1
|
Weston NM, Green JC, Keoprasert TN, Sun D. Dendritic morphological development of traumatic brain injury-induced new neurons in the dentate gyrus is important for post-injury cognitive recovery and is regulated by Notch1. Exp Neurol 2024; 382:114963. [PMID: 39303845 PMCID: PMC11502241 DOI: 10.1016/j.expneurol.2024.114963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent problem with survivors suffering from chronic cognitive impairments. Following TBI there is a series of neuropathological changes including neurogenesis. It is well established that neurogenesis in the dentate gyrus (DG) of the hippocampus is important for hippocampal dependent learning and memory functions. Following TBI, injury-enhanced hippocampal neurogenesis is believed to contribute to post-injury cognitive recovery. Behavioral function is connected to synaptic plasticity and neuronal dendritic branching is critical for successful synapse formation. To ascertain the functional contribution of injury-induced DG new neurons in post-TBI cognitive recovery, it is necessary to study their dendritic morphological development and the molecular mechanisms controlling this process. Utilizing transgenic mice with tamoxifen-induced GFP expression and Notch1 knock-out in nestin+ neural stem cells, this study examined dendritic morphology, the role of Notch1 in regulating dendritic complexity of injury-induced DG new neurons, and their association to post-TBI cognitive recovery. We found that at 8 weeks after a moderate TBI, injury-induced DG new neurons in the injured control mice displayed a similar dendritic morphology as the cells in non-injured mice accompanied with cognitive recovery. In comparison, in Notch1 conditional knock-out mice, DG new neurons in the injured mice had a significant reduction in dendritic morphological development including dendritic arbors, volume span, and number of branches in comparison to the cells in non-injured mice concomitant with persistent cognitive dysfunction. The results of this study confirm the importance of post-injury generated new neurons in cognitive recovery following TBI and the role of Notch1 in regulating their maturation process.
Collapse
Affiliation(s)
- Nicole M Weston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States
| | - Jakob C Green
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States
| | - Timothy N Keoprasert
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, United States.
| |
Collapse
|
2
|
Bigler ED, Allder S, Victoroff J. What traditional neuropsychological assessment got wrong about mild traumatic brain injury. II: limitations in test development, research design, statistical and psychometric issues. Brain Inj 2024; 38:1053-1074. [PMID: 39066740 DOI: 10.1080/02699052.2024.2376261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
PRIMARY OBJECTIVE This is Part II of a four-part opinion review on traditional neuropsychological assessment methods and findings associated with mild traumatic brain injury (mTBI). This Part II review focuses on historical, psychometric and statistical issues involving traditional neuropsychological methods that have been used in neuropsychological outcome studies of mTBI, but demonstrates the critical limitations of traditional methods. RESEARCH DESIGN This is an opinion review. METHODS AND PROCEDURES Traditional neuropsychological tests are dated and lack specificity in evaluating such a heterogenous and complex injury as occurs with mTBI. MAIN OUTCOME AND RESULTS In this review, we demonstrate traditional neuropsychological methods were never developed as standalone measures for detecting subtle changes in neurocognitive or neurobehavioral functioning and likewise, never designed to address the multifaceted issues related to underlying mTBI neuropathology symptom burden from having sustained a concussive brain injury. CONCLUSIONS For neuropsychological assessment to continue to contribute to clinical practice and outcome literature involving mTBI, major innovative changes are needed that will likely require technological advances of novel assessment techniques more specifically directed to evaluating the mTBI patient. These will be discussed in Part IV.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah, USA
- Departments of Neurology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Steven Allder
- Consultant Neurologist and Clinical Director, Re: Cognition Health, London, UK
| | - Jeff Victoroff
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Sehara Y, Hashimotodani Y, Watano R, Ohba K, Uchibori R, Shimazaki K, Kawai K, Mizukami H. Adeno-associated Virus-mediated Ezh2 Knockdown Reduced the Increment of Newborn Neurons Induced by Forebrain Ischemia in Gerbil Dentate Gyrus. Mol Neurobiol 2024; 61:9623-9632. [PMID: 38676810 PMCID: PMC11496322 DOI: 10.1007/s12035-024-04200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
Collapse
Affiliation(s)
- Yoshihide Sehara
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | | | - Ryota Watano
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ryosuke Uchibori
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
4
|
Geigenmüller JN, Tari AR, Wisloff U, Walker TL. The relationship between adult hippocampal neurogenesis and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:7369-7383. [PMID: 39166771 PMCID: PMC11485317 DOI: 10.1002/alz.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.
Collapse
Affiliation(s)
| | - Atefe R. Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs University Hospital, Trondheim University HospitalTrondheimNorway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Tara L. Walker
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
5
|
Navabi SP, Badreh F, Khombi Shooshtari M, Hajipour S, Moradi Vastegani S, Khoshnam SE. Microglia-induced neuroinflammation in hippocampal neurogenesis following traumatic brain injury. Heliyon 2024; 10:e35869. [PMID: 39220913 PMCID: PMC11365414 DOI: 10.1016/j.heliyon.2024.e35869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the most causes of death and disability among people, leading to a wide range of neurological deficits. The important process of neurogenesis in the hippocampus, which includes the production, maturation and integration of new neurons, is affected by TBI due to microglia activation and the inflammatory response. During brain development, microglia are involved in forming or removing synapses, regulating the number of neurons, and repairing damage. However, in response to injury, activated microglia release a variety of pro-inflammatory cytokines, chemokines and other neurotoxic mediators that exacerbate post-TBI injury. These microglia-related changes can negatively affect hippocampal neurogenesis and disrupt learning and memory processes. To date, the intracellular signaling pathways that trigger microglia activation following TBI, as well as the effects of microglia on hippocampal neurogenesis, are poorly understood. In this review article, we discuss the effects of microglia-induced neuroinflammation on hippocampal neurogenesis following TBI, as well as the intracellular signaling pathways of microglia activation.
