1
|
Shen H, Wang R, Bai J, Wang J, Qi H, Luo A. Utilization of electron beam irradiation pretreatment for the extraction of pectic polysaccharides from Diaphragma juglandis fructus: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 279:135198. [PMID: 39216575 DOI: 10.1016/j.ijbiomac.2024.135198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The effects of electron beam irradiation (EBI) pretreatment on the alkaline extraction of pectic polysaccharides from Diaphragma juglandis fructus (DJF) are highly dependent on the irradiation dosage. Comprehensive characterizations encompassing physicochemical, structural, and functional properties were conducted on crude pectic polysaccharide extract from DJF subjected to various EBI doses. EBI pretreatment significantly increased the yields of crude pectic polysaccharides extract (increasing by 41.89 %), also facilitating the extraction of uronic acid, RG-I structure, and protein content, despite causing a decrease in total sugar content. EBI pretreatment induced the degradation of pectin, resulting in decreased molecular weight, particle size, crystallinity, viscosity, thermal stability, and water holding capacity, while enhancing solubility and oil holding capacity. Variations in physicochemical and structural properties induced by different EBI doses influenced the functional activities of DJF pectic polysaccharides. Low-dose EBI (at 5 kGy) pretreatment markedly improved the emulsifying activity/stability (increasing by 20.82/74.10 %) and ABTS/DPPH radical scavenging activity (increasing by 27.91/12.40 %), whereas high-dose EBI pretreatment (50 kGy) greatly enhanced foaming capacity/stability (increasing by 259.99/175.56 %). These findings provide a novel regulatory strategy for the functional activity of pectic polysaccharides.
Collapse
Affiliation(s)
- Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoling Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heting Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Zhang M, Xu S, Zuo Z, Xu H, Xu Q, Li T, Zhang X, Wang L. Modulation of rice starch physicochemical properties and digestibility: The role of highland barley non-starch polysaccharide fractions. Int J Biol Macromol 2024; 279:135206. [PMID: 39244124 DOI: 10.1016/j.ijbiomac.2024.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Highland barley non-starch polysaccharides (HBNP), particularly β-glucans, are known for their health-promoting effects, including modulation of glycemic response and enhancement of gut health. This study investigated the impact of different HBNP fractions on the properties and digestibility of high-glycemic index rice starch. HBNP was segmented into five fractions (HBNP-15, HBNP-30, HBNP-45, HBNP-60, and HBNP-75) using gradient ethanol precipitation, and these fractions exhibited varying molecular weights, monosaccharide compositions, and β-glucan contents. All fractions reduced rice starch's pasting viscosity, with 1 % HBNP-75 leading to a 99.1 % decrease in final viscosity. Morphological and size distribution analyses showed that HBNP fractions limited granule swelling and disrupted starch's continuous phase structure. HBNPs also reduced starch digestibility and increased the formation of resistant starch from 10 % to 28 %. These results suggest potential uses for HBNP fractions in developing low-glycemic starch-based foods.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Institute of Modern Agriculture, Jiangsu Provincial Agricultural Reclamation and Development Co., Ltd., Nanjing 211800, China
| | - Shunqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhongyu Zuo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Hui Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Qianqian Xu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
3
|
Chen Z, Wang C, Su J, Liang G, Tan S, Bi Y, Kong F, Wang Z. Extraction of Pithecellobium clypearia Benth polysaccharides by dual-frequency ultrasound-assisted extraction: Structural characterization, antioxidant, hypoglycemic and anti-hyperlipidemic activities. ULTRASONICS SONOCHEMISTRY 2024; 107:106918. [PMID: 38772313 PMCID: PMC11137586 DOI: 10.1016/j.ultsonch.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
In this research, the extraction process of polysaccharides from Pithecellobium clypearia Benth (PCBPs) was optimized using dual-frequency ultrasound-assisted extraction (DUAE). The biological activities of PCBPs were investigated by in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic assay. High-performance anion-exchange chromatography, high-performance gel permeation chromatography, SEM, UV-Vis spectroscopy, and FT-IR spectra were used to analyze the monosaccharide composition, molecular weight, microscopic morphology, and characteristic structure of PCBPs. The results showed that the maximum extraction rate of PCBPs was 9.90 ± 0.16% when the ultrasonic time was 8 min, the liquid-to-material ratio was 32 mL/g, and the ultrasonic power was 510 W. The PCBPs also possessed excellent in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic activities. In addition, the average molecular weight of PCBPs was 15.07 kDa. PCBPs consisted of rhamnose, arabinose, galactose, glucose, xylose, mannose, and glucuronic acid, with the molar ratios of 11.07%, 18.54%, 48.17%, 10.44%, 4.62%, 4.96%, and 2.20%, respectively. Moreover, the results of SEM showed that PCBPs mainly showed a fine spherical mesh structure. The above studies provided a valuable theoretical basis for the subsequent in-depth study of PCBPs.
