1
|
He R, Shi Y, Lu X, Zhou Y, Liu Z, Zhang S, Liu A. Inhibitory Effect and Mechanism of Epigallocatechin Gallate on the Differentiation of 3T3-L1 Preadipocytes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:867-874. [PMID: 39186142 DOI: 10.1007/s11130-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Green tea possesses a range of beneficial effects, including anti-obesity, antioxidant, and anti-inflammatory properties, owing to its biologically active components, primarily catechins such as epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). However, few studies have investigated the four catechin monomers simultaneously, and the molecular mechanisms of their anti-obesity effects have not been fully elucidated. In this study, we investigated the effects of four catechin monomers on the differentiation of 3T3-L1 preadipocytes of mice. Our findings demonstrated that four catechin monomers EC/ECG/EGC/EGCG (12, 25, 50 µM) dose-dependently inhibited the differentiation of 3T3-L1 preadipocytes and reduced triglyceride content. EGCG exhibited the most potent inhibitory effect with an optimal concentration of 50 µM. In addition, transcriptome sequencing and lipidomic analysis of EGCG-treated 3T3-L1 preadipocytes revealed that Ptgs2 and Pim1 were the most differentially expressed genes involved in regulating adipocyte differentiation. The results suggested that EGCG up-regulated the expression of the Pla2g2e gene and down-regulated the expression of the Pla2g4a and Pla2g2a genes via the glycerophospholipid metabolic pathway, which subsequently elevated lysophosphatidylcholine (LPC) levels, influencing the differentiation process of 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Ranran He
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu Shi
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaoshuang Lu
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Yufei Zhou
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China.
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.
| | - Ailing Liu
- Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
2
|
Jia Y, Wang Z, Liang X, Tu C, Khalifa I, Wang C, Zhu Y, Chen H, Hu L, Li C. Unlocking the potential of persimmons: A comprehensive review on emerging technologies for post-harvest challenges, processing innovations, and prospective applications. Food Chem 2024; 459:140344. [PMID: 38991450 DOI: 10.1016/j.foodchem.2024.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Persimmons are widely acknowledged as a valuable source of both medicinal and nutritional components, providing a diverse spectrum of nutrients and phytochemicals. Despite these benefits, biases against persimmons persists due to their characteristic astringent flavor that sets them apart from other fruits. Although several studies have explored various aspects of persimmons, a comprehensive review that addresses post-harvest challenges, processing innovations, and potential applications is notably absent in the literature. This review aims to fill this gap by discussing a range of topics, including emerging preservation technologies, methods for detecting and eliminating astringency, identification of functional elements, health-promoting prospects, and advancements in processed persimmon products. The primary objective is to enhance the utilization of persimmons and promote the development of diverse, customized products, thereby fostering the emergence of functional and futuristic foods.
Collapse
Affiliation(s)
- Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haoyu Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. The brain-protective mechanism of fecal microbiota transplantation from young donor mice in the natural aging process via exosome, gut microbiota, and metabolomics analyses. Pharmacol Res 2024; 207:107323. [PMID: 39053865 DOI: 10.1016/j.phrs.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The natural aging process is accompanied by changes in exosomes, gut microbiota, and metabolites. This study aimed to reveal the anti-aging effect and mechanisms of fecal microbiota transplantation (FMT) from young donors on the natural aging process in mice by analyzing exosomes, gut microbiota, and metabolomics. Aging-relevant telomeric length, oxidative stress indexes in brain tissue, and serum cytokine levels were measured. Flow analysis of T-regulatory (Treg), CD4+, and CD8+ cells was performed, and the expression levels of aging-related proteins were quantified. High-throughput sequencing technology was used to identify differentially expressed serum exosomal miRNAs. Fecal microbiota was tested by 16 S rDNA sequencing. Changes in fecal metabolites were analyzed by UPLC-Q-TOF/MS. The results indicated that the expression of mmu-miR-7010-5p, mmu-miR-376b-5p, mmu-miR-135a-5p, and mmu-miR-3100-5p by serum exosomes was down-regulated and the abundance of opportunistic bacteria (Turicibacter, Allobaculum, Morganella.) was decreased, whereas the levels of protective bacteria (Akkermansia, Muribaculaceae, Helicobacter.) were increased after FMT. Metabolic analysis identified 25 potential biomarkers. Correlation analysis between the gut microbiota and metabolites suggested that the relative abundance of protective bacteria was positively correlated with the levels of spermidine and S-adenosylmethionine. The study indicated that FMT corrected brain injury due to aging via lipid metabolism, the metabolism of cofactors and vitamins, and amino acid metabolism.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Lei Y, Meng J, Shi H, Shi C, Li C, Yang Z, Zhang W, Zuo D, Wang F, Wang M. Mannan-binding lectin inhibits oxidative stress-induced senescence via the NAD+/Sirt1 pathway. Int Immunopharmacol 2024; 137:112468. [PMID: 38906004 DOI: 10.1016/j.intimp.2024.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Prolonged or excessive oxidative stress can lead to premature cellular and body aging. Mannan-binding lectin (MBL) is synthesized by the liver and plays an important role in innate immunity, anti-inflammation, and anti-oxidation, and has a positive impact on health and longevity. To date, few studies investigated the role of MBL in attenuating oxidative stress-induced senescence. In this study, we evaluated the role of MBL in oxidative stress-induced premature aging and explored its underlying mechanism in C57BL/6 mice and mouse embryonic fibroblasts (NIH/3T3). First, we established an oxidative premature senescence model induced by D-galactose in C57BL/6 mice. We found that MBL-deficient mice had a marked aging-like appearance, reduced learning and spatial exploration abilities, severe liver pathological damage, and significantly upregulated expression of Senescence-associated proteins (p53 and p21), inflammatory kinesins (IL-1β and IL-6), and the senescence β-galactosidase (SA-β-Gal) positive rate as compared with WT mice. In the H2O2-induced oxidative senescence model of NIH/3T3 cells, consistent results were obtained after MBL intervention. In addition, MBL effectively inhibited G1 phase arrest, ROS levels, DNA damage, and mitochondrial dysfunction in premature senescent cells. Mechanistically, we found that oxidative stress inhibited the nicotinamide adenine dinucleotide (NAD+)/ silent information regulator 1 (Sirt1) signaling pathway, while MBL activated the NAD+/Sirt1 signaling pathway inhibited by oxidative stress. In addition, MBL could activate the NAD+/Sirt1 pathway by upregulating NAMPT, which in turn inhibited p38 phosphorylation by activating the NAD+/Sirt1 pathway. In conclusion, MBL inhibits oxidative aging, which may facilitate the development of therapeutics to delay oxidative aging.