Collapse
Affiliation(s)
- Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Khombi Shooshtari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Chiani F, Mastrorilli V, Marchetti N, Macioce A, Nappi C, Strimpakos G, Pasquini M, Gambadoro A, Battistini JI, Cutuli D, Petrosini L, Marinelli S, Scardigli R, Farioli Vecchioli S. Essential role of p21 Waf1/Cip1 in the modulation of post-traumatic hippocampal Neural Stem Cells response. Stem Cell Res Ther 2024; 15:197. [PMID: 38971774 PMCID: PMC11227726 DOI: 10.1186/s13287-024-03787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) represents one of the main causes of brain damage in young people and the elderly population with a very high rate of psycho-physical disability and death. TBI is characterized by extensive cell death, tissue damage and neuro-inflammation with a symptomatology that varies depending on the severity of the trauma from memory loss to a state of irreversible coma and death. Recently, preclinical studies on mouse models have demonstrated that the post-traumatic adult Neural Stem/Progenitor cells response could represent an excellent model to shed light on the neuro-reparative role of adult neurogenesis following damage. The cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays a pivotal role in modulating the quiescence/activation balance of adult Neural Stem Cells (aNSCs) and in restraining the proliferation progression of progenitor cells. Based on these considerations, the aim of this work is to evaluate how the conditional ablation of p21Waf1/Cip1 in the aNSCS can alter the adult hippocampal neurogenesis in physiological and post-traumatic conditions. METHODS We designed a novel conditional p21Waf1/Cip1 knock-out mouse model, in which the deletion of p21Waf1/Cip1 (referred as p21) is temporally controlled and occurs in Nestin-positive aNSCs, following administration of Tamoxifen. This mouse model (referred as p21 cKO mice) was subjected to Controlled Cortical Impact to analyze how the deletion of p21 could influence the post-traumatic neurogenic response within the hippocampal niche. RESULTS The data demonstrates that the conditional deletion of p21 in the aNSCs induces a strong increase in activation of aNSCs as well as proliferation and differentiation of neural progenitors in the adult dentate gyrus of the hippocampus, resulting in an enhancement of neurogenesis and the hippocampal-dependent working memory. However, following traumatic brain injury, the increased neurogenic response of aNSCs in p21 cKO mice leads to a fast depletion of the aNSCs pool, followed by declined neurogenesis and impaired hippocampal functionality. CONCLUSIONS These data demonstrate for the first time a fundamental role of p21 in modulating the post-traumatic hippocampal neurogenic response, by the regulation of the proliferative and differentiative steps of aNSCs/progenitor populations after brain damage.
Collapse
Affiliation(s)
- Francesco Chiani
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Nicole Marchetti
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
- PhD Course in Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Roma, 00100, Rome, Italy
| | - Andrea Macioce
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Chiara Nappi
- Instituto de Neurosciencias, Universidad Miguel-Hernandez, Alicante, Spain
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Miriam Pasquini
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Alessia Gambadoro
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | | | - Debora Cutuli
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Sara Marinelli
- Institute of Biochemistry and Cell Biology, IBBC, CNR, Monterotondo, Rome, Italy
| | - Raffaella Scardigli
- European Brain Research Institute (EBRI), Viale Regine Elena, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | |
Collapse
|
7
|
Maity S, Huang Y, Kilgore MD, Thurmon AN, Vaasjo LO, Galazo MJ, Xu X, Cao J, Wang X, Ning B, Liu N, Fan J. Mapping dynamic molecular changes in hippocampal subregions after traumatic brain injury through spatial proteomics. Clin Proteomics 2024; 21:32. [PMID: 38735925 PMCID: PMC11089002 DOI: 10.1186/s12014-024-09485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.
Collapse
Affiliation(s)
- Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuanyu Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mitchell D Kilgore
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Abbigail N Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | | | - Maria J Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane University Translational Sciences Institute, New Orleans, LA, USA.
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
8
|
Bow H, Dang C, Hillsbery K, Markowski C, Black M, Strand C. Food for Thought: The Effects of Feeding on Neurogenesis in the Ball Python, Python regius. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:144-157. [PMID: 38657588 DOI: 10.1159/000539052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Pythons are a well-studied model of postprandial physiological plasticity. Consuming a meal evokes a suite of physiological changes in pythons including one of the largest documented increases in post-feeding metabolic rates relative to resting values. However, little is known about how this plasticity manifests in the brain. Previous work has shown that cell proliferation in the python brain increases 6 days following meal consumption. This study aimed to confirm these findings and build on them in the long term by tracking the survival and maturation of these newly created cells across a 2-month period. METHODS We investigated differences in neural cell proliferation in ball pythons 6 days after a meal with immunofluorescence using the cell-birth marker 5-bromo-12'-deoxyuridine (BrdU). We investigated differences in neural cell maturation in ball pythons 2 months after a meal using double immunofluorescence for BrdU and a reptilian ortholog of the neuronal marker Fox3. RESULTS We did not find significantly greater rates of cell proliferation in snakes 6 days after feeding, but we did observe more new cells in neurogenic regions in fed snakes 2 months after the meal. Feeding was not associated with higher rates of neurogenesis, but snakes that received a meal had higher numbers of newly created nonneuronal cells than fasted controls. We documented particularly high cell survival rates in the olfactory bulbs and lateral cortex. CONCLUSION Consuming a meal stimulates cell proliferation in the brains of ball pythons after digestion is complete, although this effect emerged at a later time point in this study than expected. Higher rates of proliferation partially account for greater numbers of newly created non-neuronal cells in the brains of fed snakes 2 months after the meal, but our results also suggest that feeding may have a mild neuroprotective effect. We captured a slight trend toward higher cell survival rates in fed snakes, and survival rates were particularly high in brain regions associated with olfactory perception and processing. These findings shed light on the relationship between energy balance and the creation of new neural cells in the brains of ball pythons.