Collapse
Affiliation(s)
- Zihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Chuanju Wang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Jiarong Su
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Guixin Liang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| |
Collapse
|
4
|
Elayeb R, Bermúdez-Oria A, Lazreg Aref H, Majdoub H, Ritzoulis C, Mannu A, Le Cerf D, Carraro M, Achour S, Fernández-Bolaños J, Trigui M. Antioxidant polysaccharide-enriched fractions obtained from olive leaves by ultrasound-assisted extraction with α-amylase inhibition, and antiproliferative activities. 3 Biotech 2024; 14:92. [PMID: 38425411 PMCID: PMC10899153 DOI: 10.1007/s13205-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Polysaccharide-rich materials were extracted from the alcohol-insoluble solids of Olea europaea l. **leaves. Structural characteristics were determined by colorimetric techniques, FT-IR, GC-MS, SEC/MALS/VD/DRI, and NMR (1H,13C). The extract and its main macromolecular components were characterized to assess their ability toward antioxidant, α-amylase inhibition, and antiproliferative activities. Results revealed that the ultrasound olive leave extract comprises polysaccharides with uronic acid, galactose, arabinose, and glucose in molar percentages of 11.7%, 11.3%, 7.5%, and 4.9% respectively, constituting 41% of the total mass. In addition, polyphenols (21%) and proteins (9%) are associated with these polysaccharides. Further, the extract showed noticeable ORAC and free radical scavenging abilities, in addition to high in vitro antiproliferative activity against Caco-2 colon carcinoma cell lines. Similarly, the extract exhibited a strong, uncompetitive inhibition of α-amylase by 75% in the presence of the extract with 0.75 µg/mL of concentration. This research concludes that ultrasound extraction method can be used for the extraction of polysaccharide-polyphenol-protein complexes. These conjugates exhibit the potential for combined biological activities resulting from a synergistic effect of its compounds, making them promising ingredients for the development of functional food.
Collapse
Affiliation(s)
- Rania Elayeb
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Houda Lazreg Aref
- Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Christos Ritzoulis
- Department of Food Technology, ATEI of Thessaloniki, 57400 Thessaloniki, Greece
| | - Alberto Mannu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, CNRS, PBS, Normandie University, 76000 Rouen, France
| | - Massimo Carraro
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sami Achour
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Maher Trigui
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
PING Y, LIU J, WANG H, WANG Y, QIU H, ZHANG Y. Research progress in the treatment of an immune system disease-type 1 diabetes-by regulating the intestinal flora with Chinese medicine and food homologous drugs. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:150-161. [PMID: 38966054 PMCID: PMC11220337 DOI: 10.12938/bmfh.2023-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/06/2024] [Indexed: 07/06/2024]
Abstract
Type 1 diabetes (T1D) is a specific autoimmune disease related to genetic and autoimmune factors. Recent studies have found that the intestinal flora is one of the important environmental factors in the development of T1D. The gut microbiota is the largest microbiota in the human body and has a significant impact on material and energy metabolism. Related studies have found that the intestinal floras of T1D patients are unbalanced. Compared with normal patients, the abundance of beneficial bacteria is reduced, and various pathogenic bacteria are significantly increased, affecting the occurrence and development of diabetes. Medicinal and food homologous traditional Chinese medicine (TCM) has a multicomponent, multitarget, and biphasic regulatory effect. Its chemical composition can increase the abundance of beneficial bacteria, improve the diversity of the intestinal flora, reduce blood sugar, and achieve the purpose of preventing and treating T1D by regulating the intestinal flora and its metabolites. Therefore, based on a review of T1D, intestinal flora, and TCM derived from medicine and food, this review describes the relationship between T1D and the intestinal flora, as well as the research progress of TCM interventions for T1D through regulation of the intestinal flora. Medicine and food homologous TCM has certain advantages in treating diabetes and regulating the intestinal flora. It can be seen that there is still great research space and broad development prospects for the treatment of diabetes by regulating the intestinal flora with drug and food homologous TCM.
Collapse
Affiliation(s)
- Yang PING
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| | - Jianing LIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Huilin WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yan WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Hongbin QIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yu ZHANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| |
Collapse
|
6
|
de Marins AR, Ribeiro STC, de Oliveira MC, Cardozo Filho L, de Oliveira AJB, Gonçalves RAC, Gomes RG, Feihrmann AC. Effect of extraction methods on the chemical, structural, and rheological attributes of fructan derived from Arctium lappa L. roots. Carbohydr Polym 2024; 324:121525. [PMID: 37985103 DOI: 10.1016/j.carbpol.2023.121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023]
Abstract
The focus of this study was the evaluation of how extraction techniques impact the chemical, structural, and rheological attributes of fructans extracted from Arctium lappa L. roots. Three distinct extraction procedures were used, utilizing water as solvent, infusion extraction conducted at ambient temperature (25 °C for 5 min), thermal extraction employing reflux (100 °C for 2 h), and ultrasound-assisted extraction (50 °C for 1.38 h with a 158 W output). Chemical characterization by Nuclear Magnetic Resonance (NMR) and colorimetric analyses revealed the obtaining of inulin-type fructans (yield 83 %). The degree of polymerization (DP) was found to be the lowest for ultrasound-assisted extraction (14.38), followed by the room-temperature (20.41) and thermal (21.14) extraction techniques. None of the extraction techniques appeared to modify the molecular structure of the isolated compounds. In X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses, distinct crystallization patterns were observed for the room-temperature and thermal extraction techniques, though all fractions consistently exhibited characteristic bands of inulin-type fructan. Rheological assessments indicated a viscoelastic nature of the fractions, with those extracted thermally demonstrating a greater viscosity. This study shows that the choice of extraction method can influence the structural characteristics of inulin-type fructans derived from the burdock root.
