1
|
Micheli L, Balayssac D, Busserolles J, Dalbos C, Prival L, Richard D, Quintana M, Di Cesare Mannelli L, Toti A, Ciampi C, Ghelardini C, Vlasakova K, Glaab WE, Hu Y, Loryan I, Perrault O, Slaoui M, Wuersch K, Johnson E, Frieauff W, Penraat K, Brees D, Dubost V, Theil D. The challenge to identify sensitive safety biomarkers of peripheral neurotoxicity in the rat: A collaborative effort across industry and academia (IMI NeuroDeRisk project). Toxicology 2025; 510:153998. [PMID: 39551123 DOI: 10.1016/j.tox.2024.153998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Peripheral nervous system (PNS) toxicity assessment in non-clinical safety studies is challenging and relies mostly on histopathological assessment. The present work aims to identify blood-based biomarkers that could detect peripheral neuropathy in rats upon exposure to neurotoxic compounds. Three anticancer agents (oxaliplatin, cisplatin, paclitaxel) and a developmental compound (NVS-1) were assessed in male rats (Wistar Han). Clinical and/or functional endpoints (i.e., electronic Von Frey, Cold Plate, and Paw Pressure tests) and blood biomarkers (i.e., neurofilament light chain (NfL), neurofilament heavy chain (NF-H), microtubule-associated protein Tau (Tau), neuron specific enolase (NSE), vascular endothelial growth factor A (VEGFA), and glial fibrillary acidic protein (GFAP)) were assessed. Drug exposure and histopathological evaluations were conducted on selected nervous tissues. Oxaliplatin, cisplatin and paclitaxel treatment resulted in a significant decrease of nociceptive thresholds. Clinical signs suggestive of PNS toxicity were observed with NVS-1. NfL was consistently increased in the NVS-1 study and correlated with moderate microscopic findings in dorsal root ganglia (DRG). Only minimal microscopic findings were observed in oxaliplatin-treated animals, whereas no treatment-related microscopic findings were observed in animals treated with cisplatin and paclitaxel. For all compounds, exposure was confirmed in the PNS tissues. Clinical and functional changes were observed with all the compounds evaluated. NfL levels in plasma proved to be the most sensitive indicator of PNS toxicities, capturing moderate nervous degeneration in DRG. A combined approach that includes both functional assessments and biomarker measurements offers a more comprehensive evaluation than histopathological analysis alone when monitoring drug-induced neurotoxicity in rat models.
Collapse
Affiliation(s)
- Laura Micheli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Section of Pharmacology and Toxicology, Florence, Italy
| | - David Balayssac
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, CHU Clermont-Ferrand, Direction de la Recherche Clinique et de l'Innovation, Clermont-Ferrand, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Cristelle Dalbos
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Laetitia Prival
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Damien Richard
- Université Clermont Auvergne, INSERM, U1107, NEURO-DOL, CHU Clermont-Ferrand, Laboratoire de Pharmacologie et de Toxicologie, Clermont-Ferrand, France
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, U1240, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Lorenzo Di Cesare Mannelli
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Section of Pharmacology and Toxicology, Florence, Italy.
| | - Alessandra Toti
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Section of Pharmacology and Toxicology, Florence, Italy
| | - Clara Ciampi
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Section of Pharmacology and Toxicology, Florence, Italy.
| | - Carla Ghelardini
- University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Section of Pharmacology and Toxicology, Florence, Italy
| | | | - Warren E Glaab
- Merck&Co., Inc., Nonclinical Drug Safety, Rahway, NJ, USA
| | - Yang Hu
- Translational Pharmacokinetics-Pharmacodynamics group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, Uppsala SE-751 23, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics-Pharmacodynamics group, tPKPD, Department of Pharmacy, Faculty of Pharmacy, Uppsala University, Box 580, Uppsala SE-751 23, Sweden
| | | | | | | | - Eric Johnson
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | - Diethilde Theil
- Novartis Pharma AG, Basel, Switzerland; Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
2
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
3
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024; 19:561-577. [PMID: 39469920 PMCID: PMC11633413 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| |
Collapse
|
4
|
Andersen NE, Boehmerle W, Huehnchen P, Stage TB. Neurofilament light chain as a biomarker of chemotherapy-induced peripheral neuropathy. Trends Pharmacol Sci 2024; 45:872-879. [PMID: 39242335 DOI: 10.1016/j.tips.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy. The frequency of CIPN ranges from one in three to almost all patients depending on type of chemotherapy and dose. It causes symptoms that can range from sensitivity to touch and numbness to neuropathic pain in hands and feet. CIPN is notoriously difficult to grade objectively and has mostly relied on a clinician- or patient-based rating that is subjective and poorly reproducible. Thus, considerable effort has been aimed at identifying objective biomarkers of CIPN. Recent in vitro, animal, and clinical studies suggest that neurofilament light chain (NFL), a structural neuronal protein, may be an objective biomarker of CIPN. NFL released from cells to cell culture media reflects in vitro neurotoxicity, while NFL in serum reflects neuronal damage caused by chemotherapy in rodent models. Finally, NFL in serum may be a diagnostic biomarker of CIPN, but its prognostic ability to predict CIPN requires prospective evaluation. We discuss current limitations and future perspectives on the use of NFL as a preclinical and clinical biomarker of CIPN.
Collapse
Affiliation(s)
- Nanna E Andersen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Campusvej 55, Building 45.3-45.4, 5230 Odense M, Denmark
| | - Wolfgang Boehmerle
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Petra Huehnchen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik und Hochschulambulanz für Neurologie, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Anna-Louisa-Karsch Straße 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany
| | - Tore B Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Campusvej 55, Building 45.3-45.4, 5230 Odense M, Denmark.
| |
Collapse
|
5
|
Kashimura A, Nishikawa S, Ozawa Y, Hibino Y, Tateoka T, Mizukawa M, Nishina H, Sakairi T, Shiga T, Aihara N, Kamiie J. Combination of pathological, biochemical and behavioral evaluations for peripheral neurotoxicity assessment in isoniazid-treated rats. J Toxicol Pathol 2024; 37:69-82. [PMID: 38584972 PMCID: PMC10995436 DOI: 10.1293/tox.2023-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
In drug development, assessment of non-clinical peripheral neurotoxicity is important to ensure human safety. Clarifying the pathological features and mechanisms of toxicity enables the management of safety risks in humans by estimating the degree of risk and proposing monitoring strategies. Published guidelines for peripheral neurotoxicity assessment do not provide detailed information on which endpoints should be monitored preferentially and how the results should be integrated and discussed. To identify an optimal assessment method for the characterization of peripheral neurotoxicity, we conducted pathological, biochemical (biomaterials contributing to mechanistic considerations and biomarkers), and behavioral evaluations of isoniazid-treated rats. We found a discrepancy between the days on which marked pathological changes were noted and those on which biochemical and behavioral changes were noted, suggesting the importance of combining these evaluations. Although pathological evaluation is essential for pathological characterization, the results of biochemical and behavioral assessments at the same time points as the pathological evaluation are also important for discussion. In this study, since the measurement of serum neurofilament light chain could detect changes earlier than pathological examination, it could be useful as a biomarker for peripheral neurotoxicity. Moreover, examination of semi-thin specimens and choline acetyltransferase immunostaining were useful for characterizing morphological neurotoxicity, and image analysis of semi-thin specimens enabled us to objectively show the pathological features.
