1
|
Qin T, Jin Y, Qin Y, Yuan F, Lu H, Hu J, Cao Y, Li C. Enhancing m6A modification in the motor cortex facilitates corticospinal tract remodeling after spinal cord injury. Neural Regen Res 2025; 20:1749-1763. [PMID: 39104113 PMCID: PMC11688564 DOI: 10.4103/nrr.nrr-d-23-01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00026/figure1/v/2024-08-05T133530Z/r/image-tiff Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine (m6A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m6A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein (METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m6A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m6A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m6A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Tian Qin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuxin Jin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yong Cao
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chengjun Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Tohda C. Pharmacological intervention for chronic phase of spinal cord injury. Neural Regen Res 2025; 20:1377-1389. [PMID: 38934397 PMCID: PMC11624870 DOI: 10.4103/nrr.nrr-d-24-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury-specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research ( in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc (AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide, (-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
Collapse
Affiliation(s)
- Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Sahoo PK, Agrawal M, Hanovice N, Ward PJ, Desai M, Smith TP, SiMa H, Dulin JN, Vaughn LS, Tuszynski MH, Welshhans K, Benowitz LI, English AW, Houle JD, Twiss JL. Disruption of G3BP1 granules promotes mammalian CNS and PNS axon regeneration. Proc Natl Acad Sci U S A 2025; 122:e2411811122. [PMID: 40014573 DOI: 10.1073/pnas.2411811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/25/2025] [Indexed: 03/01/2025] Open
Abstract
Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in Caenorhabditis elegans, increases the growth of spontaneously regenerating axons. Inhibition of G3BP1 by expression of its acidic or "B-domain" accelerates axon regeneration after nerve injury, bringing a potential therapeutic strategy for peripheral nerve repair. Here, we asked whether G3BP1 inhibition is a viable strategy to promote regeneration in injured mammalian central nervous system (CNS) where axons do not regenerate spontaneously. G3BP1 B-domain expression was found to promote axon regeneration in the transected spinal cord provided with a permissive peripheral nerve graft (PNG) as well as in crushed optic nerve. Moreover, a cell-permeable peptide (CPP) to a subregion of B-domain (rodent G3BP1 amino acids 190 to 208) accelerated axon regeneration after peripheral nerve injury and promoted regrowth of reticulospinal axons into the distal transected spinal cord through a bridging PNG. G3BP1 CPP promoted axon growth from rodent and human neurons cultured on permissive substrates, and this function required alternating Glu/Asp-Pro repeats that impart a unique predicted tertiary structure. The G3BP1 CPP disassembles axonal G3BP1, G3BP2, and FMRP, but not FXR1, granules and selectively increases axonal protein synthesis in cortical neurons. These studies identify G3BP1 granules as a key regulator of axon growth in CNS neurons and demonstrate that disassembly of these granules promotes retinal axon regeneration in injured optic nerve and reticulospinal axon elongation into permissive environments after CNS injury. This work highlights G3BP1 granule disassembly as a potential therapeutic strategy for enhancing axon growth and neural repair.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Manasi Agrawal
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44242
| | - Nicholas Hanovice
- Departments of Neurosurgery and Ophthalmology, Boston Children's Hospital, Cambridge, MA 02115
| | - Patricia J Ward
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA 30332
| | - Meghal Desai
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - HaoMin SiMa
- Departments of Neurosurgery and Ophthalmology, Boston Children's Hospital, Cambridge, MA 02115
| | - Jennifer N Dulin
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - Mark H Tuszynski
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093
| | - Kristy Welshhans
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
- Department of Biological Sciences, Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC 29208
| | - Larry I Benowitz
- Departments of Neurosurgery and Ophthalmology, Boston Children's Hospital, Cambridge, MA 02115
| | - Arthur W English
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, GA 30332
| | - John D Houle
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
- Department of Biological Sciences, Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
4
|
Olaya AMS, Almeida FM, Martinez AMB, Marques SA. Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans. Neural Regen Res 2025; 20:343-353. [PMID: 38819038 PMCID: PMC11317961 DOI: 10.4103/nrr.nrr-d-23-01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Spinal cord injury results in the loss of sensory, motor, and autonomic functions, which almost always produces permanent physical disability. Thus, in the search for more effective treatments than those already applied for years, which are not entirely efficient, researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach, seeking to promote neuronal recovery after spinal cord injury. Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and, consequently, boosting functional recovery. Although the majority of experimental research has been conducted in rodents, there is increasing recognition of the importance, and need, of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans. This article is a literature review from databases (PubMed, Science Direct, Elsevier, Scielo, Redalyc, Cochrane, and NCBI) from 10 years ago to date, using keywords (spinal cord injury, cell therapy, non-human primates, humans, and bioengineering in spinal cord injury). From 110 retrieved articles, after two selection rounds based on inclusion and exclusion criteria, 21 articles were analyzed. Thus, this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans, aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
Collapse
Affiliation(s)
- Ana Milena Silva Olaya
- PhD Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Graduate Program in Pathological Anatomy (PPGAP/UFRJ), Department of Neurobiology/Institute of Biology, Campus do Gragoatá, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Saijilafu, Ye LC, Li H, Li H, Lin X, Hu K, Huang Z, Chimedtseren C, Fang L, Saijilahu, Xu RJ. A bibliometric analysis of the top 100 most cited articles on corticospinal tract regeneration from 2004 to 2024. Front Neurosci 2025; 18:1509850. [PMID: 39935762 PMCID: PMC11811756 DOI: 10.3389/fnins.2024.1509850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Objective Here, bibliometric and visual analytical techniques were employed to assess the key features of the 100 most cited publications concerning corticospinal tract (CST) regeneration. Methods Research was conducted within the Web of Science Core Collection to pinpoint the 100 most cited publications on CST regeneration. From these, comprehensive data encompassing titles, authorship, key terms, publication venues, release timelines, geographic origins, and institutional affiliations were extracted, followed by an in-depth bibliometric examination. Results The 100 most cited publications were all published between 2004 and 2024. These seminal papers amassed an aggregate of 18,321 citations, with individual citation counts ranging from 83 to 871 and a median of 136 citations per paper. Schwab M. E., stood out as the most prominent contributor, with significant authorship in 9 of the 100 papers. The United States dominated the geographical distribution, accounting for 49 of the articles. With 17 publications, the University of California System led the institutional rankings. A thorough keyword analysis revealed pivotal themes in the field, encompassing the optic nerve, gene expression, CST integrity and regeneration, diffusion tensor imaging, myelin-associated glycoproteins, inhibitors of neurite outgrowth, and methods of electrical and intracortical microstimulation. Conclusion This investigation provides a bibliometric analysis of CST regeneration, underscoring the significant contribution of the United States to this field. Our findings unveiled the dynamics and trends within the field of CST regeneration, providing a scientific foundation for advancing clinical applications. Building on this analysis, the clinical application of CST regeneration should be optimized through interdisciplinary collaboration, enabling the exploration and validation of a variety of therapeutic approaches, including the use of neurotrophic factors, stem cell therapies, biomaterials, and electrical stimulation. Concurrently, additional clinical trials are necessary to test the safety and efficacy of these therapeutic methods and develop assessment tools for monitoring the recovery of patients. Furthermore, rehabilitation strategies should be refined, and professional education and training should be provided to enhance the understanding of CST regeneration treatments among both medical professionals and patients. The implementation of these strategies promises to enhance therapeutic outcomes and the quality of life of patients with spinal cord injury (SCI).
