1
|
Bernardo Harrington GM, Cool P, Hulme C, Fisher-Stokes J, Peffers M, Masri WE, Osman A, Chowdhury JR, Kumar N, Budithi S, Wright K. A Comprehensive Proteomic and Bioinformatic Analysis of Human Spinal Cord Injury Plasma Identifies Proteins Associated with the Complement Cascade and Liver Function as Potential Prognostic Indicators of Neurological Outcome. J Neurotrauma 2024. [PMID: 39636693 DOI: 10.1089/neu.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability, with complications postinjury often leading to lifelong health issues with the need for extensive treatment. Neurological outcome post-SCI can be variable and difficult to predict, particularly in incompletely injured patients. The identification of specific SCI biomarkers in blood may be able to improve prognostics in the field. This study has utilized proteomic and bioinformatic methodologies to investigate differentially expressed proteins in plasma samples across human SCI cohorts with the aim of identifying candidate prognostic biomarkers and biological pathway alterations that relate to neurological outcome. Blood samples were taken, following informed consent, from American Spinal Injury Association impairment scale (AIS) grade C "improvers" (those who experienced an AIS grade improvement) and "nonimprovers" (no AIS change) and AIS grade A and D at <2 weeks ("acute") and ∼3 months ("subacute") postinjury. The total protein concentration from each sample was extracted, with pooled samples being labeled and nonpooled samples treated with ProteoMiner™ beads. Samples were then analyzed using two 4-plex isobaric tag for relative and absolute quantification (iTRAQ) analyses and a label-free experiment for comparison before quantifying with mass spectrometry. Data are available via ProteomeXchange with identifiers PXD035025 and PXD035072 for the iTRAQ and label-free experiments, respectively. Proteomic datasets were analyzed using OpenMS (version 2.6.0). R (version 4.1.4) and, in particular, the R packages MSstats (version 4.0.1) and pathview (version 1.32.0) were used for downstream analysis. Proteins of interest identified from this analysis were further validated by enzyme-linked immunosorbent assay. The data demonstrated proteomic differences between the cohorts, with the results from the iTRAQ approach supporting those of the label-free analysis. A total of 79 and 87 differentially abundant proteins across AIS and longitudinal groups were identified from the iTRAQ and label-free analyses, respectively. Alpha-2-macroglobulin, retinol-binding protein 4 (RBP4), serum amyloid A1, peroxiredoxin 2 (PRX-2), apolipoprotein A1, and several immunoglobulins were identified as biologically relevant and differentially abundant, with potential as individual candidate prognostic biomarkers of neurological outcome. Bioinformatics analyses revealed that the majority of differentially abundant proteins were components of the complement cascade and most interacted directly with the liver. Many of the proteins of interest identified using proteomics were detected only in a single group and therefore have potential as binary (present or absent) biomarkers, RBP4 and PRX-2 in particular. Additional investigations into the chronology of these proteins and their levels in other tissues (cerebrospinal fluid in particular) are needed to better understand the underlying pathophysiology, including any potentially modifiable targets. Pathway analysis highlighted the complement cascade as being significant across groups of differential functional recovery.
Collapse
Affiliation(s)
| | - Paul Cool
- Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Charlotte Hulme
- Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Jessica Fisher-Stokes
- Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | | | - Wagih El Masri
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Aheed Osman
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Joy Roy Chowdhury
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Naveen Kumar
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Srinivasa Budithi
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| | - Karina Wright
- Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, United Kingdom
| |
Collapse
|
2
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
3
|
Battaglini D, De Rosa S, Godoy DA. Crosstalk Between the Nervous System and Systemic Organs in Acute Brain Injury. Neurocrit Care 2024; 40:337-348. [PMID: 37081275 DOI: 10.1007/s12028-023-01725-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Organ crosstalk is a complex biological communication between distal organs mediated via cellular, soluble, and neurohormonal actions, based on a two-way pathway. The communication between the central nervous system and peripheral organs involves nerves, endocrine, and immunity systems as well as the emotional and cognitive centers of the brain. Particularly, acute brain injury is complicated by neuroinflammation and neurodegeneration causing multiorgan inflammation, microbial dysbiosis, gastrointestinal dysfunction and dysmotility, liver dysfunction, acute kidney injury, and cardiac dysfunction. Organ crosstalk has become increasingly popular, although the information is still limited. The present narrative review provides an update on the crosstalk between the nervous system and systemic organs after acute brain injury. Future research might help to target this pathophysiological process, preventing the progression toward multiorgan dysfunction in critically ill patients with brain injury.
Collapse
Affiliation(s)
- Denise Battaglini
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy.
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Trento, Italy.
| | | |
Collapse
|
4
|
Xue J, Jiang T, Humaerhan J, Wang M, Ning J, Zhao H, Aji T, Shao Y. Impact of Liver Sympathetic Nervous System on Liver Fibrosis and Regeneration After Bile Duct Ligation in Rats. J Mol Neurosci 2024; 74:4. [PMID: 38183518 DOI: 10.1007/s12031-023-02176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
The sympathetic nervous system (SNS) affects many functions of the body. SNS fibers regulate many aspects of liver function, repair, and regeneration. However, in the model of bile duct ligation (BDL) in rats, the kind of impact caused by the regulation of liver SNS on liver fibrosis and liver regeneration is unclear. The main research objective of this experiment is to examine the effect of SNS on liver fibrosis and liver regeneration. Twenty-four male Sprague-Dawley (SD) rats were assigned randomly to four groups. These groups included the sham surgery group (sham), model group (BDL), 6-hydroxydopamine group (BDL+6-OHDA), and spinal cord injury group (BDL+SCI). In the sham group, only exploratory laparotomy was performed without BDL. In the 6-OHDA group, 6-OHDA was used to remove sympathetic nerves after BDL. In the spinal cord injury group, rats underwent simultaneous BDL and spinal cord injury. After 3 weeks of feeding, four groups of rats were euthanized using high-dose anesthesia without pain. Moreover, liver tissue and blood were taken to detect liver fibrosis and regeneration indicators. After intraperitoneal injection of 6-OHDA into BDL rats, liver fibrosis indicators decreased. The administration of the injection effectively alleviated liver fibrosis and inhibited liver regeneration. However, after SCI surgery in BDL rats, liver fibrosis indicators increased. This resulted in exacerbating liver fibrosis and activating liver regeneration. The SNS plays a role in contributing to the liver injury process in the rat BDL model. Therefore, regulating the SNS may become a novel method for liver injury treatment.
Collapse
Affiliation(s)
- Junlong Xue
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Tiemin Jiang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, The First Clinical Medical College of Xinjiang Medical University, Urumqi, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Jiayidaer Humaerhan
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Maolin Wang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Jianghong Ning
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Hanyue Zhao
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- The First Clinical Medical, College of Xinjiang Medical University, Urumqi, 830054, China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Management of High Incidence Diseases in Central Asia, The First Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Clinical Research Center for Echinococcosis and Hepatobiliary Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
5
|
Di Giulio F, Castellini C, Tienforti D, Felzani G, Baroni MG, Barbonetti A. Independent association of hypovitaminosis d with non-alcoholic fatty liver disease in people with chronic spinal cord injury: a cross-sectional study. J Endocrinol Invest 2024; 47:79-89. [PMID: 37273143 DOI: 10.1007/s40618-023-02124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) and hypovitaminosis D are highly prevalent in people with spinal cord injury (SCI) and could exert an unfavorable influence on cardiovascular profile and rehabilitation outcomes. We aimed to assess the independent association between low 25-hydroxy vitamin D (25(OH)D) levels and NAFLD in people with chronic (> 1 year) SCI. METHODS One hundred seventy-three consecutive patients with chronic SCI (132 men and 41 women) admitted to a rehabilitation program underwent clinical/biochemical evaluations and liver ultrasonography. RESULTS NAFLD was found in 105 patients (60.7% of the study population). They were significantly older and exhibited a poorer leisure time physical activity (LTPA) and functional independence in activities of daily living, a greater number of comorbidities and a higher prevalence of metabolic syndrome (MetS) and its correlates, including lower HDL and higher values of body mass index (BMI), systolic blood pressure, HOMA-index of insulin resistance and triglycerides. 25(OH)D levels were significantly lower in NAFLD (median: 10.6 ng/ml, range: 2.0-31.0) than in non-NAFLD group (22.5 ng/ml, 4.2-51.6). When all these variables were included in a multiple logistic regression analysis, a significant independent association with NAFLD only persisted for lower 25(OH)D levels, a greater number of comorbidities and a poorer LTPA. The ROC analysis revealed that 25(OH)D levels < 18.25 ng/ml discriminated patients with NAFLD with a sensitivity of 89.0% and a specificity of 73.0% (AUC: 85.7%; 95%CI: 79.6-91.7%). NAFLD was exhibited by 83.9% of patients with 25(OH)D levels < 18.25 ng/ml and by 18% of those with 25(OH)D levels ≥ 18.25 ng/ml (p < 0.0001). CONCLUSION In people with chronic SCI, 25(OH)D levels < 18.25 ng/ml may represent a marker of NAFLD independent of MetS-related features. Further studies are warranted to define the cause-effect relationships of this association.