Collapse
Affiliation(s)
- Akane Kashimura
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Satomi Nishikawa
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Yuhei Ozawa
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Yui Hibino
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Takashi Tateoka
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Mao Mizukawa
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Hironobu Nishina
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Tetsuya Sakairi
- Safety Research Laboratories, Sohyaku, Innovative Research
Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1
Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Takanori Shiga
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| |
Collapse
|
6
|
Chiorazzi A, Canta A, Carozzi VA, Meregalli C, Pozzi E, Ballarini E, Rodriguez-Menendez V, Marmiroli P, Cavaletti G, Alberti P. Morphofunctional characterisation of axonal damage in different rat models of chemotherapy-induced peripheral neurotoxicity: The role of nerve excitability testing. J Peripher Nerv Syst 2024; 29:47-57. [PMID: 38009865 DOI: 10.1111/jns.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIMS Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common and long-lasting adverse event of several anticancer compounds, for which treatment has not yet been developed. To fill this gap, preclinical studies are warranted, exploiting highly translational outcome measure(s) to transfer data from bench to bedside. Nerve excitability testing (NET) enables to test in vivo axonal properties and can be used to monitor early changes leading to axonal damage. METHODS We tested NET use in two different CIPN rat models: oxaliplatin (OHP) and paclitaxel (PTX). Animals (female) were chronically treated with either PTX or OHP and compared to respective control animals. NET was performed as soon as the first injection was administered. At the end of the treatment, CIPN onset was verified via a multimodal and robust approach: nerve conduction studies, nerve morphometry, behavioural tests and intraepidermal nerve fibre density. RESULTS NET showed the typical pattern of axonal hyperexcitability in the 72 h following the first OHP administration, whereas it showed precocious signs of axonal damage in PTX animals. At the end of the month of treatment, OHP animals showed a pattern compatible with a mild axonal sensory polyneuropathy. Instead, PTX cohort was characterised by a rather severe sensory axonal polyneuropathy with minor signs of motor involvement. INTERPRETATION NET after the first administration demonstrated the ongoing OHP-related channelopathy, whereas in PTX cohort it showed precocious signs of axonal damage. Therefore, NET could be suggested as an early surrogate marker in clinical trials, to detect precocious changes leading to axonal damage.
Collapse
Affiliation(s)
- Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
7
|
Bonomo R, Canta A, Chiorazzi A, Carozzi VA, Meregalli C, Pozzi E, Alberti P, Frampas CF, Van der Veen DR, Marmiroli P, Skene DJ, Cavaletti G. Effect of age on metabolomic changes in a model of paclitaxel-induced peripheral neurotoxicity. J Peripher Nerv Syst 2024; 29:58-71. [PMID: 38126610 DOI: 10.1111/jns.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND AIMS Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of the most common dose-limiting side effects of paclitaxel (PTX) treatment. Many age-related changes have been hypothesized to underlie susceptibility to damage or impaired regeneration/repair after nerve injury. The results of these studies, however, are inconclusive and other potential biomarkers of nerve impairment need to be investigated. METHODS Twenty-four young (2 months) and 24 adult (9 months) Wistar male rats were randomized to either PTX treatment (10 mg/kg i.v. once/week for 4 weeks) or vehicle administration. Neurophysiological and behavioral tests were performed at baseline, after 4 weeks of treatment and 2-week follow-up. Skin biopsies and nerve specimens collected from sacrificed animals were examined for intraepidermal nerve fiber (IENF) density assessment and nerve morphology/morphometry. Blood and liver samples were collected for targeted metabolomics analysis. RESULTS At the end of treatment, the neurophysiological studies revealed a reduction in sensory nerve action potential amplitude (p < .05) in the caudal nerve of young PTX-animals, and in both the digital and caudal nerve of adult PTX-animals (p < .05). A significant decrease in the mechanical threshold was observed only in young PTX-animals (p < .001), but not in adult PTX-ones. Nevertheless, both young and adult PTX-rats had reduced IENF density (p < .0001), which persisted at the end of follow-up period. Targeted metabolomics analysis showed significant differences in the plasma metabolite profiles between PTX-animals developing peripheral neuropathy and age-matched controls, with triglycerides, diglycerides, acylcarnitines, carnosine, long chain ceramides, sphingolipids, and bile acids playing a major role in the response to PTX administration. INTERPRETATION Our study identifies for the first time multiple related metabolic axes involved in PTX-induced peripheral neurotoxicity, and suggests age-related differences in CIPN manifestations and in the metabolic profile.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- School of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Cecile F Frampas
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Daan R Van der Veen
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
8
|
Alberti P, Argyriou AA, Bruna J, Damaj MI, Faithfull S, Harding A, Hoke A, Knoerl R, Kolb N, Li T, Park SB, Staff NP, Tamburin S, Thomas S, Smith EL. Considerations for establishing and maintaining international research collaboration: the example of chemotherapy-induced peripheral neurotoxicity (CIPN)-a white paper. Support Care Cancer 2024; 32:117. [PMID: 38244122 PMCID: PMC10799817 DOI: 10.1007/s00520-023-08301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
PURPOSE This white paper provides guidance regarding the process for establishing and maintaining international collaborations to conduct oncology/neurology-focused chemotherapy-induced peripheral neurotoxicity (CIPN) research. METHODS An international multidisciplinary group of CIPN scientists, clinicians, research administrators, and legal experts have pooled their collective knowledge regarding recommendations for establishing and maintaining international collaboration to foster advancement of CIPN science. RESULTS Experts provide recommendations in 10 categories: (1) preclinical and (2) clinical research collaboration; (3) collaborators and consortiums; (4) communication; (5) funding; (6) international regulatory standards; (7) staff training; (8) data management, quality control, and data sharing; (9) dissemination across disciplines and countries; and (10) additional recommendations about feasibility, policy, and mentorship. CONCLUSION Recommendations to establish and maintain international CIPN research collaboration will promote the inclusion of more diverse research participants, increasing consideration of cultural and genetic factors that are essential to inform innovative precision medicine interventions and propel scientific discovery to benefit cancer survivors worldwide. RELEVANCE TO INFORM RESEARCH POLICY Our suggested guidelines for establishing and maintaining international collaborations to conduct oncology/neurology-focused chemotherapy-induced peripheral neurotoxicity (CIPN) research set forth a challenge to multinational science, clinical, and policy leaders to (1) develop simple, streamlined research designs; (2) address logistical barriers; (3) simplify and standardize regulatory requirements across countries; (4) increase funding to support international collaboration; and (5) foster faculty mentorship.
Collapse
Affiliation(s)
- Paola Alberti
- University of Milano-Bicocca, School of Medicine and Surgery, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | - Jordi Bruna
- Hospital Universitari de Bellvitge, Neuro-Oncology Unit, Institut Catala d'Oncologia (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara Faithfull
- Trinity College Dublin, School of Medicine, Dublin, Ireland
- University of Dublin, Trinity Centre for Health Sciences St. James's Hospital Campus, Dublin, Ireland
| | - Alice Harding
- University of Alabama at Birmingham, Office of Sponsored Programs, Birmingham, AL, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert Knoerl
- Department of Health Behavior and Biological Sciences, University of Michigan School of Nursing, Ann Arbor, MI, USA
| | - Noah Kolb
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, Burlington, VT, USA
| | - Tiffany Li
- Faculty of Medicine and Health, University of Sydney, Brain and Mind Centre and School of Medical Sciences, Sydney, Australia
| | - Susanna B Park
- Faculty of Medicine and Health, University of Sydney, Brain and Mind Centre and School of Medical Sciences, Sydney, Australia
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simone Thomas
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ellen Lavoie Smith
- Department of Acute, Chronic & Continuing Care, University of Alabama at Birmingham School of Nursing, Birmingham, AL, USA.
| |
Collapse
|
9
|
Koroneos ZA, Ptasinski A, Stauch C, King TS, Fanburg-Smith JC, Aynardi M. Establishment of a Neurodegenerative Charcot Mouse Model. Foot Ankle Int 2023; 44:1278-1286. [PMID: 37818993 PMCID: PMC10717181 DOI: 10.1177/10711007231198822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND This study aimed to mimic the changes from Charcot neuropathic arthropathy in humans by examining the effects of exposing diet-induced obese (DIO) mice to neurotrauma through a regimented running protocol. METHODS Forty-eight male wild-type C57BL/6J mice were obtained at age 6 weeks and separated into 2 groups for diet assignment. After a 1-week acclimation period, half of the mice consumed a high-fat diet (60% fat by kcal) ad libitum to facilitate neuropathic diet-induced obesity whereas the other half were control mice and consumed an age-matched standard low-fat control diet (10% fat by kcal). At age 12 weeks, half of the animals from each group were subjected to a high-intensity inclined treadmill running protocol, which has been previously demonstrated to induce neurotrauma. Sensory testing and radiographic analyses were periodically performed. Histopathologic analyses were performed post killing. RESULTS DIO mice had significantly higher bodyweights, higher body fat percentages, and lower bone mineral density than wildtype control mice that were fed a normal diet throughout the experiment (P < .001 for each). DIO mice displayed significantly reduced sensory function in week 1 (P = .005) and this worsened over time, requiring 20.6% more force for paw withdrawal by week 10 (P < .001). DIO mice that ran demonstrated greater midfoot subluxation and tarsal instability over all time points compared with normal-diet mice that ran (P < .001). Histopathologic analyses revealed that DIO mice that ran demonstrated significant changes compared with controls that ran (P < .001 for each parameter). CONCLUSION Changes akin to the earliest changes observed in or before joint destruction identified in diabetic Charcot neuropathic arthropathy in humans were observed. CLINICAL RELEVANCE There is currently no standard of treatment for patients with Charcot neuropathic arthropathy. This study establishes a protocol for an animal model that can be used to study and compare interventions to treat this disease.