Collapse
Affiliation(s)
- Annecler Rech de Marins
- Postgraduate Program in Food Science, State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Susana Tavares Cotrim Ribeiro
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, Biotechnology Laboratory of Natural and Synthetic Products (LABIPROS), State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Mariana Carla de Oliveira
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, Biotechnology Laboratory of Natural and Synthetic Products (LABIPROS), State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Lucio Cardozo Filho
- Posgraduate Program in Chemistry Engineering, State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Arildo José Braz de Oliveira
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, Biotechnology Laboratory of Natural and Synthetic Products (LABIPROS), State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Regina Aparecida Correia Gonçalves
- Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, Biotechnology Laboratory of Natural and Synthetic Products (LABIPROS), State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Raquel Guttierres Gomes
- Posgraduate Program in Food Engineering, State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil
| | - Andresa Carla Feihrmann
- Postgraduate Program in Food Science, State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil; Posgraduate Program in Food Engineering, State University of Maringa, CEP: 87020-900 Maringa, PR, Brazil.
| |
Collapse
|
7
|
Yue Q, Tian J, Dong L, Zhou L. Comparison of an Ultrasound-Assisted Aqueous Two-Phase System Extraction of Anthocyanins from Pomegranate Pomaces by Utilizing the Artificial Neural Network-Genetic Algorithm and Response Surface Methodology Models. Foods 2024; 13:199. [PMID: 38254500 PMCID: PMC11154380 DOI: 10.3390/foods13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
As a by-product of pomegranate processing, the recycling and reuse of pomegranate pomaces (PPs) were crucial to environmentally sustainable development. Ultrasound-assisted aqueous two-phase extraction (UA-ATPE) was applied to extract the anthocyanins (ACNs) from PPs in this study, and the central composite design response surface methodology (CCD-RSM) and artificial neural network-genetic algorithm (ANN-GA) models were utilized to optimize the extraction parameters and achieve the best yield. The results indicated that the ANN-GA model built for the ACN yield had a greater degree of fit and accuracy than the RSM model. The ideal model process parameters were optimized to have a liquid-solid ratio of 49.0 mL/g, an ethanol concentration of 28 g/100 g, an ultrasonic time of 27 min, and an ultrasonic power of 330 W, with a maximum value of 86.98% for the anticipated ACN yield. The experimental maximum value was 87.82%, which was within the 95% confidence interval. A total of six ACNs from PPs were identified by utilizing UHPLC-ESI-HRMS/MS, with the maximum content of cyanidin-3-O-glucoside being 57.01 ± 1.36 mg/g DW. Therefore, this study has positive significance for exploring the potential value of more by-products and obtaining good ecological and economic benefits in the future.
Collapse
Affiliation(s)
- Qisheng Yue
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Ling Dong
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Q.Y.); (J.T.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
8
|
Nabi BG, Mukhtar K, Ansar S, Hassan SA, Hafeez MA, Bhat ZF, Mousavi Khaneghah A, Haq AU, Aadil RM. Application of ultrasound technology for the effective management of waste from fruit and vegetable. ULTRASONICS SONOCHEMISTRY 2024; 102:106744. [PMID: 38219546 PMCID: PMC10825644 DOI: 10.1016/j.ultsonch.2023.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Food waste presents a continuous challenge for the food industry, leading to environmental pollution and economic issues. A substantial amount of waste, including by-products from fruits and vegetables, non-edible food items, and other waste materials, is produced throughout the food supply chain, from production to consumption. Recycling and valorizing waste from perishable goods is emerging as a key multidisciplinary approach within the circular bio-economy framework. This waste, rich in raw by-products, can be repurposed as a natural source of ingredients. Researchers increasingly focus on biomass valorization to extract and use components that add significant value. Traditional methods for extracting these bio-compounds typically require the use of solvents and are time-consuming, underscoring the need for innovative techniques like ultrasound (US) extraction. Wastes from the processing of fruits and vegetables in the food industry can be used to develop functional foods and edible coatings, offering protection against various environmental factors. This comprehensive review paper discusses the valorization of waste from perishable items like fruits and vegetables using US technology, not only to extract valuable components from waste but also to treat wastewater in the beverage industry. It also covers the application of biomolecules recovered from this process in the development of functional foods and packaging.