Collapse
Affiliation(s)
- F Di Giulio
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - C Castellini
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Tienforti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Felzani
- Spinal Unit, San Raffaele Sulmona Institute, Sulmona, Italy
| | - M G Baroni
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - A Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
6
|
Hagan AJ, Kumar R. The Utility of Methylphenidate for Fatigue in Long-Term Neurological Conditions: A Meta-analytical Review. Clin Neuropharmacol 2023; 46:239-252. [PMID: 37962311 DOI: 10.1097/wnf.0000000000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Fatigue is a chronic and debilitating symptom of many long-term neurological conditions (LTNCs). Although methylphenidate provides some promise in alleviating fatigue in other clinical groups, little work has explored its potential utility within LTNCs. The current systematic review and meta-analysis evaluates the utility of methylphenidate for symptoms of fatigue in LTNCs. METHODS Five databases (PsycINFO, MEDLINE, Embase, Scopus, and Cochrane Library) were searched for relevant articles from their inception to February 2022. A purpose-developed evaluation tool was used to assess each study's research quality (QuEST:F). RESULTS Of the 1698 articles identified, 11 articles were included within this review (n = 370). Meta-analytical findings reported an overall significant benefit of methylphenidate for symptoms of fatigue across a mixed neurological sample ( g = -0.44; 95% confidence interval, -0.77 to -0.11). Subgroup analyses identified a significantly greater benefit ( P < 0.001) of methylphenidate for fatigue in LTNCs with static pathogenic trajectories (eg, traumatic brain injury) (number needed to treat = 2.5) compared with progressive conditions (eg, multiple sclerosis) (number needed to treat = 40.2). CONCLUSIONS Methylphenidate may pose an effective intervention for the treatment of fatigue in a number of LTNCs. Nonetheless, given the quality of the current evidence base, there exists a clear need for further robust assessment of the utility of methylphenidate-with a focus on subgroup-specific variability.
Collapse
Affiliation(s)
- Alexander James Hagan
- Department of Health Psychology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne
| | - Ram Kumar
- CYP Neuro LLP, Liverpool, Merseyside, United Kingdom
| |
Collapse
|
7
|
Reiners JC, Leopold L, Hallebach V, Sinske D, Meier P, Amoroso M, Langgartner D, Reber SO, Knöll B. Acute stress modulates the outcome of traumatic brain injury-associated gene expression and behavioral responses. FASEB J 2023; 37:e23218. [PMID: 37779443 DOI: 10.1096/fj.202301035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs.
Collapse
Affiliation(s)
| | - Laura Leopold
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Vera Hallebach
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Daniela Sinske
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Gueguen J, Girard D, Rival B, Fernandez J, Goriot ME, Banzet S. Spinal cord injury dysregulates fibro-adipogenic progenitors miRNAs signaling to promote neurogenic heterotopic ossifications. Commun Biol 2023; 6:932. [PMID: 37700159 PMCID: PMC10497574 DOI: 10.1038/s42003-023-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Neurogenic heterotopic ossifications are intramuscular bone formations developing following central nervous system injury. The pathophysiology is poorly understood and current treatments for this debilitating condition remain unsatisfying. Here we explored the role of miRNAs in a clinically relevant mouse model that combines muscle and spinal cord injury, and in patients' cells. We found an osteo-suppressive miRNAs response in injured muscle that was hindered when the spinal cord injury was associated. In isolated fibro-adipogenic progenitors from damaged muscle (cells at the origin of ossification), spinal cord injury induced a downregulation of osteo-suppressive miRNAs while osteogenic markers were overexpressed. The overexpression of selected miRNAs in patient's fibro-adipogenic progenitors inhibited mineralization and osteo-chondrogenic markers in vitro. Altogether, we highlighted an osteo-suppressive mechanism involving multiple miRNAs in response to muscle injury that prevents osteogenic commitment which is ablated by the neurologic lesion in heterotopic ossification pathogenesis. This provides new research hypotheses for preventive treatments.
Collapse
Affiliation(s)
- Jules Gueguen
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Bastien Rival
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Juliette Fernandez
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Marie-Emmanuelle Goriot
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France
- INSERM UMR-MD-1197, 92140, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, 92140, Clamart, France.
- INSERM UMR-MD-1197, 92140, Clamart, France.
| |
Collapse
|
9
|
Sun Y, Wang S, Liu B, Hu W, Zhu Y. Host-Microbiome Interactions: Tryptophan Metabolism and Aromatic Hydrocarbon Receptors after Traumatic Brain Injury. Int J Mol Sci 2023; 24:10820. [PMID: 37445997 DOI: 10.3390/ijms241310820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury refers to the damage caused to intracranial tissues by an external force acting on the head, leading to both immediate and prolonged harmful effects. Neuroinflammatory responses play a critical role in exacerbating the primary injury during the acute and chronic phases of TBI. Research has demonstrated that numerous neuroinflammatory responses are mediated through the "microbiota-gut-brain axis," which signifies the functional connection between the gut microbiota and the brain. The aryl hydrocarbon receptor (AhR) plays a vital role in facilitating communication between the host and microbiota through recognizing specific ligands produced directly or indirectly by the microbiota. Tryptophan (trp), an indispensable amino acid in animals and humans, represents one of the key endogenous ligands for AhR. The metabolites of trp have significant effects on the functioning of the central nervous system (CNS) through activating AHR signalling, thereby establishing bidirectional communication between the gut microbiota and the brain. These interactions are mediated through immune, metabolic, and neural signalling mechanisms. In this review, we emphasize the co-metabolism of tryptophan in the gut microbiota and the signalling pathway mediated by AHR following TBI. Furthermore, we discuss the impact of these mechanisms on the underlying processes involved in traumatic brain injury, while also addressing potential future targets for intervention.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingwei Liu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
10
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
11
|
Maheshwari S, Dwyer LJ, Sîrbulescu RF. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity. Neurobiol Dis 2023; 180:106077. [PMID: 36914074 PMCID: PMC10758988 DOI: 10.1016/j.nbd.2023.106077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Acute injury to the central nervous system (CNS) remains a complex and challenging clinical need. CNS injury initiates a dynamic neuroinflammatory response, mediated by both resident and infiltrating immune cells. Following the primary injury, dysregulated inflammatory cascades have been implicated in sustaining a pro-inflammatory microenvironment, driving secondary neurodegeneration and the development of lasting neurological dysfunction. Due to the multifaceted nature of CNS injury, clinically effective therapies for conditions such as traumatic brain injury (TBI), spinal cord injury (SCI), and stroke have proven challenging to develop. No therapeutics that adequately address the chronic inflammatory component of secondary CNS injury are currently available. Recently, B lymphocytes have gained increasing appreciation for their role in maintaining immune homeostasis and regulating inflammatory responses in the context of tissue injury. Here we review the neuroinflammatory response to CNS injury with particular focus on the underexplored role of B cells and summarize recent results on the use of purified B lymphocytes as a novel immunomodulatory therapeutic for tissue injury, particularly in the CNS.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Estuani J, Godinho J, Borges SC, Neves CQ, Milani H, Buttow NC. Global cerebral ischemia followed by long-term reperfusion promotes neurodegeneration, oxidative stress, and inflammation in the small intestine in Wistar rats. Tissue Cell 2023; 81:102033. [PMID: 36764059 DOI: 10.1016/j.tice.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
AIMS Brain ischemia and reperfusion may occur in several clinical conditions that have high rates of mortality and disability, compromising an individual's quality of life. Brain injury can affect organs beyond the brain, such as the gastrointestinal tract. The present study investigated the effects of cerebral ischemia on the ileum and jejunum during a chronic reperfusion period by examining oxidative stress, inflammatory parameters, and the myenteric plexus in Wistar rats. MAIN METHODS Ischemia was induced by the four-vessel occlusion model for 15 min with 52 days of reperfusion. Oxidative stress and inflammatory markers were evaluated using biochemical techniques. Gastrointestinal transit time was evaluated, and immunofluorescence techniques were used to examine morpho-quantitative aspects of myenteric neurons. KEY FINDINGS Brain ischemia and reperfusion promoted inflammation, characterized by increases in myeloperoxidase and N-acetylglycosaminidase activity, oxidative stress, and lipid hydroperoxides, decreases in superoxide dismutase and catalase activity, a decrease in levels of reduced glutathione, neurodegeneration in the gut, and slow gastrointestinal transit. SIGNIFICANCE Chronic ischemia and reperfusion promoted a slow gastrointestinal transit time, oxidative stress, and inflammation and neurodegeneration in the small intestine in rats. These findings indicate that the use of antioxidant and antiinflammatory molecules even after a long period of reperfusion may be useful to alleviate the consequences of this pathology.