Collapse
Affiliation(s)
- Saijilafu
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Chen Ye
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Huanyi Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Haokun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyi Lin
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Kehui Hu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zekai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | | | - Linjun Fang
- Hangzhou Lin’an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China
| | - Saijilahu
- Tongliao Centers for Disease Control and Prevention, Tongliao, China
| | - Ren-Jie Xu
- Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Sahoo PK, Agrawal M, Hanovice N, Ward P, Desai M, Smith TP, SiMa H, Dulin JN, Vaughn LS, Tuszynski M, Welshhans K, Benowitz L, English A, Houle JD, Twiss JL. Disruption of G3BP1 Granules Promotes Mammalian CNS and PNS Axon Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.07.597743. [PMID: 38895344 PMCID: PMC11185597 DOI: 10.1101/2024.06.07.597743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in C. elegans , increases axon regeneration in injured neurons, showing spontaneous regeneration. Inhibition of G3BP1 by expression of its acidic or 'B-domain' accelerates axon regeneration after nerve injury, bringing a potential therapeutic intervention to promote neural repair in the peripheral nervous system. Here, we asked if G3BP1 inhibition is a viable strategy to promote regeneration in injured mammalian central nervous system where axons do not regenerate spontaneously. G3BP1 B-domain expression was found to promote axon regeneration in the transected spinal cord provided with a permissive peripheral nerve graft (PNG) as well as in crushed optic nerve. Moreover, a cell-permeable peptide (CPP) to a subregion of B-domain (rodent G3BP1 amino acids 190-208) accelerated axon regeneration after peripheral nerve injury and promoted regrowth of reticulospinal axons into the distal transected spinal cord through a bridging PNG. G3BP1 CPP promoted axon growth from rodent and human neurons cultured on permissive substrates, and this function required alternating Glu/Asp-Pro repeats that impart a unique predicted tertiary structure. The G3BP1 CPP disassembles axonal G3BP1, G3BP2, and FMRP, but not FXR1, granules and selectively increases axonal protein synthesis in cortical neurons. These studies identify G3BP1 granules as a key regulator of axon growth in CNS neurons and demonstrate that disassembly of these granules promotes retinal axon regeneration in injured optic nerve and reticulospinal axon elongation into permissive environments after CNS injury. This work highlights G3BP1 granule disassembly as a potential therapeutic strategy for enhancing axon growth and neural repair. SIGNIFICANCE STATEMENT The central nervous system (CNS) axon does not have the capacity for spontaneous axon regeneration, as seen in the peripheral nervous system (PNS). We previously showed that stress granule-like aggregates of G3BP1 are present in uninjured PNS axons, and these slow nerve regeneration. We now report that CNS axons contain G3BP1 granules, and G3BP1 granule disassembling strategies promote axon regeneration in the injured sciatic nerve, transected spinal cord with a peripheral nerve graft, and injured optic nerve. Thus, G3BP1 granules are a barrier to axon regeneration and can be targeted for stimulating neural repair following traumatic injury, including in the regeneration refractory CNS.
Collapse
|
7
|
Fernandez A, Sarn N, Eng C, Wright KM. Altered primary somatosensory neuron development in a Pten heterozygous model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social interactions, repetitive behaviors, and hyper- or hyposensitivity to sensory stimuli. The mechanisms underlying the emergence of sensory features in ASD are not fully understood, but recent studies in rodent models highlight that these may result from differences in primary sensory neurons themselves. We examined sensory behaviors in a Pten haploinsufficient mouse model ( Pten Het ) for syndromic ASD and identified elevated responses to mechanical stimuli and a higher threshold to thermal responses. Transcriptomic and in vivo anatomical analysis identified alterations in subtype-specific markers of primary somatosensory neurons in Pten Het dorsal root ganglia (DRG). These defects emerge early during DRG development and involve dysregulation of multiple signaling pathways downstream of Pten . Finally, we show that mice harboring an ASD-associated mutation ( Pten Y69H ) also show altered expression of somatosensory neuron subtype-specific markers. Together, these results show that precise levels of Pten are required for proper somatosensory development and provide insight into the molecular and cellular basis of sensory abnormalities in a model for syndromic ASD.
Collapse
|
8
|
Stewart AN, Bosse-Joseph CC, Kumari R, Bailey WM, Park KA, Slone VK, Gensel JC. Nonresolving Neuroinflammation Regulates Axon Regeneration in Chronic Spinal Cord Injury. J Neurosci 2025; 45:e1017242024. [PMID: 39510834 DOI: 10.1523/jneurosci.1017-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic spinal cord injury (SCI) lesions retain increased densities of microglia and macrophages. In acute SCI, macrophages induce growth cone collapse and facilitate axon retraction away from lesion boundaries. Little is known about the role of sustained inflammation in chronic SCI or whether chronic inflammation affects regeneration. We used the colony-stimulating factor-1 receptor inhibitor, PLX-5622, to deplete microglia and macrophages months after complete crush SCI in female mice. Transcriptional analyses revealed a significant inflammatory depletion within chronic SCI lesions after PLX-5622 treatment. Both transcriptional analyses and immunohistochemistry revealed that Iba1+ cells repopulate to predepleted densities after treatment removal. Neuronal-enriched transcripts were significantly elevated in mice after inflammatory repopulation, but no significant effects were observed with inflammatory depletion alone. Axon densities also significantly increased within the lesion after PLX-5622 treatment and after repopulation. To better examine the effect of chronic inflammation on axon regeneration, we tested PLX-5622 treatment in neuronal-specific phosphatase and tensin homolog protein (PTEN) knock-out (PTEN-KO) mice. PTEN-KO was delivered using spinal injections of retrogradely transported adeno-associated viruses (AAVrg's). PTEN-KO did not further increase axon densities within the lesion beyond the effects induced by PLX-5622. Axons that grew within the lesion were histologically identified as 5-HT+ and CGRP+, both of which are not robustly transduced by AAVrg's. Our work identified that increased macrophage/microglial densities in the chronic SCI environment may be actively retained by homeostatic mechanisms likely affiliated with a sustained elevated expression of CSF1 and other chemokines. Finally, we identify a novel role of sustained inflammation as a prospective barrier to axon regeneration in chronic SCI.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Christopher C Bosse-Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Reena Kumari
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Kennedy A Park
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Victoria K Slone
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
9
|
Zareen N, Yung H, Kaczetow W, Glattstein A, Mazalkova E, Alexander H, Chen L, Parra LC, Martin JH. Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation. Proc Natl Acad Sci U S A 2024; 121:e2408508121. [PMID: 39536089 PMCID: PMC11588127 DOI: 10.1073/pnas.2408508121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Electrical motor cortex stimulation can produce corticospinal system plasticity and enhance motor function after injury. We investigate molecular mechanisms of structural and physiological plasticity following electrical neuromodulation, focusing on identifying molecular predictors, or biomarkers, for durable plasticity. We used two neuromodulation protocols, repetitive multipulse stimulation (rMPS) and patterned intermittent theta burst stimulation (iTBS), incorporating different stimulation durations and follow-up periods. We compared neuromodulation efficacy in promoting corticospinal tract (CST) sprouting, motor cortex muscle evoked potential (MEP) LTP-like plasticity, and their associated molecular underpinnings. Only iTBS produced CST sprouting after short-term neuromodulation (1 d of stimulation; 9-d survival for sprouting expression); both iTBS and rMPS produced sprouting with long-term (10-d) neuromodulation. Significant mTOR signaling activation and phosphatase and tensin homolog (PTEN) protein deactivation predicted axon growth across all neuromodulation conditions that produced significant sprouting. Both neuromodulation protocols, regardless of duration, were effective in producing MEP enhancement. However, persistent LTP-like enhancement of MEPs at 30 d was only produced by long-term iTBS. Statistical modeling suggests that Stat3 signaling is the key mediator of MEP enhancement. Cervical spinal cord injury (SCI) alone did not affect baseline molecular signaling. Whereas iTBS and rMPS after SCI produced strong mTOR activation and PTEN deactivation, only iTBS produced Stat3 activation. Our findings support differential molecular biomarkers for neuromodulation-dependent structural and physiological plasticity and show that motor cortex epidural neuromodulation produces molecular changes in neurons that support axonal growth after SCI. iTBS may be more suitable for repair after SCI because it promotes molecular signaling for both CST growth and MEP plasticity.
Collapse
Affiliation(s)
- Neela Zareen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Halley Yung
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Walter Kaczetow
- Department of Educational Psychology, Graduate Center of the City University of New York, New York, NY10016
| | - Aliya Glattstein
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Ekaterina Mazalkova
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Liang Chen
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
| | - Lucas C. Parra
- Department of Biomedical Engineering, Grove School of Engineering, The City College of New York, New York, NY10031
| | - John H. Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY10031
- Neuroscience Program, Graduate Center of the City University of New York, New York, NY10016
| |
Collapse
|
10
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Kim H, Noristani HN, Zhai J, Manire M, Zhai J, Li S, Zhong J, Son YJ. Deleting PTEN, but not SOCS3 or myelin inhibitors, robustly boosts BRAF-elicited intraspinal regeneration of peripheral sensory axons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613685. [PMID: 39345461 PMCID: PMC11429726 DOI: 10.1101/2024.09.18.613685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Primary sensory axons fail to regenerate into the spinal cord following dorsal root injury leading to permanent sensory deficits. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Current approaches for promoting DR regeneration across the DREZ have had some success, but sustained, long-distance regeneration, particularly of large-diameter myelinated axons, still remains a formidable challenge. We have previously shown that induced expression of constitutively active B-RAF (kaBRAF) enhanced the regenerative competence of injured DRG neurons in adult mice. In this study, we investigated whether robust intraspinal regeneration can be achieved after a cervical DR injury by selective expression of kaBRAF alone or in combination with deletion of the myelin-associated inhibitors or neuron-intrinsic growth suppressors (PTEN or SOCS3). We found that kaBRAF promoted some axon regeneration across the DREZ but did not produce significant functional recovery by two months. Supplementary deletion of Nogo, MAG, and OMgp only modestly improved kaBRAF-induced regeneration. Deletion of PTEN or SOCS3 individually or in combination failed to promote any growth across the DREZ. In marked contrast, simultaneous deletion of PTEN, but not SOCS3, dramatically enhanced kaBRAF-mediated regeneration enabling many more axons to penetrate the DREZ and grow deep into the spinal cord. This study shows that dual activation of BRAF-MEK-ERK and PI3K-Akt-mTOR signaling is an effective strategy to stimulate robust intraspinal DR regeneration.