Collapse
Affiliation(s)
- Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Adnan Hafeez
- Department of Human Nutrition and Food Technology, Faculty of Allied Health Sciences, Superior University Lahore, Pakistan
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, Skuast-J, Jammu, India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ahsan Ul Haq
- Department of Forestry & Range Management, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
9
|
El Fihry N, El Mabrouk K, Eeckhout M, Schols HA, Hajjaj H. Physicochemical, structural, and functional characterization of pectin extracted from quince and pomegranate peel: A comparative study. Int J Biol Macromol 2024; 256:127957. [PMID: 37951436 DOI: 10.1016/j.ijbiomac.2023.127957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Pectin's physicochemical, structural, and functional characteristics vary widely depending on the source of extraction. In this study, pectins were extracted from seedless quince and pomegranate peel, and their physicochemical, structural, and functional properties were investigated. A Box-Behnken Design with three factors and three levels was applied to optimize the pectin extraction yield from each matrix. As a result, the best extraction yields for quince pectin (QP) and pomegranate peel pectin (PPP) were 11.44 and 12.08 % (w/w), respectively. Both extracted pectins exhibit a linear structure, with the homogalacturonan domain dominating the rhamnogalacturonan I. Both pectins are highly methyl-esterified (DM > 69 %) with a higher degree of acetylation for PPP than QP, with 12 and 8 %, respectively. Unlike QP, PPP has a narrow, homogenous distribution and greater molecular weight (120 kDa). Regarding functionality, 1 g of QP could retain 4.92 g of water, and both pectin emulsions were more stable at room temperature than at 4 °C. When the concentration of QP is increased, rheological measurements demonstrate that it exhibits pseudoplastic behavior. Finally, QP can be used as a thickener, whereas PPP can be utilized as starting material for chemical changes to create multifunctional pectins.
Collapse
Affiliation(s)
- Noussaire El Fihry
- Laboratory of Biotechnology and Valorization of Bioresources, Faculty of Sciences of Meknes, Moulay Ismail University, BP 11201 Meknes, Morocco; Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298 Meknes, Morocco.
| | - Khalil El Mabrouk
- Euromed Research Center, Euromed Polytechnic School, Euromed University of Fes (UEMF), Meknes Road, Campus UEMF, BP51, 30 030 Fes, Morocco.
| | - Mia Eeckhout
- Department of Food Technology, Food Safety, and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands.
| | - Hassan Hajjaj
- Laboratory of Biotechnology and Valorization of Bioresources, Faculty of Sciences of Meknes, Moulay Ismail University, BP 11201 Meknes, Morocco; Cluster of Competency «Agri-food, Safety and Security» IUC VLIR-UOS, Moulay Ismail University, Marjane 2, BP 298 Meknes, Morocco.
| |
Collapse
|
10
|
Adhikary ND, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int J Biol Macromol 2023; 253:126725. [PMID: 37678691 DOI: 10.1016/j.ijbiomac.2023.126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Polysaccharide-based packaging has been directed toward the development of technologies for the generation of packaging with biodegradable materials that can serve as substitutes for conventional packaging. Polysaccharides are reliable sources of edible packaging materials with excellent renewability, biodegradability, and bio-compatibility as well as antioxidant and antimicrobial activities. Apart from these properties, packaging film developed from a single polysaccharide has various disadvantages due to undesirable properties. Thus, to overcome these problems, researchers focused on ternary blend-based bio-packaging instead of the primary and binary complex to improve their characteristics and properties. The review emphasizes the extraction of polysaccharides and their combination with other polymers to provide desirable characteristics and physico-mechanical properties of the biodegradable film which will upgrade the green packaging technology in the future generation This review also explores the advancement of ternary blend-based biodegradable film and their application in foods with different requirements and the future aspects for developing advanced biodegradable film. Moreover, the review concludes that cellulose, modified starch, and another plant-based polysaccharide film mostly provides good gas barrier property and better tensile strength, which can be used as a safeguard of perishable and semi-perishable foods which brings them closer to replacing commercial synthetic packaging.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath - 7800, Belgium.
| |
Collapse
|
11
|
Jha N, Madasamy S, Prasad P, Lakra AK, Esakkiraj P, Tilwani YM, Arul V. Optimization and Physicochemical Characterization of Polysaccharide Purified from Sonneratia caseolaris Mangrove Leaves: a Potential Antioxidant and Antibiofilm Agent. Appl Biochem Biotechnol 2023; 195:7832-7858. [PMID: 37093530 DOI: 10.1007/s12010-023-04534-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
The Box-Behnken design was applied to determine the optimal parameters of the extraction condition by using the response surface methodology (RSM) from the leaves of Sonneratia caseolaris L. The result indicates the best-optimized conditions used for the extraction of polysaccharides at 84.02 °C temperature, 3.12 h time, and 27.31 mL/g for the water-to-material ratio. The maximum experimental yield of 8.81 ± 0.09% was obtained which is in agreement with the predicted value of 8.79%. Thereafter, low molecular weight polysaccharide (SCLP) was separated after sequentially being purified through column chromatography with a relative molecular weight of 3.74 kDa. The physicochemical properties were evaluated by characterization techniques such as FT-IR spectra, NMR spectrum, and SEM analysis. RP-HPLC analysis confirmed that SCLP was a heteropolysaccharide, majorly comprising rhamnose (28.25%), and xylose (27.17%) residues, followed by mannose (18.90%), and galactose (17.17%), respectively. Thermal analysis (TGA-DSC) results showed that SCLP is a highly thermostable polymer with a degradation temperature of 361.63 °C. X-ray diffraction patterns and tertiary structure analyses indicate that SCLP had a semi-crystalline polymer having a triple-helical configuration. Moreover, SCLP displayed potential antibiofilm ability for all the tested pathogens while stronger activity against Klebsiella pneumoniae and Pseudomonas aeruginosa. In addition, SCLP has potential in vitro antioxidant activity on DPPH, ABTS radical, superoxide, and Fe2+ chelating. These findings indicate that the polysaccharide has potentially been used in functional food, cosmetics, and pharmacological industries.
