1
|
Lin YL, Wu YHS, Chao MY, Yang DJ, Liu CW, Tseng JK, Chen YC. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2024; 39:2881-2892. [PMID: 38294203 DOI: 10.1002/tox.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Lonicerae japonicae (L. japonicae) flos is a medical and food homology herb. This study investigated the phenolic acid and flavonoid contents in L. japonicae flos water extract solution (LJWES) and the preventive effects of LJWES against liver fibrogenesis via FL83B cells and rats. LJWES contains many polyphenols, such as chlorogenic acid, morin, and epicatechin. LJWES increased cell viability and decreased cytotoxicity in thioacetamide (TAA)-treated FL83B cells (75 mM) (p < .05). LJWES decreased (p < .05) gene expressions of Tnf-α, Tnfr1, Bax, and cytochrome c but upregulated Bcl-2 and Bcl-xl in TAA-treated cells; meanwhile, increased protein levels of P53, cleaved caspase 3, and cleaved caspase 9 in TAA treated cells were downregulated (p < .05) by LJWES supplementation. In vivo, results indicated that TAA treatment increased serum liver damage indices (alanine aminotransferase [ALT] and alkaline phosphatase [ALP]) and cytokines (interleukin-6 and transforming growth factor-β1) levels and impaired liver antioxidant capacities (increased thiobarbituric acid reactive substance value but decreased catalase/glutathione peroxidase activities) in rats (p < .05) while LJWES supplementation amended (p < .05) them. Liver fibrosis scores, collagen deposition, and alpha-smooth muscle actin deposition in TAA-treated rats were also decreased by LJWES supplementation (p < .05). To sum up, LJWES could be a potential hepatoprotective agent against liver fibrogenesis by enhancing antioxidant ability, downregulating inflammation in livers, and reducing apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Yuan Chao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Wei Liu
- Department of Smart and Quality Agriculture, MingDao University, Changhua, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Lee HL, Kim JM, Go MJ, Kim TY, Joo SG, Kim JH, Lee HS, Kim HJ, Heo HJ. Protective Effect of Lonicera japonica on PM 2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants (Basel) 2023; 12:antiox12040968. [PMID: 37107342 PMCID: PMC10135714 DOI: 10.3390/antiox12040968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-β and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Ge L, Xie Q, Jiang Y, Xiao L, Wan H, Zhou B, Wu S, Tian J, Zeng X. Genus Lonicera: New drug discovery from traditional usage to modern chemical and pharmacological research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153889. [PMID: 35026509 DOI: 10.1016/j.phymed.2021.153889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lonicera Linn. belonging to the family Caprifoliaceae, the largest genus in the plant family, includes about more than 200 species, which are mainly distributed in northern Africa, North America, Europe and Asia. Some species of this genus have been usually used in traditional Chinese medicine as well as functional foods, cosmetics and other applications, such as L. japonica Thunb. Bioactive components and pharmacological activities of the genus Lonicera plants have received an increasing interest from the scientific community. Thus, a comprehensive and systematic review on their traditional usage in China, chemical components, and their pharmacological properties of their whole plants, bioactive extracts, and bioactive isolates including partial structure-activity relationships from the genus is indispensable. METHODS Information on genus Lonicera of this systematic electronic literature search was gathered via the published articles, patents, clinical trials website (https://clinicaltrials.gov/) and several online bibliographic databases (PubMed, Sci Finder, Research Gate, Science Direct, CNKI, Web of Science and Google Scholar). The following keywords were used for the online search: Lonicera, phytochemical composition, Lonicerae japonica, Lonicera review articles, bioactivities of Lonicera, anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, anti-diabetic, and clinical trials. This review paper consists of a total of 225 papers covering the Lonicera genus from 1800 to 2021, including research articles, reviews, patents, and book chapters. RESULTS In this review (1800s-2021), about 420 components from the genus of Lonicera Linn. including 87 flavonoids, 222 terpenoids, 51 organic acids, and other compounds, together with their pharmacological activities including anti-inflammatory, antiviral, antimicrobial, anticancer, hepatoprotective, antioxidant, neuroprotective, antidiabetic, anti-allergic, immunomodulatory effects, and toxicity were summarized. CONCLUSION The relationship is discussed among their traditional usage, their pharmacological properties, and their chemical components, which indicate the genus Lonicera have a large prospect in terms of new drug exploitation, especially in COVID-19 treatment.