Collapse
Affiliation(s)
- Zachary A. Koroneos
- Center for Orthopaedic Research and Translational Science, The Pennsylvania State University, Hershey, PA, USA
| | - Anna Ptasinski
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Christopher Stauch
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Tonya S. King
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics, The Pennsylvania State University, Hershey, PA, USA
| | - Julie C. Fanburg-Smith
- Departments of Pathology, Orthopaedics, Pediatrics, Center for Orthopaedic Research and Translational Science, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Michael Aynardi
- Center for Orthopaedic Research and Translational Science, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
10
|
Park SB, Cetinkaya-Fisgin A, Argyriou AA, Höke A, Cavaletti G, Alberti P. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: clinical and experimental evidence. J Neurol Neurosurg Psychiatry 2023; 94:962-972. [PMID: 37015772 PMCID: PMC10579520 DOI: 10.1136/jnnp-2021-328323] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/15/2023] [Indexed: 04/06/2023]
Abstract
Multiple pathological mechanisms are involved in the development of chemotherapy-induced peripheral neurotoxicity (CIPN). Recent work has provided insights into the molecular mechanisms underlying chemotherapy-induced axonal degeneration. This review integrates evidence from preclinical and clinical work on the onset, progression and outcome of axonal degeneration in CIPN. We review likely triggers of axonal degeneration in CIPN and highlight evidence of molecular pathways involved in axonal degeneration and their relevance to CIPN, including SARM1-mediated axon degeneration pathway. We identify potential clinical markers of axonal dysfunction to provide early identification of toxicity as well as present potential treatment strategies to intervene in axonal degeneration pathways. A greater understanding of axonal degeneration processes in CIPN will provide important information regarding the development and progression of axonal dysfunction more broadly and will hopefully assist in the development of successful interventions for CIPN and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Aysel Cetinkaya-Fisgin
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andreas A Argyriou
- Department of Neurology, "Agios Andreas" State General Hospital of Patras, Patras, Greece
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
11
|
Lopez-Garzon M, Canta A, Chiorazzi A, Alberti P. Gait analysis in chemotherapy-induced peripheral neurotoxicity rodent models. Brain Res Bull 2023; 203:110769. [PMID: 37748696 DOI: 10.1016/j.brainresbull.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Gait analysis could be used in animal models as an indicator of sensory ataxia due to chemotherapy-induced peripheral neurotoxicity (CIPN). Over the years, gait analysis in in vivo studies has evolved from simple observations carried out by a trained operator to computerised systems with machine learning that allow the quantification of any variable of interest and the establishment of algorithms for behavioural classification. However, there is not a consensus on gait analysis use in CIPN animal models; therefore, we carried out a systematic review. Of 987 potentially relevant studies, 14 were included, in which different methods were analysed (observation, footprint and CatWalk™). We presented the state-of-the-art of possible approaches to analyse sensory ataxia in rodent models, addressing advantages and disadvantages of different methods available. Semi-automated methods may be of interest when preventive or therapeutic strategies are evaluated, also considering their methodological simplicity and automaticity; up to now, only CatWalk™ analysis has been tested. Future studies should expect that CIPN-affected animals tend to reduce hind paw support due to pain, allodynia or loss of sensation, and an increase in swing phase could or should be observed. Few available studies documented these impairments at the last time point, and only appeared later on respect to other earlier signs of CIPN (such as altered neurophysiological findings). For that reason, gait impairment could be interpreted as late repercussions of loss of sensory.
Collapse
Affiliation(s)
- Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain; A02-Cuídate, Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain; Unit of Excellence On Exercise and Health (UCEES), University of Granada, Granada, Spain; Sport and Health Research Center (IMUDs), Granada, Spain
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy; Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
12
|
Thomas S, Dilbarov N, Kelly J, Mercogliano G, Prendergast GC. Diet effects on colonic health influence the efficacy of Bin1 mAb immunotherapy for ulcerative colitis. Sci Rep 2023; 13:11802. [PMID: 37479833 PMCID: PMC10361997 DOI: 10.1038/s41598-023-38830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic disease of the large intestine linked to high fat-high protein diets, a dysbiotic microbiome, and a metabolome linked to diet and/or aberrant circadian rhythms associated with poor sleeping patterns. Understanding diet-affected factors that negatively influence colonic health may offer new insights into how to prevent UC and enhance the efficacy of UC immunotherapy. In this preclinical study, we found that standard or high fiber diets in mice positively influenced their colonic health, whereas a high fat-high protein diet negatively influenced colonic health, consistent with clinical findings. Animals fed a high fat/high protein diet experienced obesity and a reduced colon length, illustrating a phenotype we suggest calling peinosis [hunger-like-condition; Greek, peina: hunger; osis: condition], as marked by a lack of nutrient energy remaining in fecal pellets. Notably, a high fat/high protein diet also led to signs of muscle weakness that could not be explained fully by weight gain. In contrast, mice on a high fiber diet ranked highest compared to other diets in terms of colon length and lack of muscle weakness. That said, mice on a high fiber diet were more prone to UC and toxic responses to immunotherapy, consistent with clinical observations. Recent studies have suggested that a standard diet may be needed to support the efficacy of immunotherapeutic drugs used to prevent and treat UC. Here we observed that protection against UC by Bin1 mAb, a passive UC immunotherapy that acts by coordinately enforcing intestinal barrier function, protecting enteric neurons, and normalizing the microbiome, was associated with increased colonic levels of healthful short-chain fatty acids (SCFA), particularly butyric acid and propionic acid, which help enforce intestinal barrier function. This work offers a preclinical platform to investigate how diet affects UC immunotherapy and the potential of dietary SCFA supplements to enhance it. Further, it suggests that the beneficial effects of passive immunotherapy by Bin1 mAb in UC treatment may be mediated to some extent by promoting increased levels of healthful SCFA.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA.
| | - Nickey Dilbarov
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - Joseph Kelly
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | - George C Prendergast
- Lankenau Institute for Medical Research, 100 E. Lancaster Avenue, Wynnewood, PA, 19096, USA
| |
Collapse
|
13
|
Papynov EK, Shichalin OO, Kapustina OV, Buravlev IY, Apanasevich VI, Mayorov VY, Fedorets AN, Lembikov AO, Gritsuk DN, Ovodova AV, Gribanova SS, Kornakova ZE, Shapkin NP. Synthetic Calcium Silicate Biocomposite Based on Sea Urchin Skeleton for 5-Fluorouracil Cancer Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093495. [PMID: 37176377 PMCID: PMC10180529 DOI: 10.3390/ma16093495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Synthetic calcium silicates and phosphates are promising compounds for targeted drug delivery for the effective treatment of cancerous tumors, and for minimizing toxic effects on the patient's entire body. This work presents an original synthesis of a composite based on crystalline wollastonite CaSiO3 and combeite Na4Ca4(Si6O18), using a sea urchin Mesocentrotus nudus skeleton by microwave heating under hydrothermal conditions. The phase and elemental composition and structure of the obtained composite were studied by XRF, REM, BET, and EDS methods, depending on the microwave heating time of 30 or 60 min, respectively, and the influence of thermo-oxidative post-treatment of samples. The role of the sea urchin skeleton in the synthesis was shown. First, it provides a raw material base (source of Ca2+) for the formation of the calcium silicate composite. Second, it is a matrix for the formation of its porous inorganic framework. The sorption capacity of the composite, with respect to 5-fluorouracil, was estimated, the value of which was 12.3 mg/L. The resulting composite is a promising carrier for the targeted delivery of chemotherapeutic drugs. The mechanism of drug release from an inorganic natural matrix was also evaluated by fitting its release profile to various mathematical models.