Collapse
Affiliation(s)
- Yiming Lei
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Meng
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiqiang Shi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chenchen Shi
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chao Li
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ziyi Yang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, China
| | - Daming Zuo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Fanping Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, China; School of Medical Technology, Shangqiu Medical College, Shangqiu 476100, China.
| |
Collapse
|
5
|
Ilhamzah, Tsukuda Y, Yamaguchi Y, Ogita A, Fujita KI. Persimmon tannin promotes the growth of Saccharomyces cerevisiae under ethanol stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6118-6126. [PMID: 38445539 DOI: 10.1002/jsfa.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Saccharomyces cerevisiae plays a pivotal role in various industrial processes, including bioethanol production and alcoholic beverage fermentation. However, during these fermentations, yeasts are subjected to various environmental stresses, such as ethanol stress, which hinder cell growth and ethanol production. Genetic manipulations and the addition of natural ingredients rich in antioxidants to the culture have been shown to overcome this. Here, we investigated the potential of persimmon tannins, known for their antioxidative properties, to enhance the ethanol stress tolerance of yeast. RESULTS Assessment of the effects of 6.25 mg mL-1 persimmon tannins after 48 h incubation revealed cell viability to be increased by 8.9- and 6.5-fold compared to the control treatment with and without 12.5% ethanol, respectively. Furthermore, persimmon tannins reduced ethanol-induced oxidative stress, including the production of cellular reactive oxygen species and acceleration of lipid peroxidation. However, persimmon tannins could hardly overcome ethanol-induced cell membrane damage. CONCLUSION The findings herein indicate the potential of persimmon tannin as a protective agent for increasing yeast tolerance to ethanol stress by restricting oxidative damage but not membrane damage. Overall, this study unveils the implications of persimmon tannins for industries relying on yeast. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ilhamzah
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuka Tsukuda
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | | | - Akira Ogita
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
| | - Ken-Ichi Fujita
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
6
|
Gong M, Jia J. Rutaecarpine Mitigates Cognitive Impairment by Balancing Mitochondrial Function Through Activation of the AMPK/PGC1α Pathway. Mol Neurobiol 2023; 60:6598-6612. [PMID: 37468737 DOI: 10.1007/s12035-023-03505-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Mitochondrial dysfunction plays a fundamental role in the pathogenesis of cognitive deficit. Rutaecarpine (Rut) is a natural alkaloid with anti-inflammatory and antioxidant properties. This study explored whether Rut treatment could enhance cognitive function by improving mitochondrial function and examined the potential mechanisms underlying this ameliorative effect. We used the Morris water maze and Y-maze tests to evaluate the behavioral effects of Rut in a mouse model of cognitive impairment induced by subcutaneous injection of D-galactose (D-gal). Furthermore, we assessed the effects of Rut on mitochondrial function using cell viability assays, flow cytometry, western blotting, biochemical analysis, and immunochemical techniques in vivo and in vitro. The results indicated Rut treatment attenuated cognitive deficits and mitochondrial dysfunction in the mouse model. Similarly, it maintained the balance of mitochondrial dynamics in neurocytes and reduced oxidative stress and mitochondrial apoptosis in the HT22 cell model. Moreover, we found that these protective effects were dependent on the activation of the AMP-activated protein kinase/proliferator-activated receptor gamma coactivator 1-alpha (AMPK/PGC1α) signaling pathway. Our data indicate that Rut treatment are sensitive to reversal cognitive deficits and mitochondrial dysfunction induced by D-gal; this suggests that Rut is a promising mitochondria-targeted therapeutic agent for treating cognitive impairment.
Collapse
Affiliation(s)
- Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Xicheng District, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Xicheng District, Beijing, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, People's Republic of China.
| |
Collapse
|
7
|
Wang R, Shi X, Li K, Bunker A, Li C. Activity and potential mechanisms of action of persimmon tannins according to their structures: A review. Int J Biol Macromol 2023; 242:125120. [PMID: 37263329 DOI: 10.1016/j.ijbiomac.2023.125120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Alex Bunker
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Ma L, Huang M, Sun G, Lin Y, Lu D, Wu B. Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front Pharmacol 2022; 13:1088294. [PMID: 36618934 PMCID: PMC9813444 DOI: 10.3389/fphar.2022.1088294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiping Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Antioxidative potential of Lactobacillus sp. in ameliorating D-galactose-induced aging. Appl Microbiol Biotechnol 2022; 106:4831-4843. [PMID: 35781838 PMCID: PMC9329405 DOI: 10.1007/s00253-022-12041-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
Aging is a progressive, unalterable physiological degradation process of living organisms, which leads to deterioration of biological function and eventually to senescence. The most prevalent factor responsible for aging is the accumulation of damages resulting from oxidative stress and dysbiosis. D-galactose-induced aging has become a hot topic, and extensive research is being conducted in this area. Published literature has reported that the continuous administration of D-galactose leads to the deterioration of motor and cognitive skills, resembling symptoms of aging. Hence, this procedure is employed as a model for accelerated aging. This review aims to emphasize the effect of D-galactose on various bodily organs and underline the role of the Lactobacillus sp. in the aging process, along with its anti-oxidative potential. A critical consideration to the literature describing animal models that have used the Lactobacillus sp. in amending D-galactose-induced aging is also given. KEY POINTS: • D-Galactose induces the aging process via decreasing the respiratory chain enzyme activity as well as ATP synthesis, mitochondrial dysfunction, and increased ROS production. • D-Galactose induced aging primarily affects the brain, heart, lung, liver, kidney, and skin. • The anti-oxidative potential of Lactobacillus sp. in improving D-galactose-induced aging in animal models via direct feeding and feeding of Lactobacillus-fermented food.
Collapse
|
10
|
Liu X, Dilxat T, Shi Q, Qiu T, Lin J. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling. Gene X 2022; 822:146348. [PMID: 35183682 DOI: 10.1016/j.gene.2022.146348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Aging is referred to progressive dysfunction of body organs, including the brain. This study aims to explore the anti-aging effect of combing nicotinamide mononucleotide (NMN) and lycopene (Lyco) (NMN + Lyco) on aging rats and senescent PC12 cells. Both in vivo and in vitro aging models were established using D-galactose (D-gal). The combination showed a trend to superiority over monotherapy in preventing aging in vivo and in vitro. Morris water maze test showed that NMN + Lyco effectively improved the ability of spatial location learning and memory of aging model rats. NMN + Lyco mitigated the oxidative stress of rat brains, livers, and PC12 cells by elevating the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), GSH, as well as total antioxidant capacity (T-AOC), and reducing malondialdehyde (MDA) content. CCK-8 assay, senescence-associated β-galactosidase staining, and flow cytometer confirmed the cellular senescence of PC12 cells after exposing D-gal, and indicated the anti-senescence effect of NMN + Lyco in vitro. Moreover, NMN + Lyco effectively down-regulated the expressions of p53, p21, and p16 (senescence-related genes), and activated Keap1-Nrf2 signaling in both in vivo and in vitro aging models. In total, NMN + Lyco protected rats and PC12 cells from cognitive impairment and cellular senescence induced by D-gal, of which effects might be linked to the reduction of oxidative stress and the activation of Keap1-Nrf2 signaling.
Collapse
Affiliation(s)
- Xuxin Liu
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Tursunay Dilxat
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Taoyu Qiu
- Xinjiang Agricultural Vocational Technical College, Changji, Xinjiang, China.
| | - Junping Lin
- Xinjiang Changji National High-Tech Industrial Development Zone, Changji, Xinjiang, China.
| |
Collapse
|
11
|
A Long-Lasting PARP1-Activation Mediates Signal-Induced Gene Expression. Cells 2022; 11:cells11091576. [PMID: 35563882 PMCID: PMC9101275 DOI: 10.3390/cells11091576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
This overview presents recent evidence for a long-lasting PARP1 activation by a variety of signal transduction mechanisms, mediating signal-induced gene expression and chromatin remodeling. This mode of PARP1 activation has been reported in a variety of cell types, under physiological conditions. In this mechanism, PARP1 is not transiently activated by binding to DNA breaks. Moreover, damaged DNA interfered with this long-lasting PARP1 activation.
