1
|
Abd-Elhakim YM, Hashem MMM, Abo-El-Sooud K, El-Metawally AE, Hassan BA. Coenzyme Q10 Attenuates Kidney Injury Induced by Titanium Dioxide Nanoparticles and Cadmium Co-exposure in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04469-x. [PMID: 39707081 DOI: 10.1007/s12011-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
This study examined the possible defensive role of coenzyme Q10 (CQ10) against the impact of cadmium (Cd) and titanium dioxide nanoparticle (TNP) exposure on rat kidneys. Distilled water (1 mL/rat), corn oil (1 mL/rat), 10 mg CQ10/kg b.wt, 50 mg TNP/kg b.wt, 5 mg Cd/kg b.wt, TNP + Cd, or TNP + Cd + CQ10 was administered orally to seven groups of 70 male Sprague Dawley rats for 60 days. The findings demonstrated that TNP and/or Cd exposure considerably raised serum levels of several renal damage products, disturbed electrolyte balance including sodium, potassium, and calcium, decreased antioxidant enzyme concentration in the kidneys, and elevated malondialdehyde. In addition, rats exposed to TNP and/or Cd had significantly higher levels of renal titanium and Cd. In addition, rats exposed to TNP and/or Cd showed significant histopathological lesions and collagen deposition as revealed by H and E and Masson trichrome staining, respectively. The kidneys were severely damaged by the combined effects of TNP and Cd, although CQ10 greatly mitigated these effects. According to the study, exposure to TNP and Cd can damage the kidneys' function and structure, especially when combined. However, CQ10 can protect against TNP and Cd's nephrotoxic effects.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Abeer E El-Metawally
- Pathology Department, Animal Reproduction Research Institute, Giza, 3514805, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo, 11835, Egypt.
| |
Collapse
|
2
|
Berköz M, Yiğit A, Krośniak M. Protective Role of Myricetin and Fisetin Against Nephrotoxicity Caused by Lead Acetate Exposure through Up-regulation of Nrf2/HO-1 Signalling Pathway. Biol Trace Elem Res 2024; 202:4032-4046. [PMID: 38051478 DOI: 10.1007/s12011-023-03977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
The effect of various flavonoids against oxidative stress and inflammation caused by lead exposure has been investigated. However, the protective effects of myricetin (MYC) and fisetin (FST), which are known to have potent antioxidant properties, against nephrotoxicity caused by exposure to lead acetate (LA), the water-soluble form of lead, have not been investigated. Our study investigated the protective role of these flavonoids against LA intoxication-induced nephrotoxicity. In our study, 42 male rats were used. The rats were randomly selected and divided into 6 groups. These groups were: control, LA (100 g/kg), LA + MYC (100 mg/kg), LA + MYC (200 mg/kg), LA + FST (100 mg/kg) and LA + FST (200 mg/kg). All chemicals were administered daily by gavage for 28 days. According to the experimental protocol, the animals were sacrificed and their kidney tissues were isolated. Serum biochemical parameters, histological examinations, levels of several trace elements, oxidative stress and inflammatory parameters at both biochemical and molecular levels in kidney tissues were examined. After LA administration, tissue lead levels increased and zinc levels decreased. This situation was reversed by MYC and FST treatment. Oxidative stress and inflammatory response were increased in the kidney tissue of LA-treated rats and renal function was impaired. It was observed that both doses of MYC and high dose of FST could prevent nephrotoxicity. Oral administration of both doses of MYC and high dose FST ameliorated the changes in biochemical, oxidative and inflammatory parameters. Restoration of normal renal tissue architecture was also demonstrated by histological studies. MYC and FST were found to have promising biological activity against LA-induced nephrotoxicity, acting by attenuating inflammation and oxidative stress and improving antioxidant status.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, Tuşba/VAN, Turkey.
| | - Ayhan Yiğit
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Zeve Campus, Tuşba/VAN, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
3
|
El-Aziz GSA, Hindi EA, Aggad WS, Alturkistani HA, Halawani MM, Alyazidi AS. Evaluation of the Potential Protectivity of Both Allium sativum and Zingiber officinale on the Cadmium-Induced Testicular Damage in Rats. J Microsc Ultrastruct 2024; 12:62-70. [PMID: 39006047 PMCID: PMC11245131 DOI: 10.4103/jmau.jmau_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/11/2022] Open
Abstract
Background Cadmium (Cd) is a widely spread environmental pollutant, listed among the unsafe metals due to known toxic effects on multiple organs, including the testes. In this study, we aim to evaluate the potential protectivity of garlic and ginger extracts on Cd-induced damage of the testis in rats. Materials and Methods Fifty-six adult male albino rats were alienated into seven groups; control group, garlic-treated group, and ginger-treated group were given garlic and ginger extracts at doses of 250 mg and 120 mg/kg b.wt/day, Cd-treated group received 8.8 mg/Kg b.wt/day of Cd chloride, and the protected groups were given Cd and co-treated with garlic, ginger, or both extracts. The testes were subjected to different procedures to assess the oxidative status and histopathological changes. Results Cd-treated rats showed a significant reduction in the testis weight and morphometric measurements of the seminiferous tubules compared to the control group. Cd administration resulted in a marked drop in the testosterone level and activities of antioxidative enzymes. Moreover, Cd induced histopathological changes in the seminiferous tubules. Co-administration of garlic and ginger extracts with the Cd showed partial improvement in the investigated parameters toward the control figures and improvement in the morphological changes. Co-treating both extracts together and the Cd resulted in complete normalization of these adverse effects of Cd. Conclusion These findings indicated that garlic and ginger extracts could ameliorate the harmful effects of Cd on the testis. This effect was more prominent when garlic and ginger extracts were co-administered together with Cd.
Collapse
Affiliation(s)
- Gamal Said Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mervat M Halawani
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
4
|
Dosoky WM, Farag SA, Almuraee AA, Youssef IM, Awlya OFA, Abusudah WF, Qadhi A, Arbaeen AF, Moustafa M, Hassan H, Tellez-Isaias G. Vitamin C and/or garlic can antagonize the toxic effects of cadmium on growth performance, hematological, and immunological parameters of growing Japanese quail. Poult Sci 2024; 103:103457. [PMID: 38295500 PMCID: PMC10846401 DOI: 10.1016/j.psj.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
This study used 300 1-day-old, sexless, developing chicks of Japanese quail to estimate the ability of vitamin C and/or garlic to antagonize the venomous influence of cadmium (Cd) on the hematological, immunological, and performance characteristics of developing Japanese quail. The quail was separated into 5 similar groups of 60 chicks apiece, and 6 duplicates (10 each) were given to each sub-group. The control group received a basal diet without any supplements. The Cd group was nourished with a basal diet of + 80 mg cadmium chloride (CdCl2)/kg diet. The 3rd group was fed a basal diet + 80 mg CdCl2/kg diet and complemented with a 200 mg Vitamin C (Cd + C)/kg diet. The 4th group was nourished with a basal diet + 80 mg CdCl2/kg diet and complemented by a 500 mg dried garlic powder (Cd + G)/kg diet. The 5th group was fed a basal diet + 80 mg CdCl2/kg diet, complemented by a 200 mg vitamin C/kg diet + 500 mg dried garlic powder (Cd + CG)/kg diet. Results showed that in the 5th group in which cadmium was added together with Vit C + garlic, there was an improvement in both live weight gain (1-42 d) and feed consumption (1-21 and 1-42 d ) compared to the group in which Cd was added alone. The addition of Vit C alone and together with garlic seems to completely improve the cadmium-related increase in alkaline phosphatase (ALP), and Aspartate aminotransferase (AST), and Malondialdehyde (MDA) levels when compared to the control. Compared to cadmium-polluted diets, quail that got cadmium and feed additives significantly reduced cadmium residue. In addition, the cadmium group's serum immunoglobulin M (IgM) level decreased significantly. These data imply that dietary supplementation with (C) or (G) may be beneficial in retrogressing the drop in immunoglobulin G (IgG) and IgM caused by Cd and minimizing Cd's deleterious influence on immunity.
Collapse
Affiliation(s)
- Waleed M Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Soha A Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Egypt
| | - Areej A Almuraee
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt.
| | - Ohaad F A Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Wafaa F Abusudah
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Alaa Qadhi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Kingdom of Saudi Arabia
| | - Ahmad F Arbaeen
- Clinical Laboratory Sciences Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Hesham Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | |
Collapse
|
5
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
6
|
Karimi-Dehkordi M, Molavi Pordanjani M, Gholami-Ahangaran M, Mousavi Khaneghah A. The detoxification of cadmium in Japanese quail by pomegranate peel powder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1204-1214. [PMID: 37194662 DOI: 10.1080/09603123.2023.2211547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Environmental pollution and exposure to toxic metals such as cadmium (Cd) can cause severe and chronic diseases and have significant side effects on vital organs. The present study aimed to evaluate the effect of pomegranate peel on biochemical factors and lipid peroxidation in intoxication by Cd in Japanese quail. Two hundred seventy quails in different groups were fed diets containing Cd and pomegranate peel from 6 to 35 days old. Then, serum biochemical parameters were assessed, including liver enzymes, urea, and thiobarbituric acid. In the quails, Cd significantly increased MDA, urea, and AST (P < 0.05). Adding pomegranate peel at 1.5 and 2% levels decreased these parameters significantly (P < 0.05). In conclusion, dietary enrichment using pomegranate peel reduced the adverse effects of Cd by improving lipid peroxidation, aspartate aminotransferase (AST), and urea in Japanese quail.
Collapse
Affiliation(s)
- Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Majid Gholami-Ahangaran
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
7
|
Gad El-Hak HN, Mohamed FH. Effect of lactoferrin supplement on cadmium chloride induced toxicity to male rats: Toxicopathological, ultrastructural and immunological studies. Int Immunopharmacol 2023; 125:111182. [PMID: 37944217 DOI: 10.1016/j.intimp.2023.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
This study sought to determine whether lactoferrin supplementation could counteract the harm that cadmium (Cd) induced to the rats. The effect of Cd and lactoferrin were investigated in hematological, biochemical, histological, immunohistochemical expression and ultrastructural studies. After 30 days of treatment, rats exposed to Cd had significantly higher levels of Cd in their blood, more oxidized lipids, and less antioxidant capacity overall. Supplemental lactoferrin also significantly undoes that effect. Hematological and biochemical parameters changed along with the increase in blood Cd levels. The histological integrity of the liver, kidney, spleen, and (axillary, cervical, mesenteric and popliteal) lymph nodes that had been damaged by Cd exposure was also restored by lactoferrin supplementation. Moreover, the liver and spleen ultrastructure showed the same improvement. In addition, the spleen of Lf/Cd group showed less immunohistochemical expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in comparison to the Cd group. In conclusion, the current study showed that supplementing with lactoferrin improved immune response and restored biochemical and oxidative stability induced by Cd.