Collapse
Affiliation(s)
- Evgeniy K Papynov
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Oleg O Shichalin
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Olesya V Kapustina
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Igor Yu Buravlev
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Vladimir I Apanasevich
- Department of Oncology and Radiation Therapy, Pacific State Medical University, 2, Ostryakov Aven., 690990 Vladivostok, Russia
| | - Vitaly Yu Mayorov
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Alexander N Fedorets
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Alexey O Lembikov
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Danila N Gritsuk
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Anna V Ovodova
- Department of Oncology and Radiation Therapy, Pacific State Medical University, 2, Ostryakov Aven., 690990 Vladivostok, Russia
| | - Sofia S Gribanova
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Zlata E Kornakova
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Nikolay P Shapkin
- Department of Nuclear Technology, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
14
|
Klein I, Isensee J, Wiesen MHJ, Imhof T, Wassermann MK, Müller C, Hucho T, Koch M, Lehmann HC. Glycyrrhizic Acid Prevents Paclitaxel-Induced Neuropathy via Inhibition of OATP-Mediated Neuronal Uptake. Cells 2023; 12:cells12091249. [PMID: 37174648 PMCID: PMC10177491 DOI: 10.3390/cells12091249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Peripheral neuropathy is a common side effect of cancer treatment with paclitaxel. The mechanisms by which paclitaxel is transported into neurons, which are essential for preventing neuropathy, are not well understood. We studied the uptake mechanisms of paclitaxel into neurons using inhibitors for endocytosis, autophagy, organic anion-transporting polypeptide (OATP) drug transporters, and derivatives of paclitaxel. RT-qPCR was used to investigate the expression levels of OATPs in different neuronal tissues and cell lines. OATP transporters were pharmacologically inhibited or modulated by overexpression and CRISPR/Cas9-knock-out to investigate paclitaxel transport in neurons. Through these experiments, we identified OATP1A1 and OATP1B2 as the primary neuronal transporters for paclitaxel. In vitro inhibition of OATP1A1 and OAT1B2 by glycyrrhizic acid attenuated neurotoxicity, while paclitaxel's antineoplastic effects were sustained in cancer cell lines. In vivo, glycyrrhizic acid prevented paclitaxel-induced toxicity and improved behavioral and electrophysiological measures. This study indicates that a set of OATPs are involved in paclitaxel transport into neurons. The inhibition of OATP1A1 and OATP1B2 holds a promising strategy to prevent paclitaxel-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Ines Klein
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Martin H J Wiesen
- Pharmacology at the Laboratory Diagnostics Center, Therapeutic Drug Monitoring, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Imhof
- Center for Biochemistry, Institute for Dental Research and Oral Musculoskeletal Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Meike K Wassermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Carsten Müller
- Pharmacology at the Laboratory Diagnostics Center, Therapeutic Drug Monitoring, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Center for Biochemistry, Institute for Dental Research and Oral Musculoskeletal Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Department of Neurology, Hospital Leverkusen, 51375 Leverkusen, Germany
| |
Collapse
|
15
|
Adedara IA, Mohammed KA, Canzian J, Rosemberg DB, Aschner M, Farombi EO, Rocha JB. Nauphoeta cinerea as an emerging model in neurotoxicology. ADVANCES IN NEUROTOXICOLOGY 2023; 9:181-196. [PMID: 37389201 PMCID: PMC10310038 DOI: 10.1016/bs.ant.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao Batista Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
16
|
Lysosomal dysfunction in Schwann cells is involved in bortezomib-induced peripheral neurotoxicity. Arch Toxicol 2023; 97:1385-1396. [PMID: 36826473 DOI: 10.1007/s00204-023-03468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Bortezomib (BTZ) is a proteasome inhibitor serves as a first-line drug for multiple myeloma treatment. BTZ-induced peripheral neuropathy (BIPN) is the most common adverse effect of BTZ with an incidence as high as 40-60%. However, the pathological mechanisms underlying BIPN remain largely unclear. BTZ leads to dramatic Schwann cell demyelination in sciatic nerves. Previous studies implied that myelin debris was predominantly degraded via autophagy-lysosome pathway in Schwann cells. However, the association of autophagy with BIPN has not been made. Mice were treated with BTZ (2 mg/kg, i.v.) on Day1 and Day4 each week for continuous 4 weeks. BTZ-treated mice showed enhanced mechanical hyperalgesia, decreased tail nerve conduction and sciatic nerve demyelination. Unexpectedly, BTZ led to the accumulation of autophagic vesicles, LC3-II and p62 in the sciatic nerve. Moreover, BTZ blocked autophagic flux in RSC96 Schwann cells as determined by mcherry-GFP-LC3 assay, suggesting BTZ may impair lysosomal function rather than inducing autophagy in Schwann cells. BTZ significantly reduced the lysosomal activity in Schwann cells as determined by reduced LysoTracker Red and DQ-Red-BSA staining and increased the level of immature Cathepsin B (CTSB). Remarkably, lysosomal activators PP242 and Torin1, significantly reversed the blockage of autophagic flux by BTZ. We further verified that Torin1 rescued the demyelination, nerve conduction and reduced the mechanical hyperalgesia in BIPN mice. Additionally, Torin1 did not compromise the efficacy of BTZ in suppressing multiple myeloma RPMI8226 cell. Taken together, we identified that lysosomal dysfunction in Schwann cells caused by BTZ is involved in the BIPN pathology. Improved lysosomal function in Schwann cells can be a promising strategy for BIPN treatment.
Collapse
|
17
|
Soluble Epoxide Hydrolase Inhibitor TPPU Alleviates Nab-Paclitaxel-Induced Peripheral Neuropathic Pain via Suppressing NF- κB Signalling in the Spinal Cord of a Rat. Pain Res Manag 2023; 2023:9058774. [PMID: 36819745 PMCID: PMC9931472 DOI: 10.1155/2023/9058774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
Objective Paclitaxel-induced peripheral neuropathy (PIPN) is a debilitating and difficult-to-treat side effect of paclitaxel. Soluble epoxide hydrolase (sEH) can rapidly metabolize the endogenous anti-inflammatory mediators' epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. This study aimed to assess whether the sEH inhibitor N-(1-(1-oxopropy)-4-piperidinyl]-N'-(trifluoromethoxy) phenyl)-urea (TPPU) plays a critical role in PIPN of rats and provides a new target for treatment. Methods A Sprague-Dawley male rat model of PIPN induced by nab-paclitaxel was established. Rats were randomly divided into a control group, nab-paclitaxel group, and nab-paclitaxel + TPPU (sEH inhibitor) group, with 36 rats in each group. The effects of the sEH inhibitor TPPU on behavioural assays, apoptosis, glial activation, axonal injury, microstructure, and permeability of the blood-spinal cord barrier were detected, and the underlying mechanisms were explored by examining the expression of NF-κB signalling pathways, inflammatory cytokines, and oxidative stress. Results The results showed that the mechanical and thermal pain thresholds of rats were decreased after nab-paclitaxel treatment, accompanied by an increased expression of axonal injury-related proteins, enhanced cell apoptosis, aggravated destruction of vascular permeability, intense glial responses, and elevated inflammatory cytokines and oxidative stress in the L4-L6 spinal cord. TPPU restored the mechanical and thermal thresholds, decreased cell apoptosis, alleviated axonal injury and glial responses, and protected vascular permeability by increasing the expression of tight junction proteins. TPPU relieved PIPN by inhibiting the activation of the sEH and NF-κB signalling pathways by decreasing the levels of inflammatory cytokines and oxidative stress. Conclusion These findings support a role for sEH in PIPN and suggest that the inhibition of sEH represents a potential new therapeutic target for PIPN.
Collapse
|
18
|
Morpho-Functional Characterisation of the Rat Ventral Caudal Nerve in a Model of Axonal Peripheral Neuropathy. Int J Mol Sci 2023; 24:ijms24021687. [PMID: 36675203 PMCID: PMC9863172 DOI: 10.3390/ijms24021687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Peripheral Neuropathies (PN) are common conditions whose treatment is still lacking in most cases. Animal models are crucial, but experimental procedures should be refined in some cases. We performed a detailed characterization of the ventral caudal nerve to contribute to a more effective assessment of axonal damage in future PN studies. PN was induced via weekly systemic injection of a neurotoxic drug (paclitaxel); we compared the control and PN-affected rats, performing serial neurophysiological evaluations of the caudal nerve for its entire length. On the same nerve portions, we performed light microscopy and ultrastructural pathological observations to assess the severity of damage and verify the integrity of the surrounding structures. Neurophysiological and morphological analyses confirmed that a severe axonopathy had ensued in the PN group, with a length-dependent modality, matching morphological observations. The site of neurophysiological recording (e.g., distance from the base of the tail) was critical for achieving useful data. A flexible experimental paradigm should be considered in animal studies investigating axonal PN, particularly if the expected severity is relevant; the mid-portion of the tail might be the most appropriate site: there damage might be remarkable but neither as extreme as at the tip of the tail nor as mild as at the base of the tail.
