antagonists to LINGO-1, a key part of the receptor complex for neuroregeneration inhibitors, have been effective in suppressing the acute stage of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, their effect on the chronic stage EAE is not known. Here, we show that transplantation of NSCs had only a slight therapeutic effect when treatment started at the chronic stage of EAE (e.g., injected at day 40 postimmunization). However, NSCs engineered to produce LINGO-1-Fc, a soluble LINGO-1 antagonist, significantly promoted neurological recovery as demonstrated by amelioration of clinical signs, improvement in axonal integrity, and enhancement of oligodendrocyte maturation and neuron repopulation. Significantly enhanced NAD production and Sirt2 expression were also found in the CNS of mice treated with LINGO-1-Fc-producing NSC. Moreover, differentiation of LINGO-1-Fc-producing NSCs into oligodendrocytes in vitro was largely diminished by an NAMPT inhibitor, indicating that LINGO-1-Fc enhances the NAMPT/NAD/Sirt2 pathway. Together, our study establishes a CNS-targeted, novel LINGO-1-Fc delivery system using NSCs, which represents a novel and effective NSC-based gene therapy approach for the chronic stage of MS.
Collapse
Affiliation(s)
- Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaping Yan
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong, China
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mark Curtis
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Chehade M, Srivastava AK, Bulte JWM. Co-Registration of Bioluminescence Tomography, Computed Tomography, and Magnetic Resonance Imaging for Multimodal In Vivo Stem Cell Tracking. ACTA ACUST UNITED AC 2016; 2:159-165. [PMID: 27478872 PMCID: PMC4966683 DOI: 10.18383/j.tom.2016.00160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present a practical approach for coregistration of bioluminescence tomography (BLT), computed tomography (CT), and magnetic resonance (MR) images. For this, we developed a customized animal shuttle composed of nonfluorescent, MR-compatible Delrin plastic that fits a commercially available MR surface coil. Mouse embryonic stem cells were transfected with the luciferase gene and labeled with superparamagnetic iron oxide nanoparticles. Cells were stereotaxically implanted in the mouse brain and imaged weekly for 4 weeks with bioluminescent imaging (IVIS Spectrum CT scanner) and magnetic resonance imaging (MRI; 11.7 T horizontal bore scanner). Without the use of software coregistration, in vitro phantom studies yielded root-mean-square errors of 7.6 × 10−3, 0.93 mm, and 0.78 mm along the medial–lateral (ML), dorsal–ventral (DV), and anterior–posterior (AP) axes, respectively. Rotation errors were negligible. Software coregistration by translation along the DV and AP axes resulted in consistent agreement between the CT and MR images, without the need for rotation or warping. In vivo coregistered BLT/MRI mouse brain data sets showed a single diffuse region of bioluminescent imaging photon signal and MRI hypointensity. Over time, the transplanted cells formed tumors as histopathologically validated. Disagreement between BLT and MRI tumor location was greatest along the DV axis (1.4 ± 0.2 mm) than along the ML (0.5 ± 0.3 mm) and the AP axes (0.6 mm) because of the uncertainty of the depth of origin of the BLT signal. Combining the high spatial anatomical information of MRI with the cell viability/proliferation data from BLT should facilitate preclinical evaluation of novel therapeutic candidate stem cells.
Collapse
Affiliation(s)
- Moussa Chehade
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells Int 2016; 2016:6235687. [PMID: 26997958 PMCID: PMC4779824 DOI: 10.1155/2016/6235687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in their in vivo behavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling their in vivo behavior further improvement in stem cell transplantations will be achieved.
