1
|
Kassem NOF, Strongin RM, Stroup AM, Brinkman MC, El-Hellani A, Erythropel HC, Etemadi A, Exil V, Goniewicz ML, Kassem NO, Klupinski TP, Liles S, Muthumalage T, Noël A, Peyton DH, Wang Q, Rahman I, Valerio LG. A Review of the Toxicity of Ingredients in e-Cigarettes, Including Those Ingredients Having the FDA's "Generally Recognized as Safe (GRAS)" Regulatory Status for Use in Food. Nicotine Tob Res 2024; 26:1445-1454. [PMID: 38783714 PMCID: PMC11494494 DOI: 10.1093/ntr/ntae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Some firms and marketers of electronic cigarettes (e-cigarettes; a type of electronic nicotine delivery system (ENDS)) and refill liquids (e-liquids) have made claims about the safety of ingredients used in their products based on the term "GRAS or Generally Recognized As Safe" (GRAS). However, GRAS is a provision within the definition of a food additive under section 201(s) (21 U.S.C. 321(s)) of the U.S. Federal Food Drug and Cosmetic Act (FD&C Act). Food additives and GRAS substances are by the FD&C Act definition intended for use in food, thus safety is based on oral consumption; the term GRAS cannot serve as an indicator of the toxicity of e-cigarette ingredients when aerosolized and inhaled (ie, vaped). There is no legal or scientific support for labeling e-cigarette product ingredients as "GRAS." This review discusses our concerns with the GRAS provision being applied to e-cigarette products and provides examples of chemical compounds that have been used as food ingredients but have been shown to lead to adverse health effects when inhaled. The review provides scientific insight into the toxicological evaluation of e-liquid ingredients and their aerosols to help determine the potential respiratory risks associated with their use in e-cigarettes.
Collapse
Affiliation(s)
- Nada O F Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Andrea M Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD, USA
| | - Marielle C Brinkman
- College of Public Health, The Ohio State University, Columbus, OH, USA
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ahmad El-Hellani
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale Center for the Study of Tobacco Products (YCSTP), Yale School of Medicine, New Haven, CT, USA
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vernat Exil
- School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Noura O Kassem
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Sandy Liles
- Health Promotion and Behavioral Science, San Diego State University, San Diego, CA, USA
- Hookah Tobacco Research Center, San Diego State University Research Foundation, San Diego, CA, USA
| | | | - Alexandra Noël
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - David H Peyton
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Luis G Valerio
- Division of Nonclinical Science (DNCS), Office of Science/Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
2
|
Annaz H, El Fakhouri K, Ben Bakrim W, Mahdi I, El Bouhssini M, Sobeh M. Bergamotenes: A comprehensive compile of their natural occurrence, biosynthesis, toxicity, therapeutic merits and agricultural applications. Crit Rev Food Sci Nutr 2024; 64:7343-7362. [PMID: 36876517 DOI: 10.1080/10408398.2023.2184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
Collapse
Affiliation(s)
- Hassan Annaz
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, eugenyl methyl ether, CAS Registry Number 93-15-2. Food Chem Toxicol 2024; 183 Suppl 1:114209. [PMID: 38035987 DOI: 10.1016/j.fct.2023.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
4
|
Cartus AT, Lachenmeier DW, Guth S, Roth A, Baum M, Diel P, Eisenbrand G, Engeli B, Hellwig M, Humpf HU, Joost HG, Kulling SE, Lampen A, Marko D, Steinberg P, Wätjen W, Hengstler JG, Mally A. Acetaldehyde as a Food Flavoring Substance: Aspects of Risk Assessment. Mol Nutr Food Res 2023; 67:e2200661. [PMID: 37840378 DOI: 10.1002/mnfr.202200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/31/2023] [Indexed: 10/17/2023]
Abstract
The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.
Collapse
Affiliation(s)
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Matthias Baum
- Solenis Germany Industries GmbH, Fütingsweg 20, 47805, Krefeld, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | | - Barbara Engeli
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Schwarzenburgstrasse 155, Bern, 3003, Switzerland
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01062, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Straße 8-10, Berlin, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Wim Wätjen
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr, 67, 44139, Dortmund, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| |
Collapse
|
5
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Muldoon J, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, estragole, CAS registry number 140-67-0. Food Chem Toxicol 2023; 182 Suppl 1:114143. [PMID: 37898231 DOI: 10.1016/j.fct.2023.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
6
|
Maronpot R, Ramot Y, Nyska A, Sproul C, Moore R, Bolon B, Hayashi SM. Oral chronic toxicity and carcinogenicity study of alpha-glycosyl isoquercitrin (AGIQ) in Sprague Dawley rats. Regul Toxicol Pharmacol 2023; 140:105343. [PMID: 36773715 DOI: 10.1016/j.yrtph.2023.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
alpha-Glycosyl isoquercitrin (AGIQ) is a flavonoid that possesses antioxidant and tumor suppressive capabilities and is marketed as a food additive in Japan. The aim of this study was to assess the potential for oral chronic toxicity and carcinogenicity of AGIQ in male and female Sprague Dawley rats following up to 5.0% dietary exposure. In the chronic toxicity study, rats were exposed to AGIQ or vehicle for one year with a 6-month interim termination point; for the carcinogenicity study, rats were treated for 24 months. No signs of AGIQ-related toxicity clinically or histologically were observed for up to one year except for yellow discoloration of bone. In the carcinogenicity study, a statistically significant increase in the incidence of malignant glioma of the brain or spinal cord was observed in female rats exposed to 5.0% AGIQ compared to those exposed to control feed. A Scientific Advisory Panel of experienced neuropathologists reviewed the gliomas (routine stains and glial cell markers) and concluded that the gliomas were a rare, spontaneous, rat-specific neoplasm: malignant microglial tumor. The lesions could not definitively be attributed to AGIQ exposure and have limited implications with respect to predicting human cancer risk.
Collapse
Affiliation(s)
- Robert Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Yuval Ramot
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel.