Collapse
|
19
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
20
|
Tsai NW, Lin CC, Yeh TY, Chiu YA, Chiu HH, Huang HP, Hsieh ST. An induced pluripotent stem cell-based model identifies molecular targets of vincristine neurotoxicity. Dis Model Mech 2022; 15:dmm049471. [PMID: 36518084 PMCID: PMC10655812 DOI: 10.1242/dmm.049471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2023] Open
Abstract
To model peripheral nerve degeneration and investigate molecular mechanisms of neurodegeneration, we established a cell system of induced pluripotent stem cell (iPSC)-derived sensory neurons exposed to vincristine, a drug that frequently causes chemotherapy-induced peripheral neuropathy. Sensory neurons differentiated from iPSCs exhibit distinct neurochemical patterns according to the immunocytochemical phenotypes, and gene expression of peripherin (PRPH, hereafter referred to as Peri) and neurofilament heavy chain (NEFH, hereafter referred to as NF). The majority of iPSC-derived sensory neurons were PRPH positive/NEFH negative, i.e. Peri(+)/NF(-) neurons, whose somata were smaller than those of Peri(+)/NF(+) neurons. On exposure to vincristine, projections from the cell body of a neuron, i.e. neurites, were degenerated quicker than somata, the lethal concentration to kill 50% (LC50) of neurites being below the LC50 for somata, consistent with the clinical pattern of length-dependent neuropathy. We then examined the molecular expression in the MAP kinase signaling pathways of, extracellular signal-regulated kinases 1/2 (MAPK1/3, hereafter referred to as ERK), p38 mitogen-activated protein kinases (MAPK11/12/13/14, hereafter referred to as p38) and c-Jun N-terminal kinases (MAPK8/9/10, hereafter referred to as JNK). Regarding these three cascades, only phosphorylation of JNK was upregulated but not that of p38 or ERK1/2. Furthermore, vincristine-treatment resulted in impaired autophagy and reduced autophagic flux. Rapamycin-treatment reversed the effect of impaired autophagy and JNK activation. These results not only established a platform to study peripheral degeneration of human neurons but also provide molecular mechanisms for neurodegeneration with the potential for therapeutic targets.
Collapse
Affiliation(s)
- Neng-Wei Tsai
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Cheng-Chen Lin
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-An Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsin-Hui Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsiang-Po Huang
- Department of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei 100, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
21
|
Calls A, Torres‐Espin A, Tormo M, Martínez‐Escardó L, Bonet N, Casals F, Navarro X, Yuste VJ, Udina E, Bruna J. A transient inflammatory response contributes to oxaliplatin neurotoxicity in mice. Ann Clin Transl Neurol 2022; 9:1985-1998. [PMID: 36369764 PMCID: PMC9735376 DOI: 10.1002/acn3.51691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Peripheral neuropathy is a relevant dose-limiting adverse event that can affect up to 90% of oncologic patients with colorectal cancer receiving oxaliplatin treatment. The severity of neurotoxicity often leads to dose reduction or even premature cessation of chemotherapy. Unfortunately, the limited knowledge about the molecular mechanisms related to oxaliplatin neurotoxicity leads to a lack of effective treatments to prevent the development of this clinical condition. In this context, the present work aimed to determine the exact molecular mechanisms involved in the development of oxaliplatin neurotoxicity in a murine model to try to find new therapeutical targets. METHODS By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of sensory neurons and satellite glial cells (SGC) of the Dorsal Root Ganglia (DRG) from a well-characterized mouse model of oxaliplatin neurotoxicity. RESULTS Analysis of scRNA-seq data pointed to modulation of inflammatory processes in response to oxaliplatin treatment. In this line, we observed increased levels of NF-kB p65 protein, pro-inflammatory cytokines, and immune cell infiltration in DRGs and peripheral nerves of oxaliplatin-treated mice, which was accompanied by mechanical allodynia and decrease in sensory nerve amplitudes. INTERPRETATION Our data show that, in addition to the well-described DNA damage, oxaliplatin neurotoxicity is related to an exacerbated pro-inflammatory response in DRG and peripheral nerves, and open new insights in the development of anti-inflammatory strategies as a treatment for preventing peripheral neuropathy induced by oxaliplatin.
Collapse
Affiliation(s)
- Aina Calls
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Abel Torres‐Espin
- Department of Neurological Surgery, Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marc Tormo
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Scientific IT Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Laura Martínez‐Escardó
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Núria Bonet
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Víctor J. Yuste
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain,Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| |
Collapse
|
22
|
Ballarini E, Malacrida A, Rodriguez-Menendez V, Pozzi E, Canta A, Chiorazzi A, Monza L, Semperboni S, Meregalli C, Carozzi VA, Hashemi M, Nicolini G, Scuteri A, Housley SN, Cavaletti G, Alberti P. Sodium-Calcium Exchanger 2: A Pivotal Role in Oxaliplatin Induced Peripheral Neurotoxicity and Axonal Damage? Int J Mol Sci 2022; 23:10063. [PMID: 36077454 PMCID: PMC9456447 DOI: 10.3390/ijms231710063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN.
Collapse
Affiliation(s)
- Elisa Ballarini
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Alessio Malacrida
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Annalisa Canta
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Alessia Chiorazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Laura Monza
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Sara Semperboni
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Cristina Meregalli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Valentina Alda Carozzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Maryamsadat Hashemi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Gabriella Nicolini
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Arianna Scuteri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Stephen N. Housley
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| |
Collapse
|
23
|
Stojanović NM, Mladenović MZ, Maslovarić A, Stojiljković NI, Randjelović PJ, Radulović NS. Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms - In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114788. [PMID: 34718102 DOI: 10.1016/j.jep.2021.114788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Besides psyche-related symptoms, patients with anxiety disorders can have a large number of somatic symptoms as well. Although the treatment of these disorders is mainly focused on resolving their mental component, one cannot neglect the need for the treatment of accompanying somatic symptoms. Melissa officinalis L. (lemon balm), in various formulations, has been extensively used as an ethnomedicinal remedy for the treatment of different psyche-related symptoms, and its use is considered relatively safe. AIM OF THE STUDY In the present study, the activity of M. officinalis (MO) essential oil was evaluated in several in vitro and in vivo models mimicking or involving anxiety-related somatic symptoms. MATERIALS AND METHODS To address the effect of MO essential oil on the gastrointestinal and heart-related symptoms accompanying anxiety disorders, in vitro models were utilized that follow the function of the isolated mouse ileum and atria tissues, respectively, after exposure to MO essential oil. Effects of MO essential oil on BALB/c mice motor activity was estimated using the open field, rota-rod, and horizontal wire tests. Additionally, the essential oil was assayed for its potential in inhibiting acetylcholinesterase activity. RESULTS The performance of mice treated with 25 mg/kg of the oil showed a statistically significant decrease in the motor impairment arising from acute anxiety (open field test), while there was a prolonged latency and a reduction of the frequency of falling from a rotating rod and/or a horizontal wire (signs of muscle weakness/spasms). Concentrations of the essential oil higher than 1 μg/mL were found to inhibit both spontaneous and induced ileum contractions. Moreover, the essential oil and citronellal were found to decrease isolated mouse atria contraction frequency, as well as contraction force. However, the oil was found to be a very weak acetylcholinesterase inhibitor. CONCLUSION The modulation of anxiety-related symptoms by the oil was found not to be mediated through the inhibition of the acetylcholinesterase, nonetheless, the mechanistic studies involving the ileum and cardiac tissues, revealed that the activity of MO and citronellal might be related to the modification of either voltage-gated Ca2+ channels or muscarinic receptors. Mice locomotion, balance, and muscle strength were not impacted by the essential oil; however, its main constituent, citronellal, was found to exert a certain degree of muscle function inhibition. All these results suggest that the activity of MO essential oil arises from synergistic and/or antagonistic interactions of its constituents, and is not completely dependent on the oil's main constituent.