Collapse
|
12
|
Michel-Flutot P, Cheng L, Thomas SJ, Lisi B, Schwartz H, Lam S, Lyttle M, Jaffe DA, Smith G, Li S, Wright MC, Lepore AC. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. Exp Neurol 2024; 378:114816. [PMID: 38789023 PMCID: PMC11200215 DOI: 10.1016/j.expneurol.2024.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury (though this effect depended on the anesthetic regimen used during recording), while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brianna Lisi
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harrison Schwartz
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sandy Lam
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megan Lyttle
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Jaffe
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - George Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 191405104, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 191405104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA 19038, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Stewart AN, Bosse-Joseph CC, Kumari R, Bailey WM, Park KA, Slone VK, Gensel JC. Non-resolving neuroinflammation regulates axon regeneration in chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590106. [PMID: 38712123 PMCID: PMC11071389 DOI: 10.1101/2024.04.19.590106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chronic spinal cord injury (SCI) lesions retain increased densities of microglia and macrophages. In acute SCI, macrophages induce growth cone collapse, facilitate axon retraction away from lesion boundaries, as well as play a key role in orchestrating the growth-inhibitory glial scar. Little is known about the role of sustained inflammation in chronic SCI, or whether chronic inflammation affects repair and regeneration. We performed transcriptional analysis using the Nanostring Neuropathology panel to characterize the resolution of inflammation into chronic SCI, to characterize the chronic SCI microenvironment, as well as to identify spinal cord responses to macrophage depletion and repopulation using the CSF1R inhibitor, PLX-5622. We determined the ability for macrophage depletion and repopulation to augment axon growth into chronic lesions both with and without regenerative stimulation using neuronal-specific PTEN knockout (PTEN-KO). PTEN-KO was delivered with spinal injections of retrogradely transported adeno associated viruses (AAVrg's). Both transcriptional analyses and immunohistochemistry revealed the ability for PLX-5622 to significantly deplete inflammation around and within chronic SCI lesions, with a return to pre-depleted inflammatory densities after treatment removal. Neuronal-specific transcripts were significantly elevated in mice after inflammatory repopulation, but no significant effects were observed with macrophage depletion alone. Axon densities significantly increased within the lesion after PLX-5622 treatment with a more consistent effect observed in mice with inflammatory repopulation. PTEN-KO did not further increase axon densities within the lesion beyond effects induced by PLX-5622. We identified that PLX-5622 increased axon densities within the lesion that are histologically identified as 5-HT+and CGRP+, both of which are not robustly transduced by AAVrg's. Our work identified that increased macrophage/microglia densities in the chronic SCI environment may be actively retained by homeostatic mechanisms likely affiliated with a sustained elevated expression of CSF1 and other chemokines. Finally, we identify a novel role of sustained inflammation as a prospective barrier to axon regeneration in chronic SCI.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Christopher C. Bosse-Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Reena Kumari
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - William M. Bailey
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Kennedy A. Park
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Victoria K. Slone
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - John C. Gensel
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
14
|
Yu JYH, Chen TC, Danilov CA. MicroRNA-133b Dysregulation in a Mouse Model of Cervical Contusion Injury. Int J Mol Sci 2024; 25:3058. [PMID: 38474302 DOI: 10.3390/ijms25053058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Our previous research studies have demonstrated the role of microRNA133b (miR133b) in healing the contused spinal cord when administered either intranasally or intravenously 24 h following an injury. While our data showed beneficial effects of exogenous miR133b delivered within hours of a spinal cord injury (SCI), the kinetics of endogenous miR133b levels in the contused spinal cord and rostral/caudal segments of the injury were not fully investigated. In this study, we examined the miR133b dysregulation in a mouse model of moderate unilateral contusion injury at the fifth cervical (C5) level. Between 30 min and 7 days post-injury, mice were euthanized and tissues were collected from different areas of the spinal cord, ipsilateral and contralateral prefrontal motor cortices, and off-targets such as lung and spleen. The endogenous level of miR133b was determined by RT-qPCR. We found that after SCI, (a) most changes in miR133b level were restricted to the injured area with very limited alterations in the rostral and caudal parts relative to the injury site, (b) acute changes in the endogenous levels were predominantly specific to the lesion site with delayed miR133b changes in the motor cortex, and (c) ipsilateral and contralateral hemispheres responded differently to unilateral SCI. Our results suggest that the therapeutic window for exogenous miR133b therapy begins earlier than 24 h post-injury and potentially lasts longer than 7 days.
Collapse
Affiliation(s)
- James Young Ho Yu
- Department of Neurological Surgery, University of Southern California, 1200 N State St., Suite 3300, Los Angeles, CA 90033, USA
| | - Thomas C Chen
- Department of Neurological Surgery, University of Southern California, 1200 N State St., Suite 3300, Los Angeles, CA 90033, USA
| | - Camelia A Danilov
- Department of Neurological Surgery, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Michel-Flutot P, Cheng L, Thomas SJ, Lisi B, Schwartz H, Lam S, Lyttle M, Jaffe DA, Smith G, Li S, Wright MC, Lepore AC. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575021. [PMID: 38260313 PMCID: PMC10802567 DOI: 10.1101/2024.01.10.575021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a clinically-relevant rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury, while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion that is most relevant to the SCI clinical population, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function. HIGHLIGHTS PTEN antagonist peptide promotes partial diaphragm function recovery in chronic cervical contusion SCI.PTPσ inhibitory peptide does not impact diaphragm function recovery in chronic cervical contusion SCI.PTEN antagonist peptide promotes growth of bulbospinal rVRG axons in chronic cervical contusion SCI.PTPσ peptide does not affect rVRG axon growth in chronic cervical contusion SCI.
Collapse
|
16
|
Ryan CB, Choi JS, Kang B, Herr S, Pereira C, Moraes CT, Al-Ali H, Lee JK. PI3K signaling promotes formation of lipid-laden foamy macrophages at the spinal cord injury site. Neurobiol Dis 2024; 190:106370. [PMID: 38049013 PMCID: PMC10804283 DOI: 10.1016/j.nbd.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
After spinal cord injury (SCI), infiltrating macrophages undergo excessive phagocytosis of myelin and cellular debris, forming lipid-laden foamy macrophages. To understand their role in the cellular pathology of SCI, investigation of the foamy macrophage phenotype in vitro revealed a pro-inflammatory profile, increased reactive oxygen species (ROS) production, and mitochondrial dysfunction. Bioinformatic analysis identified PI3K as a regulator of inflammation in foamy macrophages, and inhibition of this pathway decreased their lipid content, inflammatory cytokines, and ROS production. Macrophage-specific inhibition of PI3K using liposomes significantly decreased foamy macrophages at the injury site after a mid-thoracic contusive SCI in mice. RNA sequencing and in vitro analysis of foamy macrophages revealed increased autophagy and decreased phagocytosis after PI3K inhibition as potential mechanisms for reduced lipid accumulation. Together, our data suggest that the formation of pro-inflammatory foamy macrophages after SCI is due to the activation of PI3K signaling, which increases phagocytosis and decreases autophagy.
Collapse
Affiliation(s)
- Christine B Ryan
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - James S Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Brian Kang
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Seth Herr
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America
| | - Claudia Pereira
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America; Department of Medicine Katz Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, United States of America
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States of America.
| |
Collapse
|
17
|
Metcalfe M, Steward O. PTEN deletion in spinal pathways via retrograde transduction with AAV-RG enhances forelimb motor recovery after cervical spinal cord injury; Sex differences and late-onset pathophysiologies. Exp Neurol 2023; 370:114551. [PMID: 37778650 DOI: 10.1016/j.expneurol.2023.114551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Spinal cord injuries (SCI) cause permanent functional impairments due to interruption of motor and sensory pathways. Regeneration of axons does not occur due to lack of intrinsic growth capacity of adult neurons and extrinsic inhibitory factors, especially at the injury site. However, some regeneration can be achieved via deletion of the phosphatase and tensin homolog (PTEN) in cells of origin of spinal pathways. Here, we deployed an AAV variant that is retrogradely transported (AAV-rg) to deliver gene modifying cargos to the cells of origin of multiple pathways interrupted by SCI, testing whether this promoted recovery of motor function. PTENf/f;RosatdTomato mice and control RosatdTomato mice received injections of different doses (number of genome copies, GCs) of AAV-rg/Cre into the cervical spinal cord at the time of a C5 dorsal hemisection injury. Forelimb grip strength was tested over time using a grip strength meter. PTENf/f;RosatdTomato mice with AAV-rg/Cre (PTEN-deleted) exhibited substantial improvements in forelimb gripping ability in comparison to controls. Of note, there were major sex differences in the extent of recovery, with male mice exhibiting greater recovery than females. However, at around 5-7 weeks post-injury/injection, many mice with SCI and AAV-rg-mediated PTEN deletion began to exhibit pathophysiologies involving excessive scratching of the ears and back of the neck and rigid forward extension of the hindlimbs. These pathophysiologies increased in incidence and severity over time. Our results reveal that although intra-spinal injections of AAV-rg/Cre in PTENf/f;RosatdTomato mice can enhance forelimb motor recovery after SCI, late-developing functional abnormalities occur with the experimental conditions used here. Mechanisms underlying late-developing pathophysiologies remain to be defined.