Collapse
Affiliation(s)
- Julia Estuani
- Biosciences and Pathophysiology Program, State University of Maringá, Maringá, PR, Brazil
| | - Jacqueline Godinho
- Pharmaceutical Sciences Program, State University of Maringá, Maringá, PR, Brazil
| | | | - Camila Quaglio Neves
- Program in Biological Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá, Av. Colombo 5790, block H79 room 105 A, CEP: 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
13
|
Lin Y, Li C, Wang W, Li J, Huang C, Zheng X, Liu Z, Song X, Chen Y, Gao J, Wu J, Wu J, Tu Z, Lai L, Li XJ, Li S, Yan S. Intravenous AAV9 administration results in safe and widespread distribution of transgene in the brain of mini-pig. Front Cell Dev Biol 2023; 10:1115348. [PMID: 36762127 PMCID: PMC9902950 DOI: 10.3389/fcell.2022.1115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Animal models are important for understanding the pathogenesis of human diseases and for developing and testing new drugs. Pigs have been widely used in the research on the cardiovascular, skin barrier, gastrointestinal, and central nervous systems as well as organ transplantation. Recently, pigs also become an attractive large animal model for the study of neurodegenerative diseases because their brains are very similar to human brains in terms of mass, gully pattern, vascularization, and the proportions of the gray and white matters. Although adeno-associated virus type 9 (AAV9) has been widely used to deliver transgenes in the brain, its utilization in large animal models remains to be fully characterized. Here, we report that intravenous injection of AAV9-GFP can lead to widespread expression of transgene in various organs in the pig. Importantly, GFP was highly expressed in various brain regions, especially the striatum, cortex, cerebellum, hippocampus, without detectable inflammatory responses. These results suggest that intravenous AAV9 administration can be used to establish large animal models of neurodegenerative diseases caused by gene mutations and to treat these animal models as well.
Collapse
Affiliation(s)
- Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhaoming Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China,*Correspondence: Shihua Li, ; Sen Yan,
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China,*Correspondence: Shihua Li, ; Sen Yan,
| |
Collapse
|
14
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
15
|
Bigford GE, Garshick E. Systemic inflammation after spinal cord injury: A review of biological evidence, related health risks, and potential therapies. Curr Opin Pharmacol 2022; 67:102303. [PMID: 36206621 PMCID: PMC9929918 DOI: 10.1016/j.coph.2022.102303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Individuals with chronic traumatic spinal cord injury (SCI) develop progressive multi-system health problems that result in clinical illness and disability. Systemic inflammation is associated with many of the common medical complications and acquired diseases that accompany chronic SCI, suggesting that it contributes to a number of comorbid pathological conditions. However, many of the mechanisms that promote persistent systemic inflammation and its consequences remain ill-defined. This review describes the significant biological factors that contribute to systemic inflammation, major organ systems affected, health risks, and the potential treatment strategies. We aim to highlight the need for a better understanding of inflammatory processes, and to establish appropriate strategies to address inflammation in SCI.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Cruz-González S, Quesada-Díaz E, Miranda-Negrón Y, García-Rosario R, Ortiz-Zuazaga H, García-Arrarás JE. The Stress Response of the Holothurian Central Nervous System: A Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232113393. [PMID: 36362181 PMCID: PMC9657328 DOI: 10.3390/ijms232113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.
Collapse
Affiliation(s)
- Sebastián Cruz-González
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Eduardo Quesada-Díaz
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Yamil Miranda-Negrón
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Raúl García-Rosario
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
- Correspondence:
| |
Collapse
|
17
|
The Anti-inflammation Property of Olfactory Ensheathing Cells in Neural Regeneration After Spinal Cord Injury. Mol Neurobiol 2022; 59:6447-6459. [PMID: 35962300 DOI: 10.1007/s12035-022-02983-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Neural regeneration has troubled investigators worldwide in the past decades. Currently, cell transplantation emerged as a breakthrough targeted therapy for spinal cord injury (SCI) in the neurotrauma field, which provides a promising strategy in neural regeneration. Olfactory ensheathing cells (OECs), a specialized type of glial cells, is considered as the excellent candidate due to its unique variable and intrinsic regeneration-supportive properties. In fact, OECs could support olfactory receptor neuron turnover and axonal extension, which is essential to maintain the function of olfactory nervous system. Hitherto, an increasing number of literatures demonstrate that transplantation of OECs exerts vital roles in neural regeneration and functional recovery after neural injury, including central and peripheral nervous system. It is common knowledge that the deteriorating microenvironment (ischemia, hypoxia, scar, acute and chronic inflammation, etc.) resulting from injured nervous system is adverse for neural regeneration. Interestingly, recent studies indicated that OECs could promote neural repair through improvement of the disastrous microenvironments, especially to the overwhelmed inflammatory responses. Although OECs possess unusual advantages over other cells for neural repair, particularly in SCI, the mechanisms of OEC-mediated neural repair are still controversial with regard to anti-inflammation. Therefore, it is significant to summarize the anti-inflammation property of OECs, which is helpful to understand the biological characteristics of OECs and drive future studies. Here, we mainly focus on the anti-inflammatory role of OECs to make systematic review and discuss OEC-based therapy for CNS injury.
Collapse
|
18
|
Boutté AM, Thangavelu B, Anagli J. Opinion: The Potential Role of Amyloid Beta Peptides as Biomarkers of Subconcussion and Concussion. Front Neurol 2022; 13:941151. [PMID: 35903122 PMCID: PMC9315433 DOI: 10.3389/fneur.2022.941151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Angela M. Boutté
- Aries Biotechnologies, Oakland, CA, United States
- *Correspondence: Angela M. Boutté
| | | | - John Anagli
- NeuroTheranostics, Inc., Detroit, MI, United States
| |
Collapse
|
19
|
Osei-Owusu P, Collyer E, Dahlen SA, Echols Adams RE, Tom VJ. Maladaptation of Renal Hemodynamics Contributes to Kidney Dysfunction Resulting from Thoracic Spinal Cord Injury in Mice. Am J Physiol Renal Physiol 2022; 323:F120-F140. [PMID: 35658716 PMCID: PMC9306783 DOI: 10.1152/ajprenal.00072.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal dysfunction is a hallmark of spinal cord injury (SCI). Several SCI sequalae are implicated, however, the exact pathogenic mechanism of renal dysfunction is unclear. Herein, we found that T3 (T3Tx) or T10 (T10Tx) complete thoracic spinal cord transection induced hypotension, bradycardia, and hypothermia immediately after injury. T3Tx-induced hypotension but not bradycardia or hypothermia slowly recovered to levels in T10Tx SCI and uninjured mice ~16 h after injury as determined by continuous radiotelemetry monitoring. Both types of thoracic SCI led to a marked decrease in albuminuria and proteinuria in all phases of SCI, while the kidney injury marker, NGAL, rapidly increased in the acute phase, remaining elevated in the chronic phase of T3Tx SCI. Renal interstitial and vascular elastin fragmentation after SCI were worsened during chronic T3Tx SCI. In the chronic phase, renal vascular resistance response to a step increase in renal perfusion pressure or a bolus injection of Ang II or NE was almost completely abolished after T3Tx SCI. Bulk RNAseq analysis showed enrichment of genes involved in extracellular matrix (ECM) remodeling and chemokine signaling in the kidney from T3Tx SCI mice. Serum levels of interleukin 6 was elevated in the acute but not chronic phase of T3Tx and T10Tx SCI, while serum amyloid A1 level was elevated in both acute and chronic phases. We conclude that tissue fibrosis and hemodynamic impairment are involved in renal dysfunction resulting from thoracic SCI; these pathological alterations, exacerbated by high thoracic-level injury, is mediated at least partly by renal microvascular ECM remodeling.