Collapse
|
8
|
Abd-Elhakim YM, Hashem MMM, Abo-El-Sooud K, Mousa MR, Soliman AM, Mouneir SM, Ismail SH, Hassan BA, El-Nour HHM. Interactive effects of cadmium and titanium dioxide nanoparticles on hepatic tissue in rats: Ameliorative role of coenzyme 10 via modulation of the NF-κB and TNFα pathway. Food Chem Toxicol 2023; 182:114191. [PMID: 37980978 DOI: 10.1016/j.fct.2023.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the effect of oral dosing of titanium dioxide nanoparticles (TNPs) and cadmium (Cd2+) on rat liver and the potential protective role of coenzyme Q10 (CQ10) against TNPs and Cd2+-induced hepatic injury. Seventy male Sprague Dawley rats were divided into seven groups and orally given distilled water, corn oil, CQ10 (10 mg/kg b.wt), TNPs (50 mg/kg b.wt), Cd2+ (5 mg/kg b.wt), TNPs + Cd2+, or TNPs + Cd2++CQ10 by gastric gavage for 60 successive days. The results showed that individual or mutual exposure to TNPs and Cd2+ significantly increased the serum levels of various hepatic enzymes and lipids, depleted the hepatic content of antioxidant enzymes, and increased malondialdehyde. Moreover, the hepatic titanium and Cd2+ content were increased considerably in TNPs and/or Cd2+-exposed rats. Furthermore, marked histopathological perturbations with increased immunoexpression of tumor necrosis factor-alpha and nuclear factor kappa B were evident in TNPs and/or Cd2+-exposed rats. However, CQ10 significantly counteracted the damaging effect of combined exposure of TNPs and Cd2+ on the liver. The study concluded that TNPs and Cd2+ exposure harm hepatic function and its architecture, particularly at their mutual exposure, but CQ10 could be a candidate protective agent against TNPs and Cd2+ hepatotoxic impacts.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, 6th October City, Giza, 12588, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Hayat H M El-Nour
- Biology of Reproduction Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| |
Collapse
|
9
|
Yang Y, Li S, Zhu Y, Che L, Wu Q, Bai S, Shu G, Zhao X, Guo P, Soaud SA, Li N, Deng M, Li J, El-Sappah AH. Saccharomyces cerevisiae additions normalized hemocyte differential genes expression and regulated crayfish (Procambarus clarkii) oxidative damage under cadmium stress. Sci Rep 2023; 13:20939. [PMID: 38016989 PMCID: PMC10684557 DOI: 10.1038/s41598-023-47323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
Because China produces the most crayfish in the world, safe solutions must be improved to mitigate the risks of ongoing heavy metal stressors accumulation. This study aimed to use Saccharomyces cerevisiae as a bioremediation agent to counteract the harmful effect of cadmium (Cd) on crayfish (Procambarus clarkia). Our study used three concentrations of S. cerevisiae on crayfish feed to assess their Cd toxicity remediation effect by measuring total antioxidant capacity (TAC) and the biomarkers related to oxidative stress like malondialdehyde (MDA), protein carbonyl derivates (PCO), and DNA-protein crosslink (DPC). A graphite furnace atomic absorption spectroscopy device was used to determine Cd contents in crayfish. Furthermore, the mRNA expression levels of lysozyme (LSZ), metallothionein (MT), and prophenoloxidase (proPO) were evaluated before and following the addition of S. cerevisiae. The results indicated that S. cerevisae at 5% supplemented in fundamental feed exhibited the best removal effect, and Cd removal rates at days 4th, 8th, 12th, and 21st were 12, 19, 29.7, and 66.45%, respectively, which were significantly higher than the basal diet of crayfish. The addition of S. cerevisiae increased TAC levels. On the other hand, it decreased MDA, PCO, and DPC, which had risen due to Cd exposure. Furthermore, it increased the expression of proPO, which was reduced by Cd exposure, and decreased the expression of LSZ and MT, acting in the opposite direction of Cd exposure alone. These findings demonstrated that feeding S. cerevisiae effectively reduces the Cd from crayfish and could be used to develop Cd-free crayfish-based foods.
Collapse
Affiliation(s)
- Yaru Yang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China.
| | - Shuaidong Li
- College of Morden Agriculture, Yibin Vocational and Technical College, Yibin, 644003, China
| | - Yumin Zhu
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Litao Che
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Qifan Wu
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Shijun Bai
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Guocheng Shu
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Peng Guo
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Salma A Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Nianzhen Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Mengling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China.
| | - Ahmed H El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
10
|
Ahmad W, Sattar A, Ahmad M, Aziz MW, Iqbal A, Tipu MY, Mushtaq RMZ, Rasool N, Ahmed HS, Ahmad M. Unveiling Oxidative Stress-Induced Genotoxicity and Its Alleviation through Selenium and Vitamin E Therapy in Naturally Infected Cattle with Lumpy Skin Disease. Vet Sci 2023; 10:643. [PMID: 37999466 PMCID: PMC10675407 DOI: 10.3390/vetsci10110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Lumpy skin disease (LSD) is a contagious infection of cattle caused by a virus of the Poxviridae family, genus Capripoxvirus. In Pakistan, recent outbreaks have resulted in significant nationwide mortality and economic losses. A 20-day prospective cohort study was performed on sixty infected cattle with the aim to evaluate LSD-induced oxidative stress's genotoxic role and to determine the ameliorative effect of antioxidant therapy using principal component analysis (PCA) and a multivariable ordinal logistic regression model. LSDV was identified from scab samples and nodular lesions using RPO30-specific gene primers. The infected cattle were divided into control and treated groups. The animals were observed initially and finally on day 20 to evaluate the homeostatic, oxidative, and genotoxic changes. The animals in the treated group were administered a combination of selenium (Se) and vitamin E at the standard dose rate for five consecutive days. A substantial (p < 0.05) improvement in the hematological indices was observed in the treated group. The treated group also showed a significant (p < 0.05) reduction in levels of serum nitric oxide (NO) and malondialdehyde (MDA) post-therapy. The PCA at the final sampling data of the treated group showed that Principal Component (PC1 eigenvalue 1.429) was influenced by superoxide dismutase (SOD; 0.3632), catalase (CAT; 0.2906), and glutathione (GSH; 0.0816) and PC2 (eigenvalue 1.200) was influenced by CAT (0.4362), MDA (0.2056), and NO (0.0693). A significant correlation between serum NO (76%) and MDA levels (80%) was observed with genetic damage index (GDI) scores. The ordinal logistic regression model regarding the use of antioxidant therapy revealed 73.95-times (95%CI; 17.36-314.96) improvement in the GDI in treated animals. The multivariable ordinal logistic regression showed that each unit increase in NO and MDA resulted in a 13% increase in genotoxicity in infected individuals. In conclusion, our study revealed that LSD-induced oxidative stress and lipid peroxidation product causes genotoxicity in affected animals. Furthermore, the combined Se and vitamin E therapy significantly alleviated oxidative stress and genotoxicity in LSD-affected cattle.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Livestock and Dairy Development Department Punjab, Lahore 54000, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Mehmood Ahmad
- Department of Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore 54000, Pakistan
| | - Muhammad Yasin Tipu
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | | | - Naeem Rasool
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hafiz Saleet Ahmed
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ahmad
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
11
|
Dai Z, Li G, Wang X, Gao B, Gao X, Strappe P, Zhou Z. Mapping the metabolic characteristics of probiotic-fermented Ganoderma lucidum and its protective mechanism against Cd-induced nephrotoxicity. Food Funct 2023; 14:8615-8630. [PMID: 37668611 DOI: 10.1039/d3fo01587d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
An animal model of Cd-induced kidney damage was designed to investigate the nephroprotective potential of the probiotic-fermented Ganoderma lucidum (FGL) via metabonomic analysis. The results showed that FGL enhanced sugar and amino acid metabolism. The interaction of Ganoderma lucidum (GL) and probiotics efficiently elevated short-chain fatty acid production following gut microbiota fermentation. The current data revealed that the FGL intervention alleviated Cd-induced nephrotoxicity via elevating the activity of antioxidant enzymes and decreasing the levels of pro-inflammatory and apoptotic factors. Based on transcriptome analysis, FGL intervention mediated renal dysfunction via decreasing the expressions of Nos2, Tnfsf14, S100a9, Map3k6 and Hk3, which were involved in oxidative stress, inflammatory response and the apoptosis process. The current study highlights a new approach for achieving positive nephroprotection via natural product intervention.
Collapse
Affiliation(s)
- Zhen Dai
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiuwei Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
12
|
KORKMAZ Y, GUNGOR H, DEMIRBAS A, DIK B. Pomegranate peel extract, N-Acetylcysteine and their combination with Ornipural alleviate Cadmium-induced toxicity in rats. J Vet Med Sci 2023; 85:990-997. [PMID: 37495528 PMCID: PMC10539821 DOI: 10.1292/jvms.22-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Cadmium is a major environmental pollutant and a highly toxic metal. It was aimed to determine the effects of pomegranate peel extract (PPE), N-acetylcysteine (NAC) alone and along with Ornipural on cadmium-induced toxicity. Forty-six Wistar Albino male rats were divided into 6 groups and the groups were formed into healthy control, Cadmium group (5 mg/kg/day, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral), Cadmium + N-acetylcysteine (100 mg/kg, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous) and Cadmium + N-acetylcysteine (100 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous). Cadmium accumulated heavily in both liver and kidney tissue. The administration of N-acetylcysteine and pomegranate peel extract alone reduced cadmium levels in both tissues. N-acetylcysteine treatment prevented the increase in ALT and MDA levels by cadmium damage. N-acetylcysteine + Ornipural treatment inhibited the increase in liver 8-OHdG level in the liver. N-acetylcysteine and N-acetylcysteine + Ornipural treatments prevented the reduced serum MMP2 level. N-acetylcysteine and Pomegranate peel extract + Ornipural treatments significantly reduced the increased liver iNOS level in the liver. In conclusion, NAC therapy may be a successful treatment option for cadmium toxicity. However, further research is needed on the effects of PPE and Ornipural combinations for the treatment of cadmium toxicity. In future studies, various doses of these treatment options (with chelators) should be investigated for cadmium toxicity.
Collapse
Affiliation(s)
- Yasemin KORKMAZ
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hüseyin GUNGOR
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet DEMIRBAS
- Department of Plant and Animal Production, Sivas Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak DIK
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
13
|
El-Gendy KS, Osman KA, Ezz El-Din EM, El-Seedy AS. Evaluation of biochemical, hematological, and genotoxic parameters in mice exposed to individual and combined ethoprophos and cadmium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:247-254. [PMID: 36892198 DOI: 10.1080/03601234.2023.2186682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Environmental contamination by complex mixtures of pesticides and metals is a major health problem in agriculture and industry. In real life scenarios, we are exposed to mixtures of chemicals rather than single chemicals, and therefore it is critical to assess their toxicity. The current work was conducted to assess the toxic effects of a low dose (2% median lethal dose) of ethoprophos (Etho, 0.16 mg kg-1 bw), and cadmium (Cd, 0.63 mg kg-1 bw); each alone or in combination on hematological, biochemical, and genotoxic parameters in male mice for one or four weeks. The tested toxicants resulted in a decline in body and organs weights, the most hematological indices, acetylcholine esterase activity, and the total protein content, while they significantly increased liver and kidney function parameters. Furthermore, they increased the mitotic index (MI), number of abnormal sperms, and chromosomes. In conclusion, Etho and Cd induce deleterious effects on all tested parameters in male mice which reflect more obvious impacts when both combined, particularly after 28 days of exposure. However, further research is needed to confirm toxicokinetic or toxicodynamic interactions between these two toxic compounds in the organisms.