Collapse
Affiliation(s)
- Hannah Bow
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Christina Dang
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Katherine Hillsbery
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Carly Markowski
- Biomedical Engineering Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Michael Black
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Christine Strand
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
9
|
Davila-Valencia I, Saad M, Olthoff G, Faulkner M, Charara M, Farnum A, Dysko RC, Zhang Z. Sex specific effects of buprenorphine on adult hippocampal neurogenesis and behavioral outcomes during the acute phase after pediatric traumatic brain injury in mice. Neuropharmacology 2024; 245:109829. [PMID: 38159797 DOI: 10.1016/j.neuropharm.2023.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Traumatic brain injury (TBI) in children often causes cognitive and mental dysfunctions, as well as acute and chronic pain. Adult hippocampal neurogenesis plays a key role in cognition, depression, and pain. Adult hippocampal neurogenesis can be modulated by genetic and environmental factors, such as TBI and opioids. Buprenorphine (BPN), a semisynthetic opioid, is commonly used for pain management in children, however, the effects of BPN on adult hippocampal neurogenesis after pediatric TBI are still unclear. This study investigated the sex-specific effects of BPN on adult hippocampal neurogenesis during acute phase after pediatric TBI. Male and female littermates were randomized on postnatal day 20-21(P20-21) into Sham, TBI+saline and TBI+BPN groups. BPN was administered intraperitoneally to the TBI+BPN mice at 30 min after injury, and then every 6-12 h (h) for 2 days (d). Bromodeoxyuridine (BrdU) was administered intraperitoneally to all groups at 2, 4, 6, and 8-h post-injury. All outcomes were evaluated at 3-d post-BrdU administration. We found that TBI induced significant cognitive impairment, depression, and reduced adult hippocampal neurogenesis in both male and female mice, with more prominent effects in females. BPN significantly improved adult hippocampal neurogenesis and depression in males, but not in females. We further demonstrated that differential expressions of opioid receptors, transcription factors and neuroinflammatory markers at the neurogenic niche might be responsible for the differential effects of BPN in males and females. In conclusion, this study elucidates the effects of BPN on adult hippocampal neurogenesis and behavioral outcomes at the acute phase after pediatric TBI.
Collapse
Affiliation(s)
- Ivan Davila-Valencia
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Mark Saad
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Grace Olthoff
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Megan Faulkner
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Maysoun Charara
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Abigail Farnum
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| | - Robert C Dysko
- Unit for Laboratory Animal Medicine, University of Michigan-Ann Arbor, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA.
| |
Collapse
|
10
|
Willis EF, Kim SJ, Chen W, Nyuydzefe M, MacDonald KPA, Zanin-Zhorov A, Ruitenberg MJ, Vukovic J. ROCK2 regulates microglia proliferation and neuronal survival after traumatic brain injury. Brain Behav Immun 2024; 117:181-194. [PMID: 38211634 DOI: 10.1016/j.bbi.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Traumatic brain injury (TBI) results in prolonged and non-resolving activation of microglia. Forced turnover of these cells during the acute phase of TBI aids recovery, but the cell-intrinsic pathways that underpin the pro-repair phenotype of these repopulating microglia remain unclear. Here, we show that selective targeting of ROCK2 with the small molecule inhibitor KD025 impairs the proliferative response of microglia after TBI as well as during genetically induced turnover of microglia. KD025 treatment abolished the substantial neuroprotective and cognitive benefits conferred by repopulating microglia, preventing these cells from replenishing the depleted niche during the early critical time window post-injury. Delaying KD025 treatment to the subacute phase of TBI allowed microglial repopulation to occur, but this did not enhance the benefits conferred by repopulating microglia. Taken together, our data indicate that ROCK2 mediates neuronal survival and microglial population dynamics after TBI, including the emergence of repopulating microglia with a pro-repair phenotype.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia
| | - Wei Chen
- Graviton Bioscience Corporation, Gravition Bioscience B.V., Amsterdam, Netherlands
| | - Melanie Nyuydzefe
- Graviton Bioscience Corporation, Gravition Bioscience B.V., Amsterdam, Netherlands
| | | | | | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia; Queensland Brain Institute, The University of Queensland, Australia.
| |
Collapse
|
11
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Hu E, Li T, Li Z, Su H, Yan Q, Wang L, Li H, Zhang W, Tang T, Wang Y. Metabolomics reveals the effects of hydroxysafflor yellow A on neurogenesis and axon regeneration after experimental traumatic brain injury. PHARMACEUTICAL BIOLOGY 2023; 61:1054-1064. [PMID: 37416997 PMCID: PMC10332220 DOI: 10.1080/13880209.2023.2229379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/21/2023] [Indexed: 07/08/2023]
Abstract
CONTEXT Hydroxysafflor yellow A (HSYA) is the main bioactive ingredient of safflower (Carthamus tinctorius L., [Asteraceae]) for traumatic brain injury (TBI) treatment. OBJECTIVE To explore the therapeutic effects and underlying mechanisms of HSYA on post-TBI neurogenesis and axon regeneration. MATERIALS AND METHODS Male Sprague-Dawley rats were randomly assigned into Sham, controlled cortex impact (CCI), and HSYA groups. Firstly, the modified Neurologic Severity Score (mNSS), foot fault test, hematoxylin-eosin staining, Nissl's staining, and immunofluorescence of Tau1 and doublecortin (DCX) were used to evaluate the effects of HSYA on TBI at the 14th day. Next, the effectors of HSYA on post-TBI neurogenesis and axon regeneration were screened out by pathology-specialized network pharmacology and untargeted metabolomics. Then, the core effectors were validated by immunofluorescence. RESULTS HSYA alleviated mNSS, foot fault rate, inflammatory cell infiltration, and Nissl's body loss. Moreover, HSYA increased not only hippocampal DCX but also cortical Tau1 and DCX following TBI. Metabolomics demonstrated that HSYA significantly regulated hippocampal and cortical metabolites enriched in 'arginine metabolism' and 'phenylalanine, tyrosine and tryptophan metabolism' including l-phenylalanine, ornithine, l-(+)-citrulline and argininosuccinic acid. Network pharmacology suggested that neurotrophic factor (BDNF) and signal transducer and activator of transcription 3 (STAT3) were the core nodes in the HSYA-TBI-neurogenesis and axon regeneration network. In addition, BDNF and growth-associated protein 43 (GAP43) were significantly elevated following HSYA treatment in the cortex and hippocampus. DISCUSSION AND CONCLUSIONS HSYA may promote TBI recovery by facilitating neurogenesis and axon regeneration through regulating cortical and hippocampal metabolism, BDNF and STAT3/GAP43 axis.