Collapse
Affiliation(s)
- Patrick Osei-Owusu
- Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Eileen Collyer
- Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Shelby A Dahlen
- Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Raisa E Echols Adams
- Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Veronica J Tom
- Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Cell-Derived Exosomes as Therapeutic Strategies and Exosome-Derived microRNAs as Biomarkers for Traumatic Brain Injury. J Clin Med 2022; 11:jcm11113223. [PMID: 35683610 PMCID: PMC9181755 DOI: 10.3390/jcm11113223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex, life-threatening condition that causes mortality and disability worldwide. No effective treatment has been clinically verified to date. Achieving effective drug delivery across the blood–brain barrier (BBB) presents a major challenge to therapeutic drug development for TBI. Furthermore, the field of TBI biomarkers is rapidly developing to cope with the many aspects of TBI pathology and enhance clinical management of TBI. Exosomes (Exos) are endogenous extracellular vesicles (EVs) containing various biological materials, including lipids, proteins, microRNAs, and other nucleic acids. Compelling evidence exists that Exos, such as stem cell-derived Exos and even neuron or glial cell-derived Exos, are promising TBI treatment strategies because they pass through the BBB and have the potential to deliver molecules to target lesions. Meanwhile, Exos have decreased safety risks from intravenous injection or orthotopic transplantation of viable cells, such as microvascular occlusion or imbalanced growth of transplanted cells. These unique characteristics also create Exos contents, especially Exos-derived microRNAs, as appealing biomarkers in TBI. In this review, we explore the potential impact of cell-derived Exos and exosome-derived microRNAs on the diagnosis, therapy, and prognosis prediction of TBI. The associated challenges and opportunities are also discussed.
Collapse
|
21
|
Zhang L, Li Z, Mao L, Wang H. Circular RNA in Acute Central Nervous System Injuries: A New Target for Therapeutic Intervention. Front Mol Neurosci 2022; 15:816182. [PMID: 35392276 PMCID: PMC8981151 DOI: 10.3389/fnmol.2022.816182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Acute central nervous system (CNS) injuries, including ischemic stroke, traumatic brain injury (TBI), spinal cord injury (SCI) and subarachnoid hemorrhage (SAH), are the most common cause of death and disability around the world. As a kind of non-coding ribonucleic acids (RNAs) with endogenous and conserve, circular RNAs (circRNAs) have recently attracted great attentions due to their functions in diagnosis and treatment of many diseases. A large number of studies have suggested that circRNAs played an important role in brain development and involved in many neurological disorders, particularly in acute CNS injuries. It has been proposed that regulation of circRNAs could improve cognition function, promote angiogenesis, inhibit apoptosis, suppress inflammation, regulate autophagy and protect blood brain barrier (BBB) in acute CNS injuries via different molecules and pathways including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ph1osphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch1 and ten-eleven translocation (TET). Therefore, circRNAs showed great promise as potential targets in acute CNS injuries. In this article, we present a review highlighting the roles of circRNAs in acute CNS injuries. Hence, on the basis of these properties and effects, circRNAs may be developed as therapeutic agents for acute CNS injury patients.
Collapse
|
22
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology: Part II: Pathology. J Extracell Vesicles 2022; 11:e12190. [PMID: 35041301 PMCID: PMC8765328 DOI: 10.1002/jev2.12190] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
23
|
Miller BM, Oderberg IM, Goessling W. Hepatic Nervous System in Development, Regeneration, and Disease. Hepatology 2021; 74:3513-3522. [PMID: 34256416 PMCID: PMC8639644 DOI: 10.1002/hep.32055] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
The liver is innervated by autonomic and sensory fibers of the sympathetic and parasympathetic nervous systems that regulate liver function, regeneration, and disease. Although the importance of the hepatic nervous system in maintaining and restoring liver homeostasis is increasingly appreciated, much remains unknown about the specific mechanisms by which hepatic nerves both influence and are influenced by liver diseases. While recent work has begun to illuminate the developmental mechanisms underlying recruitment of nerves to the liver, evolutionary differences contributing to species-specific patterns of hepatic innervation remain elusive. In this review, we summarize current knowledge on the development of the hepatic nervous system and its role in liver regeneration and disease. We also highlight areas in which further investigation would greatly enhance our understanding of the evolution and function of liver innervation.
Collapse
Affiliation(s)
- Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, 02114, USA.,corresponding author: Contact Information: Wolfram Goessling, MD, PhD, Wang 539B, 55 Fruit Street, Boston, MA 02114,
| |
Collapse
|
24
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
25
|
Li Z, Zhang J, Halbgebauer S, Chandrasekar A, Rehman R, Ludolph A, Boeckers T, Huber-Lang M, Otto M, Roselli F, Heuvel FO. Differential effect of ethanol intoxication on peripheral markers of cerebral injury in murine blunt traumatic brain injury. BURNS & TRAUMA 2021; 9:tkab027. [PMID: 34604393 PMCID: PMC8484207 DOI: 10.1093/burnst/tkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/28/2021] [Indexed: 11/29/2022]
Abstract
Background Blood-based biomarkers have proven to be a reliable measure of the severity and outcome of traumatic brain injury (TBI) in both murine models and patients. In particular, neuron-specific enolase (NSE), neurofilament light (NFL) and S100 beta (S100B) have been investigated in the clinical setting post-injury. Ethanol intoxication (EI) remains a significant comorbidity in TBI, with 30–40% of patients having a positive blood alcohol concentration post-TBI. The effect of ethanol on blood-based biomarkers for the prognosis and diagnosis of TBI remains unclear. In this study, we investigated the effect of EI on NSE, NFL and S100B and their correlation with blood–brain barrier integrity in a murine model of TBI. Methods We used ultra-sensitive single-molecule array technology and enzyme-linked immunosorbent assay methods to measure NFL, NSE, S100B and claudin-5 concentrations in plasma 3 hours post-TBI. Results We showed that NFL, NSE and S100B were increased at 3 hours post-TBI. Interestingly, ethanol blood concentrations showed an inverse correlation with NSE but not with NFL or S100B. Claudin-5 levels were increased post-injury but no difference was detected compared to ethanol pretreatment. The increase in claudin-5 post-TBI was correlated with NFL but not with NSE or S100B. Conclusions Ethanol induces an effect on biomarker release in the bloodstream that is different from TBI not influenced by alcohol. This could be the basis of investigations into humans.
Collapse
Affiliation(s)
- Zhenghui Li
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Jin Zhang
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Steffen Halbgebauer
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Akila Chandrasekar
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Rida Rehman
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tobias Boeckers
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, ZBMF - Helmhotzstrasse 8/1, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Florian Olde Heuvel
- Department of Neurology, Ulm University, ZBMF - Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
26
|
Ye L, Sun Y, Jiang Z, Wang G. L-Serine, an Endogenous Amino Acid, Is a Potential Neuroprotective Agent for Neurological Disease and Injury. Front Mol Neurosci 2021; 14:726665. [PMID: 34552468 PMCID: PMC8450333 DOI: 10.3389/fnmol.2021.726665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Central nervous system (CNS) lesions are major causes of human death and disability worldwide, and they cause different extents of motor and sensory dysfunction in patients. Thus, it is crucial to develop new effective neuroprotective drugs and approaches targeted to the heterogeneous nature of CNS injury and disease. L-serine is an indispensable neurotrophic factor and a precursor for neurotransmitters. Although L-serine is a native amino acid supplement, its metabolic products have been shown to be essential not only for cell proliferation but also for neuronal development and specific functions in the brain. Growing evidence has suggested that L-serine regulates the release of several cytokines in the brain under some neuropathological conditions to recover cognitive function, improve cerebral blood flow, inhibit inflammation, promote remyelination and exert other neuroprotective effects on neurological injury. L-serine has also been used to treat epilepsy, schizophrenia, psychosis, and Alzheimer’s Disease as well as other neurological diseases. Furthermore, the dosing of animals with L-serine and human clinical trials investigating the therapeutic effects of L-serine generally support the safety of L-serine. The high significance of this review lies in its emphasis on the therapeutic potential of using L-serine as a general treatment for numerous CNS diseases and injuries. Because L-serine performs a broad spectrum of functions, it may be clinically used as an effective neuroprotective agent.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yechao Sun
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
27
|
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 2021; 131:143777. [PMID: 34128471 PMCID: PMC8203445 DOI: 10.1172/jci143777] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.
Collapse
Affiliation(s)
- Marie Hanscom
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terez Shea-Donohue
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol 2021; 357:577619. [PMID: 34058510 DOI: 10.1016/j.jneuroim.2021.577619] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality of people at all ages. Biochemical, cellular and physiological events that occur during primary injury lead to a delayed and long-term secondary damage that can last from hours to years. Secondary brain injury causes tissue damage in the central nervous system and a subsequent strong and rapid inflammatory response that may lead to persistent inflammation. However, this inflammatory response is not limited to the brain. Inflammatory mediators are transferred from damaged brain tissue to the bloodstream and produce a systemic inflammatory response in peripheral organs, including the cardiovascular, pulmonary, gastrointestinal, renal and endocrine systems. Complications of TBI are associated with its multiple and systemic effects that should be considered in the treatment of TBI patients. Therefore, in this review, an attempt was made to examine the systemic effects of TBI in detail. It is hoped that this review will identify the mechanisms of injury and complications of TBI, and open a window for promising treatment in TBI complications.