Collapse
Affiliation(s)
| | - Marko Z Mladenović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Serbia.
| | | | | | | | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Serbia.
| |
Collapse
|
24
|
Ward SJ, Lichtman AH, Piomelli D, Parker LA. Cannabinoids and Cancer Chemotherapy-Associated Adverse Effects. J Natl Cancer Inst Monogr 2021; 2021:78-85. [PMID: 34850893 DOI: 10.1093/jncimonographs/lgab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
The use of cannabis is not unfamiliar to many cancer patients, as there is a long history of its use for cancer pain and/or pain, nausea, and cachexia induced by cancer treatment. To date, the US Food and Drug Administration has approved 2 cannabis-based pharmacotherapies for the treatment of cancer chemotherapy-associated adverse effects: dronabinol and nabilone. Over the proceeding decades, both research investigating and societal attitudes toward the potential utility of cannabinoids for a range of indications have progressed dramatically. The following monograph highlights recent preclinical research focusing on promising cannabinoid-based approaches for the treatment of the 2 most common adverse effects of cancer chemotherapy: chemotherapy-induced peripheral neuropathy and chemotherapy-induced nausea and vomiting. Both plant-derived and synthetic approaches are discussed, as is the potential relative safety and effectiveness of these approaches in relation to current treatment options, including opioid analgesics.
Collapse
Affiliation(s)
- Sara Jane Ward
- Department of Neural Sciences, Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, Center for the Study of Cannabis, University of California, Irvine, CA, USA
| | - Linda A Parker
- Department of Psychology and Neuroscience, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
25
|
Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9100229. [PMID: 34678925 PMCID: PMC8540213 DOI: 10.3390/toxics9100229] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell death via microtubule stabilization interrupting cell mitosis. However, paclitaxel also affects cells of the central and peripheral nervous system. The main symptoms are pain and numbness in hands and feet due to paclitaxel accumulation in the dorsal root ganglia. This review describes in detail the pathomechanisms of paclitaxel in the peripheral nervous system. Symptoms occur due to a length-dependent axonal sensory neuropathy, where axons are symmetrically damaged and die back. Due to microtubule stabilization, axonal transport is disrupted, leading to ATP undersupply and oxidative stress. Moreover, mitochondria morphology is altered during paclitaxel treatment. A key player in pain sensation and axonal damage is the paclitaxel-induced inflammation in the spinal cord as well as the dorsal root ganglia. An increased expression of chemokines and cytokines such as IL-1β, IL-8, and TNF-α, but also CXCR4, RAGE, CXCL1, CXCL12, CX3CL1, and C3 promote glial activation and accumulation, and pain sensation. These findings are further elucidated in this review.
Collapse
|
26
|
Housley SN, Rotterman TM, Nardelli P, Carrasco DI, Noel RK, O'Farrell L, Cope TC. Effects of route of administration on neural exposure to platinum-based chemotherapy treatment: a pharmacokinetic study in rat. Neurotoxicology 2021; 86:162-165. [PMID: 34363843 DOI: 10.1016/j.neuro.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
The persisting need for effective clinical treatment of chemotherapy-induced neurotoxicity (CIN) motivates critical evaluation of preclinical models of CIN for their translational relevance. The present study aimed to provide the first quantitative evaluation of neural tissue exposed in vivo to a platinum-based anticancer compound, oxaliplatin (OX) during and after two commonly used dosing regimens: slow IV infusion used clinically and bolus IP injection used preclinically. Inductively-coupled plasma mass spectrometry analysis of dorsal root ganglia indicated that while differences in the temporal dynamics of platinum distribution exist, key drivers of neurotoxicity, e.g. peak concentrations and exposure, were not different across the two routes of administration. We conclude that the IP route of OX administration achieves clinically relevant pharmacokinetic exposure of neural tissues in a rodent model of CIN.
Collapse
Affiliation(s)
- Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia; Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA.
| | - Travis M Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Dario I Carrasco
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Richard K Noel
- Physiological Research Laboratory, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laura O'Farrell
- Physiological Research Laboratory, Georgia Institute of Technology, Atlanta, GA, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332, Georgia; Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30309, USA; W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Georgia Institute of Technology, Atlanta, 30332, Georgia.
| |
Collapse
|
27
|
Meade JA, Fowlkes AN, Wood MJ, Kurtz MC, May MM, Toma WB, Warncke UO, Mann J, Mustafa M, Lichtman AH, Damaj MI. Effects of chemotherapy on operant responding for palatable food in male and female mice. Behav Pharmacol 2021; 32:422-434. [PMID: 34050046 PMCID: PMC8266730 DOI: 10.1097/fbp.0000000000000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients treated with cancer chemotherapeutics frequently report chemotherapy-induced peripheral neuropathy (CIPN), changes in mood (depression and anxiety) and functional impairments. Rodent models of CIPN elicit limited alterations in functional behaviors, which pose challenges in developing preclinical models of chemotherapy-induced behavioral depression. The study examined the consequences of chemotherapy-induced mechanical hypersensitivity (paclitaxel: 32 or 64 mg/kg, cumulative; oxaliplatin: 30 mg/kg, cumulative) on behavioral depression, as measured with operant responding for palatable food during periods of food restriction and ad libitum chow, consumption of noncontingently available palatable food in the presence of ad libitum chow, and voluntary wheel running. The study employed two inbred mouse strains (C57BL/6J and Balb/cJ) and examined potential sex differences. All chemotherapeutic regimens caused profound mechanical hypersensitivity for the duration of the observation periods (up to 7 months), but no treatments changed voluntary wheel running or consumption of noncontingent palatable food. The high dose of paclitaxel temporarily reduced operant responding for palatable food in male C57BL/6J mice undergoing food restriction or maintained on ad libitum chow. However, paclitaxel failed to decrease operant responding for palatable food in free-feeding female C57BL/6J mice or Balb/cJ mice of either sex. Moreover, oxaliplatin did not significantly alter operant responding for palatable food in male or female C57BL/6J mice maintained on ad libitum chow. These findings demonstrate a dissociation between chemotherapy-induced mechanical hypersensitivity and behavioral depression. The transient effects of paclitaxel on operant responding in male C57BL/6J mice may represent a fleeting behavioral correlate of chemotherapy-associated pain-like behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Urszula O Warncke
- Department of Pharmacology and Toxicology
- Center for Clinical and Translational Research, School of Medicine
| | - Jared Mann
- Department of Pharmacology and Toxicology
| | | | - Aron H Lichtman
- Department of Pharmacology and Toxicology
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
28
|
Warncke UO, Toma W, Meade JA, Park AJ, Thompson DC, Caillaud M, Bigbee JW, Bryant CD, Damaj MI. Impact of Dose, Sex, and Strain on Oxaliplatin-Induced Peripheral Neuropathy in Mice. FRONTIERS IN PAIN RESEARCH 2021; 2:683168. [PMID: 35295533 PMCID: PMC8915759 DOI: 10.3389/fpain.2021.683168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose limiting, and long-lasting side effect of chemotherapy treatment. Unfortunately, no treatment has proven efficacious for this side effect. Rodent models play a crucial role in the discovery of new mechanisms underlying the initiation, progression, and recovery of CIPN and the potential discovery of new therapeutics. However, there is limited consistency in the dose, the sex, age, and genetic background of the animal used in these studies and the outcome measures used in evaluation of CIPN rely primarily on noxious and reflexive measures. The main objective of this study was to provide a comprehensive and systematic characterization of oxaliplatin-induced peripheral neuropathy in mice by using a battery of behavioral, sensory, electrophysiological, and morphometric measures in both sexes of the two widely used strains of mice, C57BL/6J and BALB/cJ. Mice received intraperitoneal injections of 3 or 30 mg/kg cumulative doses of oxaliplatin over the course of 2 weeks. Both doses induced long-term and time-dependent mechanical and cold hypersensitivity. Our results show that 30 mg/kg oxaliplatin reduced the locomotor activity in C57BL/6J mice, and C57BL/6J females showed anxiety-like behavior one-week post completion of treatment. In the same dose group, BALB/cJ males and females sustained a larger decrease in sucrose preference than either male or female C57BL/6J mice. Both strains failed to show significant changes in burrowing and nesting behaviors. Two clinically relevant assessments of changes to the peripheral nerve fibers, nerve conduction and intraepidermal nerve fiber density (IENFD) were evaluated. Only BALB/cJ females showed significant reduction in the nerve conduction amplitude 1 week after 30 mg/kg oxaliplatin regimen. Moreover, this dose of the chemo agent reduced the IENF density in both sexes and strains. Our findings suggest that mouse strain, sex, and assay type should be carefully considered when assessing the effects of oxaliplatin and potential therapeutic interventions.