Collapse
Affiliation(s)
- Natwar Jha
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, 605014, India
| | - Sivagnanavelmurugan Madasamy
- Department of Biotechnology, Karpagam Academy of Higher Education (Karpagam University), Coimbatore, 641021, Tamil Nadu, India
| | - Prema Prasad
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, 605014, India
| | - Avinash Kant Lakra
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, 605014, India
| | - Palanichamy Esakkiraj
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, 605014, India
| | - Younus Mohd Tilwani
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, 605014, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
12
|
Vilcapoma W, de Bruijn J, Elías-Peñafiel C, Espinoza C, Farfán-Rodríguez L, López J, Encina-Zelada CR. Optimization of Ultrasound-Assisted Extraction of Dietary Fiber from Yellow Dragon Fruit Peels and Its Application in Low-Fat Alpaca-Based Sausages. Foods 2023; 12:2945. [PMID: 37569214 PMCID: PMC10419239 DOI: 10.3390/foods12152945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
The main objective of this study was to optimize the extraction of dietary fiber (insoluble dietary fiber and soluble dietary fiber) and degree of esterification from yellow dragon fruit peels using ultrasound-assisted extraction. Additionally, the study aimed to investigate the potential application of this fiber as a fat replacement in alpaca-based sausages. The optimization process for extracting dietary fiber and degree of esterification involved considering various factors, including the liquid-to-solid ratio, pause time, and total ultrasound application time. A Box-Behnken design consisting of 15 treatments was employed to determine the optimal levels for ultrasound-assisted extraction. The optimized conditions were found to be a liquid-to-solid ratio = 30 mL/g, pause time = 1 s, and total ultrasound application time = 60 min, which resulted in the highest values of insoluble dietary fiber (61.3%), soluble dietary fiber (10.8%), and the lowest value of degree of esterification (39.7%). The predicted values were validated against experimental data and showed no significant differences (p > 0.05). Furthermore, a completely randomized design was utilized to assess the effect of dietary fiber on replacing fat content during the production of alpaca-based sausages. The findings revealed that up to 78% of the fat content could be successfully replaced by soluble dietary fiber obtained from yellow dragon fruit peels when compared to high-fat sausages. Additionally, experimental sausages using soluble dietary fiber showed similar (p > 0.05) quality characteristics, such as hardness (24.2 N), chewiness (11.8 N), springiness (0.900), cohesiveness (0.543), redness (a* = 17.4), and chroma values (20.0), as low-fat commercial sausages.
Collapse
Affiliation(s)
- Wilber Vilcapoma
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| | - Johannes de Bruijn
- Departamento de Agroindustrias, Universidad de Concepción, Av. Vicente Méndez, n°595, Chillán 3812120, Chile
| | - Carlos Elías-Peñafiel
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| | - Clara Espinoza
- Departamento de Tecnología de Alimentos, Universidad Nacional del Centro del Perú, Huancayo 12006, Peru
| | - Lucero Farfán-Rodríguez
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| | - Jorge López
- Departamento de Ingeniería Química, Facultad de Ingeniería Química, Universidad Nacional del Callao, Callao 09250, Peru
| | - Christian R. Encina-Zelada
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n Lima 12, Lima 15024, Peru
| |
Collapse
|
13
|
Wang X, Zhang L, Chen L, Wang Y, Okonkwo CE, Yagoub AEGA, Wahia H, Zhou C. Application of ultrasound and its real-time monitoring of the acoustic field during processing of tofu: Parameter optimization, protein modification, and potential mechanism. Compr Rev Food Sci Food Saf 2023; 22:2747-2772. [PMID: 37161497 DOI: 10.1111/1541-4337.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Tofu is nutritious, easy to make, and popular among consumers. At present, traditional tofu production has gradually become perfect, but there are still shortcomings, such as long soaking time, serious waste of water resources, and the inability to realize orders for production at any time. Moreover, tofu production standards have not yet been clearly defined, with large differences in quality between them, which is not conducive to industrialized and large-scale production. Ultrasound has become a promising green processing technology with advantages, such as high extraction rate, short processing time, and ease of operation. This review focused on the challenges associated with traditional tofu production during soaking, grinding, and boiling soybeans. Moreover, the advantages of ultrasonic processing over traditional processing like increasing nutrient content, improving gel properties, and inhibiting the activity of microorganisms were explained. Furthermore, the quantification of acoustic fields by real-time monitoring technology was introduced to construct the theoretical correlation between ultrasonic treatments and tofu processing. It was concluded that ultrasonic treatment improved the functional properties of soybean protein, such as solubility, emulsifying properties, foamability, rheological properties, gel strength, and thermal stability. Therefore, the application of ultrasonic technology to traditional tofu processing to optimize industrial parameters is promising.