Collapse
Affiliation(s)
- Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Yuanyuan Jiang
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Lingyun Xiao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Shipin Wu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong 518037, China.
| |
Collapse
|
4
|
Tang X, Liu X, Zhong J, Fang R. Potential Application of Lonicera japonica Extracts in Animal Production: From the Perspective of Intestinal Health. Front Microbiol 2021; 12:719877. [PMID: 34434181 PMCID: PMC8381474 DOI: 10.3389/fmicb.2021.719877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Lonicera japonica (L. japonica) extract is rich in active substances, such as phenolic acids, essential oils, flavones, saponins, and iridoids, which have a broad spectrum of antioxidant, anti-inflammatory, and anti-microbial effect. Previous studies have demonstrated that L. japonica has a good regulatory effect on animal intestinal health, which can be used as a potential antibiotic substitute product. However, previous studies about intestinal health regulation mainly focus on experimental animals or cells, like mice, rats, HMC-1 Cells, and RAW 264.7 cells. In this review, the intestinal health benefits including antioxidant, anti-inflammatory, and antimicrobial activity, and its potential application in animal production were summarized. Through this review, we can see that the effects and mechanism of L. japonica extract on intestinal health regulation of farm and aquatic animals are still rare and unclear. Further studies could focus on the regulatory mechanism of L. japonica extract on intestinal health especially the protective effects of L. japonica extract on oxidative injury, inflammation, and regulation of intestinal flora in farm animals and aquatic animals, thereby providing references for the rational utilization and application of L. japonica and its extracts in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Sadraei H, Khakboo M, Asghari G. Spasmolytic effect of Lonicera japonica extracts on isolated uterus smooth muscle contractions. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Honeysuckle (Lonicera japonica) is an ornamental flowering plant with numerous traditional medicinal uses. It has been claimed to have anti-spasmodic activities, but only limited studies have been done to support this. The objective of this research was to investigate anti-spasmodic effect of L. japonica flower extract on uterus contractions. Methods: Hydroalcoholic extract was prepared using the maceration technique. In addition, chloroform and ethyl acetate fractions were prepared using a solvent in solvent fractionation technique. Essential oils were collected using the hydro-distillation technique. Rat isolated uterus was suspended in an organ bath and contracted with oxytocin, acetylcholine (ACh), KCl, or application of electrical field stimulation (EFS). The relaxant effects of the extract, its fractions, and nifedipine were examined on uterine contrition induced by the above-mentioned stimuli. Results: Nifedipine in a concentration-dependent manner inhibited uterine contraction induced by oxytocin, KCl, ACh, and EFS. L. japonica flower extract also exhibited an inhibitory effect on the isolated rat uterus. Comparison of the hydroalcoholic extract with its chloroform and ethyl acetate fractions showed that the chloroform fraction was the most potent and the ethyl acetate the weakest part of the plant with antispasmodic activity. The relaxant effect of essential oil had close similarities to that of chloroform extract. Conclusion: Lipophilic compounds isolated by the chloroform partition of crude hydroalcoholic extract of L. japonica flower exhibited the most antispasmodic activity. Ethyl acetate partition of the same extract exhibited the least activity. Therefore, it can be concluded that the spasmolytic constituents of L. japonica flower reside in chloroform partitioning. The nonpolar essential oils may also have a contribution.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mona Khakboo