Collapse
Affiliation(s)
- Mariajose Metcalfe
- Reeve-Irvine Research Center University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA
| | - Oswald Steward
- Reeve-Irvine Research Center University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA; Department of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine School of Medicine, USA.
| |
Collapse
|
18
|
Lin X, Wang X, Zhang Y, Chu G, Liang J, Zhang B, Lu Y, Steward O, Luo J. Synergistic effect of chemogenetic activation of corticospinal motoneurons and physical exercise in promoting functional recovery after spinal cord injury. Exp Neurol 2023; 370:114549. [PMID: 37774765 DOI: 10.1016/j.expneurol.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Single therapeutic interventions have not yet been successful in restoring function after spinal cord injury. Accordingly, combinatorial interventions targeting multiple factors may hold greater promise for achieving maximal functional recovery. In this study, we applied a combinatorial approach of chronic chemogenetic neuronal activation and physical exercise including treadmill running and forelimb training tasks to promote functional recovery. In a mouse model of cervical (C5) dorsal hemisection of the spinal cord, which transects almost all descending corticospinal tract axons, combining selective activation of corticospinal motoneurons (CMNs) by intersectional chemogenetics with physical exercise significantly promoted functional recovery evaluated by the grid walking test, grid hanging test, rotarod test, and single pellet-reaching tasks. Electromyography and histological analysis showed increased activation of forelimb muscles via chemogenetic stimuli, and a greater density of vGlut1+ innervation in spinal cord grey matter rostral to the injury, suggesting enhanced neuroplasticity and connectivity. Combined therapy also enhanced activation of mTOR signaling and reduced apoptosis in spinal motoneurons, Counts revealed increased numbers of detectable choline acetyltransferase-positive motoneurons in the ventral horn. Taken together, the findings from this study validate a novel combinatorial approach to enhance motor function after spinal cord injury.
Collapse
Affiliation(s)
- Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuping Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwen Liang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, USA; Department of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine School of Medicine, USA.
| | - Juan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Leibinger M, Zeitler C, Paulat M, Gobrecht P, Hilla A, Andreadaki A, Guthoff R, Fischer D. Inhibition of microtubule detyrosination by parthenolide facilitates functional CNS axon regeneration. eLife 2023; 12:RP88279. [PMID: 37846146 PMCID: PMC10581688 DOI: 10.7554/elife.88279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Injured axons in the central nervous system (CNS) usually fail to regenerate, causing permanent disabilities. However, the knockdown of Pten knockout or treatment of neurons with hyper-IL-6 (hIL-6) transforms neurons into a regenerative state, allowing them to regenerate axons in the injured optic nerve and spinal cord. Transneuronal delivery of hIL-6 to the injured brain stem neurons enables functional recovery after severe spinal cord injury. Here we demonstrate that the beneficial hIL-6 and Pten knockout effects on axon growth are limited by the induction of tubulin detyrosination in axonal growth cones. Hence, cotreatment with parthenolide, a compound blocking microtubule detyrosination, synergistically accelerates neurite growth of cultured murine CNS neurons and primary RGCs isolated from adult human eyes. Systemic application of the prodrug dimethylamino-parthenolide (DMAPT) facilitates axon regeneration in the injured optic nerve and spinal cord. Moreover, combinatorial treatment further improves hIL-6-induced axon regeneration and locomotor recovery after severe SCI. Thus, DMAPT facilitates functional CNS regeneration and reduces the limiting effects of pro-regenerative treatments, making it a promising drug candidate for treating CNS injuries.
Collapse
Affiliation(s)
- Marco Leibinger
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Charlotte Zeitler
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Miriam Paulat
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Philipp Gobrecht
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Alexander Hilla
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Anastasia Andreadaki
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| | - Rainer Guthoff
- Eye Hospital, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dietmar Fischer
- Center for Pharmacology, Institute II, Medical Faculty and University of CologneCologneGermany
- Department of Cell Physiology, Ruhr University of BochumBochumGermany
| |
Collapse
|
20
|
Stewart AN, Kumari R, Bailey WM, Glaser EP, Bosse-Joseph CC, Park KA, Hammers GV, Wireman OH, Gensel JC. PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury. Exp Neurol 2023; 368:114502. [PMID: 37558155 PMCID: PMC10498341 DOI: 10.1016/j.expneurol.2023.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and transiently restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTENFloxΔ/Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice, indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex which was corroborated by a loss of β-tubulin III labeling above the lesion within spinal cords after PTEN-KO. PTEN-KO mice had significantly more β-tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO on neuronal health and viability should be further explored.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Reena Kumari
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ethan P Glaser
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher C Bosse-Joseph
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Kennedy A Park
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Gabrielle V Hammers
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Olivia H Wireman
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
21
|
Metcalfe M, Steward O. PTEN deletion in spinal pathways via retrograde transduction with AAV-rg enhances forelimb motor recovery after cervical spinal cord injury; sex differences and late-onset pathophysiologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533502. [PMID: 36993317 PMCID: PMC10055283 DOI: 10.1101/2023.03.20.533502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Spinal cord injuries (SCI) cause permanent functional impairments due to interruption of motor and sensory pathways. Regeneration of axons does not occur due to lack of intrinsic growth capacity of adult neurons and extrinsic inhibitory factors, especially at the injury site. However, some regeneration can be achieved via deletion of the phosphatase and tensin homolog (PTEN) in cells of origin of spinal pathways. Here, we deployed an AAV variant that is retrogradely transported (AAV-rg) to deliver gene modifying cargos to the cells of origin of multiple pathways interrupted by SCI, testing whether this promoted recovery of motor function. PTEN f/f ;Rosa tdTomato mice and control Rosa tdTomato mice received injections of different doses (number of genome copies, GCs) of AAV-rg/Cre into the cervical spinal cord at the time of a C5 dorsal hemisection injury. Forelimb grip strength was tested over time using a grip strength meter. PTEN f/f ;Rosa tdTomato mice with AAV-rg/Cre (PTEN-deleted) exhibited substantial improvements in forelimb gripping ability in comparison to controls. Of note, there were major sex differences in the extent of recovery, with male mice exhibiting greater recovery than females. However, at around 5-7 weeks post-injury/injection, many mice with SCI and AAV-rg-mediated PTEN deletion began to exhibit pathophysiologies involving excessive scratching of the ears and back of the neck and rigid forward extension of the hindlimbs. These pathophysiologies increased in incidence and severity over time. Our results reveal that although intra-spinal injections of AAV-rg/Cre in PTEN f/f ;Rosa tdTomato mice can enhance forelimb motor recovery after SCI, late-developing functional abnormalities occur with the experimental conditions used here. Mechanisms underlying late-developing pathophysiologies remain to be defined.