Collapse
|
12
|
Liu Y, Meng X, Sun L, Pei K, Chen L, Zhang S, Hu M. Protective effects of hydroxy-α-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl 3-induced Alzheimer's disease-like mice via Nrf2/HO-1 signaling pathways. Eur J Pharmacol 2022; 914:174691. [PMID: 34896111 DOI: 10.1016/j.ejphar.2021.174691] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Hydroxy-α-sanshool (HAS) is an unsaturated fatty acid amide from Zanthoxylum bungeanum Maxim. with hypolipidemic, hypoglycemic, anti-inflammatory, and neurotrophic effects, etc. In this study, results indicated that HAS effectively ameliorated spontaneous locomotion deficit of mice induced by D-galactose (D-gal) and AlCl3 treatment in open field test. Results of Morris water maze test (MWM) showed that HAS significantly improved the spatial learning and memory ability of aging mice. Histopathological evaluations revealed that HAS markedly alleviated morphological changes and increased number of Nissl neurons in hippocampus of D-gal/AlCl3-induced Alzheimer's disease (AD)-like mice. HAS markedly reduced malondialdehyde (MDA) production, and increased the activity of antioxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), showing an inhibitory effect on oxidative stress. Furthermore, HAS treatment obviously reversed the inhibitory expressions of mRNA and protein of HO-1 and Nrf2 in the hippocampus of AD mice, suggesting that neuroprotective effects of HAS against oxidative stress might be mediated by the Nrf2/HO-1 pathway. Meanwhile, HAS significantly inhibited neuronal apoptosis by decreasing mRNA and protein expressions of Cyt-c, Bax and Caspase 3, and increasing Bcl-2 expression in the hippocampus of AD mice. These results suggest that HAS have the potential to be developed as antioxidant drug for the prevention and early therapy of AD.
Collapse
Affiliation(s)
- Yujie Liu
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China; School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xianglong Meng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Lin Sun
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Ke Pei
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Lin Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shuosheng Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China.
| | - Meibian Hu
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China.
| |
Collapse
|
13
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients 2021; 13:3283. [PMID: 34579162 PMCID: PMC8465508 DOI: 10.3390/nu13093283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
Persimmon (Diospyros kaki L.) fruit's phytochemical profile includes carotenoids, proanthocyanidins, and gallic acid among other phenolic compounds and vitamins. A huge antioxidant potential is present given this richness in antioxidant compounds. These bioactive compounds impact on health benefits. The intersection of nutrition and sustainability, the key idea behind the EAT-Lancet Commission, which could improve human health and decrease the global impact of food-related health conditions such as cancer, heart disease, diabetes, and obesity, bring the discussion regarding persimmon beyond the health effects from its consumption, but also on the valorization of a very perishable food that spoils quickly. A broad option of edible products with better storage stability or solutions that apply persimmon and its byproducts in the reinvention of old products or even creating new products, or with new and better packaging for the preservation of food products with postharvest technologies to preserve and extend the shelf-life of persimmon food products. Facing a global food crisis and the climate emergency, new and better day-to-day solutions are needed right now. Therefore, the use of persimmon waste has also been discussed as a good solution to produce biofuel, eco-friendly alternative reductants for fabric dyes, green plant growth regulator, biodegradable and edible films for vegetable packaging, antimicrobial activity against foodborne methicillin-resistant Staphylococcus aureus found in retail pork, anti-Helicobacter pylori agents from pedicel extracts, and persimmon pectin-based emulsifiers to prevent lipid peroxidation, among other solutions presented in the revised literature. It has become clear that the uses for persimmon go far beyond the kitchen table and the health impact consumption demonstrated over the years. The desired sustainable transition is already in progress, however, mechanistic studies and clinical trials are essential and scaling-up is fundamental to the future.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
14
|
Lee SG, Kang H. Anti-Obesity and Lipid Metabolism Effects of Ulmus davidiana var. japonica in Mice Fed a High-Fat Diet. J Microbiol Biotechnol 2021; 31:1011-1021. [PMID: 34099594 PMCID: PMC9706023 DOI: 10.4014/jmb.2102.02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
The root bark of Ulmus davidiana var. japonica (Japanese elm) is used in Korea and other East Asian countries as a traditional herbal remedy to treat a variety of inflammatory diseases and ailments such as edema, gastric cancer and mastitis. For this study, we investigated the lipid metabolism and anti-obesity efficacy of ethyl alcohol extract of Ulmus davidiana var. japonica root bark (UDE). First, HPLC was performed to quantify the level of (+)-catechin, the active ingredient of UDE. In the following experiments, cultured 3T3-L1 pre-adipocytes and high-fat diet (HFD)-fed murine model were studied for anti-obesity efficacy by testing the lipid metabolism effects of UDE and (+)-catechin. In the test using 3T3-L1 pre-adipocytes, treatment with UDE inhibited adipocyte differentiation and significantly reduced the production of adipogenic genes and transcription factors PPARγ, C/EBPα and SREBP-1c. HFD-fed, obese mice were administered with UDE (200 mg/kg per day) and (+)-catechin (30 mg/kg per day) by oral gavage for 4 weeks. Weight gain, epididymal and abdominal adipose tissue mass were significantly reduced, and a change in adipocyte size was observed in the UDE and (+)-catechin treatment groups compared to the untreated control group (***p < 0.001). Significantly lower total cholesterol and triglyceride levels were detected in UDE-treated HFD mice compared to the control, revealing the efficacy of UDE. In addition, it was found that lipid accumulation in hepatocytes was also significantly reduced after administration of UDE. These results suggest that UDE has significant anti-obesity and lipid metabolism effects through inhibition of adipocyte differentiation and adipogenesis.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan 31116, Republic of Korea,Corresponding author Phone: +82-41-550-3015 Fax: +82-41-559-7934 E-mail:
| |
Collapse
|
15
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
16
|
Tang Y, Feng P, Gui S, Jin X, Zhu J, Lu X. The Protective Effects of Protein-Enriched Fraction from Housefly (Musca domestica) against Aged-Related Brain Aging. J Nutr Sci Vitaminol (Tokyo) 2020; 66:409-416. [PMID: 33132343 DOI: 10.3177/jnsv.66.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Musca domestica larvae are well known for its multifunctions and great nutritional value. The present study aimed at investigating the beneficial effect of Musca domestica larvae extract (Mde) against memory impairment, structural damage and oxidative stress in aged rats. Twenty-month-old rats were gavaged with Mde for 2 mo. Morris Water Maze test indicated Mde prevented aging-induced spatial learning and memory dysfunction in the aged rats. Mde supply was also found to attenuate age-associated changes of brain histology that observed by light microscopy and transmission electron microscopy. Moreover, the increase of antioxidant capacity, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, as well as the decreased methane dicarboxylic aldehyde (MDA) levels, were consistent with these results. Hence, we propose that oral administration of Mde could improve memory impairment via antioxidant action, and Mde has the potential to act as an excellent food supplement or medicine for the attenuation of brain aging.
Collapse
Affiliation(s)
- Yanan Tang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | | | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University
| | - Xiaobao Jin
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Jiayong Zhu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Xuemei Lu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| |
Collapse
|
17
|
Protective effects of Coreopsis tinctoria buds extract against cognitive impairment and brain aging induced by d-galactose. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
18
|
Galactose-Induced Skin Aging: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7145656. [PMID: 32655772 PMCID: PMC7317321 DOI: 10.1155/2020/7145656] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.