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Gholamreza Asghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
6
|
Wang Q, Luo J, Sun R, Liu J. MicroRNA-1297 suppressed the Akt/GSK3 β signaling pathway and stimulated neural apoptosis in an in vivo sevoflurane exposure model. J Int Med Res 2021; 49:300060520982104. [PMID: 33843359 PMCID: PMC8044581 DOI: 10.1177/0300060520982104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined. We aimed to determine the function of microRNA-1297 (miR-1297) in sevoflurane-induced neurotoxicity. Methods Reverse transcription-polymerase chain reaction assays were used to analyze miR-1297 expression in sevoflurane-exposed mice. MTT and lactate dehydrogenase (LDH) assays were used to measure cell growth, and neuronal apoptosis was analyzed using flow cytometry. Western blot analyses were used to measure PTEN, PI3K, Akt, and GSK3β protein expression. Results In sevoflurane-exposed mice, miR-1297 expression was up-regulated compared with the control group. MiR-1297 up-regulation led to neuronal apoptosis, inhibition of cell proliferation, and increased LDH activity in the in vitro model of sevoflurane exposure. MiR-1297 up-regulation also suppressed the Akt/GSK3β signaling pathway and induced PTEN protein expression in the in vitro model. PTEN inhibition (VO-Ohpic trihydrate) reduced PTEN protein expression and decreased the effects of miR-1297 down-regulation on neuronal apoptosis in the in vitro model. Conclusion Collectively, the results indicated that miR-1297 stimulates sevoflurane-induced neurotoxicity via the Akt/GSK3β signaling pathway by regulating PTEN expression.
Collapse
Affiliation(s)
- Quan Wang
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingcong Luo
- Department of Anesthesiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Ruiqiang Sun
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
7
|
Chen Q, Xu B, Huang W, Amrouche AT, Maurizio B, Simal-Gandara J, Tundis R, Xiao J, Zou L, Lu B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Yardım A, Kucukler S, Özdemir S, Çomaklı S, Caglayan C, Kandemir FM, Çelik H. Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Gene 2020; 769:145239. [PMID: 33069805 DOI: 10.1016/j.gene.2020.145239] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic agent used in the treatment of various malignancies but is often associated with central and peripheral neurotoxicity. The aim of this study was to investigate the neuroprotective effect of silymarin (SLM) against DTX-induced central and peripheral neurotoxicities in rats. Rats received 25 and 50 mg/kg body weight SLM orally for seven consecutive days after receiving a single injection of 30 mg/kg body weight DTX on the first day. SLM significantly decreased brain lipid peroxidation level and ameliorated brain glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in DTX-administered rats. SLM attenuated levels of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), glial fibrillary acidic protein (GFAP) and activity of p38α mitogen-activated protein kinase (p38α MAPK) whereas caused an increase in levels of neural cell adhesion molecule (NCAM) in the brain and sciatic nerve of DTX-induced rats. In addition, SLM improved the histological structure of the brain and sciatic nerve tissues and decreased the expression of c-Jun N-terminal kinase (JNK) in the sciatic nerve whereas increased cyclic AMP response element binding protein (CREB) expression in the brain induced by DTX. Additionally, SLM markedly up-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and B-cell lymphoma-2 (Bcl-2) and downregulated the expression of Bcl-2 associated X protein (Bax) in the brain and sciatic nerve tissues of DTX-induced rats. Our results show that SLM can protect DTX-induced brain and sciatic nerve injuries by enhancing the antioxidant defense system and suppressing apoptosis and inflammation.
Collapse
Affiliation(s)
- Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey.
| | - Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| |
Collapse
|
9
|
Li RJ, Kuang XP, Wang WJ, Wan CP, Li WX. Comparison of chemical constitution and bioactivity among different parts of Lonicera japonica Thunb. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:614-622. [PMID: 31597198 DOI: 10.1002/jsfa.10056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lonicera japonica Thunb is a common herb in East Asia. The flower buds are usually regarded as the traditional medicinal part, while leaves and stems are considered less valuable and receive little attention. This study compared the chemical constituents and anti-inflammatory effects of the different tissues in L. japonica Thunb for the first time. RESULTS Thirty compounds were identified by ultra-performance liquid chromatography-photodiode detector-quadrupole / time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS/MS) analysis. Hydroxycinnamic acids, flavonoids, and iridoids were identified as the major components. The flower buds (FLJ), leaves (LLJ), and stems (SLJ) of L. japonica Thunb showed strong similarities in chemical components. The LLJ contained higher levels of hydroxycinnamic acids and flavonoids than the FLJ and SLJ. Furthermore, FLJ, LLJ, and SLJ exhibited potent anti-inflammatory activity in croton oil-induced ear edema and carrageenan-induced paw edema assays in mice. Moreover, FLJ, LLJ, and SLJ showed a cytoprotective effect on lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. Lipopolysaccharide-induced increases in nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were suppressed by treatments of FLJ, LLJ, and SLJ, respectively. The LLJ possessed a stronger anti-inflammatory effect than the FLJ. CONCLUSION Leaves and stems of L. japonica Thunb have chemical components and anti-inflammatory properties similar to flower buds, and may become alternative or supplementary sources of flower buds. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rong-Jiao Li
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, PR China
| | - Xiu-Ping Kuang
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, PR China
| | - Wen-Jing Wang
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, PR China
| | - Chun-Ping Wan
- Central Laboratory, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, PR China
| | - Wei-Xi Li
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, PR China
| |
Collapse
|
10
|
Ko YH, Kim SK, Kwon SH, Seo JY, Lee BR, Kim YJ, Hur KH, Kim SY, Lee SY, Jang CG. 7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Biomol Ther (Seoul) 2019; 27:363-372. [PMID: 30866601 PMCID: PMC6609108 DOI: 10.4062/biomolther.2018.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson' disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Le L, Fu H, Lv Q, Bai X, Zhao Y, Xiang J, Jiang B, Hu K, Chen S. The protective effects of the native flavanone flavanomarein on neuronal cells damaged by 6-OHDA. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:193-204. [PMID: 30668399 DOI: 10.1016/j.phymed.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/28/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Flavanomarein is the main component of Coreopsis tinctoria Nutt. (C. tinctoria), which is a globally well-known flower tea that has a distinct flavor and many beneficial health effects, such as antioxidant activities. We aimed to explore the effect of flavanomarein on a 6-hydroxydopamine (6-OHDA)-lesioned cell model of oxidative stress. METHODS In this study, we used 6-OHDA-lesioned PC12 cells and primary cortical neurons to investigate the protective effects of flavanomarein and its potential mechanism. RESULTS The results indicated that pretreatment with flavanomarein (25, 50, or 100 µM for 24 h) significantly increased the cell viability, reduced the lactate dehydrogenase (LDH) release and improved the mitochondrial membrane potential (∆Ψm) and mitochondrial impairment. Additionally, flavanomarein markedly reduced the gene expression of tumor necrosis factor (TNF)-α and protein kinase C ζ (PKC-ζ), the nuclear translocation of p65, and the levels of p-AMPK-α and acetyl-p53. Flavanomarein also elevated the gene expression of P85α, PKC-β1, and Bcl-2, the protein expression of Sirt1 and ICAD, and the phosphorylation level of AKT. CONCLUSIONS Together, these results suggest that flavanomarein protects PC12 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by upregulating the PI3K/AKT signaling pathway and attenuating the nuclear factor kappa B (NF-κB) signaling pathway. Therefore, our study provides evidence that may aid in the development of a potential compound against 6-OHDA toxicity.