Collapse
Affiliation(s)
- En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhilin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Hong Su
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Qiuju Yan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Lei Wang
- Department of Respiratory Diseases, Xiangxiang People’s Hospital, Xiangxiang, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
13
|
Çabukusta Acar A, Yoldaş ŞB, Gencer ES, Aycan İÖ, Sanlı SH. The relationship between prognosis of patients with traumatic brain injury and microRNA biogenesis proteins. ULUS TRAVMA ACIL CER 2023; 29:1228-1236. [PMID: 37889026 PMCID: PMC10771237 DOI: 10.14744/tjtes.2023.54859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND This study aims to investigate whether the expression levels of proteins involved in microRNA (miRNA) biogenesis vary in early- and late-stage traumatic brain injury (TBI) patients and to evaluate its effect on prognosis. METHODS Dicer, Drosha, DiGeorge Syndrome Critical Region eight (DGCR8), Exportin5 (XPO5), and Argonaute2 (AGO2) levels were measured in the blood samples of severe TBI patients collected 4-6 h and 72 h after the trauma and compared with the control group. Prognostic follow-up of the patients was performed using the Glasgow Coma Scale score. RESULTS There were no statistically significant changes in the expression of the miRNA biogenesis proteins Dicer, Drosha, DGCR8, XPO5, and AGO2 in patients with severe TBI. However, the expression of Dicer increased in the patients who improved from the severe TBI grade to the mild TBI grade, and the expression of AGO2 decreased in most of these patients. The Dicer expression profile was found to increase in patients discharged from the intensive care unit in a short time. CONCLUSION MicroRNAs and their biogenesis proteins may guide prognostic and therapeutic decisions for patients with TBI in the future.
Collapse
Affiliation(s)
| | - Şükran Burçak Yoldaş
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya-Türkiye
| | | | - İlker Öngüç Aycan
- Department of Anesthesiology, Faculty of Medicine, Akdeniz University, Antalya-Türkiye
| | - Suat Hayri Sanlı
- Department of Anesthesiology, Faculty of Medicine, Akdeniz University, Antalya-Türkiye
| |
Collapse
|
14
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Chen CM, Gung PY, Ho YC, Hamdin CD, Yet SF. Probucol treatment after traumatic brain injury activates BDNF/TrkB pathway, promotes neuroregeneration and ameliorates functional deficits in mice. Br J Pharmacol 2023; 180:2605-2622. [PMID: 37263748 DOI: 10.1111/bph.16157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide, yet pharmacotherapies for TBI are currently lacking. Neuroregeneration is important in brain repair and functional recovery. In this study, probucol, a cholesterol-lowering drug with established safety profiles, was examined for its therapeutic effects and neuroregenerative actions in TBI. EXPERIMENTAL APPROACH Male mice were subjected to the controlled cortical impact model of TBI, followed by daily administration of probucol. Neurological and cognitive functions were evaluated. Histological analyses of the neocortex and hippocampus were performed to detect the lesion, dendritic degeneration (microtubule-associated protein 2), synaptic density (synaptophysin), neurogenesis (doublecortin), brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) activation. Involvement of BDNF/TrkB pathway in probucol-mediated effects was examined in primary cultures of cortical neurons. KEY RESULTS Probucol reduced brain lesion volume, enhanced the recovery of body symmetry, improved motor function and attenuated memory dysfunction after TBI. Meanwhile, probucol promoted post-injury dendritic growth and synaptogenesis and increased hippocampal proliferating neuronal progenitor cells, along with the formation as well as the survival of newborn neurons. Moreover, probucol enhances BDNF expression and TrkB activation. In vitro, probucol promoted neurite outgrowth, which was inhibited by a selective TrkB antagonist ANA-12. CONCLUSIONS AND IMPLICATIONS Probucol enhanced functional restoration and ameliorated cognitive impairment after TBI by promoting post-injury neuronal remodelling and neurogenesis. Increased activation of BDNF/TrkB pathway by probucol, at least in part, contributed to the neuroregenerative effects of probucol. Together, it may be promising to repurpose probucol for TBI.
Collapse
Affiliation(s)
- Chen-Mei Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Yu Gung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Candra D Hamdin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- National Health Research Institutes & Department of Life Sciences, National Central University Joint Ph.D. Program in Biomedicine, Taoyuan City, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Tyrtyshnaia A, Manzhulo O, Manzhulo I. Synaptamide Ameliorates Hippocampal Neurodegeneration and Glial Activation in Mice with Traumatic Brain Injury. Int J Mol Sci 2023; 24:10014. [PMID: 37373162 DOI: 10.3390/ijms241210014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major concern for public health worldwide, affecting 55 million people and being the leading cause of death and disability. To improve the outcomes and effectiveness of treatment for these patients, we conducted a study on the potential therapeutic use of N-docosahexaenoylethanolamine (synaptamide) in mice using the weight-drop injury (WDI) TBI model. Our study focused on exploring synaptamide's effects on neurodegeneration processes and changes in neuronal and glial plasticity. Our findings showed that synaptamide could prevent TBI-associated working memory decline and neurodegenerative changes in the hippocampus, and it could alleviate decreased adult hippocampal neurogenesis. Furthermore, synaptamide regulated the production of astro- and microglial markers during TBI, promoting the anti-inflammatory transformation of the microglial phenotype. Additional effects of synaptamide in TBI include stimulating antioxidant and antiapoptotic defense, leading to the downregulation of the Bad pro-apoptotic marker. Our data suggest that synaptamide has promising potential as a therapeutic agent to prevent the long-term neurodegenerative consequences of TBI and improve the quality of life.
Collapse
Affiliation(s)
- Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| | - Olga Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, Vladivostok 690041, Russia
| |
Collapse
|
17
|
Kodali M, Madhu LN, Reger RL, Milutinovic B, Upadhya R, Attaluri S, Shuai B, Shankar G, Shetty AK. A single intranasal dose of human mesenchymal stem cell-derived extracellular vesicles after traumatic brain injury eases neurogenesis decline, synapse loss, and BDNF-ERK-CREB signaling. Front Mol Neurosci 2023; 16:1185883. [PMID: 37284464 PMCID: PMC10239975 DOI: 10.3389/fnmol.2023.1185883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
An optimal intranasal (IN) dose of human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs), 90 min post-traumatic brain injury (TBI), has been reported to prevent the evolution of acute neuroinflammation into chronic neuroinflammation resulting in the alleviation of long-term cognitive and mood impairments. Since hippocampal neurogenesis decline and synapse loss contribute to TBI-induced long-term cognitive and mood dysfunction, this study investigated whether hMSC-EV treatment after TBI can prevent hippocampal neurogenesis decline and synapse loss in the chronic phase of TBI. C57BL6 mice undergoing unilateral controlled cortical impact injury (CCI) received a single IN administration of different doses of EVs or the vehicle at 90 min post-TBI. Quantifying neurogenesis in the subgranular zone-granule cell layer (SGZ-GCL) through 5'-bromodeoxyuridine and neuron-specific nuclear antigen double labeling at ~2 months post-TBI revealed decreased neurogenesis in TBI mice receiving vehicle. However, in TBI mice receiving EVs (12.8 and 25.6 × 109 EVs), the extent of neurogenesis was matched to naive control levels. A similar trend of decreased neurogenesis was seen when doublecortin-positive newly generated neurons were quantified in the SGZ-GCL at ~3 months post-TBI. The above doses of EVs treatment after TBI also reduced the loss of pre-and post-synaptic marker proteins in the hippocampus and the somatosensory cortex. Moreover, at 48 h post-treatment, brain-derived neurotrophic factor (BDNF), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated cyclic AMP response-element binding protein (p-CREB) levels were downregulated in TBI mice receiving the vehicle but were closer to naïve control levels in TBI mice receiving above doses of hMSC-EVs. Notably, improved BDNF concentration observed in TBI mice receiving hMSC-EVs in the acute phase was sustained in the chronic phase of TBI. Thus, a single IN dose of hMSC-EVs at 90 min post-TBI can ease TBI-induced declines in the BDNF-ERK-CREB signaling, hippocampal neurogenesis, and synapses.