Collapse
|
19
|
Wang L, Chen Q, Zhuang S, Wen Y, Cheng W, Zeng Z, Jiang T, Tang C. Effect of Anoectochilus roxburghii flavonoids extract on H 2O 2 - Induced oxidative stress in LO2 cells and D-gal induced aging mice model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112670. [PMID: 32135242 DOI: 10.1016/j.jep.2020.112670] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilus roxburghii (A. roxburghii) is a popular folk medicine in many Asian countries, which has been used traditionally for treatment of some diseases such as diabetes, tumors, hyperlipemia, and hepatitis. The ethanol extract from A. roxburghii was recently shown to exert better ability to scavenge free radicals in vitro and possess antioxidant on natural aging mice in vivo. AIM OF THE STUDY This study is to characterize the chemical composition, and investigate the protective effect of the A. roxburghii flavonoids extract (ARF) against hydrogen peroxide (H2O2)-induced oxidative stress in LO2 cells in vitro and D-galactose (D-gal)-induced aging mice model in vivo, and explore the underlying mechanisms. MATERIALS AND METHODS The chemical components of the flavonoids extract fromA. roxburghii were detected by ultraperformance lipid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). H2O2 was used to establish an oxidative stress model in LO2 cells. Cytotoxic and protective effects of ARF on the LO2 cells were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Moreover, the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in cell supernatants were measured by commercial reagent kits. Kun-Ming mice were induced to aging with D-gal (400 mg/kg, BW) by subcutaneous injection for 58 days. From the 28th day to the 58th day of D-gal treatment, ARF (122.5, 245 and 490 mg/kg, BW) and vitamin E (100 mg/kg, BW) were orally administrated to aging mice once a day for consecutive 30 days. After 25 days of the treatment with ARF, learning and memory were assessed using Morris Water Maze (MWM). At the end of the test period, the animals were euthanized by cervical dislocation, and the levels of SOD, GSH-PX, and MDA in serum, liver homogenates and brain homogenates were measured. The levels of monoamine oxidase (MAO) and acetylcholinesterase (AchE) were determined in brain homogenates. Skin and liver histopathological morphology were observed by H&E staining. Furthermore, antioxidant-related gene expression levels in the liver were carried out by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Nine flavonoids were identified in the extracts of A. roxburghii. In vitro assay, a high concentration of ARF (>612.5 μg/ml) reduced the survival rate and had toxic effects on LO2 cells. In addition, ARF (245 μg/ml, 490 μg/ml) and Vitamin C (200 μg/ml) markedly inhibited generations of MDA and increased activities of SOD, GSH-PX in H2O2-induced LO2 cells supernatants. In vivo assay, ARF (122.5 mg/kg, 245 mg/kg and 490 mg/kg) and Vitamin E (100 mg/kg) not only ameliorated learning and memory ability but also improved skin and liver pathological alterations. Strikingly, ARF significantly decreased MDA and MAO levels, markedly enhanced antioxidant enzyme (SOD and GSH-PX) activities. Further, compared to the D-gal group, ARF could obviously up-regulate glutathione peroxidase-1 (GPx-1) and glutathione peroxidase-4 (GPx-4) mRNA levels. CONCLUSIONS These findings suggested that ARF protects LO2 cells against H2O2-induced oxidative stress and exerts the potent anti-aging effects in D-gal aging mice model, which may be related to the inhibition of oxidative stress. Flavonoid compounds may contribute to the anti-oxidative capability and modulating aging.
Collapse
Affiliation(s)
- Liping Wang
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiangwei Chen
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Suqi Zhuang
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuying Wen
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanqiu Cheng
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhijun Zeng
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tao Jiang
- Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangzhou, 510006, China.
| | - Chunping Tang
- College of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
20
|
He S, Zhang Z, Sun H, Zhu Y, Cao X, Ye Y, Wang J, Cao Y. Potential effects of rapeseed peptide Maillard reaction products on aging-related disorder attenuation and gut microbiota modulation in d-galactose induced aging mice. Food Funct 2020; 10:4291-4303. [PMID: 31265043 DOI: 10.1039/c9fo00791a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a good flavor enhancer, rapeseed peptide Maillard reaction products (MRPs) were developed, and the effects of MRPs on d-galactose induced aging Kunming mice were investigated for 6 weeks with low (200 mg kg-1 day-1), medium (400 mg kg-1 day-1) and high (800 mg kg-1 day-1) doses. Compared with the natural aging group and d-galactose induced aging mice, the mice with MRP administration showed increases in body weight gain, food intake, organ indexes, feces color and urine fluorescence intensity. MRP intake significantly decreased the MDA content and elevated the activities of CAT, SOD and GSH-Px, and T-AOC in the serum and tissues of the liver, kidney and brain. Additionally, AChE activity was decreased in the brain, while Na+-K+ ATPase and Ca2+-Mg2+ ATPase activity increased in a dose-dependent manner, and decreasing levels of IL-1β, IL-6 and TNF-α were observed in the liver and kidney. Histopathological analysis suggested an attenuation of inflammatory cell infiltration in the liver and kidney without cell necrosis. High-throughput sequencing results revealed that the ratio of Firmicutes to Bacteroidetes increased in MRP groups, and the pathogenic bacteria were significantly inhibited, while some beneficial bacteria were significantly increased in the intestine. Overall, our results indicated that MRP consumption might have potential beneficial effects on postponing the aging process via reducing the oxidative stress and gut microflora modulation.
Collapse
Affiliation(s)
- Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Protective effects of enzyme degradation extract from Porphyra yezoensis against oxidative stress and brain injury in d-galactose-induced ageing mice. Br J Nutr 2019; 123:975-986. [DOI: 10.1017/s0007114519003088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Effects of (+)-catechin on the differentiation and lipid metabolism of 3T3-L1 adipocytes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
D-Galactose-induced accelerated aging model: an overview. Biogerontology 2019; 20:763-782. [PMID: 31538262 DOI: 10.1007/s10522-019-09837-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
Collapse
|
24
|
Direito R, Rocha J, Serra AT, Fernandes A, Freitas M, Fernandes E, Pinto R, Bronze R, Sepodes B, Figueira ME. Anti-inflammatory Effects of Persimmon (Diospyros kaki L.) in Experimental Rodent Rheumatoid Arthritis. J Diet Suppl 2019; 17:663-683. [DOI: 10.1080/19390211.2019.1645256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rosa Direito
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
| | - João Rocha
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
| | - Ana-Teresa Serra
- ITQB/IBET, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Oeiras, Portugal
| | - Adelaide Fernandes
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
| | - Marisa Freitas
- REQUIMTE, Applied Chemistry Laboratory, Chemical Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- REQUIMTE, Applied Chemistry Laboratory, Chemical Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Rui Pinto
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
- Joaquim Chaves Saúde, Lisboa, Portugal
| | - Rosário Bronze
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
- ITQB/IBET, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, Oeiras, Portugal
| | - Bruno Sepodes
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
| | - Maria-Eduardo Figueira
- Faculty of Pharmacy (FFULisboa) and Research Institute for Medicines and Pharmaceutical Sciences (iMed.ULisboa), University of Lisbon, Lisboa, Portugal
| |
Collapse
|
25
|
Cohen-Armon M, Yeheskel A, Pascal JM. Signal-induced PARP1-Erk synergism mediates IEG expression. Signal Transduct Target Ther 2019; 4:8. [PMID: 30993015 PMCID: PMC6459926 DOI: 10.1038/s41392-019-0042-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
A recently disclosed Erk-induced PARP1 activation mechanism mediates the expression of immediate early genes (IEGs) in response to a variety of extra- and intracellular signals implicated in memory acquisition, development and proliferation. Here, we review this mechanism, which is initiated by stimulation-induced binding of PARP1 to phosphorylated Erk translocated into the nucleus. This binding maintains long-lasting synergistic activity of these proteins, which offers a new pattern for targeted therapy.