Collapse
|
22
|
Stewart AN, Kumari R, Bailey WM, Glaser EP, Hammers GV, Wireman OH, Gensel JC. PTEN knockout using retrogradely transported AAVs restores locomotor abilities in both acute and chronic spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537179. [PMID: 37131840 PMCID: PMC10153160 DOI: 10.1101/2023.04.17.537179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Restoring function in chronic stages of spinal cord injury (SCI) has often been met with failure or reduced efficacy when regenerative strategies are delayed past the acute or sub-acute stages of injury. Restoring function in the chronically injured spinal cord remains a critical challenge. We found that a single injection of retrogradely transported adeno-associated viruses (AAVrg) to knockout the phosphatase and tensin homolog protein (PTEN) in chronic SCI can effectively target both damaged and spared axons and restore locomotor functions in near-complete injury models. AAVrg's were injected to deliver cre recombinase and/or a red fluorescent protein (RFP) under the human Synapsin 1 promoter (hSyn1) into the spinal cords of C57BL/6 PTEN FloxΔ / Δ mice to knockout PTEN (PTEN-KO) in a severe thoracic SCI crush model at both acute and chronic time points. PTEN-KO improved locomotor abilities in both acute and chronic SCI conditions over a 9-week period. Regardless of whether treatment was initiated at the time of injury (acute), or three months after SCI (chronic), mice with limited hindlimb joint movement gained hindlimb weight support after treatment. Interestingly, functional improvements were not sustained beyond 9 weeks coincident with a loss of RFP reporter-gene expression and a near-complete loss of treatment-associated functional recovery by 6 months post-treatment. Treatment effects were also specific to severely injured mice; animals with weight support at the time of treatment lost function over a 6-month period. Retrograde tracing with Fluorogold revealed viable neurons throughout the motor cortex despite a loss of RFP expression at 9 weeks post-PTEN-KO. However, few Fluorogold labeled neurons were detected within the motor cortex at 6 months post-treatment. BDA labeling from the motor cortex revealed a dense corticospinal tract (CST) bundle in all groups except chronically treated PTEN-KO mice indicating a potential long-term toxic effect of PTEN-KO to neurons in the motor cortex. PTEN-KO mice had significantly more β - tubulin III labeled axons within the lesion when treatment was delivered acutely, but not chronically post-SCI. In conclusion, we have found that using AAVrg's to knockout PTEN is an effective manipulation capable of restoring motor functions in chronic SCI and can enhance axon growth of currently unidentified axon populations when delivered acutely after injury. However, the long-term consequences of PTEN-KO may exert neurotoxic effects.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Reena Kumari
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - William M. Bailey
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Ethan P. Glaser
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Gabrielle V. Hammers
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Olivia H. Wireman
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - John C. Gensel
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
- College of Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
23
|
Danilov CA, Thein TZ, Tahara SM, Schönthal AH, Chen TC. Intranasal Delivery of miR133b in a NEO100-Based Formulation Induces a Healing Response in Spinal Cord-Injured Mice. Cells 2023; 12:931. [PMID: 36980272 PMCID: PMC10047048 DOI: 10.3390/cells12060931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite important advances in the pre-clinical animal studies investigating the neuroinhibitory microenvironment at the injury site, traumatic injury to the spinal cord remains a major problem with no concrete response. Here, we examined whether (1) intranasal (IN) administration of miR133b/Ago2 can reach the injury site and achieve a therapeutic effect and (2) NEO100-based formulation of miR133b/Ago2 can improve effectiveness. 24 h after a cervical contusion, C57BL6 female mice received IN delivery of miR133b/Ago2 or miR133b/Ago2/NEO100 for 3 days, one dose per day. The pharmacokinetics of miR133b in the spinal cord lesion was determined by RT-qPCR. The role of IN delivery of miR133b on motor function was assessed by the grip strength meter (GSM) and hanging tasks. The activity of miR133b at the lesion site was established by immunostaining of fibronectin 1 (FN1), a miR133b target. We found that IN delivery of miR133b/Ago2 (1) reaches the lesion scar and co-administration of miR133b with NEO100 facilitated the cellular uptake; (2) enhanced the motor function and addition of NEO100 potentiated this effect and (3) targeted FN1 expression at the lesion scar. Our results suggest a high efficacy of IN delivery of miR133b/Ago2 to the injured spinal cord that translates to improved healing with NEO100 further potentiating this effect.
Collapse
Affiliation(s)
- Camelia A. Danilov
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA 90033, USA; (C.A.D.)
| | - Thu Zan Thein
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA 90033, USA; (C.A.D.)
| | - Stanley M. Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thomas C. Chen
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA 90033, USA; (C.A.D.)
| |
Collapse
|
24
|
Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023; 12:cells12060853. [PMID: 36980193 PMCID: PMC10046908 DOI: 10.3390/cells12060853] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
Collapse
|
25
|
Quan X, Yu C, Fan Z, Wu T, Qi C, Zhang H, Wu S, Wang X. Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury. Exp Neurol 2023; 363:114367. [PMID: 36858281 DOI: 10.1016/j.expneurol.2023.114367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) results in severe motor and sensory dysfunction with no effective therapy. Spinal cord debris (sp) from injured spinal cord evokes secondary SCI continuously. We and other researchers have previously clarified that it is mainly bone marrow derived macrophages (BMDMs) infiltrating in the lesion epicenter to clear sp, rather than local microglia. Unfortunately, the pro-inflammatory phenotype of these infiltrating BMDMs is predominant which impairs wound healing. Hydralazine, as a potent vasodilator and scavenger of acrolein, has protective effects in many diseases. Hydralazine is also confirmed to promote motor function and hypersensitivity in SCI rats through scavenging acrolein. However, few studies have explored the effects of hydralazine on immunomodulation, as well as spontaneous pain and emotional response, the important syndromes in clinical patients. It remains unclear whether hydralazine affects infiltrating BMDMs after SCI. In this study, we targeted BMDMs to explore the influence of hydralazine on immune cells in a mouse model of SCI, and also investigated the contribution of polarized BMDMs to hydralazine-induced neurological function recovery after SCI in male mice. The adult male mice underwent T10 spinal cord compression. The results showed that in addition to improving motor function and hypersensitivity, hydralazine relieved SCI-induced spontaneous pain and emotional response, which is a newly discovered function of hydralazine. Hydralazine inhibited the recruitments of pro-inflammatory BMDMs and educated infiltrated BMDMs to a more reparative phenotype involving in multiple biological processes associated with SCI pathology, including immune/inflammation response, neurogenesis, lipid metabolism, oxidative stress, fibrosis formation, and angiogenesis, etc. As an overall effect, hydralazine-treated BMDMs loaden with sp partially rescued neurological function after SCI. It is concluded that hydralazine plays an immunomodulation role of educating pro-inflammatory BMDMs to a more reparative phenotype; and hydralazine-educated BMDMs contribute to hydralazine-induced improvement of neurological function in SCI mice, which provides support for drug and cell treatment options for SCI therapy.
Collapse
Affiliation(s)
- Xin Quan
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; Military Medical Innovation Center, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chuchu Qi
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haoying Zhang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Xi Wang
- Institute of Neurosciences and Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China; The College of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
26
|
Boato F, Guan X, Zhu Y, Ryu Y, Voutounou M, Rynne C, Freschlin CR, Zumbo P, Betel D, Matho K, Makarov SN, Wu Z, Son YJ, Nummenmaa A, Huang JZ, Edwards DJ, Zhong J. Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Sci Transl Med 2023; 15:eabq6885. [PMID: 36599003 DOI: 10.1126/scitranslmed.abq6885] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Facilitating axon regeneration in the injured central nervous system remains a challenging task. RAF-MAP2K signaling plays a key role in axon elongation during nervous system development. Here, we show that conditional expression of a constitutively kinase-activated BRAF in mature corticospinal neurons elicited the expression of a set of transcription factors previously implicated in the regeneration of zebrafish retinal ganglion cell axons and promoted regeneration and sprouting of corticospinal tract (CST) axons after spinal cord injury in mice. Newly sprouting axon collaterals formed synaptic connections with spinal interneurons, resulting in improved recovery of motor function. Noninvasive suprathreshold high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) activated the BRAF canonical downstream effectors MAP2K1/2 and modulated the expression of a set of regeneration-related transcription factors in a pattern consistent with that induced by BRAF activation. HF-rTMS enabled CST axon regeneration and sprouting, which was abolished in MAP2K1/2 conditional null mice. These data collectively demonstrate a central role of MAP2K signaling in augmenting the growth capacity of mature corticospinal neurons and suggest that HF-rTMS might have potential for treating spinal cord injury by modulating MAP2K signaling.