Collapse
Affiliation(s)
- Liang Le
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Post-doctoral Scientific Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Fu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qiuyue Lv
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xue Bai
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Zhao
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jiamei Xiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baoping Jiang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Keping Hu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Zhao Z, Zhang H, Wang M, Zhang C, Kuang P, Zhou Z, Zhang G, Wang Z, Zhang B, Shi X. The ethanol extract of honeysuckle stem modulates the innate immunity of Chinese mitten crab Eriocheir sinensis against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 82:304-311. [PMID: 30125699 DOI: 10.1016/j.fsi.2018.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Honeysuckle stem had been used as feed additives to modulate immunity in breeding industry, which was limited in the aquaculture field. In this study, the immunomodulation of honeysuckle stem ethanol extract (designed as HSE) on Chinese mitten crab Eriocheir sinensis was detected. The crabs fed with HSE diets for 30 days had higher level of the total haemocyte count (HTC), lysozyme activity and PO activity (P < 0.05), and had no obvious affect on the phagocytic activity, NO and TNF-α level. When challenged with Aeromonas hydrophila (1.0 × 107 colony-forming units), HSE exhibited weak antibacterial activity against A. hydrophila and increased survival rate of crabs. The decreasing of THC and the increasing of TNF-α concentration, EsCaspase and EsLITAF mRNA expression level were all inhibited significantly by HSE treatment (P < 0.05), when the crabs were challenged by A. hydrophila. Moreover, the following immune parameters of crabs were enhanced by HSE treatment after A. hydrophila infection, including the rising of phagocytosis index and phagocytic rate of haemocyte, the rising of lysozyme, PO, NOS activities and nitric oxide concentration (P < 0.05). Therefore, it was concluded that HSE had great potential to develop into feed additive of crabs, which could enhance the innate immunity of Chinese mitten crabs E. sinensis effectively after A. hydrophila infection.
Collapse
Affiliation(s)
- Zhilong Zhao
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China
| | - Haijuan Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China
| | - Mengqiang Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chun Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China
| | - Pengqun Kuang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Guizhi Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China.
| | - Bianbian Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China
| | - Xiaowei Shi
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
13
|
Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson's disease model. Bioorg Med Chem Lett 2017; 27:5207-5212. [PMID: 29089232 DOI: 10.1016/j.bmcl.2017.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022]
Abstract
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a flavonoid compound isolated from Flos Chrysanthemi Indici, chrysanthemum, safflower, and Calamintha and Linaria species has been shown to have anti-cancer activity, indicating its potential clinical value in cancer treatment. In this study, we sought to study the potentials of acacetin in preventing human dopaminergic neuronal death via inhibition of 6-hydroxydopamine (6-OHDA)-induced neuronal cell death in the SH-SY5Y cells. Our results suggest that acacetin was effective in preventing 6-OHDA-induced neuronal cell death through regulation of mitochondrial-mediated cascade apoptotic cell death. Pretreatment with acacetin significantly inhibited neurotoxicity and neuronal cell death through reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) dysfunction. Acacetin also markedly acted on key molecules in apoptotic cell death pathways and reduced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3beta (GSK-3β). These results suggested that acacetin could inhibit 6-OHDA-induced neuronal cell death originating from ROS-mediated cascade apoptosis pathway. Thus, the results of our study suggest that acacetin is a potent therapeutic agent for PD progression.
Collapse
|
14
|
Wang D, Zhao X, Liu Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int J Biol Macromol 2017; 102:396-404. [DOI: 10.1016/j.ijbiomac.2017.04.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 01/03/2023]
|
15
|