Collapse
Affiliation(s)
- Malka Cohen-Armon
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
26
|
Zhao L, Yang H, Xu M, Wang X, Wang C, Lian Y, Mehmood A, Dai H. Stevia residue extract ameliorates oxidative stress in d-galactose-induced aging mice via Akt/Nrf2/HO-1 pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
27
|
Chen N, Zhou Z, Li J, Li B, Feng J, He D, Luo Y, Zheng X, Luo J, Zhang J. 3- n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4261-4271. [PMID: 30587922 PMCID: PMC6298396 DOI: 10.2147/dddt.s189472] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose This study examined whether the neuroprotective drug, 3-n-butylphthalide (NBP), which is used to treat ischemic stroke, prevents mitochondrial dysfunction. Materials and methods PC12 neuronal cells were pretreated for 24 hours with NBP (10 μmol/L), then exposed to oxygen and glucose deprivation (OGD) for 8 hours as an in vitro model of ischemic stroke. Indices of anti-oxidative response, mitochondrial function and mitochondrial dynamics were evaluated. Results OGD suppressed cell viability, induced apoptosis and increased caspase-3 activity. NBP significantly reversed these effects. NBP prevented oxidative damage by increasing the activity of superoxide dismutase and lowering levels of malondialdehyde (MDA) and reactive oxygen species (ROS). At the same time, it increased expression of Nrf2, HO-1 and AMPK. NBP attenuated mitochondrial dysfunction by enhancing mitochondrial membrane potential and increasing the activity of mitochondrial respiratory chain complexes I–IV and ATPase. NBP altered the balance of proteins regulating mitochondrial fusion and division. Conclusion NBP exerts neuroprotective actions by enhancing anti-oxidation and attenuating mitochondrial dysfunction. Our findings provide insight into how NBP may exert neuroprotective effects in ischemic stroke and raise the possibility that it may function similarly against other neurodegenerative diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ningyuan Chen
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Zhibing Zhou
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Ji Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Bocheng Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Jihua Feng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Dan He
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Yifeng Luo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Xiaowen Zheng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| | - Jianfeng Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China,
| |
Collapse
|
28
|
Polysaccharides with Antioxidative and Antiaging Activities from Enzymatic-Extractable Mycelium by Agrocybe aegerita (Brig.) Sing. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1584647. [PMID: 30622588 PMCID: PMC6304491 DOI: 10.1155/2018/1584647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/25/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the antioxidant, antiaging, and organ protective effects of the water-extractable mycelium polysaccharides (MPS) and enzymic-extractable mycelium polysaccharides (En-MPS) by Agrocybe aegerita (Brig.) Sing in D-galactose-induced (D-gal-induced) aging mice. In in vitro assays, the En-MPS demonstrated stronger antioxidant activities in dose-dependent manners. The mice experiments revealed that both En-MPS and MPS had potential effects on antioxidation, antiaging, and organ protection mainly by improving the antioxidant enzyme activities, decreasing the lipid peroxidation, and remitting the lipid metabolism. Furthermore, chemical composition and monosaccharide composition of polysaccharides were also measured, and the results indicated that differences in biological activity of MPS and En-MPS samples showed a significant correlation to their purity. The findings demonstrated that the polysaccharides by A. aegerita (Brig.) Sing could be exploited as natural and functional foods for the prevention and alleviation of aging and its complications.
Collapse
|
29
|
Song EK, Park H, Kim HS. Additive effect of walnut and chokeberry on regulation of antioxidant enzyme gene expression and attenuation of lipid peroxidation in d-galactose-induced aging-mouse model. Nutr Res 2018; 70:60-69. [PMID: 30446253 DOI: 10.1016/j.nutres.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/30/2022]
Abstract
Studies have highlighted the association between the cellular damage caused by reactive oxygen species and aging. The reducing sugar d-galactose causes aging-related changes and oxidative stress. Lipids are the first target of free radicals, and lipid peroxidation is related to aging. Walnut (Juglans regia Chandler) kernel contains antioxidant phenolic compounds, and chokeberry (Aronia melanocarpa) is one of the richest sources of polyphenols, including anthocyanins, among other fruits. Polyphenols from chokeberry exhibit antioxidant and anti-inflammatory activities. In this study, the additive antioxidative effect of walnut and chokeberry mixture was evaluated by oxidative stress index in d-galactose-induced aging model. Thirty-five Balb/c mice (8 weeks old) were divided into following five groups (n = 7 in each group): normal control (C), d-galactose control (D), d-galactose with chokeberry diet (CH), d-galactose with walnut diet (W), and d-galactose with walnut and chokeberry mixture diet (WCH). In all treatment diets groups, the levels of serum, hepatic, and kidney malonaldehyde were significantly lower than D group and the levels were approaching to control level. Moreover, the kidney malondialdehyde levels were significantly lower in WCH group compared with the control group. This study also confirmed the activities of antioxidant enzymes in liver, as the levels of superoxide dismutase, and glutathione peroxidase were significantly increased in CH group compared to in W or CH groups. The results of this study supported the additive effect of walnut and chokeberry on increment of antioxidant enzyme gene expression in liver and consequently the attenuation of lipid peroxidation in serum, liver, and kidney in d-galactose-induced aging-mouse model. Further studies are needed to investigate the detailed mechanism underlying the additive antioxidative effects in various tissues.
Collapse
Affiliation(s)
- Eun-Kyung Song
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2(i)-ga), Yongsan-gu, Seoul 04310, Korea
| | - Hyunjin Park
- ICAN Nutrition Education and Research, Seoul, Korea
| | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2(i)-ga), Yongsan-gu, Seoul 04310, Korea.
| |
Collapse
|
30
|
Zou B, Xiao G, Xu Y, Wu J, Yu Y, Fu M. Persimmon vinegar polyphenols protect against hydrogen peroxide-induced cellular oxidative stress via Nrf2 signalling pathway. Food Chem 2018; 255:23-30. [DOI: 10.1016/j.foodchem.2018.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
|
31
|
Ethyl Acetate Fraction from Persimmon ( Diospyros kaki) Ameliorates Cerebral Neuronal Loss and Cognitive Deficit via the JNK/Akt Pathway in TMT-Induced Mice. Int J Mol Sci 2018; 19:ijms19051499. [PMID: 29772805 PMCID: PMC5983595 DOI: 10.3390/ijms19051499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to assess the antioxidant capacity and protective effect of the ethyl acetate fraction from persimmon (Diospyros kaki) (EFDK) on H2O2-induced hippocampal HT22 cells and trimethyltin chloride (TMT)-induced Institute of Cancer Research (ICR) mice. EFDK had high antioxidant activities and neuroprotective effects in HT22 cells. EFDK ameliorated behavioral and memory deficits in Y-maze, passive avoidance and Morris water maze tests. Also, EFDK restored the antioxidant system by regulating malondialdehyde (MDA), superoxide dismutase (SOD) and reduced gluthathione (GSH), and the cholinergic system by controlling the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity and expression. EFDK enhanced mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP). Ultimately, EFDK regulated the c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) pathway and apoptotic pathway by suppressing the expression of tumor necrosis factor-alpha (TNF-α), phosphorylated insulin receptor substrate 1 (IRS-1pSer), phosphorylated JNK (p-JNK), phosphorylated tau (p-tau), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), Bcl-2-associated X protein (BAX) and cytosolic cytochrome c, and increasing the expression of phosphorylated Akt (p-Akt) and mitochondrial cytochrome c. This study suggested that EFDK had antioxidant activity and a neuroprotective effect, and ameliorated cognitive abnormalities in TMT-induced mice by regulating the JNK/Akt and apoptotic pathway.