Collapse
|
18
|
Zhao J, Wang W, Yan K, Zhao H, Zhang Z, Wang Y, Zhu W, Chen S. RNA-seq reveals Nup62 as a potential regulator for cell division after traumatic brain injury in mice hippocampus. PeerJ 2023; 11:e14913. [PMID: 36908815 PMCID: PMC10000302 DOI: 10.7717/peerj.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Background Hippocampus impairment is a common condition encountered in the clinical diagnosis and treatment of traumatic brain injury (TBI). Several studies have investigated this phenomenon. However, its molecular mechanism remains unclear. Methods In this study, Illumina RNA-seq technology was used to determine the gene expression profile in mice hippocampus after TBI. We then conducted bioinformatics analysis to identify the altered gene expression signatures and mechanisms related to TBI-induced pathology in the hippocampus. Real-time quantitative polymerase chain reaction and western blot were adopted to verify the sequencing results. Results The controlled cortical impact was adopted as the TBI model. Hippocampal specimens were removed for sequencing. Bioinformatics analysis identified 27 upregulated and 17 downregulated differentially expressed genes (DEGs) in post-TBI mouse models. Potential biological functions of the genes were determined via Gene Set Enrichment Analysis (GSEA)-based Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which suggested a series of functional changes in the nervous system. Specifically, the nucleoporin 62 (Nup62) DEG was discussed and verified. Gene ontology biological process enriched analysis suggests that the cell division was upregulated significantly. The present study may be helpful for the treatment of impaired hippocampus after TBI in the future.
Collapse
Affiliation(s)
- Jianwei Zhao
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Weihua Wang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Ke Yan
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Haifeng Zhao
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Zhen Zhang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Yu Wang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Wenyu Zhu
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| |
Collapse
|
19
|
Shi RX, Liu C, Xu YJ, Wang YY, He BD, He XC, Du HZ, Hu B, Jiao J, Liu CM, Teng ZQ. The Role and Mechanism of Transglutaminase 2 in Regulating Hippocampal Neurogenesis after Traumatic Brain Injury. Cells 2023; 12:cells12040558. [PMID: 36831225 PMCID: PMC9954100 DOI: 10.3390/cells12040558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.
Collapse
Affiliation(s)
- Ruo-Xi Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-M.L.); (Z.-Q.T.)
| |
Collapse
|
20
|
Song C, Chen X, Ma J, Buhe H, Liu Y, Saiyin H, Ma L. Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids. J Tissue Eng 2023; 14:20417314221147113. [PMID: 36636100 PMCID: PMC9829995 DOI: 10.1177/20417314221147113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal malignancy in the human abdominal cavity that prefers to invade the surrounding nerve/nerve plexus and even the spine, causing devastating and unbearable pain. The limitation of available in vitro models restricts revealing the molecular mechanism of pain and screening pain-relieving strategies to improve the quality of life of end-stage PC patients. Here, we report a PC nerve invasion model that merged human brain organoids (hBrO) with mouse PC organoids (mPCO). After merging hBrOs with mPCOs, we monitored the structural crosstalk, growth patterns, and mutual interaction dynamics of hBrO with mPCOs for 7 days. After 7 days, we also analyzed the pathophysiological statuses, including proliferation, apoptosis and inflammation. The results showed that mPCOs tend to approximate and intrude into the hBrOs, merge entirely into the hBrOs, and induce the retraction/shrinking of neuronal projections that protrude from the margin of the hBrOs. The approximating of mPCOs to hBrOs accelerated the proliferation of neuronal progenitor cells, intensified the apoptosis of neurons in the hBrOs, and increased the expression of inflammatory molecules in hBrOs, including NLRP3, IL-8, and IL-1β. Our system pathophysiologically replicated the nerve invasions in mouse GEMM (genetically engineered mouse model) primary and human PCs and might have the potential to be applied to reveal the molecular mechanism of nerve invasion and screen therapeutic strategies in PCs.
Collapse
Affiliation(s)
- Chenyun Song
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Xinyu Chen
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Jixin Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hada Buhe
- The School of Pharmacy, Fujian Medical
University, Fuzhou, People’s Republic of China
| | - Yang Liu
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| | - Hexige Saiyin
- State Key Laboratory of Genetic
Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic
of China,Hexige Saiyin, State Key Laboratory of
Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road,
Shanghai 200438, People’s Republic of China.
| | - Lixiang Ma
- Department of Anatomy, Histology &
Embryology, School of Basic Medical Science, Fudan University, Shanghai, People’s
Republic of China
| |
Collapse
|
21
|
Ge C, Li C. Targeting the AKT/mTOR/p70S6K Pathway for Oligodendrocyte Differentiation and Myelin Regeneration in Neurological Disorders. Curr Neurovasc Res 2023; 20:453-463. [PMID: 37817523 DOI: 10.2174/0115672026274954230919070115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored. OBJECTIVE This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro. METHODS The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture. RESULTS Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation. CONCLUSION Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.