Collapse
Affiliation(s)
- Kawther S El-Gendy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ayman S El-Seedy
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
14
|
Maghraoui S, Florea A, Ayadi A, Matei H, Tekaya L. Changes in Organ Weight, Sperm Quality and Testosterone Levels After Aluminum (Al) and Indium (In) Administration to Wistar Rats. Biol Trace Elem Res 2023; 201:766-775. [PMID: 35262856 DOI: 10.1007/s12011-022-03180-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Aluminum and indium are widely used in industrial manufacturing, in pharmaceutical products, in medical treatments, and in food packaging, so they could reach organisms by different way. In order to clarify whether these elements are dangerous, we already demonstrated the ultrastructural modifications observed in the testicles, the epididymides, and the seminal vesicles of rat. Their pro-oxidative effect was also confirmed concomitantly to a decrease in anti-oxidant defenses in the blood, the testicles, and the liver. Thus, it seemed very logic to evaluate damages in the reproductive organs, especially on the exocrine and endocrine functions of the testicles. METHODS Aluminum and indium were intraperitoneally administered to male Wistar rats. Sperm solution was obtained from cauda epididymides. Motility, viability, density, and malformation of spermatozoa solution were assessed. Serum total unconjugated testosterone concentrations were measured using RIA technique. RESULTS Our results showed a decrease in weight of the testicles, epididymides, and seminal vesicles of indium-treated rats and an increase in the weight of their kidneys. A decrease in motility, viability, and density of epididymides stored sperm as well as generation of many spermatozoa malformations was also observed especially in indium-treated rats. Testosterone levels were increased in indium but were enhanced in aluminum group. This confirmed our previous studies showing that aluminum and indium are toxic for the testicular tissues. This could be explained by the generation of reactive oxygen species (ROS) affecting strongly the exocrine and the endocrine functions of the testicles. CONCLUSION Aluminum and indium are disturbing elements for the exocrine and endocrine functions of rat testicles.
Collapse
Affiliation(s)
- Samira Maghraoui
- Laboratory of Physiology, Faculty of Medicine of Tunis (University of Tunis El Manar), 15, Djebel Lakhdar Street, La Rabta, 1007, Tunis, Tunisia.
| | - Adrian Florea
- Department of Cell and Molecular Biology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 L. Pasteur St, 400349, Cluj-Napoca, Romania
| | - Ahlem Ayadi
- Research Unit: Valorization of Active Molecules, Higher Institute of Applied Biology Medenine (University of Gabes), El Jorf Road - Km 22.5-4119, Medenine, Tunisia
| | - Horea Matei
- Department of Cell and Molecular Biology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 L. Pasteur St, 400349, Cluj-Napoca, Romania
- Laboratory of Complementary Investigations, Institute of Legal Medicine, 3-5 Clinicilor St, 400006, Cluj-Napoca, Romania
| | - Leila Tekaya
- Laboratory of Physiology, Faculty of Medicine of Tunis (University of Tunis El Manar), 15, Djebel Lakhdar Street, La Rabta, 1007, Tunis, Tunisia
| |
Collapse
|
15
|
Shalan MG. Amelioration of mercuric chloride-induced physiologic and histopathologic alterations in rats using vitamin E and zinc chloride supplement. Heliyon 2022; 8:e12036. [PMID: 36544834 PMCID: PMC9761730 DOI: 10.1016/j.heliyon.2022.e12036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
The drastic effects of mercuric chloride and the protective efficiency of vitamin E and zinc chloride co-supplementation were clearly investigated in this study. Male rats were divided into four groups. The first was the control. The second received vitamin E (100 mg/kg) and zinc chloride (30 mg/kg) daily. In comparison, the third received mercuric chloride (1 mg/kg) daily, and the fourth received the same mercuric chloride dose supplemented with the same vitamin E and zinc chloride doses. Mercury promotes a significant decline in body weight. It causes a considerable reduction in total red blood cells (RBCs) count and hemoglobin concentration; however, white blood cells (WBCs) increased significantly. Significant mercury-induced elevations in hepatic and renal functions were observed. Mercury induced substantial reductions in catalase (CAT) and superoxide dismutase (SOD). Mercury caused apoptotic DNA fragmentation. It induced degeneration and necrosis in the liver and kidney. It induced necrosis, leukocyte infiltration and blood vessel congestion in the cerebral cortex. Shrinkage and deterioration of Purkinje cells of the cerebellum were observed in response to mercuric chloride toxicity. Mercuric chloride enhanced shrinking in seminiferous tubules and Leydig cells. It reduced sperm count, sperm motility, and testosterone concentration; however, it promoted abnormal sperm morphology. Administration of vitamin E and zinc chloride showed marked improvement in different parameters under investigation, however, further research is needed to determine fate of mercury.
Collapse
|
16
|
Marrelli M, Argentieri MP, Alexa E, Meleleo D, Statti G, Avato P, Conforti F, Mallamaci R. Antioxidant activity and protective effect of the outer scales hydroalcoholic extract of Allium cepa L. var. Tropea on toxicity damage induced by Cadmium in Caco-2 cells. Food Chem Toxicol 2022; 170:113495. [DOI: 10.1016/j.fct.2022.113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
|
17
|
Dai Z, Liu J, Yao X, Wang A, Liu Y, Strappe P, Huang W, Zhou Z. Association of gut microbiota characteristics and metabolites reveals the regulation mechanisms under cadmium consumption circumstance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6737-6748. [PMID: 35621360 DOI: 10.1002/jsfa.12041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cadmium is a non-biodegradable heavy metal with a long biological half-life. Although its negative impact on human health has been previously reported, the association of cadmium consumption overdose with changes in the gut microbiota and its corresponding metabolites has not been fully elucidated so far. RESULTS Cadmium consumption overdose led to a reduced body weight gain accompanied by an enhanced level of the proinflammatory cytokine tumor necrosis factor-α, interleukin-6, and histamine in the serum of the rats in comparison with normal rats. Furthermore, hepatotoxicity was also observed to be induced by cadmium, which was consistent with abnormal hepatic activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and oxidative stress. In contrast, Lactobacillus rhamnosus-fermented Ganoderma lucidum (FGL) slice supplementation improved the aforementioned physiological properties. More importantly, microbiome and metabolites analysis indicated cadmium exposure significantly reduced the generation of short-chain fatty acids in the gut, particularly butyrate. However, rats in the FGL group had the highest level of butyrate in the feces, characterized with significantly enriched probiotics (Lactobacillus, Bifidobacterium) and butyrate-producing bacteria (Roseburia). CONCLUSION The targeted regulation of the gut microbial community and its metabolites might be the essential association for attenuating body dysfunction induced by cadmium. The supplementation of FGL, as evidenced in this study, might highlight a novel approach to this field. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Dai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinguang Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xuan Yao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuqian Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
18
|
Mishra DK, Awasthi H, Srivastava D, Fatima Z. Phytochemical: a treatment option for heavy metal induced neurotoxicity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:513-530. [PMID: 35749142 DOI: 10.1515/jcim-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.
Collapse
Affiliation(s)
| | - Himani Awasthi
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| | | | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| |
Collapse
|
19
|
Adebiyi O, Adigun K, David-Odewumi P, Akindele U, Olayemi F. Gallic and ascorbic acids supplementation alleviate cognitive deficits and neuropathological damage exerted by cadmium chloride in Wistar rats. Sci Rep 2022; 12:14426. [PMID: 36002551 PMCID: PMC9402671 DOI: 10.1038/s41598-022-18432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that interferes with DNA repair mechanisms via generation of reactive oxygen species. The potentials of polyphenols and antioxidants as effective protective agents following heavy metal-induced neurotoxicity are emerging. We therefore explored the neuroprotective potentials of gallic and ascorbic acids in CdCl2-induced neurotoxicity. Seventy-two Wistar rats were divided into six groups. Group A received distilled water, B: 3 mg/kg CdCl2, C: 3 mg/kg CdCl2 + 20 mg/kg gallic acid (GA), D: 3 mg/kg CdCl2 + 10 mg/kg ascorbic acid (AA), E: 20 mg/kg GA and F: 10 mg/kg AA orally for 21 days. Depression, anxiety, locomotion, learning and memory were assessed using a battery of tests. Neuronal structure and myelin expression were assessed with histological staining and immunofluorescence. The Morris Water Maze test revealed significant increase in escape latency in CdCl2 group relative to rats concurrently treated with GA or AA. Similarly, time spent in the target quadrant was reduced significantly in CdCl2 group relative to other groups. Concomitant administration of gallic acid led to significant reduction in the durations of immobility and freezing that were elevated in CdCl2 group during forced swim and open field tests respectively. Furthermore, GA and AA restored myelin integrity and neuronal loss observed in the CdCl2 group. We conclude that gallic and ascorbic acids enhance learning and memory, decrease anxiety and depressive-like behavior in CdCl2-induced neurotoxicity with accompanying myelin-protective ability.
Collapse
Affiliation(s)
- Olamide Adebiyi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria.