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Tel Aviv and Tel Aviv University, Israel.
| | - Christopher Sproul
- Integrated Laboratory Systems, LLC, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | - Rebecca Moore
- Integrated Laboratory Systems, LLC, 601 Keystone Park Drive, Morrisville, NC, 27560, USA
| | | | - Shim-Mo Hayashi
- National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
7
|
Vij P, Donahue DA, Burke KP, Hayashi SM, Maronpot RR. Lack of Skin Sensitization Hazard Potential for alpha-Glycosyl Isoquercitrin (AGIQ) Utilizing the Local Lymph Node Assay. Toxicol Rep 2022; 9:1291-1296. [DOI: 10.1016/j.toxrep.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
|
8
|
Sartori Tamburlin I, Roux E, Feuillée M, Labbé J, Aussaguès Y, El Fadle FE, Fraboul F, Bouvier G. Toxicological safety assessment of essential oils used as food supplements to establish safe oral recommended doses. Food Chem Toxicol 2021; 157:112603. [PMID: 34648935 DOI: 10.1016/j.fct.2021.112603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Essential oils (EOs) are increasingly consumed as food supplements. The few published recommended doses available generally lack details both on the methodology used and concentration limits for substances of concern, including genotoxic carcinogens. We propose a tiered approach based on the toxicological evaluation of maximized concentrations of each constituent present in the EO investigated. The genotoxic potential of each constituent is assessed using literature data or QSAR analyses. Genotoxic constituents are evaluated according to the methodology provided in the ICHM7 guideline. A Toxicological Reference Value (TRV) is associated to each non-genotoxic constituent, using one of the following methodologies (decision-tree successive steps): extraction from recognized databases or clinical studies, application of adequate safety factors to NOAELs established in animal studies, read-across analyses and when none was possible, TTC of Cramer classes. An EO recommended dose is considered safe when the safety margin (ratio between TRV and systemic exposure) for all constituents is all at least equal to 1. In conclusion, this methodology has proven to be robust to establish safe recommended doses for EOs used as food supplements, consistent with those publicly available, and avoiding unnecessary dedicated new animal testing.
Collapse
Affiliation(s)
| | - Elise Roux
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Marion Feuillée
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Julie Labbé
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Yannick Aussaguès
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | | | - Françoise Fraboul
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Guy Bouvier
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| |
Collapse
|
9
|
Llewellyn GC, Rihner MO, Hanlon PR. An evolution of risk assessment for potential carcinogens in food: Scientific session proceedings. Regul Toxicol Pharmacol 2021; 126:105047. [PMID: 34506878 DOI: 10.1016/j.yrtph.2021.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Modern perspectives on the risk assessment of carcinogenic potential of chemicals have taken shape within the last two decades. This has been due to both developments in the understanding of the biology and etiology of cancer and by advances in in silico and in vitro assays. Moving away from a conventional binary carcinogen/non-carcinogen model, modern frameworks offer more nuanced classification structures based on the understanding of mechanisms involved or potentially involved in rodent carcinogenicity. Given these developments, a scientific session at the 2020 Winter Meeting of the Toxicology Forum was organized to explore the impact these innovative approaches will have on food safety assessments and what considerations should be addressed in developing a new carcinogenic risk assessment approach for substances in foods. The session reviewed challenges faced by food toxicologists and risk assessors, current standard approaches for evaluating carcinogenic risk of food substances, limitations of these standard approaches, and potential methods to implement next generation assays and modern carcinogenic frameworks into food safety assessments. Current perspectives of US regulatory, industry, and academic stakeholders were represented during speaker presentations and a moderated Panel Discussion. This Workshop Report provides an overview of key themes and information presented during the session. Summary statements were prepared by the authors and reviewed by the presenters but do not necessarily represent the position or policy of the FDA, the EPA, or other affiliations.
Collapse
Affiliation(s)
- G Craig Llewellyn
- SafeBridge® Regulatory and Life Sciences Group, A Trinity Consultants Inc. Company, USA.
| | - Marisa O Rihner
- SafeBridge® Regulatory and Life Sciences Group, A Trinity Consultants Inc. Company, USA
| | | |
Collapse
|
10
|
Bastaki M, Aubanel M, Bialk H, Choi C, Demyttenaere J, Diop MM, Etter S, Han X, Koyanagi M, Krammer G, Schnabel J, Wilson CL, Ramanan D, Shafer T, Taylor SV, Harman CL. A chemical structure-based approach for estimating the added levels of flavourings to foods for the purpose of assessing consumer intake. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 38:33-59. [PMID: 33170096 DOI: 10.1080/19440049.2020.1837398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intake assessment and hazard profile of chemical substances are the two critical inputs in a safety assessment. Human intake assessment presents challenges that stem either from the absence of data or from numerous sources of variability and uncertainty, which have led regulators to adopt conservative approaches that inevitably overestimate intake. Refinements of intake assessments produce more realistic estimates and help prioritise areas of concern and better direct investment of resources. However, use levels (ULs), which represent the usual added amount of flavourings to food products, are the starting point for refined intake assessments, are data-intensive, and data availability is often a limitation. The work presented here was undertaken to investigate the use level patterns of substances used as flavourings in foods and to develop a systematic tool for data extrapolation based on chemical structure. The available dataset consists of use levels reported through eight industry surveys and hence are representative of industry uses rather than regulatory limits, which are higher by design and not realistic. A systematic statistical analysis was undertaken to determine whether the industry-reported UL data can be used to estimate use levels of flavouring substances belonging to the same chemical group for which such data are not available. Predictive modelling approaches were explored to evaluate relationships in the data and utilised additional variables relevant to technological considerations, such as volatility losses upon heat treatment, and Tanimoto index-based pair-wise structural similarity scores to determine whether more granular similarity information can reduce the within-group variability. The analyses indicated that the use levels of flavouring substances can reasonably be estimated based on the available data using chemical group classifications stratified by food category. Source of uncertainty and limitations are discussed.