Collapse
|
32
|
Bai K, Hong B, Hong Z, Sun J, Wang C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. J Nanobiotechnology 2017; 15:92. [PMID: 29262862 PMCID: PMC5738782 DOI: 10.1186/s12951-017-0324-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selenium (Se) is an indispensable trace element required for animals and humans, and extra Se-supplement is necessary, especially for those having Se deficiency. Recently, selenium nanoparticles (SeNPs), as a special form of Se supplement, have attracted worldwide attention due to their distinguished properties and excellent bioactivities. In this present study, an eco-friendly and economic way to prepare stable SeNPs was introduced. SeNPs were synthesized in the presence of chitosan (CTS) and then embedded into chitosan/citrate gel, generating selenium nanoparticles-loaded chitosan/citrate complex (SeNPs-C/C). Additionally, the clinical potential of SeNPs-C/C was evaluated by using D-galactose (D-gal)-induced aging mice model. RESULTS SeNPs in high uniform with an average diameter of around 50 nm were synthesized in the presence of chitosan, and reversible ionic gelation between chitosan and citrate was utilized to load SeNPs. Subsphaeroidal SeNPs-C/C microspheres of 1-30 μm were obtained by spay-drying. Single SeNPs were physically separated and embedded inside SeNPs-C/C microparticles, with excellent stability and acceptable release. Acute fetal test showed SeNPs-C/C was safer than selenite, with a median lethal dose (LD50) of approximately 4-fold to 11-fold of that of selenite. Oral administration of SeNPs-C/C remarkably retarded the oxidative stress of D-gal in Kunming mice by enhancing the activity of antioxidase, as evidenced by its significant protection of the growth, liver, Se retention and antioxidant bio-markers of mice against D-gal. CONCLUSIONS The design of SeNPs-C/C opens a new path for oral delivery of SeNPs with excellent stability, energy-conservation and environment-friendliness. SeNPs-C/C, as a novel supplement of Se, could be further developed to defend the aging process induced by D-gal.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China. .,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China.
| | - Bihong Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Jipeng Sun
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China.,Engineering Research Center of Marine Biological Resource Comprehensive Utilization, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| | - Changsen Wang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, People's Republic of China
| |
Collapse
|
33
|
Extract of Fructus Cannabis Ameliorates Learning and Memory Impairment Induced by D-Galactose in an Aging Rats Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4757520. [PMID: 29234402 PMCID: PMC5671716 DOI: 10.1155/2017/4757520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 01/23/2023]
Abstract
Hempseed (Cannabis sativa L.) has been used as a health food and folk medicine in China for centuries. In the present study, we sought to define the underlying mechanism by which the extract of Fructus Cannabis (EFC) protects against memory impairment induced by D-galactose in rats. To accelerate aging and induce memory impairment in rats, D-galactose (400 mg/kg) was injected intraperitoneally once daily for 14 weeks. EFC (200 and 400 mg/kg) was simultaneously administered intragastrically once daily in an attempt to slow the aging process. We found that EFC significantly increased the activity of superoxide dismutase, while lowering levels of malondialdehyde in the hippocampus. Moreover, EFC dramatically elevated the organ indices of some organs, including the heart, the liver, the thymus, and the spleen. In addition, EFC improved the behavioral performance of rats treated with D-galactose in the Morris water maze. Furthermore, EFC inhibited the activation of astrocytes and remarkably attenuated phosphorylated tau and suppressed the expression of presenilin 1 in the brain of D-galactose-treated rats. These findings suggested that EFC exhibits beneficial effects on the cognition of aging rats probably by enhancing antioxidant capacity and anti-neuroinflammation, improving immune function, and modulating tau phosphorylation and presenilin expression.
Collapse
|
34
|
Ma ZL, Gao Y, Ma HT, Zheng LH, Dai B, Miao JF, Zhang YS. Effects of taurine and housing density on renal function in laying hens. J Zhejiang Univ Sci B 2017; 17:952-964. [PMID: 27921400 DOI: 10.1631/jzus.b1600014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens.
Collapse
Affiliation(s)
- Zi-Li Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Animal Husbandry and Veterinary Bureau of Dongyang City in Zhejiang Province, Dongyang 322100, China
| | - Yang Gao
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hai-Tian Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu-Hai Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Feng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Shu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
35
|
Jiao J, Wei Y, Chen J, Chen X, Zhang Y. Anti-aging and redox state regulation effects of A-type proanthocyanidins-rich cranberry concentrate and its comparison with grape seed extract in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Zhang Y, Chen H, Zhu W, Li C. Comparison of the carotenoid compositions and protection of in-season and anti-season tomato extracts againstd-galactose-induced cognition deficits and oxidative damage in mice. Int J Food Sci Nutr 2016; 67:983-94. [DOI: 10.1080/09637486.2016.1208735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Ma XK, Guo DD, Peterson EC, Dun Y, Li DY. Structural characterization and anti-aging activity of a novel extracellular polysaccharide from fungus Phellinus sp. in a mammalian system. Food Funct 2016; 7:3468-79. [PMID: 27405813 DOI: 10.1039/c6fo00422a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Little is known about the chemical structure of purified extracellular polysaccharides from Phellinus sp., a fungal species with known medicinal properties. A combination of IR spectroscopy, methylation analysis and NMR were performed for the structural analysis of a purified extracellular polysaccharide derived from Phellinus sp. culture, denoted as SHP-1, along with an evaluation of the anti-aging effect in vivo of the polysaccharide supplementation. The structure of SHP-1 was established, with a backbone composed of →2,4)-α-d-glucopyranose-(1→ and →2)-β-d-mannopyranose-(1→ and two terminal glucopyranose branches. Biochemical analysis from mammalian animal experiments demonstrated that SHP-1 possesses the ability to enhance antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD) activities, Trolox equivalent antioxidant capacity (TEAC) in serum of d-galactose-aged mice, while reducing lipofuscin levels, another indicator of cell aging, indicating a potential association with anti-aging activities in a dose dependent manner. This compound had a favourable influence on immune organ indices, and a marked amelioration ability of histopathological hepatic lesions such as necrosis, karyolysis and reduced inflammation and apoptosis in mouse hepatocytes. These results suggest that SHP-1 has strong antioxidant activities and a significant protective effect against oxidative stress or hepatotoxicity induced by d-galactose in mice and it could be developed as a food ingredient or a pharmaceutical to prevent many age-associated diseases such as major depressive disorder and hepatotoxicity. To our knowledge, this is the first report on the antioxidant effects of a novel purified exopolysaccharide derived from Phellinus sp.