Lee YR, Yeh SF, Ruan XM, Zhang H, Hsu SD, Huang HD, Hsieh CC, Lin YS, Yeh TM, Liu HS, Gan DD. Honeysuckle aqueous extract and induced let-7a suppress dengue virus type 2 replication and pathogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:109-121. [PMID: 28052239 DOI: 10.1016/j.jep.2016.12.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/07/2016] [Accepted: 12/31/2016] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honeysuckle (Lonicera japonica Thunb.), a traditional Chinese herb, has widely been used to treat pathogen infection. However, the underlying-mechanism remains elusive. AIMS OF THE STUDY To reveal the host microRNA (miRNA) profile with the anti-viral activity after honeysuckle treatment. MATERIALS AND METHODS Here we reveal the differentially expressed miRNAs by Solexa® deep sequencing from the blood of human and mice after the aqueous extract treatment. Among these overexpressed innate miRNAs both in human and mice, let-7a is able to target the NS1 region (nt 3313-3330) of dengue virus (DENV) serotypes 1, 2 and 4 predicated by the target predication software. RESULTS We confirmed that let-7a could target DENV2 at the predicated NS1 sequence and suppress DENV2 replication demonstrated by luciferase-reporter activity, RT-PCR, real-time PCR, Western blotting and plaque assay. ICR-suckling mice consumed honeysuckle aqueous extract either before or after intracranial injection with DENV2 showed decreased levels of NS1 RNA and protein expression accompanied with alleviated disease symptoms, decreased virus load, and prolonged survival time. Similar results were observed when DENV2-infected mice were intracranially injected with let-7a. CONCLUSION We reveal that honeysuckle attenuates DENV replication and related pathogenesis in vivo through induction of let-7a expression. This study opens a new direction for prevention and treatment of DENV infection through induction of the innate miRNA let-7a by honeysuckle.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Department of Medical Research, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Siao-Fen Yeh
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Xiao-Ming Ruan
- College of Biological Life Science, Nanjing University, Nanjing 210023, PR China
| | - Hao Zhang
- College of Biological Life Science, Nanjing University, Nanjing 210023, PR China
| | - Sheng-Da Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Molecular Bioinformatics Center, National Chiao Tung University, Hsinchu, Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Dai-Di Gan
- College of Biological Life Science, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Tseng WT, Hsu YW, Pan TM. Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-SY5Y Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5995-6002. [PMID: 27431098 DOI: 10.1021/acs.jafc.6b01551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, which can be modeled using the neurotoxin 6-hydroxydopamine (6-OHDA) to generate oxidative stress. Here, we studied the effects of the antioxidants deferricoprogen (DFC) and dimerumic acid (DMA), produced by rice fermented with Monascus purpureus NTU 568, on 6-OHDA-induced apoptosis in SH-SY5Y cells and their potential protective mechanisms. DMA and DFC inhibited 6-OHDA-induced apoptosis and cellular reactive oxygen species (ROS) in SH-SY5Y human neuroblastoma cells. Molecular analysis demonstrated associated upregulation of the Ak mouse strain thymoma (Akt), heme oxygenase-1 (HO-1), and signal-regulated kinase (ERK) pathways along with inhibited phosphorylation of c-Jun N-terminal kinase (JNK) and p38 pathways and altered homodimeric glycoprotein, N-methyl-d-aspartate (NMDA) receptor, and immunoglobulin Fc receptor gene expression. These results suggested that the neuroprotection elicited by DMA and DFC against 6-OHDA-induced neurotoxicity was associated with the Akt, MAPK, and HO-1 pathways via regulating the gene expression of NMDA receptor, homodimeric glycoprotein, and immunoglobulin Fc receptor.
Collapse
Affiliation(s)
- Wei-Ting Tseng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ya-Wen Hsu
- SunWay Biotechnology Company , No. 139, Xing'ai Road, Taipei 11494, Taiwan
| | - Tzu-Ming Pan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- SunWay Biotechnology Company , No. 139, Xing'ai Road, Taipei 11494, Taiwan
| |
Collapse
|
17
|
Lonicerae Japonicae Flos and Lonicerae Flos: A Systematic Pharmacology Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:905063. [PMID: 26257818 PMCID: PMC4519546 DOI: 10.1155/2015/905063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/23/2015] [Indexed: 12/02/2022]
Abstract
Lonicerae japonicae flos, a widely used traditional Chinese medicine (TCM), has been used for several thousand years in China. Chinese Pharmacopeia once included Lonicerae japonicae flos of Caprifoliaceae family and plants of the same species named Lonicerae flos in general in the same group. Chinese Pharmacopeia (2005 Edition) lists Lonicerae japonicae flos and Lonicerae flos under different categories, although they have the similar history of efficacy. In this study, we research ancient books of TCM, 4 main databases of Chinese academic journals, and MEDLINE/PubMed to verify the origins and effects of Lonicerae japonicae flos and Lonicerae flos in traditional medicine and systematically summarized the research data in light of modern pharmacology and toxicology. Our results show that Lonicerae japonicae flos and Lonicerae flos are similar pharmacologically, but they also differ significantly in certain aspects. A comprehensive systematic review and a standard comparative pharmacological study of Lonicerae japonicae flos and Lonicerae flos as well as other species of Lonicerae flos support their clinical safety and application. Our study provides evidence supporting separate listing of Lonicerae japonicae flos and Lonicerae flos in Chinese Pharmacopeia as well as references for revision of relevant pharmacopeial records dealing with traditional efficacy of Lonicerae japonicae flos and Lonicerae flos.