Collapse
Affiliation(s)
- Urszula O Warncke
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Julie A Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Abigail J Park
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Danielle C Thompson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - John W Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
29
|
Chiang JCB, Goldstein D, Park SB, Krishnan AV, Markoulli M. Corneal nerve changes following treatment with neurotoxic anticancer drugs. Ocul Surf 2021; 21:221-237. [PMID: 34144206 DOI: 10.1016/j.jtos.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Survival rates of cancer has improved with the development of anticancer drugs including systemic chemotherapeutic agents. However, long-lasting side effects could impact treated patients. Neurotoxic anticancer drugs are specific agents which cause chemotherapy-induced peripheral neuropathy (CIPN), a debilitating condition that severely deteriorates quality of life of cancer patients and survivors. The ocular surface is also prone to neurotoxicity but investigation into the effects of neurotoxic chemotherapy on the ocular surface has been more limited compared to other systemic etiologies such as diabetes. There is also no standardized protocol for CIPN diagnosis with an absence of a reliable, objective method of observing nerve damage structurally. As the cornea is the most densely innervated region of the body, researchers have started to focus on corneal neuropathic changes that are associated with neurotoxic chemotherapy treatment. In-vivo corneal confocal microscopy enables rapid and objective structural imaging of ocular surface microscopic structures such as corneal nerves, while esthesiometers provide means of functional assessment by examining corneal sensitivity. The current article explores the current guidelines and gaps in our knowledge of CIPN diagnosis and the potential role of in-vivo corneal confocal microscopy as a diagnostic or prognostic tool. Corneal neuropathic changes with neurotoxic anticancer drugs from animal research progressing through to human clinical studies are also discussed, with a focus on how these data inform our understanding of CIPN.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
30
|
Nicotinamide riboside relieves paclitaxel-induced peripheral neuropathy and enhances suppression of tumor growth in tumor-bearing rats. Pain 2021; 161:2364-2375. [PMID: 32433266 DOI: 10.1097/j.pain.0000000000001924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide riboside (NR) is a vitamin B3 precursor of NAD that blunts diabetic and chemotherapy-induced peripheral neuropathy in preclinical models. This study examined whether NR also blunts the loss of intraepidermal nerve fibers induced by paclitaxel, which is associated with peripheral neuropathy. The work was conducted in female rats with N-methyl-nitrosourea (MNU)-induced tumors of the mammary gland to increase its translational relevance, and to assess the interaction of NR with paclitaxel and NR's effect on tumor growth. Once daily oral administration of 200 mg/kg NR p.o. beginning with the first of 3 i.v. injections of 6.6 mg/kg paclitaxel to tumor-bearing rats significantly decreased paclitaxel-induced hypersensitivity to tactile and cool stimuli, as well as place-escape avoidance behaviors. It also blunted the loss of intraepidermal nerve fibers in tumor-bearing rats, as well as a separate cohort of tumor-naive rats. Unexpectedly, concomitant administration of NR during paclitaxel treatment further decreased tumor growth; thereafter, tumor growth resumed at the same rate as vehicle-treated controls. Administration of NR also decreased the percentage of Ki67-positive tumor cells in these rats. Once daily administration of NR did not seem to alter tumor growth or the percentage of Ki67-positive tumor cells in rats that were not treated with paclitaxel and followed for 3 months. These results further support the ability of NR to play a protective role after nerve injury. They also suggest that NR may not only alleviate peripheral neuropathy in patients receiving taxane chemotherapy, but also offer an added benefit by possibly enhancing its tumor-suppressing effects.
Collapse
|
31
|
CAILLAUD M, PATEL NH, WHITE A, WOOD M, Contreras KM, TOMA W, Alkhlaif Y, ROBERTS JL, Tran TH, JACKSON AB, POKLIS J, GEWIRTZ DA, DAMAJ MI. Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR- α) to reduce paclitaxel-induced peripheral neuropathy. Brain Behav Immun 2021; 93:172-185. [PMID: 33434562 PMCID: PMC8226373 DOI: 10.1016/j.bbi.2021.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Paclitaxel, a widely used anti-cancer drug, is frequently associated with prolonged and severe peripheral neuropathies (PIPN), associated with neuroinflammation. Currently, PIPN effective treatments are lacking. Peroxisome Proliferator-Activated Receptor-α (PPAR-⍺) can modulate inflammatory responses. Thus, the use of PPAR-⍺ agonists, such as fibrates (fenofibrate and choline-fenofibrate), currently used in dyslipidemia treatment, could represent an interesting therapeutic approach in PIPN. EXPERIMENTAL APPROACH Our studies tested the efficacy of fenofibrate (150 mg/kg, daily, i.p.) and choline fenofibrate (60 mg/kg daily, p.o.) in reversing and preventing the development of PIPN (paclitaxel: 8 mg/kg, i.p., every other day for 4 days) in male and female C57BL/6J mice. Mechanical and cold hypersensitivity, conditioned place preference, sensory nerve action potential (SNAP), as well as the expression of PPAR-⍺, TNF-⍺, IL-1β and IL-6 mRNA were evaluated. KEY RESULTS While fenofibrate treatment partially reversed and prevented the development of mechanical hypersensitivity, this was completely reversed and prevented by choline-fenofibrate. Both fibrates were able to completely reverse and prevent cold hypersensitivity induced by paclitaxel. The reduction of SNAP amplitude induced by paclitaxel was also reversed by both fenofibrate and choline-fenofibrate. Our results indicate that suppression of paclitaxel-induced hypersensitivity by fibrates involves the regulation of PPAR-⍺ expression and decrease neuroinflammation in DRG. Finally, the co-treatment of Paclitaxel and fenofibric acid (fibrates active metabolite) was tested on different cancer cell lines, no decrease in the antitumoral effect of paclitaxel was observed. CONCLUSIONS AND IMPLICATIONS Taken together, our results show for the first time the therapeutic potential (prevention and reversal) of fibrates in PIPN and opens to a potential pharmacological repurposing of these drugs.
Collapse
Affiliation(s)
- Martial CAILLAUD
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA.,Corresponding authors:,
| | - Nipa H. PATEL
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Alyssa WHITE
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Mackinsey WOOD
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Katherine M. Contreras
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Wisam TOMA
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Jane L. ROBERTS
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Tammy H. Tran
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Asti B. JACKSON
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - Justin POKLIS
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - David A. GEWIRTZ
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA
| | - M. Imad DAMAJ
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA.,Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, USA.,Corresponding authors:,
| |
Collapse
|
32
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
33
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
34
|
Pineda-Farias JB, Saloman JL, Scheff NN. Animal Models of Cancer-Related Pain: Current Perspectives in Translation. Front Pharmacol 2021; 11:610894. [PMID: 33381048 PMCID: PMC7768910 DOI: 10.3389/fphar.2020.610894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023] Open
Abstract
The incidence of pain in cancer patients during diagnosis and treatment is exceedingly high. Although advances in cancer detection and therapy have improved patient prognosis, cancer and its treatment-associated pain have gained clinical prominence. The biological mechanisms involved in cancer-related pain are multifactorial; different processes for pain may be responsible depending on the type and anatomic location of cancer. Animal models of cancer-related pain have provided mechanistic insights into the development and process of pain under a dynamic molecular environment. However, while cancer-evoked nociceptive responses in animals reflect some of the patients’ symptoms, the current models have failed to address the complexity of interactions within the natural disease state. Although there has been a recent convergence of the investigation of carcinogenesis and pain neurobiology, identification of new targets for novel therapies to treat cancer-related pain requires standardization of methodologies within the cancer pain field as well as across disciplines. Limited success of translation from preclinical studies to the clinic may be due to our poor understanding of the crosstalk between cancer cells and their microenvironment (e.g., sensory neurons, infiltrating immune cells, stromal cells etc.). This relatively new line of inquiry also highlights the broader limitations in translatability and interpretation of basic cancer pain research. The goal of this review is to summarize recent findings in cancer pain based on preclinical animal models, discuss the translational benefit of these discoveries, and propose considerations for future translational models of cancer pain.