| | - Kabirat Adigun
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Praise David-Odewumi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uthman Akindele
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Funsho Olayemi
- Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Abd-Allah ER, Abd El-Rahman HA. Ameliorative effects of a curcumin vitamin E nanocomposite coated with olive oil against cadmium chloride-induced testicular damage. Andrologia 2022; 54:e14362. [PMID: 34970779 DOI: 10.1111/and.14362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022] Open
Abstract
In the current study, we synthesized and prepared a curcumin and vitamin E nanocomposite coated with olive oil (CEONC). Curcumin, vitamin E, and olive oil are fundamental organic antioxidants, and forming nanoparticles from these components endows them with special characteristics. We investigated the protective effect of CEONC on reproductive toxicity induced by cadmium chloride (CdCl2 ) in male rats. Forty rats (170-180 g) were randomly assigned to four groups: Group 1 (control) received oral distilled water; Group 2 intraperitoneal injection with CEONC (30 mg/kg); Group 3 received oral CdCl2 (5 mg/kg); and Group 4 received CdCl2 (5 mg/kg) followed by CEONC (30 mg/kg) for 4 weeks. After 50 days, we terminated the experiment and assessed male reproductive hormones, sperm motility, viability and morphology, and testes histopathology and conducted a comet assay. The results revealed that co-administration of CEONC with CdCl2 exposure increased reproductive hormone levels, improved sperm motility and viability, prevented sperm morphological changes, recovered the testicular histology, and decreased DNA damage in the testicular tissue compared to rats exposed to CdCl2 alone. CEONC administration produced no adverse effects and enhanced all sperm parameters. Our findings demonstrate that CEONC is a potential treatment for preventing reproductive damage induced by cadmium exposure.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Faculty of Science, Department of Zoology, Al-Azhar University, Nasr City, Egypt
| | | |
Collapse
|
22
|
Shojaeepour S, Sharififar F, Haghpanah T, Iranpour M, Imani M, Dabiri S. Panax ginseng ameliorate toxic effects of cadmium on germ cell apoptosis, sperm quality, and oxidative stress in male Wistar rats. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1884095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Saeedeh Shojaeepour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Imani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Chen Z, Zuo Z, Chen K, Yang Z, Wang F, Fang J, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Geng Y, Liu W, Deng H. Activated Nrf-2 Pathway by Vitamin E to Attenuate Testicular Injuries of Rats with Sub-chronic Cadmium Exposure. Biol Trace Elem Res 2022; 200:1722-1735. [PMID: 34173155 DOI: 10.1007/s12011-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd), a heavy metal element, cumulates in the testis and can cause male reproductive toxicity. Although vitamin E (VE) as one of potential antioxidants protects the testis against toxicity of Cd, the underlying mechanism remained uncompleted clear. The aim of this study was to investigate whether the Nrf-2 pathway is involved with the protective effect of VE on testicular damages caused by sub-chronic Cd exposure. Thirty-two SD rats were divided into four groups and orally administrated with VE and/or Cd for 28 consecutive days: control group, VE group (100 mg VE/kg), Cd group (5 mg CdCl2/kg), and VE + Cd group (100 mg VE/kg + 5 mg CdCl2/kg). The results showed that 28-day exposure of Cd caused accumulation of Cd, histopathological lesions, and alternations of sperm parameters (elevated rate of abnormal sperm, decreased count of sperm, declined motility, and viability of sperm). Moreover, the rats exposed to Cd showed significant oxidative stress (increased contents of MDA and decreased levels or activities of T-AOC, GSH, CAT, SOD and GSH-Px) and inhibition of Nrf-2 signaling pathway (downregulation of Nrf-2, HO-1, NQO-1, GCLC, GCLM and GST) of the testes. In contrast, VE treatment significantly reduced the Cd accumulation, alleviated histopathological lesions and dysfunctions, activated Nrf-2 pathway, and attenuated the oxidative stress caused by Cd in the testes of rats. In conclusion, VE, through upregulating Nrf-2 pathway, could protect testis against oxidative damages induced by sub-chronic Cd exposure.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
24
|
Boldrini GG, Martín Molinero G, Pérez Chaca MV, Ciminari ME, Moyano F, Córdoba ME, Pennacchio G, Fanelli M, Álvarez SM, Gómez NN. Glycine max (soy) based diet improves antioxidant defenses and prevents cell death in cadmium intoxicated lungs. Biometals 2022; 35:229-244. [PMID: 35038064 DOI: 10.1007/s10534-022-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is a toxic metal and an important environmental contaminant. We analyzed its effects on oligoelements, oxidative stress, cell death, Hsp expression and the histoarchitecture of rat lung under different diets, using animal models of subchronic cadmium intoxication. We found that Cd lung content augmented in intoxicated groups: Zn, Mn and Se levels showed modifications among the different diets, while Cu showed no differences. Lipoperoxidation was higher in both intoxicated groups. Expression of Nrf-2 and SOD-2 increased only in SoCd. GPx levels showed a trend to increase in Cd groups. CAT activity was higher in intoxicated groups, and it was higher in Soy groups vs. Casein. LDH activity in BAL increased in CasCd and decreased in both soy-fed groups. BAX/Bcl-2 semiquantitative ratio showed similar results than LDH activity, confirmed by Caspase 3 immunofluorescence. The histological analysis revealed an infiltration process in CasCd lungs, with increased connective tissue, fused alveoli and capillary fragility. Histoarchitectural changes were less severe in soy groups. Hsp27 expression increased in both intoxicated groups, while Hsp70 only augmented in SoCd. This show that a soy-diet has a positive impact upon oxidative unbalance, cell death and morphological changes induced by Cd and it could be a good alternative strategy against Cd exposure.
Collapse
Affiliation(s)
- Gabriel Giezi Boldrini
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Glenda Martín Molinero
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - María Eugenia Ciminari
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | - Mariel Fanelli
- Laboratory of Oncology, IMBECU (CCT), CONICET, Mendoza, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina.
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
| |
Collapse
|
25
|
Elish SEA, Sanad FA, Baky MH, Yasin NAE, Temraz A, El-Tantawy WH. Ficus natalensis extract alleviates Cadmium chloride-induced testicular disruptions in albino rats. J Trace Elem Med Biol 2022; 70:126924. [PMID: 35007915 DOI: 10.1016/j.jtemb.2022.126924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cadmium is a potential environmental pollutant with worldwide health problems. Many Ficus species are reported to have an extensive diversity of traditional uses, among them the treatment of reproductive toxicity. OBJECTIVES This study set out to evaluate the effect of Ficus natalensis extract on the testicular impairments induced by cadmium chloride (CdCl2) and investigated the potential mechanisms associated with its treatment. METHODS Thus, 40 male albino rats were categorized into 4 groups (n = 10); group I (control), group II (cadmium-treated group) orally received 5 mg/kg/day CdCl2 for one month, group III (cadmium + Ficus natalensis extract) orally received 5 mg/kg/day CdCl2 for one month plus 200 mg/kg/day Ficus natalensis extract for another month, and group IV (cadmium + reference drug (mesterolone) orally received 5 mg/kg/day CdCl2 for one month plus 4.16 mg/kg/day mesterolone for another month. RESULTS At the end of experiment, CdCl2 administration markedly induced histological and histo-morphometric changes with a substantial (p < 0.05) decrease in the sperm count, sperm motility, serum TAC, serum testosterone, downregulation in the mRNA expression levels of testicular 17β-HSD and StAR, in addition to a significant increase in serum TNF-α and testicular MDA level compared to the control group. Conversely, the treatment with Ficus natalensis methanolic extract as well as the reference drug significantly ameliorated the above-mentioned adverse effects induced by CdCl2. CONCLUSIONS Our results suggested that Ficus natalensis extract can attenuate the CdCl2-induced testicular impairments via inhibiting the oxidative cell damage and inflammation that contributed to CdCl2 toxicity.
Collapse
Affiliation(s)
- Shaimaa E A Elish
- Pharmacognosy Department, Faculty of Pharmacy-Egyptian Russian University, Badr City, New Cairo, Egypt.
| | - Fatma A Sanad
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt.
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy-Egyptian Russian University, Badr City, New Cairo, Egypt.
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy(Girls), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Walid H El-Tantawy
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt.
| |
Collapse
|
26
|
Asiwe JN, Kolawole TA, Anachuna KK, Ebuwa EI, Nwogueze BC, Eruotor H, Igbokwe V. Cabbage juice protect against lead-induced liver and kidney damage in male Wistar rat. Biomarkers 2022; 27:151-158. [PMID: 34974788 DOI: 10.1080/1354750x.2021.2022210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIM Liver and kidney has been implicated in Lead toxicity and this has been linked to oxidative damage. On the other hand, cabbage is one of the widely consumed vegetables with a plethora of health benefits. This present study investigated the protective effect of cabbage juice on lead-induced toxicity in male Wistar rats. METHODS Twenty male Wistar rats were randomly divided into four groups (n = 5) and were treated with distilled water (1 ml/100 g b.wt), Lead acetate (25 mg/kg b.wt), cabbage juice (1 ml/100 g b.wt) and Lead acetate plus cabbage juice respectively. All treatments were administered orally for 28 days. Following euthanasia, blood was collected and serum decanted for biochemical assay and liver and kidney tissues were harvested, prepared for antioxidant activity and histological study. RESULT Cabbage juice significantly attenuated Lead-induced liver and kidney dysfunction by lowering serum concentrations of urea, creatinine, ALP, AST and ALT. Antioxidants (SOD, CAT, GSH) were also upregulated in liver and kidney tissues. Cabbage juice restored the histoarchitectural changes caused by lead intoxication. CONCLUSION Cabbage juice consumption protected the liver and kidney against lead-induced toxicity by enhancing in vivo anti-oxidant defense system.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | - Harrison Eruotor
- Department of Biochemistry, University of Port-Harcourt, Port-Harcourt, Nigeria
| | - Vincent Igbokwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
27
|
Fang J, Xie S, Chen Z, Wang F, Chen K, Zuo Z, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Liu W, Geng Y. Protective Effect of Vitamin E on Cadmium-Induced Renal Oxidative Damage and Apoptosis in Rats. Biol Trace Elem Res 2021; 199:4675-4687. [PMID: 33565019 DOI: 10.1007/s12011-021-02606-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd), a widely distributed heavy metal, is extremely toxic to the kidney. Vitamin E (VE) is an important antioxidant in the body. It is known that VE exerts a protective effect on renal oxidative damage caused by Cd, but the effect and mechanism of VE on apoptosis are not fully understood. Thus, we conducted this study to explore the protective effect of VE on Cd-induced renal apoptosis and to elucidate its potential mechanism. Thirty-two 9-week-old male Sprague-Dawley rats were randomly divided into four groups, namely control, VE (100 mg/kg VE), Cd (5 mg/kg CdCl2), and VE + Cd (100 mg/kg VE + 5 mg/kg CdCl2), and received intragastric administration of Cd and/or VE for 4 weeks. The results showed that Cd exposure significantly reduced the weight of the body and kidney, elevated the accumulation of Cd in the kidney as well as the levels of BUN and Scr in serum, caused renal histological alterations, decreased the GSH and T-AOC contents and antioxidant enzyme (SOD, CAT, GSH-PX) activities, and increased renal MDA content. And the increased number of TUNEL-positive cells by Cd was accompanied by upregulated mRNA and protein expressions of apoptotic regulatory molecules (Bax, Caspase-3, GRP94, GRP78, Caspase-8) and downregulated Bcl-2 expressions. However, the combined treatment of Cd and VE could restore the above parameters to be close to those in the control rats. In conclusion, VE supplement could alleviate Cd-induced rat renal damage and oxidative stress through enhancing the antioxidant defense system and inhibiting apoptosis of renal cells.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Shenglan Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhuo Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Sichuan, 610041, Chengdu, People's Republic of China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