Collapse
Affiliation(s)
- Chen Ge
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
22
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Zhang D, Chang R, Ren Y, He Y, Guo S, Guan F, Yao M. Injectable and reactive oxygen species-scavenging gelatin hydrogel promotes neural repair in experimental traumatic brain injury. Int J Biol Macromol 2022; 219:844-863. [PMID: 35961554 DOI: 10.1016/j.ijbiomac.2022.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 12/26/2022]
Abstract
Oxidative stress caused by the overexpression of reactive oxygen species (ROS) plays an important role in the pathogenesis of traumatic brain injury (TBI). Accumulation of ROS can lead to cell death, neurodegeneration, and neurological deficit. Therefore, the design and application of functional materials with ROS scavenging ability is of great significance for neural repair. Herein, an injectable and antioxidant hydrogel was developed for TBI treatment based on the Schiff base reaction of gallic acid-conjugated gelatin (GGA) and oxidized dextran (Odex). The resulting GGA/Odex hydrogel could effectively scavenge DPPH and ABTS radicals, as well as protect cells from the oxidative damage in vitro. Moreover, GGA/Odex hydrogel possessed well biocompatible features. In a moderate TBI mouse model, in situ implantation of GGA6Odex hydrogel efficiently facilitated neurogenesis and promoted the motor, learning and memory abilities. Also, this composite hydrogel suppressed oxidative stress and inflammation via the activation of Nrf2/HO-1 pathway and the regulating of inflammatory factors secretion and macrophage/microglia polarization. Therefore, this injectable and ROS-scavenging GGA6Odex hydrogel is a promising biomaterial for tissue regenerative medicine, including TBI and other tissue repair relevant to raised ROS circumstance.
Collapse
Affiliation(s)
- Dan Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yikun Ren
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
24
|
Kang YJ, Lee SH, Boychuk JA, Butler CR, Juras JA, Cloyd RA, Smith BN. Adult Born Dentate Granule Cell Mediated Upregulation of Feedback Inhibition in a Mouse Model of Traumatic Brain Injury. J Neurosci 2022; 42:7077-7093. [PMID: 36002261 PMCID: PMC9480876 DOI: 10.1523/jneurosci.2263-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic epilepsy (PTE) and behavioral comorbidities frequently develop after traumatic brain injury (TBI). Aberrant neurogenesis of dentate granule cells (DGCs) after TBI may contribute to the synaptic reorganization that occurs in PTE, but how neurogenesis at different times relative to the injury contributes to feedback inhibition and recurrent excitation in the dentate gyrus is unknown. Thus, we examined whether DGCs born at different postnatal ages differentially participate in feedback inhibition and recurrent excitation in the dentate gyrus using the controlled cortical impact (CCI) model of TBI. Both sexes of transgenic mice expressing channelrhodopsin2 (ChR2) in postnatally born DGCs were used for optogenetic activation of three DGC cohorts: postnatally early born DGCs, or those born just before or after CCI. We performed whole-cell patch-clamp recordings from ChR2-negative, mature DGCs and parvalbumin-expressing basket cells (PVBCs) in hippocampal slices to determine whether optogenetic activation of postnatally born DGCs increases feedback inhibition and/or recurrent excitation in mice 8-10 weeks after CCI and whether PVBCs are targets of ChR2-positive DGCs. In the dentate gyrus ipsilateral to CCI, activation of ChR2-expressing DGCs born before CCI produced increased feedback inhibition in ChR2-negative DGCs and increased excitation in PVBCs compared with those from sham controls. This upregulated feedback inhibition was less prominent in DGCs born early in life or after CCI. Surprisingly, ChR2-positive DGC activation rarely evoked recurrent excitation in mature DGCs from any cohort. These results support that DGC birth date-related increased feedback inhibition in of DGCs may contribute to altered excitability after TBI.SIGNIFICANCE STATEMENT Dentate granule cells (DGCs) control excitability of the dentate gyrus through synaptic interactions with inhibitory GABAergic interneurons. Persistent changes in DGC synaptic connectivity develop after traumatic brain injury, contributing to hyperexcitability in post-traumatic epilepsy (PTE). However, the impact of DGC neurogenesis on synaptic reorganization, especially on inhibitory circuits, after brain injury is not adequately described. Here, upregulation of feedback inhibition in mature DGCs from male and female mice was associated with increased excitation of parvalbumin-expressing basket cells by postnatally born DGCs, providing novel insights into underlying mechanisms of altered excitability after brain injury. A better understanding of these inhibitory circuit changes can help formulate hypotheses for development of novel, evidence-based treatments for post-traumatic epilepsy by targeting birth date-specific subsets of DGCs.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
| | - Jeffery A Boychuk
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - J Anna Juras
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Ryan A Cloyd
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Bret N Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Epilepsy Research Center, University of Kentucky, Lexington, Kentucky 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
25
|
Ubiquitin-Specific Protease 22 Promotes Neural Stem Cells Stemness Maintenance and Adult Hippocampal Neurogenesis, Contributing to Cognitive Recovery Following Traumatic Brain Injury. Neuroscience 2022; 496:219-229. [PMID: 35700816 DOI: 10.1016/j.neuroscience.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Ubiquitin-specific protease 22 (USP22), a potential marker of cancer stem cells, significantly influences stem cell fate choices. However, its functions in neural stem cells (NSCs) and adult neurogenesis, especially following traumatic brain injury (TBI), remain only partially understood. Here, we found that aberrant USP22 expression could affect NSC proliferation and stemness maintenance, as assessed by the generation of neurospheres, cell counting kit-8 (CCK-8) and immunofluorescence staining in vitro. Moreover, USP22 depletion promotes the differentiation of NSCs, both in vitro and in vivo. In contrast, USP22 overexpression inhibits NSC differentiation into neurons. Interestingly, our data showed that USP22 promotes the proliferation but inhibits the differentiation of NSCs in the dentate gyrus (DG)of the hippocampus soon after TBI. The Morris water maze (MWM) test was adopted to evaluate neurological function, which confirmed that USP22 could improve the learning and memory capacity that was already compromised following TBI. Overall, this study uncovers a potentially novel regulatory role of USP22 in the proliferation and differentiation ability of NSCs, contributing to the hippocampus-dependent cognitive function of TBI mice and may be a novel target for future therapeutic approaches.