Collapse
Affiliation(s)
- Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Chen Y, Song L, Chen P, Liu H, Zhang X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods 2023; 12:2335. [PMID: 37372546 DOI: 10.3390/foods12122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to isolate polysaccharides from Penthorum chinense Pursh and evaluate their rheological characteristics, physicochemical properties, and antioxidant activity. The optimal conditions for the maximal extraction yield of Penthorum chinense Pursh polysaccharides (4.05 ± 0.12%) were determined by employing a single-factor test and response surface methodology which included an extraction time of 3 h, a liquid-solid ratio of 20 mL/g, and three separate extraction times. The rheological experiments showcased that the P. chinense polysaccharides exhibited typical shear-thinning behavior, with their apparent viscosity being influenced by various parameters such as concentration, pH, temperature, salt content, and freeze-thaw. The purified polysaccharides (PCP-100), having an average molecular weight of 1.46 × 106 Da, mainly consisted of glucose (18.99%), arabinose (22.87%), galactose (26.72%), and galacturonic acid (21.89%). Furthermore, the PCP-100 exhibited high thermal stability and displayed an irregular sheet-like morphology. Its superior reducing power and free radical scavenging ability implied its significant antioxidant activity in vitro. Collectively, these findings provide important insights for the future application of P. chinense polysaccharides in the food industry.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
16
|
Lu X. Changes in the structure of polysaccharides under different extraction methods. EFOOD 2023. [DOI: 10.1002/efd2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
17
|
MO M, JIANG F, CHEN W, DING Z, BI Y, KONG F. Preparation, characterization, and bioactivities of polysaccharides fractions from sugarcane leaves. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Yu H, Mei J, Xie J. New ultrasonic assisted technology of freezing, cooling and thawing in solid food processing: A review. ULTRASONICS SONOCHEMISTRY 2022; 90:106185. [PMID: 36201934 PMCID: PMC9535316 DOI: 10.1016/j.ultsonch.2022.106185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/30/2023]
Abstract
Solid foods include fish, shrimp, shellfish, and other aquatic products, fruits, and vegetables. These products are commonly used for food freezing, cooling, and thawing. However, traditional freezing, cooling, and thawing of solid food technologies have limitations in quality, such as protein denaturation and water loss in food. Ultrasound-assisted technology has become a useful method in solid food processing due to improved preservation quality of solid food. This paper comprehensively reviews the mechanism and application of ultrasonic in solid food processing technology. Although the application of ultrasound-assisted ultrasound in solid food processing is relatively comprehensive, the energy saving of food cold processing is essential for practical application. This paper analyzes the optimization of ultrasonic in solid food processing, including orthogonal/multi-frequency technology and the combination of ultrasonic and other technologies, which provides new ideas for freezing, cooling, and thawing of solid food processing.
Collapse
Affiliation(s)
- Huan Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
19
|
Liao J, Xue H, Li J. Extraction of phenolics and anthocyanins from purple eggplant peels by multi-frequency ultrasound: Effects of different extraction factors and optimization using uniform design. ULTRASONICS SONOCHEMISTRY 2022; 90:106174. [PMID: 36170772 PMCID: PMC9513698 DOI: 10.1016/j.ultsonch.2022.106174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.
Collapse
Affiliation(s)
- Jianqing Liao
- College of Physical Science and Engineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China.
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| | - Junling Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| |
Collapse
|
20
|
Chen Y, Chen P, Liu H, Zhang Y, Zhang X. Penthorum chinense Pursh polysaccharide induces a mitochondrial-dependent apoptosis of H22 cells and activation of immunoregulation in H22 tumor-bearing mice. Int J Biol Macromol 2022; 224:510-522. [DOI: 10.1016/j.ijbiomac.2022.10.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
21
|
Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower. Carbohydr Polym 2022; 291:119535. [DOI: 10.1016/j.carbpol.2022.119535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
|
22
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
23
|
Wang H, Ma JX, Zhou M, Si J, Cui BK. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front Microbiol 2022; 13:965934. [PMID: 35992671 PMCID: PMC9382022 DOI: 10.3389/fmicb.2022.965934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
For thousands of years, sanghuang is distinctive as a general designation for a group of precious and rare Chinese medicinal mushrooms. Numerous investigations have revealed that polysaccharide is one of the important biological active ingredients of sanghuang with various excellent biological activities, including antioxidant, anti-aging, anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetic, hepatoprotective, and anti-microbial functionalities. For the past two decades, preparation, structural characterization, and reliable bioactivities of the polysaccharides from fruiting bodies, cultured mycelia, and fermentation broth of sanghuang have been arousing extensive interest, and particularly, different strains, sources, and isolation protocols might result in obvious discrepancies in structural features and bioactivities. Therefore, this review summarizes the recent reports on preparation strategies, structural features, bioactivities, and structure-activity relationships of sanghuang polysaccharides, which will enrich the knowledge on the values of natural sanghuang polysaccharides and support their further development and utilization as therapeutic agents, vaccines, and functional foods in tonic and clinical treatment.