Collapse
|
18
|
Han JM, Kim MH, Choi YY, Lee H, Hong J, Yang WM. Effects of Lonicera japonica Thunb. on Type 2 Diabetes via PPAR-γ Activation in Rats. Phytother Res 2015; 29:1616-21. [PMID: 26174209 DOI: 10.1002/ptr.5413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
Abstract
Lonicera japonica Thunb. (Caprifoliaceae) is a traditional herbal medicine and has been used to treat diabetic symptoms. Notwithstanding its use, the scientific basis on anti-diabetic properties of L. japonica is not yet established. This study is designed to investigate anti-diabetic effects of L. japonica in type 2 diabetic rats. L. japonica was orally administered at the dose of 100 mg/kg in high-fat diet-fed and low-dose streptozotocin-induced rats. After the treatment of 4 weeks, L. japonica reduced high blood glucose level and homeostatic model assessment of insulin resistance in diabetic rats. In addition, body weight and food intake were restored by the L. japonica treatment. In the histopathologic examination, the amelioration of damaged β-islet in pancreas was observed in L. japonica-treated diabetic rats. The administration of L. japonica elevated peroxisome proliferator-activated receptor gamma and insulin receptor subunit-1 protein expressions. The results demonstrated that L. japonica had anti-diabetic effects in type 2 diabetic rats via the peroxisome proliferator-activated receptor gamma regulatory action of L. japonica as a potential mechanism.
Collapse
Affiliation(s)
- Jae Min Han
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Mi Hye Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - You Yeon Choi
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Haesu Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 130-701, Korea
| | - Woong Mo Yang
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| |
Collapse
|
19
|
Kwon SH, Ma SX, Hong SI, Lee SY, Jang CG. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells. J Med Food 2015; 18:762-75. [PMID: 25897683 DOI: 10.1089/jmf.2014.3341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea.,2 Natural Products Research Center, Korea Institute of Science and Technology , Gangneung, Korea
| | - Shi-Xun Ma
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| | - Sa-Ik Hong
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| | - Seok-Yong Lee
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| | - Choon-Gon Jang
- 1 Department of Pharmacology, School of Pharmacy, Sungkyunkwan University , Suwon, Korea
| |
Collapse
|
20
|
Kuo HC, Chang HC, Lan WC, Tsai FH, Liao JC, Wu CR. Protective effects of Drynaria fortunei against 6-hydroxydopamine-induced oxidative damage in B35 cells via the PI3K/AKT pathway. Food Funct 2015; 5:1956-65. [PMID: 24971874 DOI: 10.1039/c4fo00219a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study, we demonstrate the antioxidant and protective properties of the aqueous extract of two commercial Polydiaceae plants - Drynaria fortunei (DF) and Pseudodrynaria coronans (PC) against 6-hydroxydopamine (6-OHDA)-induced oxidative damage in B35 neuroblastoma cells. The contents of their phytochemical profiles were determined by spectrophotometric methods and high performance liquid chromatography using a photodiode array detector. DF extract showed better effects than PC extract in scavenging ROS and inhibiting 6-OHDA autoxidation. Following exposure to 6-OHDA, B35 cells showed a marked decrease in cell survival and the activation of intracellular antioxidant enzymes and the PI3K/AKT pathway, and then an increased level of lipid peroxidation. Pretreatment with DF extract blocked these 6-OHDA-induced cellular events. Naringin and epicatechin are major components of DF extract. These results show that DF extract exerts protective effects against 6-OHDA toxicity via radical scavenging activity and an increase in the activation of the PI3K/AKT pathway to elevate the levels of intracellular antioxidant enzymes including HO-1, NQO-1 and glutathione-related enzymes.