Collapse
Affiliation(s)
- Xiao-Kui Ma
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710055, Shaanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
38
|
Bilal S, Khan AL, Waqas M, Shahzad R, Kim ID, Lee IJ, Shin DH. Biochemical Constituents and in Vitro Antioxidant and Anticholinesterase Potential of Seeds from Native Korean Persimmon Genotypes. Molecules 2016; 21:E893. [PMID: 27399664 PMCID: PMC6274387 DOI: 10.3390/molecules21070893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/16/2023] Open
Abstract
In the current study, the functional and biochemical potential of the seeds of four persimmon cultivars (PC1, PC2, PC3 and PC4) and their role against oxidative stress and acetylcholinesterase (AChE) inhibition were evaluated. In terms of biochemical compositions, free amino acids, fatty acids and organic acids analysis was performed. The free amino acids ranged from 2617.31 (PC2) to 3773.01 μg∙g(-1) dry weight (PC4). Oleic acid and linoleic acid were the principal fatty acids, which were significantly higher in PC4 and PC1, respectively. PC4 presented the highest amount of organic acid content (4212 mg∙kg(-1)), whereas PC2 presented the lowest (2498 mg∙kg(-1)). PC2 contained higher total phenolic content and flavonoid content, whereas PC3 had the lowest amount as compared to other cultivars. The in vitro DPPH, ABTS and superoxide anion radicals scavenging activity increased in a dose-dependent manner, whereas PC2 showed significantly higher scavenging activities as compared to PC1, PC2 and PC4 types. In the case of AChE inhibition, PC4 showed a moderate activity (67.34% ± 1.8%). In conclusion, the current findings reveal that the studied persimmon seeds cultivars are a source of bioactive natural antioxidants and AChE inhibitors. Such natural products could be employed in pharmaceutical and food industries, whilst can also be considered for the treatment of neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa 616, Oman.
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| | - Il-Doo Kim
- International Institute of Agriculture Research & Development, Kyungpook National University, Daegu 41566, Korea.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Hyun Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
39
|
Li J, Cai D, Yao X, Zhang Y, Chen L, Jing P, Wang L, Wang Y. Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging. Int J Mol Sci 2016; 17:ijms17060849. [PMID: 27294914 PMCID: PMC4926383 DOI: 10.3390/ijms17060849] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1⁺ hematopoietic stem/progenitor cells (HSC/HPCs) in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1⁺ HSC/HPCs by decreasing SA-β-Gal and enhancing the colony forming unit-mixture (CFU-Mix), and adjusting oxidative stress indices like reactive oxygen species (ROS), total anti-oxidant (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and malondialdehyde (MDA). In addition, ginsenoside Rg1 decreased β-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3β. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs), 4-hydroxynonenal (4-HNE), phospho-histone H2A.X (r-H2A.X), 8-OHdG, p16(Ink4a), Rb, p21(Cip1/Waf1) and p53 in senescent Sca-1⁺ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1⁺ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/β-catenin signaling pathway, and reduction of DNA damage response, p16(Ink4a)-Rb and p53-p21(Cip1/Waf1) signaling.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China.
| | - Dachuan Cai
- Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Xin Yao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China.
| | - Yanyan Zhang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Linbo Chen
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Pengwei Jing
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China.
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
40
|
A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 2016; 6:24950. [PMID: 27121568 PMCID: PMC4848477 DOI: 10.1038/srep24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Unexpectedly, a post-translational modification of DNA-binding proteins, initiating the cell response to single-strand DNA damage, was also required for long-term memory acquisition in a variety of learning paradigms. Our findings disclose a molecular mechanism based on PARP1-Erk synergism, which may underlie this phenomenon. A stimulation induced PARP1 binding to phosphorylated Erk2 in the chromatin of cerebral neurons caused Erk-induced PARP1 activation, rendering transcription factors and promoters of immediate early genes (IEG) accessible to PARP1-bound phosphorylated Erk2. Thus, Erk-induced PARP1 activation mediated IEG expression implicated in long-term memory. PARP1 inhibition, silencing, or genetic deletion abrogated stimulation-induced Erk-recruitment to IEG promoters, gene expression and LTP generation in hippocampal CA3-CA1-connections. Moreover, a predominant binding of PARP1 to single-strand DNA breaks, occluding its Erk binding sites, suppressed IEG expression and prevented the generation of LTP. These findings outline a PARP1-dependent mechanism required for LTP generation, which may be implicated in long-term memory acquisition and in its deterioration in senescence.
Collapse
|
41
|
Dai B, Zhang YS, Ma ZL, Zheng LH, Li SJ, Dou XH, Gong JS, Miao JF. Influence of dietary taurine and housing density on oviduct function in laying hens. J Zhejiang Univ Sci B 2016; 16:456-64. [PMID: 26055907 DOI: 10.1631/jzus.b1400256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Experiments were conducted to study the effects of dietary taurine and housing density on oviduct function in laying hens. Green-shell laying hens were randomly assigned to a free range group and two caged groups, one with low-density and the other with high-density housing. Each group was further divided into control (C) and taurine treatment (T) groups. All hens were fed the same basic diet except that the T groups' diet was supplemented with 0.1% taurine. The experiment lasted 15 d. Survival rates, laying rates, daily feed consumption, and daily weight gain were recorded. Histological changes, inflammatory mediator levels, and oxidation and anti-oxidation levels were determined. The results show that dietary taurine supplementation and reduced housing density significantly attenuated pathophysiological changes in the oviduct. Nuclear factor-κB (NF-κB) DNA binding activity increased significantly in the high-density housing group compared with the two other housing groups and was reduced by taurine supplementation. Tumor necrosis factor-α (TNF-α) mRNA expression in the high-density and low-density C and T groups increased significantly. In the free range and low-density groups, dietary taurine significantly reduced the expression of TNF-α mRNA. Supplementation with taurine decreased interferon-γ (IFN-γ) mRNA expression significantly in the low-density groups. Interleukin 4 (IL-4) mRNA expression was significantly higher in caged hens. IL-10 mRNA expression was higher in the high-density C group than in the free range and low-density C groups. Supplementation with taurine decreased IL-10 mRNA expression significantly in the high-density group and increased superoxide dismutase (SOD) activity in the free range hens. We conclude that taurine has important protective effects against oviduct damage. Reducing housing density also results in less oxidative stress, less inflammatory cell infiltration, and lower levels of inflammatory mediators in the oviduct. Therefore, both dietary taurine and reduced housing density can ameliorate oviduct injury, enhance oviduct health, and promote egg production in laying hens.
Collapse
Affiliation(s)
- Bin Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Animal Husbandry and Veterinary Bureau of Dongyang, Dongyang 322100, China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury. Adv Pharmacol Sci 2016; 2016:3073078. [PMID: 26941791 PMCID: PMC4749783 DOI: 10.1155/2016/3073078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022] Open
Abstract
Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon) has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE) and fruit pulp (PuHE) of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS) induced by glucose-oxygen-serum deprivation (GOSD) in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0–500 μg/mL) for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders.
Collapse
|
43
|
Abstract
Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid,p-coumaric acid, and gallic acid.β-Cryptoxanthin, lycopene,β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.