Collapse
Affiliation(s)
- Nazanin Sabet
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|
30
|
Yan A, Song L, Zhang Y, Wang X, Liu Z. Systemic Inflammation Increases the Susceptibility to Levodopa-Induced Dyskinesia in 6-OHDA Lesioned Rats by Targeting the NR2B-Medicated PKC/MEK/ERK Pathway. Front Aging Neurosci 2021; 12:625166. [PMID: 33597857 PMCID: PMC7882708 DOI: 10.3389/fnagi.2020.625166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Background: The long-term administration of levodopa (L-dopa), the gold-standard treatment for Parkinson's disease (PD), is irreparably associated with L-dopa-induced dyskinesia (LID), which dramatically affects the quality of life of patients. However, the underlying molecular mechanisms of how LID exacerbates remain unknown. Neuroinflammation in the striatum plays an active role in LID. These findings prompt an investigation of non-neuronal mechanisms of LID. This study will examine the effects of systemic inflammation in the development and progression of LID. Methods: To evaluate the possible influence of systemic inflammation in the appearance of LID, the PD rats received an intraperitoneal (IP) injection of various concentrations of lipopolysaccharides (LPS, 1, 2, and 5 mg/kg) or saline. One day later, these PD rats started to receive daily treatment with L-dopa (6 mg/kg) along with benserazide (6 mg/kg) or saline for 21 days, and dyskinesia was evaluated at several time points. Moreover, the activation of microglia and astrocytes and the molecular changes in NR2B and mGLUR5 signaling pathways were measured. Results: We found that systemic inflammatory stimulation with LPS exacerbated the intensity of abnormal involuntary movements (AIMs) induced by L-dopa treatment in 6-hydroxydopamine (6-OHDA) lesioned rats. The LPS injection activated the gliocytes and increased the levels of proinflammatory cytokines in the striatum in LID rats. The PD rats that received the LPS injection showed the overexpression of p-NR2B and NR2B, as well as activated PKC/MEK/ERK and NF-κB signal pathways in response to the L-dopa administration. On the contrary, clodronate-encapsulated liposomes (Clo-lipo), which could suppress the inflammatory response induced by peripheral LPS injection, improved behavioral dysfunction, inhibited neuroinflammation, prevented NR2B overexpression, and decreased the phosphorylation of PKC/MEK/ERK and NF-κB signaling pathways. Conclusion: This study suggests that systemic inflammation, by exacerbating preexisting neuroinflammation and facilitating NR2B subunit activity, may play a crucial role in the development of LID. The administration of Clo-lipo restores the effects of LPS and decreases the susceptibility to LID in 6-OHDA lesioned rats.
Collapse
Affiliation(s)
- Aijuan Yan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|
32
|
Mohamed DA, Mohamed NM, Abdelrahaman S. Histological and Biochemical Changes in Adult Male Rat Liver after Spinal Cord Injury with Evaluation of the Role of Granulocyte-Colony Stimulating Factor. Ultrastruct Pathol 2020; 44:395-411. [PMID: 33280459 DOI: 10.1080/01913123.2020.1844829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease leading to motor disability. Metabolic dysfunction is another complication of SCI. Thus, we aimed to study the effect of SCI on the histological and biochemical structure of the liver in adult male rats and to delineate the role of post-injury administration of G-CSF. Thirty adult male Sprague-Dawley rats were assigned into three groups: Group I; control (18 rats subdivided equally into three subgroups), and 12 rats underwent SCI and were divided into an SCI group II and G-SCF-treated group III. Twenty-one days post-injury, liver sections were processed for light and electron microscopic examinations and immunohistochemical staining for PCNA and CD68 antibodies. The biochemical assay was carried out for detection of serum levels of ALT, AST, total proteins, albumin, total cholesterol, triglycerides, HDL-c, GSH and MDA. Liver tissue levels of GPx and MDA as well as semiquantitative RT-PCR analysis of hepatic cytokine expression were also conducted. In the SCI group, results showed liver tissue damage in the form of lipid infiltration, blood vessel congestion, vacuolated cells with apoptotic nuclei and increased collagen deposition. Increased CD68-positive macrophages and a decreased number of PCNA-positive cells was detected. Moreover, liver enzymes, total cholesterol and triglycerides were increased while serum albumin, total proteins and HDL-c were decreased in the SCI group. Oxidative stress and increased expression of inflammatory cytokines were detected. Administration of G-CSF induced significant liver improvement with retained liver function by anti-inflammatory, immune-modulatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Dalia A Mohamed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University , Zagazig, Egypt.,Anatomy and Histology Department, College of Medicine, Qassim University , Elmulida, KSA
| | - Noura Mostafa Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University , Zagazig, Egypt.,Department of Science, Faculty of Preparatory Year of Health Sciences, PNU University , Riyadh, KSA
| | - Shaimaa Abdelrahaman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University , Zagazig, Egypt
| |
Collapse
|
33
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
34
|
Key differences between olfactory ensheathing cells and Schwann cells regarding phagocytosis of necrotic cells: implications for transplantation therapies. Sci Rep 2020; 10:18936. [PMID: 33144615 PMCID: PMC7642263 DOI: 10.1038/s41598-020-75850-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Transplantation of peripheral nervous system glia is being explored for treating neural injuries, in particular central nervous system injuries. These glia, olfactory ensheathing cells (OECs) and Schwann cells (SCs), are thought to aid regeneration by clearing necrotic cells, (necrotic bodies, NBs), as well as myelin debris. The mechanism by which the glia phagocytose and traffic NBs are not understood. Here, we show that OECs and SCs recognize phosphatidylserine on NBs, followed by engulfment and trafficking to endosomes and lysosomes. We also showed that both glia can phagocytose and process myelin debris. We compared the time-course of glial phagocytosis (of both NBs and myelin) to that of macrophages. Internalization and trafficking were considerably slower in glia than in macrophages, and OECs were more efficient phagocytes than SCs. The two glial types also differed regarding their cytokine responses after NB challenge. SCs produced low amounts of the pro-inflammatory cytokine TNF-α while OECs did not produce detectable TNF-α. Thus, OECs have a higher capacity than SCs for phagocytosis and trafficking, whilst producing lower amounts of pro-inflammatory cytokines. These findings suggest that OEC transplantation into the injured nervous system may lead to better outcomes than SC transplantation.
Collapse
|
35
|
Abstract
Central nervous system injuries are a leading cause of death and disability worldwide. Although the exact pathophysiological mechanisms of various brain injuries vary, central nervous system injuries often result in an inflammatory response, and subsequently lead to brain damage. This suggests that neuroprotection may be necessany in the treatment of multiple disease models. The use of medical gases as neuroprotective agents has gained great attention in the medical field. Medical gases include common gases, such as oxygen, hydrogen and carbon dioxide; hydrogen sulphide and nitric oxide that have been considered toxic; volatile anesthetic gases, such as isoflurane and sevoflurane; and inert gases like helium, argon, and xenon. The neuroprotection from these medical gases has been investigated in experimental animal models of various types of brain injuries, such as traumatic brain injury, stroke, subarachnoid hemorrhage, cerebral ischemic/reperfusion injury, and neurodegenerative diseases. Nevertheless, the transition into the clinical practice is still lagging. This delay could be attributed to the contradictory paradigms and the conflicting results that have been obtained from experimental models, as well as the presence of inconsistent reports regarding their safety. In this review, we summarize the potential mechanisms underlying the neuroprotective effects of medical gases and discuss possible candidates that could improve the outcomes of brain injury.