Collapse
|
26
|
Pre-Exposure to Environmental Enrichment Protects against Learning and Memory Deficits Caused by Infrasound Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6208872. [PMID: 35620581 PMCID: PMC9129996 DOI: 10.1155/2022/6208872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
With the development of industrialization in recent years, infrasound has become an important component of public noise. To date, diverse studies have revealed the negative effects of infrasound on the central nervous system (CNS), especially the learning and memory ability. It is widely reported that environmental enrichment (EE) ameliorates the learning and memory deficits in different models of brain injury. Therefore, the present study was designed to determine the possible benefits of pre-exposure to EE in preventing functional deficits following infrasound exposure and their related mechanism. Adult male rats were given enriched or standard housing for 30 days. Following enrichment, the rats were exposed to 16 Hz, 130 dB infrasound for 14 days, and then their learning and memory ability was assessed. Changes to neuroinflammation, apoptosis, and oxidative stress in the hippocampus were also detected. Our results showed that the infrasound-induced deficit in learning and memory was attenuated significantly in EE pre-exposed rats. Pre-exposure to EE could induce a decrease in proinflammatory cytokines and increased anti-inflammatory cytokines and antioxidant properties in the hippocampus. Moreover, pre-exposure to EE also exerted antiapoptosis functions by upregulating the B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the P53 level in the hippocampus. In conclusion, the results of the present study suggested that EE is neuroprotective when applied before infrasound exposure, resulting in an improved learning and memory ability by enhancing antioxidant, anti-inflammatory, and antiapoptosis capacities.
Collapse
|
27
|
Coupe D, Bossing T. Insights into nervous system repair from the fruit fly. Neuronal Signal 2022; 6:NS20210051. [PMID: 35474685 PMCID: PMC9008705 DOI: 10.1042/ns20210051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Millions of people experience injury to the central nervous system (CNS) each year, many of whom are left permanently disabled, providing a challenging hurdle for the field of regenerative medicine. Repair of damage in the CNS occurs through a concerted effort of phagocytosis of debris, cell proliferation and differentiation to produce new neurons and glia, distal axon/dendrite degeneration, proximal axon/dendrite regeneration and axon re-enwrapment. In humans, regeneration is observed within the peripheral nervous system, while in the CNS injured axons exhibit limited ability to regenerate. This has also been described for the fruit fly Drosophila. Powerful genetic tools available in Drosophila have allowed the response to CNS insults to be probed and novel regulators with mammalian orthologs identified. The conservation of many regenerative pathways, despite considerable evolutionary separation, stresses that these signals are principal regulators and may serve as potential therapeutic targets. Here, we highlight the role of Drosophila CNS injury models in providing key insight into regenerative processes by exploring the underlying pathways that control glial and neuronal activation in response to insult, and their contribution to damage repair in the CNS.
Collapse
Affiliation(s)
- David Coupe
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| | - Torsten Bossing
- Peninsula Medical School, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, U.K
| |
Collapse
|
28
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
29
|
Exosomal microRNAs have great potential in the neurorestorative therapy for traumatic brain injury. Exp Neurol 2022; 352:114026. [DOI: 10.1016/j.expneurol.2022.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
|
30
|
Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14010152. [PMID: 35057048 PMCID: PMC8781803 DOI: 10.3390/pharmaceutics14010152] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality. Consequences vary from mild cognitive impairment to death and, no matter the severity of subsequent sequelae, it represents a high burden for affected patients and for the health care system. Brain trauma can cause neuronal death through mechanical forces that disrupt cell architecture, and other secondary consequences through mechanisms such as inflammation, oxidative stress, programmed cell death, and, most importantly, excitotoxicity. This review aims to provide a comprehensive understanding of the many classical and novel pathways implicated in tissue damage following TBI. We summarize the preclinical evidence of potential therapeutic interventions and describe the available clinical evaluation of novel drug targets such as vitamin B12 and ifenprodil, among others.
Collapse
|
31
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
32
|
Kashyap P, Shenk TE, Svaldi DO, Lycke RJ, Lee TA, Tamer GG, Nauman EA, Talavage TM. Normalized Brain Tissue–Level Evaluation of Volumetric Changes of Youth Athletes Participating in Collision Sports. Neurotrauma Rep 2022; 3:57-69. [PMID: 35112108 PMCID: PMC8804236 DOI: 10.1089/neur.2021.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Observations of short-term changes in the neural health of youth athletes participating in collision sports (e.g., football and soccer) have highlighted a need to explore potential structural alterations in brain tissue volumes for these persons. Studies have shown biochemical, vascular, functional connectivity, and white matter diffusivity changes in the brain physiology of these athletes that are strongly correlated with repetitive head acceleration exposure. Here, research is presented that highlights regional anatomical volumetric measures that change longitudinally with accrued subconcussive trauma. A novel pipeline is introduced that provides simplified data analysis on standard-space template to quantify group-level longitudinal volumetric changes within these populations. For both sports, results highlight incremental relative regional volumetric changes in the subcortical cerebrospinal fluid that are strongly correlated with head exposure events greater than a 50-G threshold at the short-term post-season assessment. Moreover, longitudinal regional gray matter volumes are observed to decrease with time, only returning to baseline/pre-participation levels after sufficient (5–6 months) rest from collision-based exposure. These temporal structural volumetric alterations are significantly different from normal aging observed in sex- and age-matched controls participating in non-collision sports. Future work involves modeling repetitive head exposure thresholds with multi-modal image analysis and understanding the underlying physiological reason. A possible pathophysiological pathway is presented, highlighting the probable metabolic regulatory mechanisms. Continual participation in collision-based activities may represent a risk wherein recovery cannot occur. Even when present, the degree of the eventual recovery remains to be explored, but has strong implications for the well-being of collision-sport participants.
Collapse
Affiliation(s)
- Pratik Kashyap
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Trey E. Shenk
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Diana O. Svaldi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Roy J. Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taylor A. Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gregory G. Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eric A. Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas M. Talavage
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Campolo M, Crupi R, Cordaro M, Cardali SM, Ardizzone A, Casili G, Scuderi SA, Siracusa R, Esposito E, Conti A, Cuzzocrea S. Co-Ultra PEALut Enhances Endogenous Repair Response Following Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22168717. [PMID: 34445417 PMCID: PMC8395716 DOI: 10.3390/ijms22168717] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | | | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Alfredo Conti
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
34
|
3,6'-Dithiopomalidomide Ameliorates Hippocampal Neurodegeneration, Microgliosis and Astrogliosis and Improves Cognitive Behaviors in Rats with a Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22158276. [PMID: 34361041 PMCID: PMC8348060 DOI: 10.3390/ijms22158276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6′-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.