Collapse
|
44
|
Zheng L, Liu M, Zhai GY, Ma Z, Wang LQ, Jia L. Antioxidant and anti-ageing activities of mycelia zinc polysaccharide from Pholiota nameko SW-03. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:3117-3126. [PMID: 25511755 DOI: 10.1002/jsfa.7048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Edible fungi polysaccharides usually exhibit antioxidant activity, and zinc has been shown to have antioxidant properties. In the present work, Pholiota nameko SW-03 was used as a vector of zinc biotransformation in order to obtain mycelia zinc polysaccharide (MZPS), and the structural characterization and anti-ageing activity of MZPS were investigated. RESULTS Pholiota nameko SW-03 could accumulate zinc in the form of zinc-enriched polysaccharide, and the zinc content in MZPS was 16.39 ± 0.72 mg g(-1) . Three fractions (MZPS-1, MZPS-2 and MZPS-3) were successfully isolated. The main fraction (MZPS-2) with the highest antioxidant activity in vitro was composed of glucose, mannose, glucuronic acid, galactose, galacturonic acid and arabinose in a molar ratio of 172.59:5.29:4.61:4.20:1.01:1.00, with a weight-average molecular weight of 13.63 kDa. The anti-ageing capability was measured in d-galactose-induced ageing mice, and the results showed that MZPS could improve antioxidant status (superoxide dismutase, total antioxidant capability, malondialdehyde and lipid peroxide), indicating that MZPS had strong anti-ageing capability in vivo. CONCLUSION This study suggested that organification of zinc through edible fungi liquid fermentation provided a novel method to produce MZPS, which might be used as a natural antioxidant to slow the progression of ageing.
Collapse
Affiliation(s)
- Lan Zheng
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Min Liu
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Guo-Yin Zhai
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Zhao Ma
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Li-Qin Wang
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
45
|
Du Z, Li S, Liu L, Yang Q, Zhang H, Gao C. NADPH oxidase 3‑associated oxidative stress and caspase 3‑dependent apoptosis in the cochleae of D‑galactose‑induced aged rats. Mol Med Rep 2015; 12:7883-90. [PMID: 26498835 PMCID: PMC4758280 DOI: 10.3892/mmr.2015.4430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/23/2015] [Indexed: 01/27/2023] Open
Abstract
Oxidative damage to mitochondrial DNA (mtDNA) and cell apoptosis are heavily implicated in aging. Our previous study established a mimetic rat model of aging in the cochleae using D‑galactose (D‑gal), and revealed that chronic injection of D‑gal can increase oxidative stress and mtDNA common deletions (CD). The aim of the present study was to investigate the sources of reactive oxygen species and the occurrence of apoptosis in the cochleae of rats following 8 weeks of D‑gal exposure. The results of the present study indicated that an elevated accumulation of the mtDNA CD and mitochondrial ultrastructural damage occurred in the cochleae of rats injected with D‑gal for 8 weeks. In addition, the levels of 8‑hydroxy‑2‑deoxyguanosine, NADPH oxidase (NOX) 3, P22phox and cleaved caspase 3, and the number of terminal deoxynucleotidyl transferase‑mediated deoxyuridine triphosphate nick‑end‑labelling‑positive cells were increased in the cochleae of D‑gal‑treated rats, compared with the controls. These findings suggested that nitric oxide synthase NOX3‑associated oxidative stress may contribute to the accumulation of mtDNA mutations and activate a caspase 3‑dependent apoptotic signalling pathway in the cochleae during aging. The present study also provided novel insights into the development of age‑associated hearing loss, also termed presbycusis.
Collapse
Affiliation(s)
- Zhengde Du
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Shuo Li
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Lin Liu
- Department of Pharmacology, College of Pharmacy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiong Yang
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Hongwei Zhang
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Chunsheng Gao
- Department of Otorhinolaryngology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
46
|
Cardoso A, Magano S, Marrana F, Andrade JP. D-Galactose High-Dose Administration Failed to Induce Accelerated Aging Changes in Neurogenesis, Anxiety, and Spatial Memory on Young Male Wistar Rats. Rejuvenation Res 2015; 18:497-507. [PMID: 25936362 DOI: 10.1089/rej.2015.1684] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The model of accelerated senescence with the prolonged administration of d-galactose is used in anti-aging studies because it mimics several aging-associated alterations such as increase of oxidative stress and decline of cognition. However, there is no standardized protocol for this aging model, and recently some reports have questioned its effectiveness. To clarify this issue, we used a model of high-dose d-galactose on 1-month-old male Wistar rats and studied the hippocampus, one of the most affected brain regions. In one group (n = 10), d-galactose was daily administered intraperitoneally (300 mg/kg) during 8 weeks whereas age-matched controls (n = 10) were injected intraperitoneally with saline. A third group (n = 10) was treated with the same dose of d-galactose and with oral epigallocatechin-3-gallate (EGCG) (2 grams/L), a green tea catechin with anti-oxidant and neuroprotective properties. After treatments, animals were submitted to open-field, elevated plus-maze and Morris water maze tests, and neurogenesis in the dentate gyrus subgranular layer was quantified. There were no significant alterations when the three groups were compared in the number of doublecortin- and Ki-67-immunoreactive cells, and also on anxiety levels, spatial learning, and memory. Therefore, d-galactose was not effective in the induction of accelerated aging, and EGCG administered to d-galactose-treated animals did not improve behavior and had no effects on neurogenesis. We conclude that daily 300 mg/kg of d-galactose administered intraperitoneally may not be a suitable model for inducing age-related neurobehavioral alterations in young male Wistar rats. More studies are necessary to obtain a reliable and reproducible model of accelerated senescence in rodents using d-galactose.
Collapse
Affiliation(s)
- Armando Cardoso
- 1 Department of Anatomy, Faculty of Medicine, University of Porto , Porto, Portugal .,2 Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto , Porto, Portugal
| | - Sara Magano
- 1 Department of Anatomy, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Francisco Marrana
- 1 Department of Anatomy, Faculty of Medicine, University of Porto , Porto, Portugal
| | - José P Andrade
- 1 Department of Anatomy, Faculty of Medicine, University of Porto , Porto, Portugal .,2 Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto , Porto, Portugal
| |
Collapse
|
47
|
Yu Y, Bai F, Wang W, Liu Y, Yuan Q, Qu S, Zhang T, Tian G, Li S, Li D, Ren G. Fibroblast growth factor 21 protects mouse brain against d-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav 2015; 133:122-31. [DOI: 10.1016/j.pbb.2015.03.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/21/2015] [Accepted: 03/29/2015] [Indexed: 12/19/2022]
|
48
|
Doan VM, Chen C, Lin X, Nguyen VP, Nong Z, Li W, Chen Q, Ming J, Xie Q, Huang R. Yulangsan polysaccharide improves redox homeostasis and immune impairment in d-galactose-induced mimetic aging. Food Funct 2015; 6:1712-8. [DOI: 10.1039/c5fo00238a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yulangsan polysaccharide (YLSP) is a traditional Chinese medicine used in long-term treatment as a modulator of brain dysfunction and immunity.
Collapse
Affiliation(s)
- Van Minh Doan
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Chunxia Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
- Department of Hyperbaric Oxygen
| | - Xing Lin
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Van Phuc Nguyen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Zhihuan Nong
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Weisi Li
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qingquan Chen
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Jianjun Ming
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Qiuqiao Xie
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| | - Renbin Huang
- Department of Pharmacology
- Guangxi Medical University
- Nanning 530021
- PR China
| |
Collapse
|
49
|
|
50
|
Ma Z, Zhang J, Ma H, Dai B, Zheng L, Miao J, Zhang Y. The influence of dietary taurine and reduced housing density on hepatic functions in laying hens. Poult Sci 2014; 93:1724-36. [DOI: 10.3382/ps.2013-03654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|