28
|
Michael OS, Bamidele O, Ogheneovo P, Ariyo TA, Adedayo LD, Oluranti OI, Soladoye EO, Adetunji CO, Awobajo FO. Watermelon rind ethanol extract exhibits hepato-renal protection against lead induced-impaired antioxidant defenses in male Wistar rats. Curr Res Physiol 2021; 4:252-259. [PMID: 34841269 PMCID: PMC8607130 DOI: 10.1016/j.crphys.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 10/28/2022] Open
Abstract
Lead acetate associated tissue injury has been linked to altered antioxidant defenses, hyperuricemia and inflammation. We hypothesized that watermelon rind extract, would ameliorate lead acetate-induced hepato-renal injury. Thirty Male Wistar rats received distilled water, lead acetate (Pb; 5 mg/kg) with or without watermelon rind extract (WM; 400 mg/kg; WM + Pb; 15 days of WM pretreatment); Pb + WM (15 days of WM post treatment) and simultaneous treatment (WM-Pb) for 30 days. Lead toxicity led to elevated serum malondialdehyde, creatinine, urea, uric acid, lactate dehydrogenase, liver injury enzymes, as well as decreased body weight. Decreased serum levels of reduced glutathione, nitric oxide, total protein and glutathione peroxidase activity was also observed. However, these alterations were ameliorated by watermelon rind extract in lead acetate-treated rats. Watermelon rind ethanol extract protects against lead acetate-induced hepato-renal injury through improved antioxidant defenses at least in part, via uric acid/nitric oxide-dependent pathway signifying the health benefits of this agricultural waste and a potential for waste recycling while limiting environmental pollution.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- ALT, Alanine Transferase
- AST, Aspartate Transaminase
- GPx, Glutathione Peroxidase
- GSH, Reduced Glutathione
- LDH, Lactate Dehydrogenase
- Lead acetate
- MDA, Malondialdehyde
- Nitric oxide
- Oxidative stress
- Pb, Lead Acetate
- Uric acid
- WM, Watermelon rind extract
- Watermelon
- rpm, revolutions per minute
Collapse
Affiliation(s)
- Olugbenga S. Michael
- Cardiometabolic Research Unit, Department of Physiology, Bowen University, Iwo, Nigeria
| | - Olubayode Bamidele
- Department of Physiology, College of Health Science, Bowen University, Iwo, Nigeria
| | - Pamela Ogheneovo
- Department of Physiology, College of Health Science, Bowen University, Iwo, Nigeria
| | - Temitope A. Ariyo
- Department of Physiology, College of Health Science, Bowen University, Iwo, Nigeria
| | - Lawrence D. Adedayo
- Department of Physiology, College of Health Science, Bowen University, Iwo, Nigeria
| | - Olufemi I. Oluranti
- Department of Physiology, College of Health Science, Bowen University, Iwo, Nigeria
| | | | - Charles O. Adetunji
- Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology Edo University Iyamho, Edo State, Nigeria
| | - Funmileyi O. Awobajo
- Department of Physiology, College of Medicine, University of Lagos, Idiaraba, Lagos, Nigeria
| |
Collapse
|
29
|
Namgyal D, Ali S, Hussain MD, Kazi M, Ahmad A, Sarwat M. Curcumin Ameliorates the Cd-Induced Anxiety-like Behavior in Mice by Regulating Oxidative Stress and Neuro-Inflammatory Proteins in the Prefrontal Cortex Region of the Brain. Antioxidants (Basel) 2021; 10:antiox10111710. [PMID: 34829581 PMCID: PMC8614802 DOI: 10.3390/antiox10111710] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
Age-related neurodegenerative diseases and vascular dementia are major challenges to the modern health care system. Most neurodegenerative diseases are associated with impaired spatial working memory and anxiety-like behavior. Thus, it is important to understand the underlying cellular mechanisms of neurodegenerative diseases in different regions of the brain to develop an effective therapeutic approach. In our previous research paper, we have reported the ameliorative effect of curcumin in Cd-induced hippocampal neurodegeneration. However, recently many researchers had reported the important role of the prefrontal cortex in higher cognitive functions. Therefore, to look into the cellular mechanism of curcumin protection against Cd-induced prefrontal cortex neurotoxicity, we investigated spatial working memory, anxiety-like behavior and analyzed prefrontal cortex inflammatory markers (IL-6, IL-10, and TNFα), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant MDA level. Further, we conducted histological studies of the prefrontal cortex in Swiss albino mice exposed to cadmium (2.5 mg/kg). We observed that curcumin treatment improved the spatial working memory and anxiety-like behavior of mice through reduction of prefrontal cortex neuroinflammation and oxidative stress as well as increasing the number of viable prefrontal cortex neuronal cells. Our result suggests that environmental heavy metal cadmium can induce behavioral impairment in mice through prefrontal cortex cellular inflammation and oxidative stress. We found that curcumin has a potential therapeutic property to mitigate these behavioral and biochemical impairments induced by cadmium.
Collapse
Affiliation(s)
- Dhondup Namgyal
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida 201303, India;
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
| | - Sher Ali
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India;
| | - Muhammad Delwar Hussain
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, California Health Sciences University, 120 N. Clovis Avenue, Clovis, CA 93612, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- Correspondence:
| |
Collapse
|
30
|
Zhang X, Peng Z, Zheng H, Zhang C, Lin H, Qin X. The Potential Protective Effect and Possible Mechanism of Peptides from Oyster ( Crassostrea hongkongensis) Hydrolysate on Triptolide-Induced Testis Injury in Male Mice. Mar Drugs 2021; 19:566. [PMID: 34677464 PMCID: PMC8539321 DOI: 10.3390/md19100566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Peptides from oyster hydrolysate (OPs) have a variety of biological activities. However, its protective effect and exact mechanism on testicular injury remain poorly understood. This study aimed to evaluate the protective effect of OPs on triptolide (TP)-induced testis damage and spermatogenesis dysfunction and investigate its underlying mechanism. In this work, the TP-induced testis injury model was created while OPs were gavaged in mice for 4 weeks. The results showed that OPs significantly improved the sperm count and motility of mice, and alleviated the seminiferous tubule injury. Further study showed that OPs decreased malonaldehyde (MDA) level and increased antioxidant enzyme (SOD and GPH-Px) activities, attenuating oxidative stress and thereby reducing the number of apoptotic cells in the testis. In addition, OPs improved the activities of enzymes (LDH, ALP and ACP) related to energy metabolism in the testis and restored the serum hormone level of mice to normal. Furthermore, OPs promoted the expression of Nrf2 protein, and then increased the expression of antioxidant enzyme regulatory protein (HO-1 and NQO1) in the testis. OPs inhibited JNK phosphorylation and Bcl-2/Bax-mediated apoptosis. In conclusion, OPs have a protective effect on testicular injury and spermatogenesis disorders caused by TP, suggesting the potential protection of OPs on male reproduction.
Collapse
Affiliation(s)
- Xueyan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Zhilan Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Z.); (Z.P.); (H.Z.); (C.Z.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
31
|
Poland CA, Lombaert N, Mackie C, Renard A, Sinha P, Verougstraete V, Lourens NJJ. Bioaccessibility as a determining factor in the bioavailability and toxicokinetics of cadmium compounds. Toxicology 2021; 463:152969. [PMID: 34606952 DOI: 10.1016/j.tox.2021.152969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Cadmium toxicity occurs where there is absorption and accumulation of cadmium ions (Cd2+) in tissues beyond tolerable levels. Significant differences in the release of Cd2+ from cadmium compounds in biological fluids, like gastric fluid, may indicate differences in bioavailability and absorption. This means that direct read-across from high solubility cadmium compounds to lower solubility compounds may not accurately reflect potential hazards. Here, the relative bioaccessibility in gastric fluid of cadmium telluride and cadmium chloride was evaluated using in vitro bioelution tests whilst the toxicokinetic behavior of these two compounds were compared after dietary administration for 90 days in male and female Wistar Han rats following OECD TG 408. Cadmium chloride was highly bioaccessible, whilst cadmium telluride showed low solubility in simulated gastric fluid (90 % and 1.5 % bioaccessibility, respectively). This difference in bioaccessibility was also reflected by a difference in bioavailability as shown by the difference in the liver and kidney concentrations of cadmium after repeat oral exposure. Feeding at doses of 750 and 1500 ppm of cadmium telluride did not result in tissue cadmium levels above the lower limit of quantification (LLOQ). In contrast, feeding with a lower test substance concentration yet higher concentration of bioaccessible cadmium (30 ppm cadmium chloride) resulted in tissue accumulation of cadmium. Only slight, non-adverse changes in hematology and clinical chemistry parameters were seen at these doses, indicating an absence of significant cadmium mediated toxicity towards target organs (kidney and liver), reflected in minimal cadmium accumulation in these organs. This study demonstrates that bioelution tests can help determine the bioaccessibility of cadmium, which can be used to estimate the potential for target tissue toxicity based on known toxicokinetic profiles and threshold levels for cadmium toxicity, while reducing and refining animal testing.
Collapse
Affiliation(s)
- Craig A Poland
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian, EH20 9TY, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Noömi Lombaert
- International Zinc Association, Reach Cadmium Consortium, Avenue de Tervueren 168/Box 4, B-1150, Brussels, Belgium
| | - Carol Mackie
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian, EH20 9TY, UK
| | - Alain Renard
- 5N Plus Inc., 4385, Rue Garand, Saint-Laurent, QC, H4R 2B4, Canada
| | - Parikhit Sinha
- First Solar, 350 West Washington Street, Suite 600, Tempe, AZ, 85281, USA
| | | | - Nicky J J Lourens
- Charles River Laboratories Den Bosch B.V., 's-Hertogenbosch, the Netherlands
| |
Collapse
|
32
|
Kong A, Zhang Y, Ning B, Li K, Ren Z, Dai S, Chen D, Zhou Y, Gu J, Shi H. Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca 2+ homeostasis. Chem Biol Interact 2021; 348:109649. [PMID: 34516972 DOI: 10.1016/j.cbi.2021.109649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) exposure induced lipid metabolic disorder with changes in lipid composition, as well as triglyceride (TG) levels. Liver is the main organ maintaining body TG level and previous studies suggested that Cd exposure might increase TG synthesis but reduce TG uptake in liver. However, the effects of Cd exposure on TG secretion from liver and underlying mechanism are still unclear. In the present study, the data revealed that Cd exposure increased TG levels in the HepG2 cells and the cultured medium by increasing the expression of microsomal triglyceride transfer protein (MTTP), which was abrogated by siRNA knockdown of MTTP. MTTP was synergistically accumulated after Cd exposure or treated with proteasome inhibitor MG132 and lysosome inhibitor chloroquine (CQ), which suggested the Cd increased MTTP protein stability by inhibiting both the proteasome and the lysosomal protein degradation pathways. In addition, our results demonstrated that Cd exposure inhibited the lysosomal acidic degradation pathway through disrupting endoplastic reticulum (ER) Ca2+ homeostasis. Cd-induced MTTP protein and TG levels were significantly reduced by pretreatments of BAPTA/AM chelation of intracellular Ca2+, 2-APB inhibition of ER Ca2+ release channel inositol 1,4,5-trisphosphate receptor (IP3R) and CDN1163 activation of ER Ca2+ reuptake pump sarcoplasmic reticulum Ca2+-ATPase (SERCA). These results suggest that Cd-induced ER Ca2+ release impaired the lysosomal acidity, which associated with MTTP protein accumulation and contributed to increased TG levels.