Collapse
Affiliation(s)
- Maria Bastaki
- Science, International Organization of the Flavor Industry , Washington, DC, USA
| | - Michel Aubanel
- Global Ingredient Development, Kerry Flavours France , Grasse Cedex, France
| | - Heidi Bialk
- Global Scientific Affairs, PepsiCo Inc , Valhalla, NY, USA
| | - Christopher Choi
- Corporate Safety and Regulatory Affairs, Takasago International Corporation , Rockleigh, NJ, USA
| | - Jan Demyttenaere
- Scientific and Regulatory Affairs, European Flavour Association , Brussels, Belgium
| | - Malick Maodo Diop
- Global Regulatory Affairs and Product Safety, V. Mane Fils , Le Bar-sur Loup, France
| | - Sylvain Etter
- Global Regulatory Services, Firmenich International SA , Meyrin, Switzerland
| | - Xing Han
- Global Regulatory Affairs, International Flavors & Fragrances Inc , Hazlet, USA
| | - Mihoko Koyanagi
- Science, Japan Flavor & Fragrance Materials Association , Tokyo, Japan
| | - Gerhard Krammer
- Research and Technology, Flavor Division, Symrise AG , Holzminden, Germany
| | - Jürgen Schnabel
- Global Advocacy and Scientific Services, Taste and Nutrition, Givaudan International SA , Kemptthal, Switzerland
| | - Cody L Wilson
- Global Scientific and Regulatory Affairs, The Coca-Cola Company , Atlanta, GA, USA
| | - Danarubini Ramanan
- Science, International Organization of the Flavor Industry , Washington, DC, USA
| | - Tom Shafer
- Data Science, Elder Research , Raleigh, USA
| | - Sean V Taylor
- Science, International Organization of the Flavor Industry , Washington, DC, USA
| | - Christie L Harman
- Science, International Organization of the Flavor Industry , Washington, DC, USA.,Science, Flavor and Extract Manufacturers Association , Washington, DC, USA
| |
Collapse
|
11
|
Liu J, Wang H, Liu X, Zhang G, Liu Z. Chinese liquor extract attenuates oxidative damage in HepG2 cells and extends lifespan of Caenorhabditis elegans. Food Sci Nutr 2020; 8:3164-3172. [PMID: 32724581 PMCID: PMC7382174 DOI: 10.1002/fsn3.1564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 11/08/2022] Open
Abstract
Chinese liquor is obtained from various grains by fermentation and complex processes. Chinese liquor contains complex ingredients. However, the low contents and presence of ethanol restricted the flavor substances function study. In current study, a flavor substance, homofuraneol (HOMO) was isolated from the Chinese liquor and the potency against H2O2-induced oxidative damage in HepG2 cells and lifespan-extending ability in Caenorhabditis elegans were explored. Results indicated that HOMO increased the HepG2 cells cytoactive by eliminating excessive intracellular free radicals, upregulating antioxidant enzyme activity and inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) pathway. Further study revealed that HOMO extended the lifespan of N2 nematodes under normal and oxidative stress conditions. Moreover, RT-PCR results showed that paraquat activated the expression of PMK-1 and SKN-1 was significantly regulated by HOMO. Of note, our results indicated that HOMO recovered the redox states of HepG2 cells by targeting MAPKs and upregulating the stress resistance of nematodes by modulating the expression of stress-responsive genes, such as DAF-16.
Collapse
Affiliation(s)
- Jie Liu
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Huailing Wang
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Guohao Zhang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| | - Zhigang Liu
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen Key Laboratory of Allergy & ImmunologyShenzhen University School of MedicineShenzhenChina
| |
Collapse
|
12
|
Davis JP, Koyanagi M, Maronpot RR, Recio L, Hayashi SM. Identification of compound causing yellow bone discoloration following alpha-glycosyl isoquercitrin exposure in Sprague-Dawley rats. Arch Toxicol 2020; 94:2413-2421. [PMID: 32388820 PMCID: PMC7367902 DOI: 10.1007/s00204-020-02760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022]
Abstract
Previous rat toxicity studies of alpha-glycosyl isoquercitrin (AGIQ), a water-soluble flavonol glycoside derived from rutin, revealed systemic yellow bone discoloration. This investigative study was conducted to determine the AGIQ metabolite(s) responsible for the discoloration. Female Sprague-Dawley rats were administered dietary AGIQ at doses of 0%, 1.5%, 3.0%, or 5.0% (0, 1735.0, 3480.8, and 5873.7 mg/kg/day, respectively) for 14 days, followed by a 14- or 28-day recovery period. Measurements of quercetin in urine and quercetin, quercetin 3-O-glucuronide, kaempferol, and 3-o-methylquercetin metabolites of AGIQ in bone (femur), white and brown fat, and cerebrum samples were conducted following the exposure period and each recovery period. Gross examination of the femur revealed yellow discoloration that increased in intensity with dose and was still present in a dose-related manner following both recovery periods. Quercetin, at levels correlating with AGIQ dose, was measured in the urine following the 14-day exposure period and, at lower concentrations, 14 or 28 days following cessation of AGIQ exposure. All four metabolites were present in a dose-dependent manner in the femur following 14 days of dietary exposure; only quercetin, quercetin 3-O-glucuronide, and 3-o-methylquercetin were present during the recovery periods. Quercetin, quercetin 3-O-glucuronide, and 3-o-methylquercetin were detected in white fat (along with kaempferol), brown fat (excluding quercetin due to analytical interference), and cerebrum samples, indicating systemic availability of the metabolites. Collectively, these data implicate quercetin, quercetin 3-O-glucuronide, or 3-o-methylquercetin (or a combination thereof) as the most likely metabolite of AGIQ causing the yellow discoloration of bone in rats administered dietary AGIQ.
Collapse
Affiliation(s)
- Jeffrey P Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC, 27709, USA
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC, 27709, USA
| | - Shim-Mo Hayashi
- Division of Food Additives, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
13
|
Hallagan JB, Hall RL, Drake J. The GRAS provision - The FEMA GRAS program and the safety and regulation of flavors in the United States. Food Chem Toxicol 2020; 138:111236. [DOI: 10.1016/j.fct.2020.111236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/07/2023]
|
14
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Bastaki M, Linman MJ, Taylor SV. The safety evaluation of food flavoring substances: the role of genotoxicity studies. Crit Rev Toxicol 2020; 50:1-27. [PMID: 32162576 DOI: 10.1080/10408444.2020.1712589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Flavor and Extract Manufacturers Association (FEMA) Expert Panel relies on the weight of evidence from all available data in the safety evaluation of flavoring substances. This process includes data from genotoxicity studies designed to assess the potential of a chemical agent to react with DNA or otherwise cause changes to DNA, either in vitro or in vivo. The Panel has reviewed a large number of in vitro and in vivo genotoxicity studies during the course of its ongoing safety evaluations of flavorings. The adherence of genotoxicity studies to standardized protocols and guidelines, the biological relevance of the results from those studies, and the human relevance of these studies are all important considerations in assessing whether the results raise specific concerns for genotoxic potential. The Panel evaluates genotoxicity studies not only for evidence of genotoxicity hazard, but also for the probability of risk to the consumer in the context of exposure from their use as flavoring substances. The majority of flavoring substances have given no indication of genotoxic potential in studies evaluated by the FEMA Expert Panel. Examples illustrating the assessment of genotoxicity data for flavoring substances and the consideration of the factors noted above are provided. The weight of evidence approach adopted by the FEMA Expert Panel leads to a rational assessment of risk associated with consumer intake of flavoring substances under the conditions of use.