Collapse
|
18
|
Srivastava AK, Bulte CA, Shats I, Walczak P, Bulte JWM. Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain. Exp Neurol 2015; 275 Pt 1:154-61. [PMID: 26515691 DOI: 10.1016/j.expneurol.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022]
Abstract
Loss of functional cells from immunorejection during the early post-transplantation period is an important factor that reduces the efficacy of stem cell-based therapies. Recent studies have shown that transplanted mesenchymal stem cells (MSCs) can exert therapeutic effects by secreting anti-inflammatory and pro-survival trophic factors. We investigated whether co-transplantation of MSCs could improve the survival of other transplanted therapeutic cells. Allogeneic glial-restricted precursors (GRPs) were isolated from the brain of a firefly luciferase transgenic FVB mouse (at E13.5 stage) and intracerebrally transplanted, either alone, or together with syngeneic MSCs in immunocompetent BALB/c mice (n=20) or immunodeficient Rag2(-/-) mice as survival control (n=8). No immunosuppressive drug was given to any animal. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that co-transplantation of MSCs significantly improved (p<0.05) engrafted GRP survival. No significant change in signal intensities was observed in immunodeficient Rag2(-/-) mice, with transplanted cells surviving in both the GRP only and the GRP+MSC group. In contrast, on day 21 post-transplantation, we observed a 94.2% decrease in BLI signal intensity in immunocompetent mice transplanted with GRPs alone versus 68.1% in immunocompetent mice co-transplanted with MSCs and GRPs (p<0.05). Immunohistochemical analysis demonstrated a lower number of infiltrating CD45, CD11b(+) and CD8(+) cells, reduced astrogliosis, and a higher number of FoxP3(+) cells at the site of transplantation for the immunocompetent mice receiving MSCs. The present study demonstrates that co-transplantation of MSCs can be used to create a microenvironment that is more conducive to the survival of allogeneic GRPs.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camille A Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Irina Shats
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Andrzejewska A, Nowakowski A, Janowski M, Bulte JWM, Gilad AA, Walczak P, Lukomska B. Pre- and postmortem imaging of transplanted cells. Int J Nanomedicine 2015; 10:5543-59. [PMID: 26366076 PMCID: PMC4562754 DOI: 10.2147/ijn.s83557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions based on the transplantation of stem and progenitor cells have garnered increasing interest. This interest is fueled by successful preclinical studies for indications in many diseases, including the cardiovascular, central nervous, and musculoskeletal system. Further progress in this field is contingent upon access to techniques that facilitate an unambiguous identification and characterization of grafted cells. Such methods are invaluable for optimization of cell delivery, improvement of cell survival, and assessment of the functional integration of grafted cells. Following is a focused overview of the currently available cell detection and tracking methodologies that covers the entire spectrum from pre- to postmortem cell identification.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Nowakowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff WM Bulte
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Assaf A Gilad
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- RusselI H Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Cai Q, Chen Z, Song P, Wu L, Wang L, Deng G, Liu B, Chen Q. Co-transplantation of hippocampal neural stem cells and astrocytes and microvascular endothelial cells improve the memory in ischemic stroke rat. Int J Clin Exp Med 2015; 8:13109-13117. [PMID: 26550233 PMCID: PMC4612918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Neural stem cells (NSCs) are promising for ischemia stroke because they can replace damaged or lost cells. However, the adult central nervous system (CNS) does not provide an optimal microenvironment for exogenous NSCs to survive, proliferation and differentiation. We established a co-transplantation system with NSCs and astrocyte and brain microvascular endothelial cells (BMECs) to explore whether it can improve the memory ability in ischemic stroke rat. METHODS After building the ischemic stroke in 50 rats by middle cerebral artery occlusion and reperfusion (MCAO/R), transplantation of NSCs and astrocyte and BMECs were performed with different combination. RESULTS Laser doppler flowmetry and MRI were used to detect the ischemia of the model and 42 rats survived for the Morris water-maze test. The test shows that co-transplantation with the three different cells together can improve memory deficits in MCAO/R rat and it is the most effect group. Grafting with two cells have more effect in memory improving than one cell while transplanting NSC alone has no obvious effect on memory improving. CONCLUSIONS In NSC niche, astrocytes and BMECs are the most important cells to regulate and interaction with NSCs. Co-transplantation NSCs with astrocyte and BMECs can improve the memory ability in ischemia rat, which maybe the result of microenvironment improve by the astrocyte and BMECs.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Ping Song
- Department of Neurosurgery, Wuhan No. 1 HospitalWuhan, Hubei Province, China
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, Hubei Province, China
| |
Collapse
|
21
|
Janowski M, Bulte JWM, Handa JT, Rini D, Walczak P. Concise Review: Using Stem Cells to Prevent the Progression of Myopia-A Concept. Stem Cells 2015; 33:2104-13. [PMID: 25752937 DOI: 10.1002/stem.1984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
The prevalence of myopia has increased in modern society due to the educational load of children. This condition is growing rapidly, especially in Asian countries where it has already reached a pandemic level. Typically, the younger the child's age at the onset of myopia, the more rapidly the condition will progress and the greater the likelihood that it will develop the known sight-threatening complications of high myopia. This rise in incidence of severe myopia has contributed to an increased frequency of eye diseases in adulthood, which often complicate therapeutic procedures. Currently, no treatment is available to prevent myopia progression. Stem cell therapy can potentially address two components of myopia. Regardless of the exact etiology, myopia is always associated with scleral weakness. In this context, a strategy aimed at scleral reinforcement by transplanting connective tissue-supportive mesenchymal stem cells is an attractive approach that could yield effective and universal therapy. Sunlight exposure appears to have a protective effect against myopia. It is postulated that this effect is mediated via local ocular production of dopamine. With a variety of dopamine-producing cells already available for the treatment of Parkinson's disease, stem cells engineered for dopamine production could be used for the treatment of myopia. In this review, we further explore these concepts and present evidence from the literature to support the use of stem cell therapy for the treatment of myopia.