Collapse
Affiliation(s)
- Anqi Kong
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bo Ning
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhen Ren
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuya Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; School of Food and Biological Engineering, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
33
|
Sassia S, Amine B, Nadia B, Hadda A, Smail M. Investigation of single and combined effects of repeated oral cadmium and lead administration in ewes. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
34
|
Iqbal T, Jahan S, Ain QU, Ullah H, Li C, Chen L, Zhou X. Ameliorative effects of morel mushroom (Morchella esculenta) against Cadmium-induced reproductive toxicity in adult male rats. BRAZ J BIOL 2021; 82:e250865. [PMID: 34378681 DOI: 10.1590/1519-6984.250865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is one of the major toxicants, which affects human health through occupational and environmental exposure. In the current study, we evaluated the protective effects of morel mushrooms against Cd-induced reproductive damages in rats. For this purpose, 30 male rats were divided into 6 groups (n=5/group), the first group served as the control group, second group was treated with an intraperitoneal (i.p) injection of 1 mg/kg/day of Cd. Third and fourth groups were co-treated with 1 mg/kg/day of Cd (i.p) and 10 and 20 mg/kg/day of morel mushroom extract (orally) respectively. The final 2 groups received oral gavage of 10 and 20 mg/kg/day of morel mushroom extract alone. After treatment for 17 days, the animals were euthanized, and testes and epididymis were dissected out. One testis and epididymis of each animal were processed for histology, while the other testis and epididymis were used for daily sperm production (DSP) and comet assay. Our results showed that Cd and morel mushrooms have no effect on animal weight, but Cd significantly decreases the DSP count and damages the heritable DNA which is reversed in co-treatment groups. Similarly, the histopathological results of testes and epididymis show that morel mushrooms control the damage to these tissues. Whereas the morel mushroom extract alone could enhance the production of testosterone. These results conclude that morel mushrooms not only control the damage done by Cd, but it could also be used as a protection mechanism for heritable DNA damage.
Collapse
Affiliation(s)
- T Iqbal
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China.,Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - S Jahan
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - Q Ul Ain
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - H Ullah
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - C Li
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| | - L Chen
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| | - X Zhou
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| |
Collapse
|
35
|
Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharmacother 2021; 139:111588. [PMID: 33862491 DOI: 10.1016/j.biopha.2021.111588] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cadmium is one of the most toxic heavy metals. The prolonged exposure of it can lead to severe alterations and damage in different tissues including blood, liver, kidney and brain. Eugenol, a phenolic compound, is present in various aromatic plants. It acts as a natural antioxidant and anti-inflammatory agent. The aim of this study was to investigate whether the treatment of eugenol is beneficial against the hepatic oxidative stress and inflammation induced by Cd. METHODS To study the effect of eugenol in reversal of Cd toxicity, 24 albino rats were equally divided into four different groups: G1 Control (saline), G2 Eugenol (3 mg kg-1), G3 CdCl2 (5 mg kg-1) and G4 CdCl2 + Eugenol (5 mg kg-1 + 3 mg kg-1). All the groups were treated with gavage orally for the period of 21 days. After this treatment period, rats were sacrificed and liver tissues were removed. The hepatic antioxidant status was evaluated by measuring the activities of SOD, Catalase and GST enzymes. The reduced glutathione, lipid peroxidation, protein carbonyl oxidation (PCO) and thiol contents were measured in hepatic tissues. The activities of liver marker enzymes such as ALT, AST, GGT, ALP, TP, albumin, Bilirubin content and LDH were determined to assess the hepatic damage in different groups. Cd induced hepatic inflammation was determined by evaluating the levels of TNF-a, IL-6 and NO. RESULTS Oral intoxication of Cd for 21 days significantly elevated the level of hepatic markers including activities of LDH, GGT, ALP, ALT, AST and Bilirubin level. The albumin content, reduced GSH level, and activities of antioxidant enzymes were significantly reduced in Cd treated group. The levels of inflammatory markers were significantly elevated in Cd treated group. The eugenol treatment was very effective and it significantly reversed the Cd induced biochemical alterations almost similar to that of control. CONCLUSION The results demonstrated that the eugenol possessed very strong anti-oxidative and anti-inflammatory potential. The co-treatment of eugenol with Cd exhibited protective potential of eugenol against Cd induced toxicity. Eugenol was able to improve the cellular redox system in rats treated with Cd.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anchal Dubey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
36
|
Iqbal T, Cao M, Zhao Z, Zhao Y, Chen L, Chen T, Li C, Zhou X. Damage to the Testicular Structure of Rats by Acute Oral Exposure of Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116038. [PMID: 34199704 PMCID: PMC8200047 DOI: 10.3390/ijerph18116038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is one of the most important heavy metal toxicants, used throughout the world at the industrial level. It affects humans through environmental and occupational exposure and animals through the environment. The most severe effects of oral exposure to Cd on the male reproductive system, particularly spermatogenesis, have not been discussed. In this study, we observed the damage to the testes and heritable DNA caused by oral exposure to Cd. Adult male Sprague–Dawley rats were divided into four groups: a control group and three groups treated with 5, 10, and 15 mg Cd/kg/day for 17 days by oral gavage. Our results revealed that Cd significantly decreases weight gain in 10 and 15 mg/kg groups, whereas the 5 mg/kg groups showed no difference in weight gain. The histopathology showed adverse structural effects on the rat testis by significantly reducing the thickness of the tunica albuginea, the diameter of the tubular lumen, and the interstitial space among seminiferous tubules and increasing the height of the epithelium and the diameter of the seminiferous tubules in Cd treated groups. Comet assay in epididymal sperms demonstrated a significant difference in the lengths of the head and comet in all the 3 Cd treated groups, indicating damage in heritable DNA, although variations in daily sperm production were not significant. Only a slight decrease in sperm count was reported in Cd-treated groups as compared to the control group, whereas the tail length, percentage of DNA in head, and tail showed no significant difference in control and all the experimental groups. Overall, our findings indicate that Cd toxicity must be controlled using natural sources, such as herbal medicine or bioremediation, with non-edible plants, because it could considerably affect heritable DNA and induce damage to the reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xu Zhou
- Correspondence: (C.L.); (X.Z.)
| |
Collapse
|
37
|
Baş H, Apaydın FG, Kalender S, Kalender Y. Lead nitrate and cadmium chloride induced hepatotoxicity and nephrotoxicity: Protective effects of sesamol on biochemical indices and pathological changes. J Food Biochem 2021; 45:e13769. [PMID: 34021611 DOI: 10.1111/jfbc.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Lead nitrate (LN) and cadmium chloride (CdCl2 ), regarded as environmental contaminants, are toxic heavy metals. Sesamol is a dietary phytochemical found in sesame oil. We aimed to analyze the hepatotoxic and nephrotoxic effects of LN and CdCl2 and to evaluate the possible protective effect of sesamol. LN (90 mg/kg bw per day), CdCl2 (3 mg/kg bw per day), and sesamol (50 mg/kg bw per day) were given to rats via gavage for 28 days. Total protein, albumin, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, urea, uric acid, creatinine, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, malondialdehyde, acetylcholinesterase, and histopathological changes were investigated in liver and kidney tissues. Lead and cadmium were found to result in decreases in the antioxidant enzymes and acetylcholinesterase activities, increases in malondialdehyde levels, and changes in serum biochemical parameters and various pathological findings. An improvement in all these parameters was observed in the sesamol-treated groups. PRACTICAL APPLICATIONS: Heavy metals are used in many areas of the industry all over the world. Heavy metals which include lead nitrate and cadmium chloride cause cell damage by oxidative stress. Some of the examining parameters for oxidative stress are SOD, GST, MDA, GPx, and CAT. However, some chemicals such as sesamol are well-liked and widely used as antioxidants against xenobiotic toxicity. We also indicate that sesamol has been shown to protective effect against heavy metals caused cell damage.
Collapse
Affiliation(s)
- Hatice Baş
- Faculty of Arts and Science, Department of Biology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Suna Kalender
- Gazi Education Faculty, Department of Science Education, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
38
|
Vicas SI, Laslo V, Timar AV, Balta C, Herman H, Ciceu A, Gharbia S, Rosu M, Mladin B, Chiana L, Prokisch J, Puschita M, Miutescu E, Cavalu S, Cotoraci C, Hermenean A. Nano Selenium-Enriched Probiotics as Functional Food Products against Cadmium Liver Toxicity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2257. [PMID: 33925590 PMCID: PMC8123892 DOI: 10.3390/ma14092257] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022]
Abstract
Since cadmium is a toxic metal that can cause serious health problems for humans, it is necessary to find bioremediation solutions to reduce its harmful effects. The main goal of our work was to develop a functional food based on elemental selenium nanoparticles (SeNPs) obtained by green synthesis using Lactobacillus casei and to validate their ability to annihilate the hepatic toxic effects induced by cadmium. The characterization of SeNPs was assessed by UV-Vis spectroscopy, FTIR, XRD, DLS and TEM. In order to investigate the dose-dependent protective effects of SeNPs on Cd liver toxicity, mice were assigned to eight experimental groups and fed by gavage, with 5 mg/kg b.w. cadmium, respectively, with co-administration with SeNPs or lacto-SeNPs (LSeNPs) in 3 doses (0.1, 0.2 and 0.4 mg/kg b.w.) for 30 days. The protective effect was demonstrated by the restoration of blood hepatic markers (AST, ALT, GGT and total bilirubin) and antioxidant enzymes, such as catalase (CAT) and glutathione peroxidase (GPx). Moreover, the antioxidant capacity of mice plasma by the FRAP assay, revealed the highest antioxidant capacity for the 0.2 mg/kg LSeNPs group. Histopathological analysis demonstrated the morphological alteration in the group that received only cadmium and was restored after the administration of SeNPs or LSeNPs, while the immunohistochemical analysis of the bcl family revealed anti-apoptotic effects; the Q-PCR analysis showed an upregulation of hepatic inflammatory markers for the group exposed to Cd and a decreased value for the groups receiving oral SeNPs/ LSeNPs in a dose-dependent manner. The best protective effects were obtained for LSeNPs. A functional food that includes both probiotic bacteria and elemental SeNPs could be successfully used to annihilate Cd-induced liver toxicity, and to improve both nutritional values and health benefits.
Collapse
Affiliation(s)
- Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 24 Gen. Magheru St., 410048 Oradea, Romania; (S.I.V.); (V.L.); (A.V.T.)
| | - Vasile Laslo
- Faculty of Environmental Protection, University of Oradea, 24 Gen. Magheru St., 410048 Oradea, Romania; (S.I.V.); (V.L.); (A.V.T.)
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 24 Gen. Magheru St., 410048 Oradea, Romania; (S.I.V.); (V.L.); (A.V.T.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
| | - Laurentiu Chiana
- Doctoral School of Biomedical Science, University of Oradea, 1 University St., 410087 Oradea, Romania; (L.C.)
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (J.P.)
| | - Maria Puschita
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (M.P.); (E.M.); (C.C.)
| | - Eftimie Miutescu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (M.P.); (E.M.); (C.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 Pta 1 Decembrie St., 410073 Oradea, Romania
| | - Coralia Cotoraci
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (M.P.); (E.M.); (C.C.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (C.B.); (H.H.); (A.C.); (S.G.); (M.R.); (B.M.)