Collapse
Affiliation(s)
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern (retired), Heidelberg, Germany
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Matthew J Linman
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, Washington, DC, USA
| |
Collapse
|
15
|
Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Bastaki M, Davidsen JM, Harman CL, McGowen MM, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Mint, buchu, dill and caraway derived flavoring ingredients. Food Chem Toxicol 2019; 135:110870. [PMID: 31604112 DOI: 10.1016/j.fct.2019.110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. NFC flavor materials include a variety of essential oils and botanical extracts. The re-evaluation of NFCs is conducted based on a constituent-based procedure outlined in 2005 and updated in 2018 that evaluates the safety of NFCs for their intended use as flavor ingredients. This procedure is applied in the re-evaluation of the generally recognized as safe (GRAS) status of NFCs with constituent profiles that are dominated by alicyclic ketones such as menthone and carvone, secondary alcohols such as menthol and carveol, and related compounds. The FEMA Expert Panel affirmed the GRAS status of Peppermint Oil (FEMA 2848), Spearmint Oil (FEMA 3032), Spearmint Extract (FEMA 3031), Cornmint Oil (FEMA 4219), Erospicata Oil (FEMA 4777), Curly Mint Oil (FEMA 4778), Pennyroyal Oil (FEMA 2839), Buchu Leaves Oil (FEMA 2169), Caraway Oil (FEMA 2238) and Dill Oil (FEMA 2383) and determined FEMA GRAS status for Buchu Leaves Extract (FEMA 4923), Peppermint Oil, Terpeneless (FEMA 4924) and Spearmint Oil, Terpeneless (FEMA 4925).
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- Food Chemistry & Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, and Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, University of Minnesota, MMC 806, 420 Delaware St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE, Wageningen, the Netherlands
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Margaret M McGowen
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association, 1101 17th Street NW, Suite 700, Washington, DC, 20036, USA.
| |
Collapse
|
16
|
Continuous exposure to α-glycosyl isoquercitrin from developmental stage facilitates fear extinction learning in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
17
|
Smith RL, Cohen SM, Fukushima S, Gooderham NJ, Hecht SS, Guengerich FP, Rietjens IMCM, Bastaki M, Harman CL, McGowen MM, Taylor SV. The safety evaluation of food flavouring substances: the role of metabolic studies. Toxicol Res (Camb) 2018; 7:618-646. [PMID: 30090611 PMCID: PMC6062396 DOI: 10.1039/c7tx00254h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
The safety assessment of a flavour substance examines several factors, including metabolic and physiological disposition data. The present article provides an overview of the metabolism and disposition of flavour substances by identifying general applicable principles of metabolism to illustrate how information on metabolic fate is taken into account in their safety evaluation. The metabolism of the majority of flavour substances involves a series both of enzymatic and non-enzymatic biotransformation that often results in products that are more hydrophilic and more readily excretable than their precursors. Flavours can undergo metabolic reactions, such as oxidation, reduction, or hydrolysis that alter a functional group relative to the parent compound. The altered functional group may serve as a reaction site for a subsequent metabolic transformation. Metabolic intermediates undergo conjugation with an endogenous agent such as glucuronic acid, sulphate, glutathione, amino acids, or acetate. Such conjugates are typically readily excreted through the kidneys and liver. This paper summarizes the types of metabolic reactions that have been documented for flavour substances that are added to the human food chain, the methodologies available for metabolic studies, and the factors that affect the metabolic fate of a flavour substance.
Collapse
Affiliation(s)
- Robert L Smith
- Molecular Toxicology , Imperial College School of Medicine , London SW7 2AZ , UK
| | - Samuel M Cohen
- Dept. of Pathology and Microbiology , University of Nebraska Medical Centre , 983135 Nebraska Medical Centre , Omaha , NE 68198-3135 , USA
| | - Shoji Fukushima
- Japan Bioassay Research Centre , 2445 Hirasawa , Hadano , Kanagawa 257-0015 , Japan
| | - Nigel J Gooderham
- Dept. of Surgery and Cancer , Imperial College of Science , Sir Alexander Fleming Building , London SW7 2AZ , UK
| | - Stephen S Hecht
- Masonic Cancer Centre and Dept. of Laboratory Medicine and Pathology , University of Minnesota , Cancer and Cardiovascular Research Building , 2231 6th St , SE , Minneapolis , MN 55455 , USA
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , 638B Robinson Research Building , 2200 Pierce Avenue , Nashville , Tennessee 37232-0146 , USA
| | - Ivonne M C M Rietjens
- Division of Toxicology , Wageningen University , Tuinlaan 5 , 6703 HE Wageningen , The Netherlands
| | - Maria Bastaki
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| | - Christie L Harman
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| | - Margaret M McGowen
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| | - Sean V Taylor
- Flavor and Extract Manufacturers Association , 1101 17th Street , NW Suite 700 , Washington , DC 20036 , USA . ; ; Tel: +1 (202)293-5800
| |
Collapse
|
18
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Kasamoto S, Maronpot R, Recio L, Hayashi SM. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food Chem Toxicol 2018; 113:218-227. [PMID: 29317330 DOI: 10.1016/j.fct.2017.12.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Sawako Kasamoto
- Public Interest Incorporated Foundation Biosafety Research Center (BSRC), 582-2, Shioshinden, Iwata-shi, Shizuoka 437-1213, Japan
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
19
|
Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C. Hydroxypropyl-ß-cyclodextrin as a membrane protectant during freeze-drying of hydrogenated and non-hydrogenated liposomes and molecule-in-cyclodextrin-in- liposomes: Application to trans-anethole. Food Chem 2017; 267:67-74. [PMID: 29934191 DOI: 10.1016/j.foodchem.2017.10.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
The effect of hydrogenation of phospholipids on the characteristics of freeze-dried liposomes was investigated using hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as membrane protectant. The ethanol-injection method was applied to prepare liposomes using hydrogenated (Phospholopion-90H and 80H) and non-hydrogenated phospholipids (Lipoid-S100) in combination with cholesterol. Various liposomal formulations were tested: conventional liposomes (CL) and HP-ß-CD-loaded liposomes (CDL). Liposome suspensions were concentrated by ultracentrifugation; the pellets were reconstituted in water or CD solution and the dispersions were characterized for their size, polydispersity index and zeta potential. Results demonstrated that HP-ß-CD protected only the hydrogenated batches (CL and CDL) during freeze-drying. Moreover, the presence of HP-ß-CD in the aqueous phase of CDL protected them during freeze-drying. Freeze-dried CL and CDL made of phospholipon-90H loading anethole were demonstrated to be physically stable upon reconstitution in HP-ß-CD solutions, and are able to retain anethole after 6 months of storage at 4 °C thereby making them valuable for food applications.