Collapse
Affiliation(s)
- Francesco Boato
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Xiaofei Guan
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yanjie Zhu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Youngjae Ryu
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mariel Voutounou
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher Rynne
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chase R Freschlin
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sergey N Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY 10065, USA
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, PA 19140, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Josh Z Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dylan J Edwards
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.,Thomas Jefferson University, Philadelphia, PA 19108, USA.,Exercise Medicine Research Institute, School of Biomedical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Jian Zhong
- Molecular Regeneration and Neuroimaging Laboratory, Burke Neurological Institute, White Plains, NY 10605, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
27
|
Reshamwala R, Shah M. Regenerative Approaches in the Nervous System. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
28
|
Stewart AN, Jones LAT, Gensel JC. Improving translatability of spinal cord injury research by including age as a demographic variable. Front Cell Neurosci 2022; 16:1017153. [PMID: 36467608 PMCID: PMC9714671 DOI: 10.3389/fncel.2022.1017153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pre-clinical and clinical spinal cord injury (SCI) studies differ in study design, particularly in the demographic characteristics of the chosen population. In clinical study design, criteria such as such as motor scores, neurological level, and severity of injury are often key determinants for participant inclusion. Further, demographic variables in clinical trials often include individuals from a wide age range and typically include both sexes, albeit historically most cases of SCI occur in males. In contrast, pre-clinical SCI models predominately utilize young adult rodents and typically use only females. While it is often not feasible to power SCI clinical trials to test multi-variable designs such as contrasting different ages, recent pre-clinical findings in SCI animal models have emphasized the importance of considering age as a biological variable prior to human experiments. Emerging pre-clinical data have identified case examples of treatments that diverge in efficacy across different demographic variables and have elucidated several age-dependent effects in SCI. The extent to which these differing or diverging treatment responses manifest clinically can not only complicate statistical findings and trial interpretations but also may be predictive of worse outcomes in select clinical populations. This review highlights recent literature including age as a biological variable in pre-clinical studies and articulates the results with respect to implications for clinical trials. Based on emerging unpredictable treatment outcomes in older rodents, we argue for the importance of including age as a biological variable in pre-clinical animal models prior to clinical testing. We believe that careful analyses of how age interacts with SCI treatments and pathophysiology will help guide clinical trial design and may improve both the safety and outcomes of such important efforts.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Linda A. T. Jones
- Center for Outcomes and Measurement, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - John C. Gensel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States,*Correspondence: John C. Gensel,
| |
Collapse
|
29
|
Exosomes Derived from Adipose Mesenchymal Stem Cells Carrying miRNA-22-3p Promote Schwann Cells Proliferation and Migration through Downregulation of PTEN. DISEASE MARKERS 2022; 2022:7071877. [PMID: 36148159 PMCID: PMC9489425 DOI: 10.1155/2022/7071877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Peripheral nerve injury (PNI) is often resulting from trauma, which leads to severe and permanently disability. Schwann cells are critical for facilitating the regeneration process after PNI. Adipose-derived mesenchymal stem cells (ADSCs) exosomes have been used as a novel treatment for peripheral nerve injury. However, the underlying mechanism remains unclear. In this study, we isolated ADSCs and extracted exosomes, which were verified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot (WB). Cocultured with Dorsal Root Ganglion (DRG) and Schwann cells (SCs) to evaluate the effect of exosomes on the growth of DRG axons by immunofluorescence, and the proliferation and migration of SCs by CCK8 and Transwell assays, respectively. Through exosomal miRNA sequencing and bioinformatic analysis, the related miRNAs and target gene were predicted and identified by dual luciferase assay. Related miRNAs were overexpressed and inhibited, respectively, to clarify their effects; the downstream pathway through the target gene was determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and WB. Results found that ADSC-exosomes could promote the proliferation and migration of SCs and the growth of DRG axons, respectively. Exosomal miRNA-22-3p from ADSCs directly inhibited the expression of Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), activated phosphorylation of the AKT/mTOR axis, and enhanced SCs proliferation and migration. In conclusion, our findings suggest that ADSC-exosomes could promote SCs function through exosomal miRNA-22-3p, which could be used as a therapeutic target for peripheral nerve injury.
Collapse
|
30
|
Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R, He Z, Sanes JR. Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 2022; 110:2625-2645.e7. [PMID: 35767994 PMCID: PMC9391321 DOI: 10.1016/j.neuron.2022.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022]
Abstract
Injured neurons in the adult mammalian central nervous system often die and seldom regenerate axons. To uncover transcriptional pathways that could ameliorate these disappointing responses, we analyzed three interventions that increase survival and regeneration of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC) injury, albeit not to a clinically useful extent. We assessed gene expression in each of 46 RGC types by single-cell transcriptomics following ONC and treatment. We also compared RGCs that regenerated with those that survived but did not regenerate. Each intervention enhanced survival of most RGC types, but type-independent axon regeneration required manipulation of multiple pathways. Distinct computational methods converged on separate sets of genes selectively expressed by RGCs likely to be dying, surviving, or regenerating. Overexpression of genes associated with the regeneration program enhanced both survival and axon regeneration in vivo, indicating that mechanistic analysis can be used to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Anne Jacobi
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Nicholas M Tran
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Wenjun Yan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebecca Schaffer
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Noristani HN. Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges. Exp Neurol 2022; 357:114198. [DOI: 10.1016/j.expneurol.2022.114198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
32
|
Hausott B, Glueckert R, Schrott-Fischer A, Klimaschewski L. Signal Transduction Regulators in Axonal Regeneration. Cells 2022; 11:cells11091537. [PMID: 35563843 PMCID: PMC9104247 DOI: 10.3390/cells11091537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
33
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Zhuang C, Guo Z, Zhu J, Wang W, Sun R, Qi M, Wang Q, Fan X, Ma R, Yu J. PTEN inhibitor attenuates cardiac fibrosis by regulating the M2 macrophage phenotype via the PI3K/AKT/TGF-β/Smad 2/3 signaling pathway. Int J Cardiol 2022; 356:88-96. [PMID: 35395283 DOI: 10.1016/j.ijcard.2022.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022]
Abstract
Cardiac fibrosis is a key feature of hypertensive cardiac remodeling. In response to microenvironmental stimuli, phenotypic and functional changes in macrophages are considered important determinants of cardiac fibrosis attenuation. VO-OHpic, a phosphatase and tension homolog of chromosome 10 (PTEN) inhibitor, has been demonstrated to be cardioprotective in cardiac remodeling. However, whether VO-OHpic can improve cardiac fibrosis and macrophage polarization remains elusive. The interaction between VO-OHpic and the macrophage phenotype to attenuate cardiac fibrosis was studied in both spontaneously hypertensive rats in vivo and an Ang II-induced hypertension model in vitro. In vitro experiments showed that VO-OHpic promoted M2 macrophage polarization and markedly inhibited proinflammatory M1 macrophages, while VO-OHpic treatment of protein kinase B (AKT)-knockdown/LY294002 (a PI3K inhibitor) macrophages exerted a reduced effect. In a coculture system, culturing cardiac fibroblasts with VO-OHpic-treated macrophages led to significant suppression of proliferation, fibrotic marker expression, and transforming growth factor (TGF)-β and Smad 2/3 protein expression. Taken together, VO-OHpic mediated a fibro-protective effect and increased M2 macrophage polarization via the phosphatidylinositol 3-kinase (PI3K)/AKT/TGF-β/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Ziyi Guo
- School of Chemical Engineering, The University of New South Wales, Sydney, Australia
| | - Jumo Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Wang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Runmin Sun
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Miaomiao Qi
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Qiongying Wang
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Xin Fan
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Runxin Ma
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yu
- Hypertension center, Lanzhou University, Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
35
|
Harnessing rAAV-retro for gene manipulations in multiple pathways that are interrupted after spinal cord injury. Exp Neurol 2021; 350:113965. [PMID: 34973965 DOI: 10.1016/j.expneurol.2021.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
This paper explores the potential of rAAV2-retro to deliver gene modifying cargoes to the cells of origin of multiple pathways that are interrupted by spinal cord injury (SCI), summarizing data from previous studies and new data from additional experiments. rAAV-retro exhibits uniquely robust and reliable long-distance retrograde transport from pre-terminal axons and synapses back to neuronal bodies. Previous studies have documented that various AAV-based genetic modifications can enable axon regeneration after SCI, but these have targeted the cells of origin of one pathway at a time. In contrast, rAAV-retro can simultaneously transduce large numbers of neurons of origin of multiple spinal pathways with single injections into the spinal cord. Our initial studies use RosatdTomato and double transgenic PTENf/f; RosatdTomato mice in which transfection with rAAV-retro/Cre deletes PTEN and activates tdT expression in the same neurons. Injections of rAAV-retro/Cre into the cervical, thoracic and lumbar spinal cord led to topographically specific retrograde transduction in cortical motoneurons and neurons in subcortical regions that give rise to different spinal pathways. Our results confirm and extend previous studies indicating selective transduction of neurons that terminate at the level of the injection with minimal retrograde transduction of axons in transit to lower levels. We document feasibility of using rAAV-retro expressing shRNA against PTEN along with a GFP reporter (rAAV-retro-shPTEN/GFP) to effectively knock down PTEN in multiple populations of neurons, which can be used in any species. Some limitations and caveats of currently available rAAV-retros are discussed. Together, our results support the potential applications of rAAV-retro for AAV-based gene-modifications for SCI.