Collapse
|
24
|
Hu Z, Sun J, Jin L, Zong T, Duan Y, Zhou H, Zhou W, Li G. Acetylation Modification, Characterization, and Anticomplementary Activity of Polysaccharides from Rhododendron dauricum Leaves. Polymers (Basel) 2022; 14:polym14153130. [PMID: 35956644 PMCID: PMC9370847 DOI: 10.3390/polym14153130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
This study focuses on the acetylation modification of polysaccharides from Rhododendron dauricum leaves (RDPs) with a high degree of substitution (DS) and then discusses their characterization and biological activity. The optimum acetylation conditions of RDPs were optimized by response surface methodology, which were reaction time 3 h, reaction temperature 50 °C, and the liquid-solid ratio 16 mL/g. Under the optima schemes, two eco-friendly acetylated polysaccharides from R. dauricum leaves (AcRDP-1 with DS of 0.439 ± 0.025 and AcRDP-2 with DS of 0.445 ± 0.022) were prepared. The results of structural characterization showed that the AcRDP-1 (9.3525 × 103 kDa) and AcRDP-2 (4.7016 × 103 kDa) were composed of mannose, glucose, galactose, and arabinose with molar ratios of 1.00:5.01:1.17:0.15 and 1.00:4.47:2.39:0.88, respectively. Compared with unmodified polysaccharides, the arabinose content and molecular weight of the two acetylated polysaccharides decreased, and their triple helix conformation disappeared, and further improved their anticomplementary activity. The two acetylated polysaccharides showed stronger a complement inhibition effect than the positive drug by blocking C2, C3, C4, C5, C9, and factor B targets in the classical and alternative pathways. This research indicated that acetylation modification could effectively enhance the anticomplementary activity of RDPs, which is beneficial for the development and utilization of R. dauricum leaves.
Collapse
Affiliation(s)
- Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
| | - Hongli Zhou
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China
- Correspondence: (H.Z.); (W.Z.); (G.L.); Tel.: +86-433-243600 (G.L.)
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
- Correspondence: (H.Z.); (W.Z.); (G.L.); Tel.: +86-433-243600 (G.L.)
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China; (Z.H.); (J.S.); (L.J.); (T.Z.); (Y.D.)
- Correspondence: (H.Z.); (W.Z.); (G.L.); Tel.: +86-433-243600 (G.L.)
| |
Collapse
|
25
|
Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods 2022; 11:foods11142035. [PMID: 35885279 PMCID: PMC9319240 DOI: 10.3390/foods11142035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ultrasonic processing has a great potential to transform waste from the food and agriculture industry into value-added products. In this review article, we discuss the use of ultrasound for the valorisation of food and agricultural waste. Ultrasonic processing is considered a green technology as compared to the conventional chemical extraction/processing methods. The influence of ultrasound pre-treatment on the soluble chemical oxygen demand (SCOD), particle size, and cell wall content of food waste is first discussed. The use of ultrasonic processing to produce/extract bioactives such as oil, polyphenolic, polysaccharides, fatty acids, organic acids, protein, lipids, and enzymes is highlighted. Moreover, ultrasonic processing in bioenergy production from food waste such as green methane, hydrogen, biodiesel, and ethanol through anaerobic digestion is also reviewed. The conversion of waste oils into biofuels with the use of ultrasound is presented. The latest developments and future prospective on the use of ultrasound in developing energy-efficient methods to convert food and agricultural waste into value-added products are summarised.
Collapse
|
26
|
Hui H, Gao W. Physicochemical features and antioxidant activity of polysaccharides from Herba Patriniae by gradient ethanol precipitation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Liu Y, Mao K, Zhang N, Chitrakar B, Huang P, Wang X, Yang B, Sang Y. Structural characterization and immunomodulatory effects of extracellular polysaccharide from Lactobacillus paracasei VL8 obtained by gradient ethanol precipitation. J Food Sci 2022; 87:2034-2047. [PMID: 35415843 DOI: 10.1111/1750-3841.16153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
In this study, gradient ethanol precipitation method was applied to obtain the extracellular polysaccharides of Lactobacillus paracasei VL8 (VL8-EPS). The yields, physicochemical properties, and immunomodulatory effects of VL8-EPS obtained by precipitation at different ethanol concentrations (30%, 50%, and 70%, v/v) were compared. The results showed that VL8-EPSs were high molecular weight sulfated heteropolysaccharides, composed mainly of glucose and galactose, and the alteration of ethanol concentration had an effect on their chemical compositions, molecular weight distributions, monosaccharide composition, and surface structure, while the primary structure remained the same. Among the three polysaccharide fractions, VL8-EPS50 displayed better immunomodulatory activities compared with VL8-EPS30 and VL8-EPS70. VL8-EPS50 was found to exert immunomodulatory effects by enhancing the phagocytic activity of RAW264.7 cells and to promote their secretion of more nitric oxide; it also showed stronger thermal and solution stability. In summary, there was a correlation between the structural characteristics of polysaccharides and their immunomodulatory activity, and VL8-EPS50 was preferentially used for in vivo immunomodulatory activity. Practical Application This study opens up the source of raw materials for functional foods, which can provide some theoretical basis for the research and development of extracellular polysaccharides of lactic acid bacteria and promote their application in the future development of food industry.