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Liviu Rebreanu St., 310414 Arad, Romania; (M.P.); (E.M.); (C.C.)
| |
Collapse
|
39
|
Yuksel B. Investigation of morphological abnormalities in red blood cells among dental laboratory technicians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20650-20658. [PMID: 33405139 DOI: 10.1007/s11356-020-11935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
A variety of materials are used in dental prosthesis laboratories (DPL), especially metal alloys and methyl methacrylate (MMA)-based monomers and polymers. These metal alloys contain elements such as cobalt, chromium, nickel, molybdenum, lead, and mercury that can have toxic effects on human health when excessive amounts of exposure occur. This study aims to investigate the cytotoxic effects of occupational exposure due to dental prosthesis manufacturing operations on erythrocyte cells. Thirty DPL workers were compared with the 30 control group and the questionnaire forms were applied including the symptoms due to their occupational exposure. Blood was taken from the experimental group and the control group into tubes with EDTA, and the erythrocyte morphologies were examined by the peripheral smear technique. Morphological anomalies determined from the experimental group and the control group are statistically significant (p < .005, p < .01). On the other hand, it was revealed that the sub-variables, namely age range, alcohol, and smoking, did not significantly affect the anomalies. With these results, it was concluded that DPL employees should strictly comply with occupational health precautions.
Collapse
Affiliation(s)
- Burcu Yuksel
- Vocational School of Kocaeli Health Sciences, Kocaeli University, Umuttepe, 41380, Izmit, Kocaeli, Turkey.
| |
Collapse
|
40
|
Ansari MN, Rehman NU, Karim A, Imam F, Hamad AM. Protective Effect of Thymus serrulatus Essential Oil on Cadmium-Induced Nephrotoxicity in Rats, through Suppression of Oxidative Stress and Downregulation of NF-κB, iNOS, and Smad2 mRNA Expression. Molecules 2021; 26:molecules26051252. [PMID: 33652584 PMCID: PMC7956168 DOI: 10.3390/molecules26051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of the research was to examine the protective effect of essential oil from Thymus serrulatus Hochst. ex Benth. (TSA oil) against cadmium (Cd)-induced renal toxicity. The experimental protocol was designed using 30 healthy adult Wistar albino rats allocated into five groups containing six animals in each group. Group 1 was treated as normal control and groups 2, 3, 4, and 5 were treated with cadmium chloride (CdCl2, 3 mg/kg, IP) for 7 days. Group 3 was also treated with silymarin (100 mg/kg, PO) as a standard group, while groups 4 and 5 were administered with TSA oil at doses of 100 and 200 mg/kg PO, respectively. The nephrotoxicity was measured with various parameters such as kidney function markers, oxidative stress markers (glutathione (GSH) and malondialdehyde (MDA)), and messenger ribonucleic acid (mRNA) expression levels of inflammatory factors. The histological studies were also evaluated in the experimental protocol. The CdCl2-treated groups showed a significant increase in the levels of serum kidney function markers along with MDA levels in kidney homogenate. However, renal GSH level was found to be reduced significantly. It was found that CdCl2 significantly upregulated the nuclear factor levels of kappaB (NF-κB p65), inducible nitric oxide synthase (iNOS), and small mothers against decapentaplegic (Smad2) as compared to the normal control group. On the other hand, TSA oil significantly improved the increased levels of serum kidney function markers, non-enzymatic antioxidants, and lipid peroxidation. In addition, TSA oil significantly downregulated the increased expression of NF-κB p65, iNOS, and Smad2 in Cd-intoxicated rats. Moreover, the histological changes in the tissue samples of the kidney of Cd-treated groups were significantly ameliorated in the silymarin- and TSA-oil-treated groups. The present study reveals that TSA oil ameliorates Cd-induced renal injury, and it is also proposed that the observed nephroprotective effect could be due to the antioxidant potential of TSA oil and healing due to its anti-inflammatory action.
Collapse
Affiliation(s)
- Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Najeeb Ur Rehman
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (M.N.A.); (N.U.R.); Tel.: +966-11-5886037 (M.N.A.); +966-11-5886035 (N.U.R.)
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Abubaker M. Hamad
- Department of Basic Sciences, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Histopathology and Cytopathology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
41
|
Fang J, Yin H, Yang Z, Tan M, Wang F, Chen K, Zuo Z, Shu G, Cui H, Ouyang P, Guo H, Chen Z, Huang C, Geng Y, Liu W. Vitamin E protects against cadmium-induced sub-chronic liver injury associated with the inhibition of oxidative stress and activation of Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111610. [PMID: 33396130 DOI: 10.1016/j.ecoenv.2020.111610] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Hepatic oxidative stress, as one important mechanism of cadmium (Cd)-induced hepatic toxicity, could, as known, be ameliorated by vitamin E (VE). However, the underlying mechanism remains to be elucidated. To investigate whether the antioxidant vitamin E can protect against Cd-induced sub-chronic liver injury associated with oxidative stress and nuclear factor erythrocyte 2-related factor 2 (Nrf2) pathway, male Sprague-Dawley rats (nine-week-old) were randomly divided into four groups (eight rats/group), namely, control, VE (100 mg/kg VE), Cd (5 mg/kg CdCl2) and VE+Cd (100 mg/kg VE+5 mg/kg CdCl2), and received intragastric administration of Cd and/or VE for four weeks. Cd-exposure alone resulted in reduced liver weight, liver histological alteration and oxidative stress, accumulation of Cd in the liver, elevated ALT and AST concentrations in serum together with decreased mRNA and protein expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GCLC, GCLM and GST). However, the co-treatment of Cd and VE significantly ameliorated the changes mentioned above, and promoted the expression of genes and proteins of Nrf2 pathway related molecules in comparison to the Cd-exposure alone. Our results indicate that the protective effect of VE against Cd-induced sub-chronic hepatic damage in rats is associated with the inhibition of oxidative stress and activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, PR China
| | - Maoyun Tan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chendu, Sichuan 610041, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
42
|
Khorami H, Eidi A, Mortazavi P, Modaresi M. Effect of sodium molybdate on cadmium-related testicular damage in adult male Wistar rats. J Trace Elem Med Biol 2020; 62:126621. [PMID: 32683227 DOI: 10.1016/j.jtemb.2020.126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Molybdenum, as a trace element, has various pharmacological effects, including antioxidant, antiviral, anti-allergic, anti-osteoporosis, anti-tumor, anti-inflammatory, anti-diabetic, anti-obesity, and free radical-scavenging activities. This study aimed at investigating the sodium molybdate impacts on cadmium chloride (CdCl2)-induced testicular toxicity in adult Wistar rats. METHODS The impacts of oral administration of sodium molybdate (0.05, 0.1, 0.2, and 0.4 mg/kg) was evaluated in healthy and infertile animals. Animals were randomly assigned to nine groups, including healthy control, sodium molybdate alone, infertile control (3 mg/kg of CdCl2), and sodium molybdate plus CdCl2. Following 30 days of administration, animals were sacrificed for biochemical and histopathological assays. RESULTS The results indicated that administration of sodium molybdate to infertile rats significantly mitigated the cadmium impacts on sperm appearance, concentration, and motility parameters. Also, sodium molybdate reduced the production of malondialdehyde (MDA) and enhanced antioxidant enzymes activities in the testicular homogenates in rats; these findings were supported by histopathological examinations. Treatment with sodium molybdate significantly increased aquaporin-9 (AQP9) expression in the testicular tissues of infertile rats. CONCLUSIONS The current findings suggested that sodium molybdate performs as a strong protective agent from CdCl2-related testicular toxicity in rats.
Collapse
Affiliation(s)
- Hormat Khorami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Modaresi
- Department of Psychology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
43
|
Zamani MM, Mortazavi SH, Monajjemzadeh M, Piranfar V, Aalidaeijavadi Z, Bakhtiarian A. Protective Effect of Combined Long Time Administration of Selenium and Vitamin C on Liver and Kidney Toxicity of Cadmium in Rats. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:174-180. [PMID: 33936228 PMCID: PMC8085284 DOI: 10.30699/ijp.2020.135777.2489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Background & Objective: Increased industrial activities leads to prolonged human exposure to industrial pollutant such as cadmium (Cd). Chronic exposure to Cd in Mammals and also human being, can cause damages to various organs and particularly kidneys and liver. The goal of this study was to investigate the prophylactic effects of combined selenium (Se) and ascorbic acid supplement in rat cadmium toxicity. Methods: Sixty adult male Wistar rats were divided to 10 groups: one control, one sham and two clusters of 4 intervention groups which were fed with 1 or 5 mg Cd /kg water, for 28 days. Ascorbic acid supplement was added to drinking water of four groups (10 mg/L). Four groups received intraperitoneal Se (1 mg/kg) at day 1, 5, 10, 15, 20 and 25. Finally, Cd concentration was measured by atomic absorption spectrophotometry in liver and kidney sections. Furthermore, pathological changes were investigated in these sections. Results: The results showed weight gain in Cd groups which received ascorbic acid and Se, in contrast to weight loss in parallel groups without vitamin C and Se. The stronger necrosis and inflammation have been observed in group received 5 mg/kg Cd compared to group with 1 mg/kg Cd (P<0.05). In addition, cadmium level was higher in untreated groups without any supplements, significantly (P<0.05). Conclusion: Drinking water with ascorbic acid may have prophylactic effects across cadmium, and combination of Se and ascorbic acid are associated with higher prophylactic effects in both kidney and liver in rats to decrease the Cd toxicity.
Collapse
Affiliation(s)
- Mohammad Mahdi Zamani
- Exceptional Talent Development Center (EDTC), Tehran University of Medical Sciences, Tehran, Iran.,Department of Anesthesiology and Critical Care, Hasheminejad Kidney Center (HKC), Iran University of Medical Sciences, Tehran, Iran.,Scientific Students' Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Monajjemzadeh
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahhab Piranfar
- Department of Medical Microbiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Scientific Students' Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Bakhtiarian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Akinola AO, Oyeyemi AW, Daramola OO, Raji Y. Effects of the methanol root extract of Carpolobia lutea on sperm indices, acrosome reaction, and sperm DNA integrity in cadmium-induced reproductive toxicity in male Wistar rats. JBRA Assist Reprod 2020; 24:454-465. [PMID: 32510897 PMCID: PMC7558903 DOI: 10.5935/1518-0557.20200036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Oxidative stress is a mechanism of cadmium-induced reproductive dysfunction. Carpolobia lutea is a free radical scavenger. Our study investigated the potential protective effects of Carpolobia lutea root methanol extract against cadmium-induced reproductive toxicity. METHODS We obtained the Carpolobia lutea root in Akure, and it was authenticated at the Forestry Research Institute of Nigeria (FRIN) herbarium, Ibadan, Nigeria, with FHI number 109784. We used Soxhlet extraction to obtain its methanol extract. We used thirty male Wistar rats (150-170g) in this study, (n=5 per group), and treated them as follows: Control (1 ml/kg normal saline), Cd (2 mg/kg), Cd+MCL (2 mg/kg+100 mg/kg), Cd+MCL (2 mg/kg+200 mg/kg), MCL (100 mg/kg), MCL (200 mg/kg). We administered Carpolobia lutea orally for 8 weeks. We administered a single dose of 2 mg/kg of cadmium intraperitoneally. We assessed the sperm profile using a computer-aided sperm analyzer. Under microscopy, we determined the sperm acrosome reaction and the DNA damage. We measured the seminal fructose level using spectrophotometry, and the data were analyzed using ANOVA at p<0.05. RESULTS Cd+MCL (2mg/kg+200 mg/kg) significantly increased sperm count (339.0±25.0 vs. 29.0±4.5 million/mL), motility (80.0±0.2 vs. 55.0±4.9%), viability (68.7±2.7 vs. 31.3±2.9%) and decreased abnormal sperm (28.3±1.7 vs. 43.3±2.5%), relative to the cadmium group. Cd+MCL (2mg/kg+200 mg/kg) significantly increased acrosome reaction (68.0±7.5 vs. 15.2±2.4%) and seminal fructose level (0.49±0.06 vs. 0.28±0.06 mmol/L) relative to the cadmium group. Cd+MCL (2mg/kg+200 mg/kg) significantly decreased sperm DNA damage (14.1±1.6 vs. 35.9±5.3%) in relation to the cadmium group. CONCLUSIONS Carpolobia lutea root extract improves the sperm variables of rats exposed to cadmium.