Collapse
|
36
|
Campion TJ, Sheikh IS, Smit RD, Iffland PH, Chen J, Junker IP, Krynska B, Crino PB, Smith GM. Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Exp Neurol 2021; 349:113961. [PMID: 34953897 DOI: 10.1016/j.expneurol.2021.113961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
Increasing the intrinsic growth potential of neurons after injury has repeatedly been shown to promote some level of axonal regeneration in rodent models. One of the most studied pathways involves the activation of the PI3K/AKT/mTOR pathways, primarily by reducing the levels of PTEN, a negative regulator of PI3K. Likewise, activation of signal transducer and activator of transcription 3 (STAT3) has previously been shown to boost axonal regeneration and sprouting within the injured nervous system. Here, we examined the regeneration of the corticospinal tract (CST) after cortical expression of constitutively active (ca) Akt3 and STAT3, both separately and in combination. Overexpression of caAkt3 induced regeneration of CST axons past the injury site independent of caSTAT3 overexpression. STAT3 demonstrated improved axon sprouting compared to controls and contributed to a synergistic improvement in effects when combined with Akt3 but failed to promote axonal regeneration as an individual therapy. Despite showing impressive axonal regeneration, animals expressing Akt3 failed to show any functional improvement and deteriorated with time. During this period, we observed progressive Akt3 dose-dependent increase in behavioral seizures. Histology revealed increased phosphorylation of ribosomal S6 protein within the unilateral cortex, increased neuronal size, microglia activation and hemispheric enlargement (hemimegalencephaly).
Collapse
Affiliation(s)
- Thomas J Campion
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Imran S Sheikh
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Rupert D Smit
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jie Chen
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Ian P Junker
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Barbara Krynska
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George M Smith
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America; Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, United States of America.
| |
Collapse
|
37
|
Nieuwenhuis B, Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regen Res 2021; 17:1172-1182. [PMID: 34782551 PMCID: PMC8643051 DOI: 10.4103/1673-5374.327324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system. Axons in the central nervous system fail to regenerate, meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences. In 2008, genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve. PTEN is a phosphatase that opposes the actions of PI3-kinase, a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2 (phosphatidylinositol (3,4,5)-trisphosphate from phosphatidylinositol (4,5)-bisphosphate). Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase, and was initially demonstrated to promote axon regeneration by signaling through mTOR. More recently, additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability. This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3, and considers them in relation to both developmental and regenerative axon growth. We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability, and describe how these are affected by signaling through PI3-kinase. We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure, and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system. Finally, we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Eva
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov 2021; 7:212. [PMID: 34381025 PMCID: PMC8357833 DOI: 10.1038/s41420-021-00572-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) is a salient traumatic disease that often leads to permanent disability, and motor and sensory impairments. Human umbilical cord mesenchymal stem cells (HucMSCs) have a wide application prospect in the treatment of SCI. This study explored the repair effect of HucMSCs-derived extracellular vesicles (HucMSCs-EVs) on SCI. HucMSCs and HucMSCs-EVs were cultured and identified. The rat model of SCI was established, and SCI rats were treated with HucMSCs-EVs. The motor function of SCI rats and morphology of spinal cord tissues were evaluated. Levels of NeuN, GFAP, and NF200 in spinal cord tissues were detected and cell apoptosis was measured. SCI rats were treated with EVs extracted from miR-29b-3p inhibitor-transfected HucMSCs. The downstream gene and pathway of miR-29b-3p were examined. HucMSCs-EVs-treated rats showed obvious motor function recovery and reduced necrosis, nuclear pyknosis, and cavity. HucMSCs-EVs alleviated spinal cord neuronal injury. miR-29b-3p was poorly expressed in SCI tissues, but highly expressed in EVs and SCI rats treated with EVs. miR-29b-3p targeted PTEN. Inhibition of miR-29b-3p or overexpression of PTEN reversed the repair effect of EVs on SCI. EVs activated the AKT/mTOR pathway via the miR-29b-3p/PTEN. In conclusion, HucMSCs-EVs reduced pathological changes, improved motor function, and promoted nerve function repair in SCI rats via the miR-29b-3p/PTEN/Akt/mTOR axis.
Collapse
|
39
|
Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson's disease. Exp Neurol 2021; 341:113716. [PMID: 33839143 PMCID: PMC9797183 DOI: 10.1016/j.expneurol.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
40
|
Bhowmick S, Abdul-Muneer PM. PTEN Blocking Stimulates Corticospinal and Raphespinal Axonal Regeneration and Promotes Functional Recovery After Spinal Cord Injury. J Neuropathol Exp Neurol 2021; 80:169-181. [PMID: 33367790 DOI: 10.1093/jnen/nlaa147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The long-term disabilities associated with spinal cord injury (SCI) are primarily due to the absence of robust neuronal regeneration and functional plasticity. The inability of the axon to regenerate after SCI is contributed by several intrinsic factors that trigger a cascade of molecular growth program and modulates axonal sprouting. Phosphatase and tensin homolog (PTEN) is one of the intrinsic factors contributing to growth failure after SCI, however, the underlying mechanism is not well known. Here, we developed a novel therapeutic approach for treating SCI by suppressing the action of PTEN in a mouse model of hemisection SCI. We have used a novel peptide, PTEN antagonistic peptide (PAP) to block the critical domains of PTEN to demonstrate its ability to potentially promote axon growth. PAP treatment not only enhanced regeneration of corticospinal axons into the caudal spinal cord but also promoted the regrowth of descending serotonergic axons in SCI mice. Furthermore, expression levels of p-mTOR, p-S6, p-Akt, p-Erk, p-GSK, p-PI3K downstream of PTEN signaling pathway were increased significantly in the spinal cord of SCI mice systemically treated with PAP than control TAT peptide-treated mice. Our novel strategy of administering deliverable compounds postinjury may facilitate translational feasibility for central nervous system injury.
Collapse
Affiliation(s)
- Saurav Bhowmick
- From the Laboratory of CNS Injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey
| | - P M Abdul-Muneer
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey
| |
Collapse
|
41
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
42
|
Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC. Respiratory axon regeneration in the chronically injured spinal cord. Neurobiol Dis 2021; 155:105389. [PMID: 33975016 DOI: 10.1016/j.nbd.2021.105389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Promoting the combination of robust regeneration of damaged axons and synaptic reconnection of these growing axon populations with appropriate neuronal targets represents a major therapeutic goal following spinal cord injury (SCI). A key impediment to achieving this important aim includes an intrinsic inability of neurons to extend axons in adult CNS, particularly in the context of the chronically-injured spinal cord. We tested whether an inhibitory peptide directed against phosphatase and tensin homolog (PTEN: a central inhibitor of neuron-intrinsic axon growth potential) could restore inspiratory diaphragm function by reconnecting critical respiratory neural circuitry in a rat model of chronic cervical level 2 (C2) hemisection SCI. We found that systemic delivery of PTEN antagonist peptide 4 (PAP4) starting at 8 weeks after C2 hemisection promoted substantial, long-distance regeneration of injured bulbospinal rostral Ventral Respiratory Group (rVRG) axons into and through the lesion and back toward phrenic motor neurons (PhMNs) located in intact caudal C3-C5 spinal cord. Despite this robust rVRG axon regeneration, PAP4 stimulated only minimal recovery of diaphragm function. Furthermore, re-lesion through the hemisection site completely removed PAP4-induced functional improvement, demonstrating that axon regeneration through the lesion was responsible for this partial functional recovery. Interestingly, there was minimal formation of putative excitatory monosynaptic connections between regrowing rVRG axons and PhMN targets, suggesting that (1) limited rVRG-PhMN synaptic reconnectivity was responsible at least in part for the lack of a significant functional effect, (2) chronically-injured spinal cord presents an obstacle to achieving synaptogenesis between regenerating axons and post-synaptic targets, and (3) addressing this challenge is a potentially-powerful strategy to enhance therapeutic efficacy in the chronic SCI setting. In conclusion, our study demonstrates a non-invasive and transient pharmacological approach in chronic SCI to repair the critically-important neural circuitry controlling diaphragmatic respiratory function, but also sheds light on obstacles to circuit plasticity presented by the chronically-injured spinal cord.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Armin Sami
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah J Goudsward
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
43
|
Triplet EM, Kim HN, Yoon H, Radulovic M, Kleppe L, Simon WL, Choi CI, Walsh PJ, Dutton JR, Scarisbrick IA. The thrombin receptor links brain derived neurotrophic factor to neuron cholesterol production, resiliency and repair after spinal cord injury. Neurobiol Dis 2021; 152:105294. [PMID: 33549720 PMCID: PMC8021459 DOI: 10.1016/j.nbd.2021.105294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.