Collapse
Affiliation(s)
- Riham Gharib
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Doctoral School of Sciences and Technologies, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon 1, UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Doctoral School of Sciences and Technologies, Lebanese University, Lebanon.
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France.
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon 1, UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France.
| |
Collapse
|
20
|
GRAS from the ground up: Review of the Interim Pilot Program for GRAS notification. Food Chem Toxicol 2017; 105:140-150. [DOI: 10.1016/j.fct.2017.03.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022]
|
21
|
Interaction of Selected Phenylpropenes with Dipalmitoylphosphatidylcholine Membrane and Their Relevance to Antibacterial Activity. J Membr Biol 2017; 250:259-271. [DOI: 10.1007/s00232-017-9957-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
|
22
|
Karimian Azari E, Smith KR, Yi F, Osborne TF, Bizzotto R, Mari A, Pratley RE, Kyriazis GA. Inhibition of sweet chemosensory receptors alters insulin responses during glucose ingestion in healthy adults: a randomized crossover interventional study. Am J Clin Nutr 2017; 105:1001-1009. [PMID: 28251932 PMCID: PMC5366051 DOI: 10.3945/ajcn.116.146001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/31/2017] [Indexed: 02/02/2023] Open
Abstract
Background: Glucose is a natural ligand for sweet taste receptors (STRs) that are expressed on the tongue and in the gastrointestinal tract. Whether STRs directly contribute to the regulation of glucose homeostasis in response to glucose ingestion is unclear.Objective: We sought to determine the metabolic effects of the pharmacologic inhibition of STRs in response to an oral glucose load in healthy lean participants.Design: Ten healthy lean participants with a body mass index (in kg/m2) of 22.4 ± 0.8 were subjected to an oral-glucose-tolerance test (OGTT) on 4 separate days with the use of a randomized crossover design. Ten minutes before the 75-g OGTT, participants consumed a preload solution of either 300 parts per million (ppm) saccharin or water with or without the addition of 500 ppm lactisole, a human-specific inhibitor of STRs. When present, lactisole was included in both the preload and OGTT solutions. We assessed plasma responses of glucose, insulin, C-peptide, glucagon, glucagon-like peptides 1 and 2, gastric inhibitory peptide, acetaminophen, and 3-O-methylglucose. With the use of mathematical modeling, we estimated gastric emptying, glucose absorption, β-cell function, insulin sensitivity and clearance, and the portal insulin:glucagon ratio.Results: The addition of lactisole to the OGTT caused increases in the plasma responses of insulin (P = 0.012), C-peptide (P = 0.004), and the insulin secretory rate (P = 0.020) compared with the control OGTT. The addition of lactisole also caused a slight reduction in the insulin sensitivity index independent of prior saccharin consumption (P < 0.025). The ingestion of saccharin before the OGTT did not alter any of the measured variables but eliminated the effects of lactisole on the OGTT.Conclusion: The pharmacologic inhibition of STRs in the gastrointestinal tract alters insulin responses during an oral glucose challenge in lean healthy participants. This trial was registered at clinicaltrials.gov as NCT02835859.
Collapse
Affiliation(s)
- Elnaz Karimian Azari
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Kathleen R Smith
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL; and
| | - Timothy F Osborne
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Roberto Bizzotto
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Richard E Pratley
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL;,Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL; and
| | - George A Kyriazis
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL; .,Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL; and
| |
Collapse
|
23
|
Kangawa Y, Yoshida T, Maruyama K, Okamoto M, Kihara T, Nakamura M, Ochiai M, Hippo Y, Hayashi SM, Shibutani M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem Toxicol 2017; 100:103-114. [DOI: 10.1016/j.fct.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
|
24
|
Cohen SM, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IM, Smith RL, Bastaki M, Harman CL, McGowen MM, Valerio LG, Taylor SV. Safety evaluation of substituted thiophenes used as flavoring ingredients. Food Chem Toxicol 2017; 99:40-59. [DOI: 10.1016/j.fct.2016.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
|
25
|
Ninety-day toxicity and single-dose toxicokinetics study of alpha-glycosyl isoquercitrin in Sprague-Dawley rats. Food Chem Toxicol 2016; 97:354-366. [DOI: 10.1016/j.fct.2016.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023]
|
26
|
Aguda R, Chen CC. Solubility of Nutraceutical Compounds in Generally Recognized as Safe Solvents at 298 K. ACTA ACUST UNITED AC 2016. [DOI: 10.18178/ijcea.2016.7.5.591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Gharib R, Auezova L, Charcosset C, Greige-Gerges H. Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: Application to anethole. Food Chem 2016; 218:365-371. [PMID: 27719922 DOI: 10.1016/j.foodchem.2016.09.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
A combined approach based on cyclodextrin/drug inclusion complex formation and loading into liposomes was applied to improve the effectiveness of liposome loading with essential oils. Hydroxypropyl-β-cyclodextrin/ANE (HP-β-CD/ANE) inclusion complexes were prepared and encapsulated into liposomes (ACL). ANE-double-loaded liposomes (ACL2) were obtained with the HP-β-CD/ANE complex in the aqueous phase and ANE in the organic phase. Liposomes were prepared from saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids and characterized for size, polydispersity index, zeta potential, morphology, loading rate (LR) and photo- and storage stabilities. All liposome batches were nanometric oligolamellar-type vesicles. Compared to ANE-loaded liposomes, ACL-90H, ACL2-90H and ACL2-S100 displayed significantly increased ANE LR, with ACL2-S100 exhibiting the highest LR. All formulations provided ANE photoprotection, were physically stable after 15months of storage at 4°C (with the exception of ACL2-S100), and retained more than 25% of the ANE initially present in the liposome suspensions.
Collapse
Affiliation(s)
- Riham Gharib
- Faculty of Sciences, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon I, France
| | - Lizette Auezova
- Faculty of Sciences, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University, Lebanon
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon I, France
| | - Hélène Greige-Gerges
- Faculty of Sciences, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University, Lebanon.
| |
Collapse
|
28
|
Calabrese C, Gou Q, Maris A, Melandri S, Caminati W. Conformational Equilibrium and Internal Dynamics of E-Anethole: A Rotational Study. J Phys Chem B 2016; 120:6587-91. [PMID: 27341010 DOI: 10.1021/acs.jpcb.6b04883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rotational spectra of the two conformers of E-anethole have been investigated using the free jet broadband millimeter-wave spectroscopic technique combined with theoretical calculations. Anti and syn conformers differ for the relative orientation of the propenyl and methoxy chains, with all heavy atoms coplanar to the benzene ring. Relative intensity measurements prove that the anti form is the global minimum, about 2.0(5) kJ mol(-1) lower in energy with respect to the syn conformer, solving the contrasting results supplied by different theoretical methods. For both conformers, the barriers to internal rotation of the propenyl -CH3 group are low enough to generate fully resolved A-E splittings of the rotational transitions. The corresponding V3 barriers have been determined to be 7.080(5) and 6.978(4) kJ mol(-1), respectively.