Collapse
Affiliation(s)
- Yue-Zhen Wang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ting-Ting Li
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hong-Ling Cao
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan-Chao Yang
- Department of Anesthesiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
36
|
Goodus MT, McTigue DM. Hepatic dysfunction after spinal cord injury: A vicious cycle of central and peripheral pathology? Exp Neurol 2019; 325:113160. [PMID: 31863731 DOI: 10.1016/j.expneurol.2019.113160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
The liver is essential for numerous physiological processes, including filtering blood from the intestines, metabolizing fats, proteins, carbohydrates and drugs, and regulating iron storage and release. The liver is also an important immune organ and plays a critical role in response to infection and injury throughout the body. Liver functions are regulated by autonomic parasympathetic innervation from the brainstem and sympathetic innervation from the thoracic spinal cord. Thus, spinal cord injury (SCI) at or above thoracic levels disrupts major regulatory mechanisms for hepatic functions. Work in rodents and humans shows that SCI induces liver pathology, including hepatic inflammation and fat accumulation characteristic of a serious form of non-alcoholic fatty liver disease (NAFLD) called non-alcoholic steatohepatitis (NASH). This hepatic pathology is associated with and likely contributes to indices of metabolic dysfunction often noted in SCI individuals, such as insulin resistance and hyperlipidemia. These occur at greater rates in the SCI population and can negatively impact health and quality of life. In this review, we will: 1) Discuss acute and chronic changes in human and rodent liver pathology and function after SCI; 2) Describe how these hepatic changes affect systemic inflammation, iron regulation and metabolic dysfunction after SCI; 3) Describe how disruption of the hepatic autonomic nervous system may be a key culprit in post-injury chronic liver pathology; and 4) Preview ongoing and future research that aims to elucidate mechanisms driving liver and metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Gan D, Wu S, Chen B, Zhang J. Application of the Zebrafish Traumatic Brain Injury Model in Assessing Cerebral Inflammation. Zebrafish 2019; 17:73-82. [PMID: 31825288 DOI: 10.1089/zeb.2019.1793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public and socioeconomic problem throughout the world. The establishment of an effective and cost-effective TBI model for developing new therapeutic agents is challenging. Microglia are considered the resident macrophages of the central nervous system (CNS) that normally do not enter the brain. As the primary mediators of the innate immune response in the CNS, microglia play a critical role in neuroinflammation and secondary injury after TBI. In this study, we established an in vivo TBI zebrafish model using Tg(coro1a:EGFP) line where the green fluorescent protein-labeled microglia were present. We demonstrated that microglia accumulated rapidly in response to neuronal injuries. To clear away injured neurons and restore the CNS homeostasis, activated microglia secreted two types of functional cytokines, including pro-inflammatory interleukins (IL) of IL-1β and IL-6 and anti-inflammatory factors of IL-4 and IL-10 in the lesioned larvae. Cytidine 5'-Diphosphocholine (CDP-choline), as an effective and clinical neuroprotective drug, could further activate microglia, expressing high levels of il-1β, il-6, il-4, and il-10 in the TBI model. Moreover, CDP-choline reduced neuronal apoptosis and promoted neuronal proliferation around the lesioned site. Based on these results, the TBI model established in this study represents a suitable model for developing new therapeutic agents for CNS-associated diseases.
Collapse
Affiliation(s)
- Daqing Gan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuilong Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bing Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
38
|
Yates AG, Anthony DC, Ruitenberg MJ, Couch Y. Systemic Immune Response to Traumatic CNS Injuries-Are Extracellular Vesicles the Missing Link? Front Immunol 2019; 10:2723. [PMID: 31824504 PMCID: PMC6879545 DOI: 10.3389/fimmu.2019.02723] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation following traumatic injury to the central nervous system (CNS) persists long after the primary insult and is known to exacerbate cell death and worsen functional outcomes. Therapeutic interventions targeting this inflammation have been unsuccessful, which has been attributed to poor bioavailability owing to the presence of blood-CNS barrier. Recent studies have shown that the magnitude of the CNS inflammatory response is dependent on systemic inflammatory events. The acute phase response (APR) to CNS injury presents an alternative strategy to modulating the secondary phase of injury. However, the communication pathways between the CNS and the periphery remain poorly understood. Extracellular vesicles (EVs) are membrane bound nanoparticles that are regulators of intercellular communication. They are shed from cells of the CNS including microglia, astrocytes, neurons and endothelial cells, and are able to cross the blood-CNS barrier, thus providing an attractive candidate for initiating the APR after acute CNS injury. The purpose of this review is to summarize the current evidence that EVs play a critical role in the APR following CNS injuries.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Daniel C Anthony
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Besecker EM, Blanke EN, Deiter GM, Holmes GM. Gastric vagal afferent neuropathy following experimental spinal cord injury. Exp Neurol 2019; 323:113092. [PMID: 31697943 DOI: 10.1016/j.expneurol.2019.113092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
Dramatic impairment of gastrointestinal (GI) function accompanies high-thoracic spinal cord injury (T3-SCI). The vagus nerve contains mechano- and chemosensory fibers as well as the motor fibers necessary for the central nervous system (CNS) control of GI reflexes. Cell bodies for the vagal afferent fibers are located within the nodose gangla (NG) and the majority of vagal afferent axons are unmyelinated C fibers that are sensitive to capsaicin through activation of transient receptor potential vanilloid-1 (TRPV1) channels. Vagal afferent fibers also express receptors for GI hormones, including cholecystokinin (CCK). Previously, T3-SCI provokes a transient GI inflammatory response as well as a reduction of both gastric emptying and centrally-mediated vagal responses to GI peptides, including CCK. TRPV1 channels and CCK-A receptors (CCKar) expressed in vagal afferents are upregulated in models of visceral inflammation. The present study investigated whether T3-SCI attenuates peripheral vagal afferent sensitivity through plasticity of TRPV1 and CCK receptors. Vagal afferent response to graded mechanical stimulation of the stomach was significantly attenuated by T3-SCI at 3-day and 3-week recovery. Immunocytochemical labeling for CCKar and TRPV1 demonstrated expression on dissociated gastric-projecting NG neurons. Quantitative assessment of mRNA expression by qRT-PCR revealed significant elevation of CCKar and TRPV1 in the whole NG following T3-SCI in 3-day recovery, but levels returned to normal after 3-weeks. Three days after injury, systemic administration of CCK-8 s showed a significantly diminished gastric vagal afferent response in T3-SCI rats compared to control rats while systemic capsaicin infusion revealed a significant elevation of vagal response in T3-SCI vs control rats. These findings demonstrate that T3-SCI provokes peripheral remodeling and prolonged alterations in the response of vagal afferent fibers to the physiological signals associated with digestion.
Collapse
Affiliation(s)
- Emily M Besecker
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America; Department of Health Sciences, Gettysburg College, Gettysburg, PA 17325, United States of America
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gina M Deiter
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
40
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
41
|
Di Benedetto G, Burgaletto C, Carta AR, Saccone S, Lempereur L, Mulas G, Loreto C, Bernardini R, Cantarella G. Beneficial effects of curtailing immune susceptibility in an Alzheimer's disease model. J Neuroinflammation 2019; 16:166. [PMID: 31409354 PMCID: PMC6693231 DOI: 10.1186/s12974-019-1554-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Currently, there are no effective therapeutic options for Alzheimer's disease, the most common, multifactorial form of dementia, characterized by anomalous amyloid accumulation in the brain. Growing evidence points to neuroinflammation as a major promoter of AD. We have previously shown that the proinflammatory cytokine TNFSF10 fuels AD neuroinflammation, and that its immunoneutralization results in improved cognition in the 3xTg-AD mouse. METHODS Here, we hypothesize that inflammatory hallmarks of AD might parallel with central and peripheral immune response dysfunction. To verify such hypothesis, we used a triple transgenic mouse model of AD. 3xTg-AD mice were treated for 12 months with an anti-TNFSF10 antibody, and thereafter immune/inflammatory markers including COX2, iNOS, IL-1β and TNF-α, CD3, GITR, and FoxP3 (markers of regulatory T cells) were measured in the spleen as well as in the hippocampus. RESULTS Spleens displayed accumulation of amyloid-β1-42 (Aβ1-42), as well as high expression of Treg cell markers FoxP3 and GITR, in parallel with the increased levels of inflammatory markers COX2, iNOS, IL-1β and TNF-α, and blunted IL-10 expression. Moreover, CD3 expression was increased in the hippocampus, consistently with FoxP3 and GITR. After chronic treatment of 3xTg-AD mice with an anti-TNFSF10 antibody, splenic FoxP3, GITR, and the above-mentioned inflammatory markers expression was restored to basal levels, while expression of IL-10 was increased. A similar picture was observed in the hippocampus. Such improvement of peripheral and CNS inflammatory/immune response was associated with decreased microglial activity in terms of TNFα production, as well as decreased expression of both amyloid and phosphorylated tau protein in the hippocampus of treated 3xTg-AD mice. Interestingly, we also reported an increased expression of both CD3 and FoxP3, in sections from human AD brain. CONCLUSIONS We suggest that neuroinflammation in the brain of 3xTg-AD mice triggered by TNFSF10 might result in a more general overshooting of the immune response. Treatment with an anti-TNFSF10 antibody blunted inflammatory processes both in the spleen and hippocampus. These data confirm the detrimental role of TNFSF10 in neurodegeneration, and corroborate the hypothesis of the anti-TNFSF10 strategy as a potential treatment to improve outcomes in AD.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Laurence Lempereur
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy & Histology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy.
| |
Collapse
|
42
|
White AR, Holmes GM. Investigating neurogenic bowel in experimental spinal cord injury: where to begin? Neural Regen Res 2019; 14:222-226. [PMID: 30531001 PMCID: PMC6301179 DOI: 10.4103/1673-5374.244779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
The devastating losses following traumatic spinal cord injury (SCI) encompass the motor, sensory and autonomic nervous systems. Neurogenic bowel is a slow transit colonic dysfunction marked by constipation, rectal evacuation difficulties, decreased anorectal sensation, fecal incontinence or some combination thereof. Furthermore, neurogenic bowel is one of the most prevalent comorbidities of SCI and is recognized by afflicted individuals and caregivers as a lifelong physical and psychological challenge that profoundly affects quality of life. The restoration of post-injury control of movement has received considerable scientific scrutiny yet the daily necessity of voiding the bowel and bladder remains critically under-investigated. Subsequently, physicians and caregivers are rarely presented with consistent, evidence-based strategies to successfully address the consequences of dysregulated voiding reflexes. Neurogenic bowel is commonly believed to result from the interruption of the supraspinal control of the spinal autonomic circuits regulating the colon. In this mini-review, we discuss the clinical challenges presented by neurogenic bowel and emerging pre-clinical evidence that is revealing that SCI also initiates functional remodeling of the colonic wall concurrent with a decrease in local enteric neurons. Since the enteric input to the colonic smooth muscle is the final common pathway for functional contractions of the colon, changes to the neuromuscular interface must first be understood in order to maximize the efficacy of therapeutic interventions targeting colonic dysfunction following SCI.