Collapse
Affiliation(s)
- Yuwei Liu
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Nan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Pimiao Huang
- College of Food Science, Southwest University, Chongqing, PR China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Hebei, PR China
| |
Collapse
|
28
|
Bai C, Chen R, Tan L, Bai H, Tian L, Lu J, Gao M, Sun H, Chi Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int J Biol Macromol 2022; 206:896-910. [PMID: 35318082 DOI: 10.1016/j.ijbiomac.2022.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The effect of multi-frequency ultrasonic extraction (MUE) on the yields, physicochemical properties, antioxidant and α-glucosidase inhibitory activities of polysaccharides (GPs) from different parts of ginseng were compared. Results demonstrated that yields of polysaccharides from different parts were found to vary significantly differences, in the order of roots (M-GRPs) > flowers (M-GFPs) > leaves (M-GLPs). Compared with heat reflux extraction, MUE not only increased the yield of GPs by up to 9.14%-210.87%, with higher uronic acid content (UAC: increased by 4.99%-53.48%), total phenolics content (TPC: increased by 7.60% to 42.61%), total flavonoids content (TFC: increased by 2.52%-5.45%), and lower molecular weight (Mw: reduced by 6.51%- 33.08%) and protein content (PC: reduced by 5.15%-8.95%), but also improved their functional properties and bioactivities. All six purified polysaccharides extracted by MUE were acidic pyran polysaccharide with different monosaccharide composition, possessed remarkable antioxidant and α-glucosidase inhibitory activities. Especially, M-GFP-1 exhibited the highest bioactivities, illustrated that the activities were highly correlated with UAC and TPC, Mw, and triple helical structure. These results indicate that MUE was an efficient technique for improving yields, physicochemical and functional properties and enhancing biological activities of polysaccharide.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Li Tan
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ming Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yu Chi
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
29
|
Tan J, Cui P, Ge S, Cai X, Li Q, Xue H. Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit: Modeling, optimization, purification, and characterization. ULTRASONICS SONOCHEMISTRY 2022; 84:105966. [PMID: 35247682 PMCID: PMC8897718 DOI: 10.1016/j.ultsonch.2022.105966] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 05/24/2023]
Abstract
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV-vis, fourier-transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources.
Collapse
Affiliation(s)
- Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Pengshan Cui
- College of Quality and Technical Supervision, Hebei University, No. 2666 Qiyi East Road, Lianchi District, Baoding 071002, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
30
|
Zhang L, Wang X, Hu Y, Abiola Fakayode O, Ma H, Zhou C, Hu Z, Xia A, Li Q. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein. ULTRASONICS SONOCHEMISTRY 2021; 80:105803. [PMID: 34689067 PMCID: PMC8551839 DOI: 10.1016/j.ultsonch.2021.105803] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 05/21/2023]
Abstract
To improve the soybean protein content (SPC), flavor and quality of soymilk, the effects of dual-frequency ultrasound at different angles (40 + 20 kHz 0°, 40 + 20 kHz 30°, 40 + 20 kHz 45°) on physicochemical properties and soybean protein (SP) structure of raw soymilk were mainly studied and compared with the conventional single-frequency (40 kHz, 20 kHz) ultrasound. Furthermore, the intensity of the ultrasonic field in real-time was monitored via the oscilloscope and spectrum analyzer. The results showed that 40 + 20 kHz 45° treatment significantly increased SPC. The ultrasonic field intensity of 40 + 20 kHz 0° treatment was the largest (8.727 × 104 W/m2) and its distribution was the most uniform. The emulsifying stability of SP reached the peak value (233.80 min), and SP also had the largest particle size and excellent thermal stability. The protein solubility of 40 + 20 kHz 30° treatment attained peak value of 87.09%. 20 kHz treatment significantly affected the flavor of okara. The whiteness and brightness of raw soymilk treated with 40 kHz were the highest and the system was stable. Hence, the action mode of ultrasonic technology can be deeply explored and the feasibility for improving the quality of soymilk can be achieved.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xue Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Agricultural and Food Engineering, University of Uyo, Uyo 520001, Akwa Ibom State, Nigeria
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhenyuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Aiming Xia
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| | - Qun Li
- Zhenjiang New Mill Bean Industry Co. LTD, Zhenjiang 212000, China
| |
Collapse
|
31
|
Umair M, Jabbar S, Nasiru MM, Lu Z, Zhang J, Abid M, Murtaza MA, Kieliszek M, Zhao L. Ultrasound-Assisted Extraction of Carotenoids from Carrot Pomace and Their Optimization through Response Surface Methodology. Molecules 2021; 26:6763. [PMID: 34833855 PMCID: PMC8618288 DOI: 10.3390/molecules26226763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-assisted extraction (UAE) was used to extract carotenoids from the carrot pomace. To investigate the effect of independent variables on the UAE, the response surface methodology (RSM) with central-composite design (CCD) was employed. The study was conducted with three independent variables including extraction time (min), temperature (°C), and ethanol concentration (%). The results showed that the optimal conditions for UAE were achieved with an extraction time of 17 min, temperature of 32 °C, and ethanol concentration of 51% of total carotenoids (31.82 ± 0.55); extraction time of 16 min, temperature of 29 °C, and ethanol concentration of 59% for a combination of β-carotene (14.89 ± 0.40), lutein (5.77 ± 0.19), and lycopene (2.65 ± 0.12). The non-significant (p > 0.05) correlation under optimal extraction conditions between predicted and experimental values suggested that UAE is the more productive process than conventional techniques for the extraction of carotenoids from the carrot pomace.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad 46000, Pakistan;
| | - Mustapha M. Nasiru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.M.N.); (Z.L.); (J.Z.)
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi 44000, Pakistan;
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|