Collapse
Affiliation(s)
- Camilla Calabrese
- Dipartimento di Chimica "G. Ciamician" dell'Università , Via Selmi 2, I-40126 Bologna, Italy
| | - Qian Gou
- Dipartimento di Chimica "G. Ciamician" dell'Università , Via Selmi 2, I-40126 Bologna, Italy
| | - Assimo Maris
- Dipartimento di Chimica "G. Ciamician" dell'Università , Via Selmi 2, I-40126 Bologna, Italy
| | - Sonia Melandri
- Dipartimento di Chimica "G. Ciamician" dell'Università , Via Selmi 2, I-40126 Bologna, Italy
| | - Walther Caminati
- Dipartimento di Chimica "G. Ciamician" dell'Università , Via Selmi 2, I-40126 Bologna, Italy
| |
Collapse
|
29
|
Marnett LJ, Cohen SM, Fukushima S, Gooderham NJ, Hecht SS, Rietjens IM, Smith RL, Adams TB, Bastaki M, Harman CL, McGowen MM, Taylor SV. GRASr2 Evaluation of Aliphatic Acyclic and Alicyclic Terpenoid Tertiary Alcohols and Structurally Related Substances Used as Flavoring Ingredients. J Food Sci 2014; 79:R428-41. [DOI: 10.1111/1750-3841.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/27/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Lawrence J. Marnett
- Dept. of Biochemistry; Center in Molecular Toxicology; Vanderbilt University; School of Medicine; Nashville TN 37232-0146 U.S.A
| | - Samuel M. Cohen
- Dept. of Pathology and Microbiology; Univ of Nebraska Medical Center; 983135 Nebraska Medical Center Omaha NE 68198-3135 U.S.A
| | - Shoji Fukushima
- Japan Bioassay Research Center; 2445 Hirasawa Hadano Kanagawa 257-0015 Japan
| | - Nigel J. Gooderham
- Dept. of Surgery and Cancer; Biomolecular Medicine; Imperial College of Science; Sir Alexander Fleming Building London SW7 2AZ United Kingdom
| | - Stephen S. Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology; Univ of Minnesota; Cancer and Cardiovascular Research Building, 2231 6th St SE Minneapolis MN 55455 U.S.A
| | | | - Robert L. Smith
- Molecular Toxicology; Imperial College School of Medicine; 18 Guildown Avenue, Woodside Park London N12 7DQ United Kingdom
| | - Timothy B. Adams
- Flavor and Extract Manufacturers Assn; 1101 17th St NW Suite 700 Washington DC 20036 U.S.A
| | - Maria Bastaki
- Flavor and Extract Manufacturers Assn; 1101 17th St NW Suite 700 Washington DC 20036 U.S.A
| | - Christie L. Harman
- Flavor and Extract Manufacturers Assn; 1101 17th St NW Suite 700 Washington DC 20036 U.S.A
| | - Margaret M. McGowen
- Flavor and Extract Manufacturers Assn; 1101 17th St NW Suite 700 Washington DC 20036 U.S.A
| | - Sean V. Taylor
- Flavor and Extract Manufacturers Assn; 1101 17th St NW Suite 700 Washington DC 20036 U.S.A
| |
Collapse
|
30
|
Krupa J, Wierzejewska M, Nunes CM, Fausto R. UV-tunable laser induced phototransformations of matrix isolated anethole. J Chem Phys 2014; 140:105102. [DOI: 10.1063/1.4867896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
31
|
Kirsch F, Buettner A. Characterisation of the metabolites of 1,8-cineole transferred into human milk: concentrations and ratio of enantiomers. Metabolites 2013; 3:47-71. [PMID: 24957890 PMCID: PMC3901259 DOI: 10.3390/metabo3010047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022] Open
Abstract
1,8-Cineole is a widely distributed odorant that also shows physiological effects, but whose human metabolism has hitherto not been extensively investigated. The aim of the present study was, thus, to characterise the metabolites of 1,8-cineole, identified previously in human milk, after the oral intake of 100 mg of this substance. Special emphasis was placed on the enantiomeric composition of the metabolites since these data may provide important insights into potential biotransformation pathways, as well as potential biological activities of these substances, for example on the breastfed child. The volatile fraction of the human milk samples was therefore isolated via Solvent Assisted Flavour Evaporation (SAFE) and subjected to gas chromatography-mass spectrometry (GC-MS). The absolute concentrations of each metabolite were determined by matrix calibration with an internal standard, and the ratios of enantiomers were analysed on chiral capillaries. The concentrations varied over a broad range, from traces in the upper ng/kg region up to 40 µg/kg milk, with the exception of the main metabolite α2-hydroxy-1,8-cineole that showed concentrations of 100-250 µg/kg. Also, large inter- and intra-individual variations were recorded for the enantiomers, with nearly enantiomerically pure α2-hydroxy- and 3-oxo-1,8-cineole, while all other metabolites showed ratios of ~30:70 to 80:20.
Collapse
Affiliation(s)
- Frauke Kirsch
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, 91052 Erlangen, Germany.
| | - Andrea Buettner
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, 91052 Erlangen, Germany.
| |
Collapse
|
32
|
Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:399-451. [PMID: 24219506 PMCID: PMC3856475 DOI: 10.1080/10937404.2013.842523] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sucralose is a synthetic organochlorine sweetener (OC) that is a common ingredient in the world's food supply. Sucralose interacts with chemosensors in the alimentary tract that play a role in sweet taste sensation and hormone secretion. In rats, sucralose ingestion was shown to increase the expression of the efflux transporter P-glycoprotein (P-gp) and two cytochrome P-450 (CYP) isozymes in the intestine. P-gp and CYP are key components of the presystemic detoxification system involved in first-pass drug metabolism. The effect of sucralose on first-pass drug metabolism in humans, however, has not yet been determined. In rats, sucralose alters the microbial composition in the gastrointestinal tract (GIT), with relatively greater reduction in beneficial bacteria. Although early studies asserted that sucralose passes through the GIT unchanged, subsequent analysis suggested that some of the ingested sweetener is metabolized in the GIT, as indicated by multiple peaks found in thin-layer radiochromatographic profiles of methanolic fecal extracts after oral sucralose administration. The identity and safety profile of these putative sucralose metabolites are not known at this time. Sucralose and one of its hydrolysis products were found to be mutagenic at elevated concentrations in several testing methods. Cooking with sucralose at high temperatures was reported to generate chloropropanols, a potentially toxic class of compounds. Both human and rodent studies demonstrated that sucralose may alter glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels. Taken together, these findings indicate that sucralose is not a biologically inert compound.