Collapse
Affiliation(s)
- Amanda R. White
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M. Holmes
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
43
|
Goodus MT, Sauerbeck AD, Popovich PG, Bruno RS, McTigue DM. Dietary Green Tea Extract Prior to Spinal Cord Injury Prevents Hepatic Iron Overload but Does Not Improve Chronic Hepatic and Spinal Cord Pathology in Rats. J Neurotrauma 2018; 35:2872-2882. [PMID: 30084733 DOI: 10.1089/neu.2018.5771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) disrupts autonomic regulation of visceral organs. As a result, a leading cause of mortality in the SCI population is metabolic dysfunction, and an organ central to metabolic control is the liver. Our recent work showed that rodent SCI promotes Kupffer cell (hepatic macrophage) activation, pro-inflammatory cytokine expression, and liver steatosis. These are symptoms of nonalcoholic steatohepatitis (NASH), the hepatic manifestation of metabolic syndrome, and these pre-clinical data replicate aspects of post-SCI human metabolic dysfunction. Because metabolic profile is highly dependent on lifestyle, including diet, it is likely that lifestyle choices prior to injury influence metabolic and hepatic outcomes after SCI. Therefore, in this study we tested if a diet rich in green tea extract (GTE), a known hepatoprotective agent, that began 3 weeks before SCI and was maintained after injury, reduced indices of liver pathology or metabolic dysfunction. GTE treatment significantly reduced post-SCI hepatic iron accumulation and blunted circulating glucose elevation compared with control-diet rats. However, GTE pre-treatment did not prevent Kupffer cell activation, hepatic lipid accumulation, increased serum alanine transaminase, or circulating non-esterified fatty acids, which were all significantly increased 6 weeks post-injury. Spinal cord pathology also was unchanged by GTE. Thus, dietary GTE prior to and after SCI had only a minor hepatoprotective effect. In general, for optimal health of SCI individuals, it will be important for future studies to evaluate how other lifestyle choices made before or after SCI positively or negatively impact systemic and intraspinal outcomes and the overall metabolic health of SCI individuals.
Collapse
Affiliation(s)
- Matthew T Goodus
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Andrew D Sauerbeck
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Richard S Bruno
- 4 Human Nutrition Program, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
44
|
Ranganathan P, Kumar RG, Oh BM, Rakholia MV, Berga SL, Wagner AK. Estradiol to Androstenedione Ratios Moderate the Relationship between Neurological Injury Severity and Mortality Risk after Severe Traumatic Brain Injury. J Neurotrauma 2018; 36:538-547. [PMID: 30014751 DOI: 10.1089/neu.2018.5677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early declines in gonadotropin production, despite elevated serum estradiol, among some individuals with severe traumatic brain injury (TBI) suggests amplified systemic aromatization occurs post-injury. Our previous work identifies estradiol (E2) as a potent mortality marker. Androstenedione (A), a metabolic precursor to E2, estrone (E1), and testosterone (T), is a steroid hormone substrate for aromatization that has not been explored previously as a biomarker in TBI. Here, we evaluated serum A, E1, T, and E2 values for 82 subjects with severe TBI. Daily hormone values were calculated, and E2:A and E1:T ratios were generated and then averaged for days 0-3 post-injury. After data inspection, mean E2:A values were categorized as above (high aromatization) and below (low aromatization) the 50th percentile for 30-day mortality assessment using Kaplan-Meier survival analysis and a multivariable Cox proportional hazard model adjusting for age, and Glasgow Coma Scale (GCS) to predict 30-day mortality status. Daily serum T, E1, and E2 were graphed by E2:A category. Serum E1 and E2 significantly differed over time (p < 0.05); the high aromatization group had elevated levels and a significantly lower probability of survival within the first 30 days (p = 0.0274). Multivariable Cox regression showed a significant E2:A*GCS interaction (p = 0.0129), wherein GCS predicted mortality only among those in the low aromatization group. E2:A may be a useful mortality biomarker representing enhanced aromatization after TBI. E2:A ratios may represent non-neurological organ dysfunction after TBI and may be useful in defining injury subgroups in which GCS has variable capacity to serve as an accurate early prognostic marker.
Collapse
Affiliation(s)
- Prerna Ranganathan
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennslvania
| | - Raj G Kumar
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennslvania
| | - Byung-Mo Oh
- 2 Department of Rehabilitation Medicine, Seoul National University Hospital , Seoul, Korea
| | - Milap V Rakholia
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennslvania
| | - Sarah L Berga
- 3 Department of Obstetrics and Gynecology, University of Utah Medical Center , Salt Lake City, Utah
| | - Amy K Wagner
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennslvania.,4 Department of Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,6 Clinical and Translational Science Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Rakholia MV, Kumar RG, Oh BM, Ranganathan PR, Berga SL, Kochanek PM, Wagner AK. Systemic Estrone Production and Injury-Induced Sex Hormone Steroidogenesis after Severe Traumatic Brain Injury: A Prognostic Indicator of Traumatic Brain Injury-Related Mortality. J Neurotrauma 2018; 36:1156-1167. [PMID: 29947289 DOI: 10.1089/neu.2018.5782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extensive pre-clinical studies suggest that sex steroids are neuroprotective in experimental traumatic brain injury (TBI). However, clinical trials involving sex hormone administration have not shown beneficial results, and our observational cohort studies show systemic estradiol (E2) production to be associated with adverse outcomes. Systemic E2 is produced via aromatization of testosterone (T) or reduction of estrone (E1). E1, also produced via aromatization of androstenedione (Andro) and is a marker of T-independent E2 production. We hypothesized that E1 would be (1) associated with TBI-related mortality, (2) the primary intermediate for E2 production, and (3) associated with adipose tissue-specific aromatase transcription. We assessed 100 subjects with severe TBI and 8 healthy controls. Serum levels were measured on days 0-3 post-TBI for key steroidogenic precursors (progesterone), aromatase pathway intermediates (E1, E2, T, Andro), and the adipose tissue-specific aromatase transcription factors cortisol, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). E1 was elevated after TBI versus controls. High E1 was associated with higher progesterone, cortisol, and IL-6 (p < 0.05). Multivariable logistic regression demonstrated that those in the highest E1 tertile had increased odds for mortality (adjusted OR = 5.656, 95% CI = 1.102-29.045, p = 0.038). Structural equation models show that early serum E2 production is largely T independent, occurring predominantly through E1 metabolism. Acute serum E1 functions as a mortality marker for TBI through aromatase-dependent E1 production and T-independent E2 production. Further work should evaluate risk factors for high E2 production and how systemic E2 and its key intermediate E1 contribute to the extracerebral consequences of severe TBI.