Collapse
Affiliation(s)
- Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Rini
- Department of Art as Applied to Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
22
|
Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JWM. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 2015; 8:323-36. [PMID: 26035841 PMCID: PMC4381332 DOI: 10.1242/dmm.018499] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deepak K Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amnon Bar-Shir
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Assaf A Gilad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA. Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Abstract
Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205-1832, USA
| | | |
Collapse
|
24
|
Abstract
Human donor cells, including neurally directed embryonic stem cells and induced pluripotent stem cells with the potential to be used for neural transplantation in a range of neurodegenerative disorders, must first be tested preclinically in rodent models of disease to demonstrate safety and efficacy. One strategy for circumventing the rejection of xenotransplanted human cells is to desensitize the host animal to human cells in the early neonatal period so that a subsequent transplant in adulthood is not immunorejected. This method has been robustly validated in the rat, but currently not in the mouse in which most transgenic models of neurodegeneration have been generated. Thus, we set out to determine whether this could be achieved through modification of the existing rat protocol. Mice were inoculated in the neonatal period with a suspension of human embryonic cortical tissue of varying cell numbers, and received a subsequent human embryonic cortical tissue cell transplant in adulthood. Graft survival was compared with those in mice immunosuppressed with cyclosporine A and those receiving allografts of mouse whole ganglionic eminence tissue. Poor survival was found across all groups, suggesting a general problem with the use of mouse hosts for testing human donor cells.
Collapse
|
25
|
Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A, Salvador B, Fernàndez-Busquets X, Roquer J, Muñoz FJ. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31:152-67. [PMID: 25046533 DOI: 10.3109/09687688.2014.937468] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.
Collapse
Affiliation(s)
- Marta Tajes
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
With a constellation of stem cell sources available, researchers hope to utilize their potential for cellular repair as a therapeutic target for disease. However, many lab-to-clinic translational considerations must be given in determining their efficacy, variables such as the host response, effects on native tissue, and potential for generating tumors. This review will discuss the current knowledge of stem cell research in neurological disease, mainly stroke, with a focus on the benefits, limitations, and clinical potential.
Collapse
|
27
|
Osman AM, Zhou K, Zhu C, Blomgren K. Transplantation of enteric neural stem/progenitor cells into the irradiated young mouse hippocampus. Cell Transplant 2013; 23:1657-71. [PMID: 24152680 DOI: 10.3727/096368913x674648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Radiotherapy is an effective treatment for brain tumors but often results in cognitive deficits in survivors. Transplantation of embryonic or brain-derived neural stem/progenitor cells (BNSPCs) ameliorated cognitive impairment after irradiation (IR) in animal models. However, such an approach in patients requires a clinically relevant source of cells. We show for the first time the utilization of enteric neural stem/progenitor cells (ENSPCs) from the postnatal intestinal wall as a source of autologous cells for brain repair after injury caused by IR. Cells were isolated from the intestinal wall and propagated in vitro for 1 week. Differentiation assays showed that ENSPCs are multipotent and generated neurons, astrocytes, and myofibroblasts. To investigate whether ENSPCs can be used in vivo, postnatal day 9 mice were subjected to a single moderate irradiation dose (6 or 8 Gy). Twelve days later, mice received an intrahippocampal injection of syngeneic ENSPCs. Four weeks after transplantation, 0.5% and 1% of grafted ENSPCs were detected in the dentate gyrus of sham and irradiated animals, respectively, and only 0.1% was detected after 16 weeks. Grafted ENSPCs remained undifferentiated but failed to restore IR-induced loss of BNSPCs and the subsequent impaired growth of the dentate gyrus. We observed microglia activation, astrogliosis, and loss of granule neurons associated with grafted ENSPC clusters. Transplantation of ENSPCs did not ameliorate IR-induced impaired learning and memory. In summary, while autologous ENSPC grafting to the brain worked technically, even in the absence of immunosuppression, the protocols need to be modified to improve survival and integration.
Collapse
Affiliation(s)
- Ahmed M Osman
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Smith GA, Snyder EY. Two cells are better than one: optimizing stem cell survival by co-grafting "helper" cells that offer regulated trophic support. Exp Neurol 2013; 247:751-4. [PMID: 23856435 DOI: 10.1016/j.expneurol.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Gaynor A Smith
- Neuroregeneration Laboratories, Neuroregeneration Laboratories, Mailman Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|