Collapse
Affiliation(s)
- Susan S. Schiffman
- Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Address correspondence to Susan S. Schiffman, PhD, Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA. E-mail:
| | - Kristina I. Rother
- Section on Pediatric Diabetes & Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Dempsey R, Coggins CRE, Roemer E. Toxicological assessment of cigarette ingredients. Regul Toxicol Pharmacol 2011; 61:119-28. [PMID: 21771627 DOI: 10.1016/j.yrtph.2011.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 01/02/2023]
Abstract
Ingredients have been used in industrial manufacture of tobacco products since the early part of the 20th century. However, unlike other consumer goods, until now no regulatory authority has determined how tobacco ingredients should be assessed. Although there is currently no consensus on how added cigarette ingredients should be evaluated, this paper reviews some of the institutional guidance alongside published literature with a view to determining if there is a generally accepted approach in the absence of any strict regulation. Our aim was to review the recommendations, to compare them to the working practices as demonstrated from published studies, and to draw conclusions on currently used methodologies for testing ingredients added to cigarettes. The extent of testing is discussed in the light of practical and theoretical constraints and an example of an industry testing program is presented.
Collapse
Affiliation(s)
- Ruth Dempsey
- Philip Morris International, Neuchâtel, Switzerland
| | | | | |
Collapse
|
34
|
Suppressive effect of enzymatically modified isoquercitrin on phenobarbital-induced liver tumor promotion in rats. Arch Toxicol 2011; 85:1475-84. [PMID: 21445586 DOI: 10.1007/s00204-011-0696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/10/2011] [Indexed: 02/06/2023]
Abstract
To investigate the effect of enzymatically modified isoquercitrin (EMIQ) on hepatocellular tumor promotion induced by phenobarbital (PB), male rats were administered a single intraperitoneal injection of 200 mg/kg N-diethylnitrosamine (DEN) and then fed with a diet containing PB (500 ppm) for 8 weeks, with or without EMIQ (2,000 ppm) in the drinking water. One week after PB administration, rats underwent a two-thirds partial hepatectomy. The PB-induced increase in the number and area of glutathione S-transferase placental form-positive foci and the proliferating cell nuclear antigen-positive ratio was significantly suppressed by EMIQ. Real-time reverse transcription-polymerase chain reaction analysis revealed increases in mRNA expression levels of Cyp2b2 and Mrp2 in the DEN-PB and DEN-PB-EMIQ groups compared with the DEN-alone group, while the level of Mrp2 decreased in the DEN-PB-EMIQ group compared with the DEN-PB group. There were no significant changes in microsomal reactive oxygen species (ROS) production and oxidative stress markers between the DEN-PB and DEN-PB-EMIQ groups. Immunohistochemically, the constitutive active/androstane receptor (CAR) in the DEN-PB group was clearly localized in the nuclei, but its immunoreactive intensity was decreased in the DEN-PB-EMIQ group. These results indicate that EMIQ suppressed the liver tumor-promoting activity of PB by inhibiting nuclear translocation of CAR, and not by suppression of oxidative stress.
Collapse
|
35
|
Anethole isomerization and dimerization induced by acid sites or UV irradiation. Molecules 2010; 15:5012-30. [PMID: 20657405 PMCID: PMC6257661 DOI: 10.3390/molecules15075012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 12/02/2022] Open
Abstract
The formation of cis-anethole and various dimers as a result of the exposure of trans-anethole to microporous solid acids (dealuminated HY zeolites), or UV-Vis irradiation was established by means of high resolution gas chromatography coupled to mass spectrometry. 3,4-bis-(4-Methoxyphenyl)-(E)-hex-2-ene was the most abundant compound among eight different methoxyphenyl-disubstituted hexenes produced by electrophilic addition and elimination reactions induced by HY zeolites. (1a,2a,3b,4b)-1,2-bis(4-Methoxyphenyl)-3,4-dimethylcyclobutane was the principal component in the mixture of 5 methoxyphenyl-disubstituted cyclobutanes found, together with cis-anethole, after UV-Vis irradiation of a trans-anethole solution in toluene.
Collapse
|
36
|
Shimada Y, Dewa Y, Ichimura R, Suzuki T, Mizukami S, Hayashi SM, Shibutani M, Mitsumori K. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by β-naphthoflavone. Toxicology 2010; 268:213-8. [DOI: 10.1016/j.tox.2009.12.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/05/2009] [Accepted: 12/21/2009] [Indexed: 02/06/2023]
|
37
|
Nishimura J, Saegusa Y, Dewa Y, Jin M, Kawai M, Kemmochi S, Harada T, Hayashi SM, Shibutani M, Mitsumori K. Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress-mediated hepatocellular tumor promotion of oxfendazole in rats. Arch Toxicol 2009; 84:143-53. [DOI: 10.1007/s00204-009-0497-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 12/02/2009] [Indexed: 02/06/2023]
|
38
|
Hallagan JB, Hall RL. Under the conditions of intended use - New developments in the FEMA GRAS program and the safety assessment of flavor ingredients. Food Chem Toxicol 2008; 47:267-78. [PMID: 19041920 DOI: 10.1016/j.fct.2008.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
In 1995 we published a review describing the scientific and legal bases for the GRAS assessment program for flavor ingredients sponsored by the Flavor and Extract Manufacturers Association of the United States (FEMA) [Hallagan, J.B., Hall, R.L., 1995. FEMA GRAS - A GRAS assessment program for flavor ingredients. Regulatory Toxicology and Pharmacology 21, 422]. This review provides new information related to flavor safety assessment and regulation and is intended to complement our previous report. The FEMA GRAS assessment program is the most extensive and longest running industry-sponsored GRAS program and has established a sound record of scientific rigor and transparency. In this review, in addition to providing general information on the topics of flavor safety assessment and regulation, we explore the effects of recent developments on the four pillars of the FEMA GRAS assessment program: (1) general recognition; (2) among experts qualified by scientific training and experience to evaluate safety; (3) through scientific procedures; (4) under the conditions of intended use in food. We conclude that developments since our last review in 1995 have further strengthened the FEMA GRAS assessment program allowing it to maintain its global leadership role in the safety assessment of flavor ingredients.