Collapse
Affiliation(s)
- Milap V Rakholia
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh Pennsylvania
| | - Raj G Kumar
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh Pennsylvania
| | - Byung-Mo Oh
- 2 Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Prerna R Ranganathan
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh Pennsylvania
| | - Sarah L Berga
- 3 Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Patrick M Kochanek
- 4 Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh Pennsylvania.,5 Department of Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh Pennsylvania
| | - Amy K Wagner
- 1 Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh Pennsylvania.,5 Department of Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh Pennsylvania.,6 Department of Neuroscience, University of Pittsburgh, Pittsburgh Pennsylvania.,7 Department of Center for Neuroscience, University of Pittsburgh, Pittsburgh Pennsylvania
| |
Collapse
|
46
|
Farias-Moeller R, LaFrance-Corey R, Bartolini L, Wells EM, Baker M, Doslea A, Suslovic W, Greenberg J, Carpenter JL, Howe CL. Fueling the FIRES: Hemophagocytic lymphohistiocytosis in febrile infection-related epilepsy syndrome. Epilepsia 2018; 59:1753-1763. [PMID: 30132834 DOI: 10.1111/epi.14524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Raquel Farias-Moeller
- Department of Neurology; Division of Pediatric Neurology; Medical College of Wisconsin; Children's Hospital of Wisconsin; Milwaukee Wisconsin
| | - Reghann LaFrance-Corey
- Departments of Neurology and Immunology; Center for MS and Autoimmune Neurology; Translational Neuroimmunology Lab; Mayo Clinic; Rochester Minnesota
| | - Luca Bartolini
- Clinical Epilepsy Section and Division of Neuroimmunology and Neurovirology; National Institute of Neurological Disorders and Stroke - National Institute of Health; Bethesda Maryland
| | - Elizabeth M. Wells
- Department of Neurology; Children's National Health System; Washington District of Columbia
| | - Meredith Baker
- Department of Neurology; Children's National Health System; Washington District of Columbia
| | - Alyssa Doslea
- Department of Neurology; Children's National Health System; Washington District of Columbia
| | - William Suslovic
- Department of Neurology; Children's National Health System; Washington District of Columbia
| | - Jay Greenberg
- Department of Hematology; Children's National Health System; Washington District of Columbia
| | - Jessica L. Carpenter
- Department of Neurology; Children's National Health System; Washington District of Columbia
| | - Charles L. Howe
- Departments of Neurology and Immunology; Center for MS and Autoimmune Neurology; Translational Neuroimmunology Lab; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
47
|
Badner A, Hacker J, Hong J, Mikhail M, Vawda R, Fehlings MG. Splenic involvement in umbilical cord matrix-derived mesenchymal stromal cell-mediated effects following traumatic spinal cord injury. J Neuroinflammation 2018; 15:219. [PMID: 30075797 PMCID: PMC6091078 DOI: 10.1186/s12974-018-1243-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background The spleen plays an important role in erythrocyte turnover, adaptive immunity, antibody production, and the mobilization of monocytes/macrophages (Mφ) following tissue injury. In response to trauma, the spleen initiates production of inflammatory cytokines, which in turn recruit immune cells to the inflamed tissue, exacerbating damage. Our previous work has shown that intravenous mesenchymal stromal cell (MSC) infusion has potent immunomodulatory effects following spinal cord injury (SCI), associated with the transplanted cells homing to and persisting within the spleen. Therefore, this work aimed to characterize the relationship between the splenic inflammatory response and SCI pathophysiology, emphasizing splenic involvement in MSC-mediated effects. Methods Using a rodent model of cervical clip-compression SCI, secondary tissue damage and functional recovery were compared between splenectomised rodents and those with a sham procedure. Subsequently, 2.5 million MSCs from the term human umbilical cord matrix cells (HUCMCs) were infused via tail vein at 1-h post-SCI and the effects were assessed in the presence or absence of a spleen. Results Splenectomy alone had no effect on lesion volume, hemorrhage, or inflammation. There was also no significant difference between the groups in functional recovery and those in lesion morphometry. Yet, while the infusion of HUCMCs reduced spinal cord hemorrhage and increased systemic levels of IL-10 in the presence of a spleen, these effects were lost with splenectomy. Further, HUCMC infusion was shown to alter the expression levels of splenic cytokines, suggesting that the spleen is an important target and site of MSC effects. Conclusions Our results provide a link between MSC function and splenic inflammation, a finding that can help tailor the cells/transplantation approach to enhance therapeutic efficacy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1243-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Justin Hacker
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada.,Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada
| | - Reaz Vawda
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario, M5T 2S8, Canada. .,Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst St. Suite 4WW-449, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
48
|
Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B, Rahman M, Ramachandran A, Armstrong IIT, Taqi MA, Mortazavi MM. Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev 2018; 43:425-441. [PMID: 29998371 DOI: 10.1007/s10143-018-1008-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a life-shattering neurological condition that affects between 250,000 and 500,000 individuals each year with an estimated two to three million people worldwide living with an SCI-related disability. The incidence in the USA and Canada is more than that in other countries with motor vehicle accidents being the most common cause, while violence being most common in the developing nations. Its incidence is two- to fivefold higher in males, with a peak in younger adults. Apart from the economic burden associated with medical care costs, SCI predominantly affects a younger adult population. Therefore, the psychological impact of adaptation of an average healthy individual as a paraplegic or quadriplegic with bladder, bowel, or sexual dysfunction in their early life can be devastating. People with SCI are two to five times more likely to die prematurely, with worse survival rates in low- and middle-income countries. This devastating disorder has a complex and multifaceted mechanism. Recently, a lot of research has been published on the restoration of locomotor activity and the therapeutic strategies. Therefore, it is imperative for the treating physicians to understand the complex underlying pathophysiological mechanisms of SCI.
Collapse
Affiliation(s)
- Syed A Quadri
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA. .,National Skull Base Center, Thousand Oaks, CA, USA.
| | - Mudassir Farooqui
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Asad Ikram
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Muhammad Adnan Khan
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Sajid S Suriya
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Chad F Claus
- Department of Neurosurgery, St. John Providence Hospital and Medical Centers, Michigan State University, Southfield, MI, USA
| | - Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Mohammed Rahman
- Department of Neurology, Desert Regional Medical Center, Palm Springs, CA, USA
| | - Anirudh Ramachandran
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Ian I T Armstrong
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Muhammad A Taqi
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| | - Martin M Mortazavi
- California Institute of Neuroscience, 2100 Lynn Road, Suite 120, Thousand Oaks, CA, 91360, USA.,National Skull Base Center, Thousand Oaks, CA, USA
| |
Collapse
|
49
|
De Doncker W, Dantzer R, Ormstad H, Kuppuswamy A. Mechanisms of poststroke fatigue. J Neurol Neurosurg Psychiatry 2018; 89:287-293. [PMID: 28939684 DOI: 10.1136/jnnp-2017-316007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/04/2022]
Abstract
Poststroke fatigue is a debilitating symptom and is poorly understood. Here we summarise molecular, behavioural and neurophysiological changes related to poststroke fatigue and put forward potential theories for mechanistic understanding of poststroke fatigue.
Collapse
Affiliation(s)
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Heidi Ormstad
- Faculty of Health and Social Sciences, University of South West Norway, Oslo, Norway
| | | |
Collapse
|
50
|
Sá-Pereira I, Roodselaar J, Couch Y, Consentino Kronka Sosthenes M, Evans MC, Anthony DC, Stolp HB. Hepatic acute phase response protects the brain from focal inflammation during postnatal window of susceptibility. Brain Behav Immun 2018; 69:486-498. [PMID: 29355821 PMCID: PMC5871396 DOI: 10.1016/j.bbi.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Perinatal inflammation is known to contribute to neurodevelopmental diseases. Animal models of perinatal inflammation have revealed that the inflammatory response within the brain is age dependent, but the regulators of this variation remain unclear. In the adult, the peripheral acute phase response (APR) is known to be pivotal in the downstream recruitment of leukocytes to the injured brain. The relationship between perinatal brain injury and the APR has not been established. Here, we generated focal inflammation in the brain using interleukin (IL)-1β at postnatal day (P)7, P14, P21 and P56 and studied both the central nervous system (CNS) and hepatic inflammatory responses at 4 h. We found that there is a significant window of susceptibility in mice at P14, when compared to mice at P7, P21 and P56. This was reflected in increased neutrophil recruitment to the CNS, as well as an increase in blood-brain barrier permeability. To investigate phenomena underlying this window of susceptibility, we performed a dose response of IL-1β. Whilst induction of endogenous IL-1β or intercellular adhesion molecule (ICAM)-1 in the brain and induction of a hepatic APR were dose dependent, the recruitment of neutrophils and associated blood-brain barrier breakdown was inversely proportional. Furthermore, in contrast to adult animals, an additional peripheral challenge (intravenous IL-1β) reduced the degree of CNS inflammation, rather than exacerbating it. Together these results suggest a unique window of susceptibility to CNS injury, meaning that suppressing systemic inflammation after brain injury may exacerbate the damage caused, in an age-dependent manner.
Collapse
Affiliation(s)
- Inês Sá-Pereira
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Jay Roodselaar
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Marcia Consentino Kronka Sosthenes
- Department of Pharmacology, University of Oxford, United Kingdom,Universidade Federal do Pará, Laboratório de Investigações em Neurodegeneração e Infecção, ICB/HUJBB, Belém, Brazil
| | - Matthew C. Evans
- Department of Pharmacology, University of Oxford, United Kingdom
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, United Kingdom,Corresponding author at: Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUnited Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, St Thomas’ Hospital, King’s College London, United Kingdom,Royal Veterinary College, London, United Kingdom
| |
Collapse
|