Collapse
Affiliation(s)
- Jorge B Pineda-Farias
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jami L Saloman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Hillman Cancer Center, University of Pittsburgh Medicine Center, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Caillaud M, Patel NH, Toma W, White A, Thompson D, Mann J, Tran TH, Roberts JL, Poklis JL, Bigbee JW, Fang X, Gewirtz DA, Damaj MI. A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. Cancers (Basel) 2020; 13:cancers13010069. [PMID: 33383736 PMCID: PMC7795224 DOI: 10.3390/cancers13010069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Paclitaxel, a drug used in the treatment of malignancies such as lung, ovarian and breast cancer, often produces severe side effects, among which is peripheral neuropathy. This neuropathy involves diffuse or localized pain, notably burning pain, cold and mechanical hyperexcitability. Recently, fenofibrate, a Food and Drug Administration (FDA)-approved drug for the treatment of dyslipidemia, has been shown to reduce the severity of symptoms in other forms of peripheral neuropathy. In the current work, we tested whether fenofibrate could reverse mechanical and cold hypersensitivity and improve motivation and the reduction in nerve conduction in a mouse model of paclitaxel-induced neuropathy. Our behavioral, histological and molecular assessments indicate that fenofibrate prevents the development of paclitaxel-induced neuropathy. Taken together, our studies support the therapeutic potential of fenofibrate in the prevention of paclitaxel-induced neuropathy and suggest the possible repurposing of this drug for this purpose in the clinic. Abstract Background: Paclitaxel-induced peripheral neuropathy (PIPN) is a major adverse effect of this chemotherapeutic agent that is used in the treatment of a number of solid malignancies. PIPN leads notably to burning pain, cold and mechanical allodynia. PIPN is thought to be a consequence of alterations of mitochondrial function, hyperexcitability of neurons, nerve fiber loss, oxidative stress and neuroinflammation in dorsal root ganglia (DRG) and spinal cord (SC). Therefore, reducing neuroinflammation could potentially attenuate neuropathy symptoms. Peroxisome proliferator-activated receptor-α (PPAR-α) nuclear receptors that modulate inflammatory responses can be targeted by non-selective agonists, such as fenofibrate, which is used in the treatment of dyslipidemia. Methods: Our studies tested the efficacy of a fenofibrate diet (0.2% and 0.4%) in preventing the development of PIPN. Paclitaxel (8 mg/kg) was administered via 4 intraperitoneal (i.p.) injections in C57BL/6J mice (both male and female). Mechanical and cold hypersensitivity, wheel running activity, sensory nerve action potential (SNAP), sciatic nerve histology, intra-epidermal fibers, as well as the expression of PPAR-α and neuroinflammation were evaluated in DRG and SC. Results: Fenofibrate in the diet partially prevented the development of mechanical hypersensitivity but completely prevented cold hypersensitivity and the decrease in wheel running activity induced by paclitaxel. The reduction in SNAP amplitude induced by paclitaxel was also prevented by fenofibrate. Our results indicate that suppression of paclitaxel-induced pain by fenofibrate involves the regulation of PPAR-α expression through reduction in neuroinflammation. Finally, co-administration of paclitaxel and the active metabolite of fenofibrate (fenofibric acid) did not interfere with the suppression of tumor cell growth or clonogenicity by paclitaxel in ovarian and breast cancer cell lines. Conclusions: Taken together, our results show the therapeutic potential of fenofibrate in the prevention of PIPN development.
Collapse
Affiliation(s)
- Martial Caillaud
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
- Correspondence: (M.C.); (M.I.D.)
| | - Nipa H. Patel
- Departments of Pharmacology and Toxicology and Medicine and Massey Cancer Center, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23284, USA; (N.H.P.); (T.H.T.); (D.A.G.)
| | - Wisam Toma
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Danielle Thompson
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Jared Mann
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Tammy H. Tran
- Departments of Pharmacology and Toxicology and Medicine and Massey Cancer Center, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23284, USA; (N.H.P.); (T.H.T.); (D.A.G.)
| | - Jane L. Roberts
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
| | - John W. Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - David A. Gewirtz
- Departments of Pharmacology and Toxicology and Medicine and Massey Cancer Center, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23284, USA; (N.H.P.); (T.H.T.); (D.A.G.)
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23284, USA; (W.T.); (A.W.); (D.T.); (J.M.); (J.L.R.); (J.L.P.)
- Correspondence: (M.C.); (M.I.D.)
| |
Collapse
|
36
|
Alberti P, Lehmann HC. Chemotherapy induced peripheral neurotoxicity: Six essential articles for effective future research. Exp Neurol 2020; 337:113555. [PMID: 33340795 DOI: 10.1016/j.expneurol.2020.113555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Helmar C Lehmann
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
37
|
Pozzi E, Fumagalli G, Chiorazzi A, Canta A, Meregalli C, Monza L, Carozzi VA, Oggioni N, Rodriguez-Menendez V, Cavaletti G, Marmiroli P. The relevance of multimodal assessment in experimental oxaliplatin-induced peripheral neurotoxicity. Exp Neurol 2020; 334:113458. [PMID: 32889007 DOI: 10.1016/j.expneurol.2020.113458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Chemotherapy-induced peripheral neurotoxicity represents one of the most relevant dose-limiting side effects that can affect cancer patients treated with the common antineoplastic agents. Since the severity of neurotoxicity often leads to dose reduction or early cessation of chemotherapy, the investigation of molecular mechanisms underlying chemotherapy-induced peripheral neurotoxicity is an urgent clinical need in order to better understand its physiopathology and find effective strategies for neuroprotection. Several in vivo preclinical models of chemotherapy-induced peripheral neurotoxicity have been developed but a great variability in mouse strain, dose, route of administration of the drug, treatment schedule and assessment of neurotoxicity is observed between the different published studies making difficult the comparison and interpretation of their results. In many of these studies only behavioural tests are used as outcome measures, while possible neurophysiological and neuropathological changes are not evaluated. In this study, focused on experimental oxaliplatin-induced peripheral neurotoxicity, we reproduced and compared four mouse models with very different drug dose (low or high dose-intensity) and treatment schedules (short or long-term treatment), selected from the literature. Using a multimodal assessment based on behavioural, neurophysiological and neuropathological methods, we evidenced remarkable differences in the results obtained in the selected animal models. This work suggests the importance of a multimodal approach including extensive pathological investigation to confirm the behavioural results.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
38
|
Makker PGS, White D, Lees JG, Parmar J, Goldstein D, Park SB, Howells J, Moalem-Taylor G. Acute changes in nerve excitability following oxaliplatin treatment in mice. J Neurophysiol 2020; 124:232-244. [PMID: 32519566 DOI: 10.1152/jn.00260.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxaliplatin chemotherapy produces acute changes in peripheral nerve excitability in humans by modulating voltage-gated Na+ channel activity. However, there are few animal studies of oxaliplatin-induced neuropathy that demonstrate similar changes in excitability. In the present study, we measured the excitability of motor and sensory caudal nerve in C57BL/6 mice after oxaliplatin injections either systemically (intraperitoneal) or locally (intramuscular at the base of the tail). As opposed to intraperitoneal administration of oxaliplatin, a single intramuscular injection of oxaliplatin produced changes in both motor and sensory axons. In motor axons, oxaliplatin caused a greater change in response to long-lasting depolarization and an upward shift in the recovery cycle, particularly at 24 h [depolarizing threshold electrotonus (TEd) 10-20 ms, P = 0.0095; TEd 90-100 ms, P = 0.0056) and 48 h (TEd 10-20 ms, P = 0.02; TEd 90-100 ms, P = 0.04) posttreatment. Oxaliplatin treatment also stimulated the production of afterdischarges in motor axons. These changes were transient and showed dose dependence. Mathematical modeling demonstrated that these changes could be accounted for by slowing inactivation of voltage-gated Na+ channels by 73.3% and reducing fast K+ conductance by 47% in motor axons. In sensory axons, oxaliplatin caused an increase in threshold, a reduction in peak amplitude, and greater threshold changes to strong hyperpolarizing currents on days 4 and 8. Thus, local administration of oxaliplatin produced clinically relevant changes in nerve excitability in mice and may provide an alternative approach for the study of acute oxaliplatin-induced neurotoxicity.NEW & NOTEWORTHY We present a novel mouse model of acute oxaliplatin-induced peripheral neurotoxicity that is comparable to clinical observations. Intramuscular injection of oxaliplatin produced acute changes in motor nerve excitability that were attributable to alterations in Na+ and K+ channel activity. Conversely, we were unable to show any significant changes in nerve excitability with systemic intraperitoneal injections of oxaliplatin. This study suggests that local intramuscular injection is a valid approach for modelling oxaliplatin-induced peripheral neuropathy in animals.
Collapse
Affiliation(s)
- Preet G S Makker
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Daniel White
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Justin G Lees
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Jasneet Parmar
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Prince of Wales Clinical School, UNSW, New South Wales, Australia
| | - Susanna B Park
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - James Howells
- Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Alberti P. Role of neurophysiology in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Clin Neurophysiol 2020; 131:1964-1965. [PMID: 32417120 DOI: 10.1016/j.clinph.2020.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| |
Collapse
|