Collapse
Affiliation(s)
- John B Hallagan
- The Flavor and Extract Manufacturers Association, 1620 I Street, NW, Suite 925, Washington, DC 20006, United States.
| | | |
Collapse
|
39
|
Sprous DG, Salemme FR. A comparison of the chemical properties of drugs and FEMA/FDA notified GRAS chemical compounds used in the food industry. Food Chem Toxicol 2007; 45:1419-27. [PMID: 17368904 DOI: 10.1016/j.fct.2007.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/22/2007] [Accepted: 02/02/2007] [Indexed: 11/20/2022]
Abstract
The range of molecular properties of generally recognized as safe (GRAS) compounds that are typically used in food and beverage products is compared to marketed drugs. It is observed that GRAS compounds differ from marketed drugs with respect to several molecular descriptors, including molecular weight, H-bond acceptor count, H-bond donor count, aromatic ring count, basic group count, acidic group count, molecular flexibility, enhanced ether and ester bearing compound populations, and reduced nitrogen and halogen bearing compound populations. It was observed that log(P) and log(S), which provide computed estimates of compound solubility in organic and aqueous solvents, respectively, have significant overlap in the two populations. On the whole, GRAS compounds are seen to be more flexible, smaller, and composed of a more restricted set of elements than marketed drugs. In addition, a multivariable binary quantitative structure-activity relationship (QSAR) model incorporating the parameters listed above can distinguish GRAS and pharmaceutical compounds, further strengthening the distinction between the molecular spaces defining GRAS and pharmaceutical compounds. It is speculated that the difference between the GRAS and pharmaceutical property spaces is a result of the historical legacy of most GRAS compounds, which are primarily natural in origin. Compounds more recently added to the GRAS list appear more similar to pharmaceuticals with respect to their chemical properties.
Collapse
Affiliation(s)
- D G Sprous
- Redpoint Bio, 7 Graphics Drive, Ewing, NJ 08628, USA.
| | | |
Collapse
|
40
|
Abstract
Diacetyl is a diketone flavouring agent that is commonly employed for buttery taste as well as other purposes. Industrial exposure to flavouring agents, particularly diacetyl, has recently been associated with bronchiolitis obliterans, a severe respiratory illness producing fibrosis and obstruction of the small airways. This has been most commonly reported in the microwave popcorn production industry, but it has occurred elsewhere. In addition to bronchiolitis obliterans, spirometry abnormalities (fixed airflow obstruction) and respiratory symptoms have been associated with exposure. A direct effect on the respiratory epithelium with the disorganised fibrotic repair appears most likely as the underlying mechanism. Current data suggest that diacetyl is the agent responsible, although it is possible that diacetyl is simply a marker for another causative agent.
Collapse
Affiliation(s)
- Philip Harber
- Division of Occupational and Environmental Medicine, Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024, USA.
| | | | | |
Collapse
|
41
|
Young KWH, Danielewska-Nikiel B, Munro IC. An evaluation of the maximized survey-derived daily intake (MSDI) as a practical method to estimate intake of flavouring substances. Food Chem Toxicol 2006; 44:1849-67. [PMID: 16905233 DOI: 10.1016/j.fct.2006.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/25/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022]
Abstract
Realistic estimates of intake are essential for risk assessments of flavouring agents, since substantial over or underestimations introduce inaccuracies into such evaluations. The objectives of this study were to examine the relationship between intakes estimated using methods based on the reported volume of production [e.g., maximized survey-derived daily intake (MSDI)] versus use-level data [e.g., possible average daily intake (PADI) and modified theoretical added maximum daily intake (mTAMDI)]. The impact of volatility, self-limiting organoleptic properties and whether 10% of the population are eaters, an assumption in the MSDI calculation, on intake estimates were investigated. Analyses on 221 flavouring substances showed that intake estimates derived from MSDI correlated with values determined from detailed 14-day menu-census data, PADI, and mTAMDI. Comparisons of menu-census intake data adjusted to account for factors such as volatile losses showed that MSDI estimates are realistic and sufficiently conservative, whereas mTAMDI results in substantial overestimates of intake. Very few flavours have less than 10% eaters, and in the worst case, this assumption underestimates percent eaters by a factor of about 4. This investigation supports the use of MSDI as a conservative yet practical method to estimate intake of flavouring substances.
Collapse
Affiliation(s)
- Karen W H Young
- CANTOX Health Sciences International, 2233 Argentia Road, Suite 308, Mississauga, Ont., Canada L5N 2X7.
| | | | | |
Collapse
|
42
|
Smith RL, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, Portoghese PS, Waddell WJ, Wagner BM, Hall RL, Higley NA, Lucas-Gavin C, Adams TB. A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: essential oils. Food Chem Toxicol 2005; 43:345-63. [PMID: 15680674 DOI: 10.1016/j.fct.2004.11.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 11/10/2004] [Indexed: 11/22/2022]
Abstract
A scientifically based guide has been developed to evaluate the safety of naturally occurring mixtures, particularly essential oils, for their intended use as flavor ingredients. The approach relies on the complete chemical characterization of the essential oil and the variability of the composition of the oil in the product intended for commerce. Being products of common plant biochemical pathways, the chemically identified constituents are organized according to a limited number of well-established chemical groups called congeneric groups. The safety of the intake of the each congeneric group from consumption of the essential oil is evaluated in the context of data on absorption, metabolism, and toxicology of members of the congeneric group. The intake of the group of unidentified constituents is evaluated in the context of the consumption of the essential oil as a food, a highly conservative toxicologic threshold, and toxicity data on the essential oil or an essential oil of similar chemotaxonomy. The flexibility of the guide is reflected in the fact that high intake of major congeneric groups of low toxicologic concern will be evaluated along with low intake of minor congeneric groups of significant toxicological concern (i.e., higher structural class). The guide also provides a comprehensive evaluation of all congeneric groups and constituents that account for the majority of the composition of the essential oil. The overall objective of the guide is to organize and prioritize the chemical constituents of an essential oil in order that no reasonably possible significant risk associated with the intake of essential oil goes unevaluated. The guide is, however, not intended to be a rigid checklist. The Flavor and Extract Manufacturers Association (FEMA) Expert Panel will continue to evaluate each essential oil on a case by case basis applying their scientific judgment to insure that each natural flavor complex is exhaustively evaluated.
Collapse
Affiliation(s)
- R L Smith
- Division of Biomedical Sciences, Section of Molecular Toxicology, Imperial College School of Medicine, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|