Collapse
Affiliation(s)
- Adeniran Oluwadamilare Akinola
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria.,Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adekunle Wahab Oyeyemi
- Department of Physiology, Igbinedion University Okada, Edo State, Nigeria.,Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluyemi O Daramola
- Department of Physiology, Igbinedion University Okada, Edo State, Nigeria.,Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Yinusa Raji
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
45
|
Alharthi WA, Hamza RZ, Elmahdi MM, Abuelzahab HSH, Saleh H. Selenium and L-Carnitine Ameliorate Reproductive Toxicity Induced by Cadmium in Male Mice. Biol Trace Elem Res 2020; 197:619-627. [PMID: 31863275 DOI: 10.1007/s12011-019-02016-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) has been reported to reduce male fertility, impair reproductive capacity, and play a major role in the pathogenesis of infertility. This study was conducted to investigate the possible protective role of Selenium (Se) and L-carnitine (LC) against the adverse effects induced by Cd on the male reproductive system in mice. Animals were randomly divided into seven groups (n = 10); control group and six treated groups, as follows: Cd (0.35 mg/kg), Se (0.87 mg/kg), LC (10 mg/kg), and a combination of either Se or LC and then a combination of both with Cd, and all animals were injected for a period of 30 days. Exposure of Cd showed a significant decrease in enzymatic antioxidant activities, deficiency in reproductive performance, decrease serum testosterone level, severe changes in the histopathological architecture, and higher degree of damages and appearance of unblemished DNA strands. Treatment with Se and LC has the highly synergistic and ameliorates the damaging effect of Cd on the testis through the elevation of the enzymatic antioxidant and diminish histopathological abnormalities and DNA damage.
Collapse
Affiliation(s)
- Wed A Alharthi
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Zoology Department, Faculty of Science, Zagzig University, Zagazig, Egypt
| | - Magda M Elmahdi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt
| | | | - Hanan Saleh
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt.
| |
Collapse
|
46
|
Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A Review. J Appl Toxicol 2020; 41:105-117. [DOI: 10.1002/jat.4055] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| |
Collapse
|
47
|
Güner Ö, Güner A, Yavaşoğlu A, Karabay Yavaşoğlu NÜ, Kavlak O. Ameliorative effect of edible Halopteris scoparia against cadmium-induced reproductive toxicity in male mice: A biochemical and histopathologic study. Andrologia 2020; 52:e13591. [PMID: 32320493 DOI: 10.1111/and.13591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a toxic metal affecting the reproductive system. Halopteris scoparia (brown algae) is generally consumed as a salad in the Far East countries. This study was conducted to compare and determine the possible protective effects of H. scoparia and vitamin E and C combination (VEC) against cadmium chloride (CdCl2 )-induced reproductive toxicity. A total of 36 male mice were equally divided into as control, CdCl2 (2 mg/kg), CdCl2 + H. scoparia (900 mg/kg), CdCl2 + VEC (200 mg/kg), H. scoparia alone and VEC alone groups. Blood and testis samples were taken for biochemical, histochemical and immunohistochemical analyses. H. scoparia was also examined for antioxidant activity (by DPPH assay) and mineral/trace element content (by ICP-MS method). CdCl2 exposure caused a significant deterioration in body weight, sperm parameters (count, motility, viability and morphology) (p < .001), histopathology, immunoreactivity and testosterone levels. However, H. scoparia improved CdCl2 -induced deterioration effects more successfully than VEC-treated group. The present study suggests that edible H. scoparia can be used as a natural protective agent against Cd-induced testicular damage by possibly enhancing essential element levels or increasing antioxidant defence system.
Collapse
Affiliation(s)
- Özlem Güner
- Department of Nursing, Sinop University School of Health, Sinop, Turkey
| | - Adem Güner
- Department of Biology, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| | - Altuğ Yavaşoğlu
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | | | - Oya Kavlak
- Department of Gynecologic and Obstetric Nursing, Faculty of Nursing, Ege University, Izmir, Turkey
| |
Collapse
|
48
|
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3782. [PMID: 32466586 PMCID: PMC7312803 DOI: 10.3390/ijerph17113782] [Citation(s) in RCA: 962] [Impact Index Per Article: 240.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic non-essential transition metal that poses a health risk for both humans and animals. It is naturally occurring in the environment as a pollutant that is derived from agricultural and industrial sources. Exposure to cadmium primarily occurs through the ingestion of contaminated food and water and, to a significant extent, through inhalation and cigarette smoking. Cadmium accumulates in plants and animals with a long half-life of about 25-30 years. Epidemiological data suggest that occupational and environmental cadmium exposure may be related to various types of cancer, including breast, lung, prostate, nasopharynx, pancreas, and kidney cancers. It has been also demonstrated that environmental cadmium may be a risk factor for osteoporosis. The liver and kidneys are extremely sensitive to cadmium's toxic effects. This may be due to the ability of these tissues to synthesize metallothioneins (MT), which are Cd-inducible proteins that protect the cell by tightly binding the toxic cadmium ions. The oxidative stress induced by this xenobiotic may be one of the mechanisms responsible for several liver and kidney diseases. Mitochondria damage is highly plausible given that these organelles play a crucial role in the formation of ROS (reactive oxygen species) and are known to be among the key intracellular targets for cadmium. When mitochondria become dysfunctional after exposure to Cd, they produce less energy (ATP) and more ROS. Recent studies show that cadmium induces various epigenetic changes in mammalian cells, both in vivo and in vitro, causing pathogenic risks and the development of various types of cancers. The epigenetics present themselves as chemical modifications of DNA and histones that alter the chromatin without changing the sequence of the DNA nucleotide. DNA methyltransferase, histone acetyltransferase, histone deacetylase and histone methyltransferase, and micro RNA are involved in the epigenetic changes. Recently, investigations of the capability of sunflower (Helianthus annuus L.), Indian mustard (Brassica juncea), and river red gum (Eucalyptus camaldulensis) to remove cadmium from polluted soil and water have been carried out. Moreover, nanoparticles of TiO2 and Al2O3 have been used to efficiently remove cadmium from wastewater and soil. Finally, microbial fermentation has been studied as a promising method for removing cadmium from food. This review provides an update on the effects of Cd exposure on human health, focusing on the cellular and molecular alterations involved.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| |
Collapse
|
49
|
Detoxification Impacts of Ascorbic Acid and Clay on Laying Japanese Quail Fed Diets Polluted by Various Levels of Cadmium. Animals (Basel) 2020; 10:ani10030372. [PMID: 32106604 PMCID: PMC7143029 DOI: 10.3390/ani10030372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The present study aimed to evaluate the impacts of ascorbic acid and clay supplementation on laying Japanese quail fed diets polluted by various levels of cadmium (Cd). Results revealed that consuming polluted diets with Cd causes harmful impacts on the productive performance of laying Japanese quail. The supplementation of ascorbic acid or natural clay to layer diets had beneficial effects on productive performance, improved egg quality and diminished the toxic effect of Cd. Abstract A total number of 360 laying Japanese quail (8 weeks of age) were randomly divided into 12 groups. Birds in all groups had nearly the same average initial body weight. A factorial arrangement (4 × 3) was performed including four levels of dietary cadmium (Cd) as cadmium chloride (0, 50, 100, and 150 mg/kg diet) and three levels of feed additives (without, 300 mg/kg ascorbic acid and 1.50% natural clay). Results revealed that Cd contaminated feed caused significant (p < 0.01) retardation in body weight, lower egg number and egg mass and worse feed conversion. On the other hand, the addition of ascorbic acid or natural clay to quail diets caused a significant (p < 0.01) improvement in all studied traits. With respect to the interaction among Cd and the experimental additives, results showed that within each Cd level, ascorbic acid or clay supplementation recorded the highest body weight, egg number, egg weight and mass in addition to improved feed conversion. Cadmium levels decreased (p < 0.05) blood total protein, albumen and A/G ratio. Both 300 mg ascorbic acid and 1.50% clay increased (p < 0.05) blood total protein and albumen compared to non-supplemented groups. It could be concluded that the consumption of polluted diets Cd causes deleterious effects on the productive performance of laying Japanese quail. The addition of ascorbic acid or natural clay to the diets causes beneficial effects on productive performance traits, improves egg quality criteria and diminishes the toxic effects of Cd.
Collapse
|
50
|
Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv Pharm Bull 2020; 10:184-202. [PMID: 32373487 PMCID: PMC7191230 DOI: 10.34172/apb.2020.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a significant ecotoxic heavy metal that adversely affects all biological processes of humans, animals and plants. Exposure to acute and chronic Cd damages many organs in humans and animals (e.g. lung, liver, brain, kidney, and testes). In humans, the Cd concentration at birth is zero, but because the biological half-life is long (about 30 years in humans), the concentration increases with age. The industrial developments of the last century have significantly increased the use of this metal. Especially in developing countries, this consumption is higher. Oxidative stress is the imbalance between antioxidants and oxidants. Cd increases reactive oxygen species (ROS) production and causes oxidative stress. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles. This damage has been associated with various diseases. These include cancer, hypertension, ischemia/perfusion, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, insulin resistance, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, asthma, skin diseases, chronic kidney disease, eye diseases, neurodegenerative diseases (amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington disease). Natural antioxidants are popular drugs that are used by the majority of people and have few side effects. Natural antioxidants play an important role in reducing free radicals caused by Cd toxicity. Our goal in this review is to establish the relationship between Cd and oxidative stress and to discuss the role of natural antioxidants in reducing Cd toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| | - Tahir Dalkıran
- Department of Pediatric Intensive Care, Necip Fazıl City Hospital, 46030, Kahramanmaras, Turkey
| | - Mustafa Çiçek
- Department of Anatomy, Faculty of Medicine, Kahramanmaraş Sütçü imam University, Kahramanmaras, Turkey
| | - Engin Kölükçü
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University,Tokat, Turkey
| |
Collapse
|