Collapse
Affiliation(s)
- Erin M Triplet
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America
| | - Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Whitney L Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Chan-Il Choi
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America
| | - Patrick J Walsh
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - James R Dutton
- Department of Genetics and Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Isobel A Scarisbrick
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and the Mayo Clinic Medical Scientist Training Program Sciences Rochester, United States of America; Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, United States of America; Department of Physiology and Biomedical Engineering, Rochester, MN 55905, United States of America.
| |
Collapse
|
44
|
Combinatrial treatment of anti-High Mobility Group Box-1 monoclonal antibody and epothilone B improves functional recovery after spinal cord contusion injury. Neurosci Res 2021; 172:13-25. [PMID: 33864880 DOI: 10.1016/j.neures.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Spinal cord injury (SCI) causes motor and sensory deficits and is currently considered an incurable disease. We have previously reported that administration of anti-High Mobility Group Box-1 monoclonal antibody (anti-HMGB1 mAb) preserved lesion area and improved locomotion recovery in mouse model of SCI. In order to further enhance the recovery, we here examined combinatorial treatment of anti-HMGB1 mAb and epothilone B (Epo B), which has been reported to promote axon regeneration. This combinatorial treatment significantly increased hindlimb movement compared with anti-HMGB1 mAb alone, although Epo B alone failed to increase functional recovery. These results are in agreement with that anti-HMGB1 mAb alone was able to decrease the lesion area spreading and increase the surviving neuron numbers around the lesion, whereas Epo B facilitated axon outgrowth only in combination with anti-HMGB1 mAb, suggesting that anti-HMGB1 mAb-dependent tissue preservation is necessary for Epo B to exhibit its therapeutic effect. Taken together, the combinatorial treatment can be considered as a novel and clinically applicable strategy for SCI.
Collapse
|
45
|
Pan L, Tan B, Tang W, Luo M, Liu Y, Yu L, Yin Y. Combining task-based rehabilitative training with PTEN inhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice. Behav Brain Res 2021; 405:113197. [PMID: 33621609 DOI: 10.1016/j.bbr.2021.113197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Conditional deletion of Pten in corticospinal neurons promotes axon sprouting and regeneration after spinal cord injury (SCI). However, regeneration studies targeted on PTEN inhibition seldom show motor function recovery. The promotion of functional recovery can be improved by rehabilitative training under a use-dependent plasticity mechanism. PURPOSE To investigate the combined effects of PTEN inhibition and rehabilitative training on axon regeneration and subsequent motor functional improvement after cervical spinal cord injury. METHODS Lentiviral particles (Lenti-PTEN-RNAi or Lenti-Scrambled-EGFP) were injected into the right sensorimotor mouse cortex in four experimental groups (PTEN RNAi + Training, PTEN RNAi, Control + Training, Control). Two weeks after injection, all mouse groups received a left C5 crush injury. We performed task-based rehabilitative training for 4 weeks on the PTEN RNAi + Training and Control + Training groups. Biotinylated dextran amine (BDA) was used for anterograde tracing of the dorsal corticospinal tract (dCST). We analysed axonal regeneration through immunohistochemical methods. A battery of behavioral tests was employed to assess functional recovery at Day3 and every other week after injury. RESULTS Combining rehabilitative training with PTEN inhibition induced more axon regeneration and synapse reformation in the spinal cord caudal to the lesion site. Rostral to the lesion, the transected dCST axons sprouted into gray matter upon contact. Furthermore, forelimb function was found to be improved after combination therapy during behavioral testing. CONCLUSION Combining task-based rehabilitative training with PTEN inhibition further promotes axon regeneration, synaptic plasticity and reorganization of the neural network, with significant improvement in forelimb skilled motor function after cervical spinal cord injury. Our study provides new therapeutic insights for spinal cord injury management in the future.
Collapse
Affiliation(s)
- Lu Pan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Botao Tan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weiwei Tang
- Central Laboratory, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Meiling Luo
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, The Army Medical University, Chongqing, 400042, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Yin
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
46
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
47
|
Cortes D, Pera MF. The genetic basis of inter-individual variation in recovery from traumatic brain injury. NPJ Regen Med 2021; 6:5. [PMID: 33479258 PMCID: PMC7820607 DOI: 10.1038/s41536-020-00114-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death among young people, and is increasingly prevalent in the aging population. Survivors of TBI face a spectrum of outcomes from short-term non-incapacitating injuries to long-lasting serious and deteriorating sequelae. TBI is a highly complex condition to treat; many variables can account for the observed heterogeneity in patient outcome. The limited success of neuroprotection strategies in the clinic has led to a new emphasis on neurorestorative approaches. In TBI, it is well recognized clinically that patients with similar lesions, age, and health status often display differences in recovery of function after injury. Despite this heterogeneity of outcomes in TBI, restorative treatment has remained generic. There is now a new emphasis on developing a personalized medicine approach in TBI, and this will require an improved understanding of how genetics impacts on long-term outcomes. Studies in animal model systems indicate clearly that the genetic background plays a role in determining the extent of recovery following an insult. A candidate gene approach in human studies has led to the identification of factors that can influence recovery. Here we review studies of the genetic basis for individual differences in functional recovery in the CNS in animals and man. The application of in vitro modeling with human cells and organoid cultures, along with whole-organism studies, will help to identify genes and networks that account for individual variation in recovery from brain injury, and will point the way towards the development of new therapeutic approaches.
Collapse
|
48
|
Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun 2021; 12:391. [PMID: 33452250 PMCID: PMC7810685 DOI: 10.1038/s41467-020-20112-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) often causes severe and permanent disabilities due to the regenerative failure of severed axons. Here we report significant locomotor recovery of both hindlimbs after a complete spinal cord crush. This is achieved by the unilateral transduction of cortical motoneurons with an AAV expressing hyper-IL-6 (hIL-6), a potent designer cytokine stimulating JAK/STAT3 signaling and axon regeneration. We find collaterals of these AAV-transduced motoneurons projecting to serotonergic neurons in both sides of the raphe nuclei. Hence, the transduction of cortical neurons facilitates the axonal transport and release of hIL-6 at innervated neurons in the brain stem. Therefore, this transneuronal delivery of hIL-6 promotes the regeneration of corticospinal and raphespinal fibers after injury, with the latter being essential for hIL-6-induced functional recovery. Thus, transneuronal delivery enables regenerative stimulation of neurons in the deep brain stem that are otherwise challenging to access, yet highly relevant for functional recovery after SCI.
Collapse
|
49
|
Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol Med 2020; 26:111. [PMID: 33213359 PMCID: PMC7678076 DOI: 10.1186/s10020-020-00241-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 01/14/2023] Open
Abstract
Background Myocardial infarction (MI) is the leading cause of death from cardiovascular disease (CVD). Currently, the efficacy for MI treatment remains unsatisfactory. Therefore, it is urgent to develop a novel therapeutic strategy. Methods Left anterior descending arteries (LAD) of mice were ligated to induce MI. Another set of mice were intravenously injected with PTEN inhibitor BPV (1 mg/kg) 1 h after LAD ligation and continued to receive BPV injection daily for the following 6 days. Mice were performed echocardiography 14 days after surgery. Results Mice in MI group displayed an increased expression of PTEN with impaired cardiac function, enhanced cardiomyocyte apoptosis and decreased angiogenesis. BPV treatment significantly improved cardiac function, with reduced cardiomyocyte apoptosis, promoted angiogenesis, and activated PI3K/Akt/vascular endothelial growth factor (VEGF) signaling pathway. Conclusion PTEN inhibitor BPV could effectively prevent myocardial infarction in mice, highlighting its potential as a candidate therapeutic drug.
Collapse
Affiliation(s)
- Qiuting Feng
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xing Li
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xian Qin
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Cheng Yu
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yan Jin
- Department of Cardiovascular, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xiaojun Qian
- Department of Respiratory, the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, No.68, Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
50
|
Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, Harvey AR. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing. Sci Rep 2020; 10:11393. [PMID: 32647121 PMCID: PMC7347541 DOI: 10.1038/s41598-020-68257-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
After damage to the adult mammalian central nervous system (CNS), surviving neurons have limited capacity to regenerate and restore functional connectivity. Conditional genetic deletion of PTEN results in robust CNS axon regrowth, while PTEN repression with short hairpin RNA (shRNA) improves regeneration but to a lesser extent, likely due to suboptimal PTEN mRNA knockdown using this approach. Here we employed the CRISPR/dCas9 system to repress PTEN transcription in neural cells. We targeted the PTEN proximal promoter and 5' untranslated region with dCas9 fused to the repressor protein Krüppel-associated box (KRAB). dCas9-KRAB delivered in a lentiviral vector with one CRISPR guide RNA (gRNA) achieved potent and specific PTEN repression in human cell line models and neural cells derived from human iPSCs, and induced histone (H)3 methylation and deacetylation at the PTEN promoter. The dCas9-KRAB system outperformed a combination of four shRNAs targeting the PTEN transcript, a construct previously used in CNS injury models. The CRISPR system also worked more effectively than shRNAs for Pten repression in rat neural crest-derived PC-12 cells, and enhanced neurite outgrowth after nerve growth factor stimulation. PTEN silencing with CRISPR/dCas9 epigenetic editing may provide a new option for promoting axon regeneration and functional recovery after CNS trauma.
Collapse
Affiliation(s)
- C Moses
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
| | - S I Hodgetts
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia
| | - F Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - G Ben-Ary
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - K K Park
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - P Blancafort
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA, 6009, Australia.
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - A R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA, 6009, Australia.
| |
Collapse
|