Collapse
|
35
|
Khan SM, Carter GT, Aggarwal SK, Holland J. Psychedelics for Brain Injury: A Mini-Review. Front Neurol 2021; 12:685085. [PMID: 34393973 PMCID: PMC8357986 DOI: 10.3389/fneur.2021.685085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Stroke and traumatic brain injury (TBI) are among the leading causes of disability. Even after engaging in rehabilitation, nearly half of patients with severe TBI requiring hospitalization are left with major disability. Despite decades of investigation, pharmacologic treatment of brain injury is still a field in its infancy. Recent clinical trials have begun into the use of psychedelic therapeutics for treatment of brain injury. This brief review aims to summarize the current state of the science's relevance to neurorehabilitation, and may act as a resource for those seeking to understand the precedence for these ongoing clinical trials. Methods: Narrative mini-review of studies published related to psychedelic therapeutics and brain injury. Results: Recent in vitro, in vivo, and case report studies suggest psychedelic pharmacotherapies may influence the future of brain injury treatment through modulation of neuroinflammation, hippocampal neurogenesis, neuroplasticity, and brain complexity. Conclusions: Historical data on the safety of some of these substances could serve in effect as phase 0 and phase I studies. Further phase II trials will illuminate how these drugs may treat brain injury, particularly TBI and reperfusion injury from stroke.
Collapse
Affiliation(s)
- Shariq Mansoor Khan
- Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Gregory T Carter
- Department of Physical Medicine & Rehabilitation, St. Luke's Rehabilitation Institute, Spokane, WA, United States
| | - Sunil K Aggarwal
- Advanced Integrative Medical Sciences Institute, Seattle, WA, United States
| | | |
Collapse
|
36
|
Ustaoglu SG, Ali MHM, Rakib F, Blezer ELA, Van Heijningen CL, Dijkhuizen RM, Severcan F. Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury. Sci Rep 2021; 11:12468. [PMID: 34127773 PMCID: PMC8203626 DOI: 10.1038/s41598-021-92015-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) is the main cause of disability and mortality in individuals under the age of 45 years. Elucidation of the molecular and structural alterations in brain tissue due to TBI is crucial to understand secondary and long-term effects after traumatic brain injury, and to develop and apply the correct therapies. In the current study, the molecular effects of TBI were investigated in rat brain at 24 h and 1 month after the injury to determine acute and chronic effects, respectively by Fourier transform infrared imaging. This study reports the time-dependent contextual and structural effects of TBI on hippocampal brain tissue. A mild form of TBI was induced in 11-week old male Sprague Dawley rats by weight drop. Band area and intensity ratios, band frequency and bandwidth values of specific spectral bands showed that TBI causes significant structural and contextual global changes including decrease in carbonyl content, unsaturated lipid content, lipid acyl chain length, membrane lipid order, total protein content, lipid/protein ratio, besides increase in membrane fluidity with an altered protein secondary structure and metabolic activity in hippocampus 24 h after injury. However, improvement and/or recovery effects in these parameters were observed at one month after TBI.
Collapse
Affiliation(s)
- Sebnem Garip Ustaoglu
- Department of Medical Biochemistry, Faculty of Medicine, Altinbas University, Bakirkoy, Istanbul, Turkey.
| | - Mohamed H M Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar.
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline L Van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Bakirkoy, Istanbul, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
37
|
Teng YD, Zafonte RD. Prelude to the special issue on novel neurocircuit, cellular and molecular targets for developing functional rehabilitation therapies of neurotrauma. Exp Neurol 2021; 341:113689. [PMID: 33745921 DOI: 10.1016/j.expneurol.2021.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/15/2022]
Abstract
The poor endogenous recovery capacity and other impediments to reinstating sensorimotor or autonomic function after adult neurotrauma have perplexed modern neuroscientists, bioengineers, and physicians for over a century. However, despite limited improvement in options to mitigate acute pathophysiological sequalae, the past 20 years have witnessed marked progresses in developing efficacious rehabilitation strategies for chronic spinal cord and brain injuries. The achievement is mainly attributable to research advancements in elucidating neuroplastic mechanisms for the potential to enhance clinical prognosis. Innovative cross-disciplinary studies have established novel therapeutic targets, theoretical frameworks, and regiments to attain treatment efficacy. This Special Issue contained eight papers that described experimental and human data along with literature reviews regarding the essential roles of the conventionally undervalued factors in neural repair: systemic inflammation, neural-respiratory inflammasome axis, modulation of glutamatergic and monoaminergic neurotransmission, neurogenesis, nerve transfer, recovery neurobiology components, and the spinal cord learning, respiration and central pattern generator neurocircuits. The focus of this work was on how to induce functional recovery from manipulating these underpinnings through their interactions with secondary injury events, peripheral and supraspinal inputs, neuromusculoskeletal network, and interventions (i.e., activity training, pharmacological adjuncts, electrical stimulation, and multimodal neuromechanical, brain-computer interface [BCI] and robotic assistance [RA] devices). The evidence suggested that if key neurocircuits are therapeutically reactivated, rebuilt, and/or modulated under proper sensory feedback, neurological function (e.g., cognition, respiration, limb movement, locomotion, etc.) will likely be reanimated after neurotrauma. The efficacy can be optimized by individualizing multimodal rehabilitation treatments via BCI/RA-integrated drug administration and neuromechanical protheses.
Collapse
Affiliation(s)
- Yang D Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA, USA; Spaulding Research Institute, Spaulding Rehabilitation Hospital Network, Boston, MA, USA.
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA, USA; Spaulding Research Institute, Spaulding Rehabilitation Hospital Network, Boston, MA, USA.
| |
Collapse
|
38
|
Sharma S, Tiarks G, Haight J, Bassuk AG. Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. Front Mol Neurosci 2021; 14:612073. [PMID: 33708071 PMCID: PMC7940684 DOI: 10.3389/fnmol.2021.612073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain. These pathological changes, over the course of time, contribute to conditions like Alzheimer disease, dementia, anxiety disorders, and post-traumatic epilepsy (PTE). PTE is one of the most common, devastating complications of TBI; and of those affected by a severe TBI, more than 50% develop PTE. The etiopathology and mechanisms of PTE are either unknown or poorly understood, which makes treatment challenging. Although anti-epileptic drugs (AEDs) are used as preventive strategies to manage TBI, control acute seizures and prevent development of PTE, their efficacy in PTE remains controversial. In this review, we discuss novel mechanisms and risk factors underlying PTE. We also discuss dysfunctions of neurovascular unit, cell-specific neuroinflammatory mediators and immune response factors that are vital for epileptogenesis after TBI. Finally, we describe current and novel treatments and management strategies for preventing PTE.
Collapse
Affiliation(s)
- Shaunik Sharma
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Grant Tiarks
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Joseph Haight
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|