Collapse
Affiliation(s)
- Hui-Chun Kuo
- The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, No.91, Hsueh Shih Road, Taichung, 40402, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
21
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
22
|
Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem Int 2014; 74:53-64. [DOI: 10.1016/j.neuint.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
|
23
|
Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, Seok H, Choi H, Lee DG, Kim JI, Kim H. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem Biophys Res Commun 2014; 448:292-7. [PMID: 24796676 DOI: 10.1016/j.bbrc.2014.04.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022]
Abstract
We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH2-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson's disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27(Kip1) protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27(Kip1) significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27(Kip1) degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.
Collapse
Affiliation(s)
- Dae Hong Kim
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, South Korea
| | - Ik Hwan Lee
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, South Korea
| | - Seung Taek Nam
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, South Korea
| | - Ji Hong
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, South Korea
| | - Peng Zhang
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, South Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707, South Korea
| | - Heon Seok
- Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo 367-700, South Korea
| | - Hyemin Choi
- School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701, South Korea
| | - Dong Gun Lee
- School of Life Sciences, KNU Creative Bioresearch Group (BK21 Plus Program), College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701, South Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | - Ho Kim
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, South Korea.
| |
Collapse
|
24
|
Yurinskaya MM, Vinokurov MG, Grachev SV, Astashkin EI. Actovegin reduces the hydrogen peroxide-induced cell apoptosis of SK-N-SH neuroblastoma by means of p38MAPK and PI-3K inhibition. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 456:215-217. [PMID: 24985520 DOI: 10.1134/s0012496614030132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 06/03/2023]
Affiliation(s)
- M M Yurinskaya
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | |
Collapse
|
25
|
Kwon SH, Ma SX, Hong SI, Kim SY, Lee SY, Jang CG. Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:173-182. [PMID: 24440915 DOI: 10.1016/j.jep.2013.12.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eucommia ulmoides Oliv. Bark. (EUE) has commonly been used to fortify the muscles and lungs, lower blood pressure, prevent miscarriage, improve liver and kidney tone, and promote longevity as a traditional tonic medicine in Korea, China, and Japan. AIM OF THE STUDY In this study, we investigated the mechanisms by which EUE protects neuronal cells from apoptosis induced by the Parkinson's disease (PD)-related neurotoxin, 6-hydroxydopamine (6-OHDA). MATERIALS AND METHODS We determined the neuroprotective effects of EUE on 6-OHDA-induced neuronal cell death, cytotoxicity, reactive oxygen species (ROS) production, and mitochondrial membrane dysfunction. Moreover, we examined whether EUE suppressed phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β). Furthermore, the neuroprotective effects of EUE on 6-OHDA-induced activation of nuclear factor-kappa B (NF-κB) was studied in SH-SY5Y cells. RESULTS Pretreatment of SH-SY5Y cells with EUE significantly reduced 6-OHDA-induced cell death and cytotoxicity. EUE inhibited 6-OHDA-induced generation of ROS, which conferred cytoprotection against 6-OHDA-induced oxidative injury. EUE treatment also strikingly inhibited 6-OHDA-induced mitochondrial dysfunction. In addition, EUE suppressed phosphorylation of JNK, PI3K/Akt, and GSK-3β. Furthermore, EUE blocked 6-OHDA-induced NF-κB nuclear translocation, an event downstream from JNK, PI3K/Akt, and GSK-3β phosphorylation. Moreover, chlorogenic acid (CGA), one of the active constituents of EUE, was also able to reduce 6-OHDA-induced toxicity in SH-SY5Y cells. CONCLUSION Taken together, these results suggest that EUE attenuates oxidative stress through activation of JNK, PI3K/Akt, GSK-3β, and NF-κB pathways, thereby protecting cells from neuronal cell death.
Collapse
Affiliation(s)
- Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, 406-840, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
26
|
Wang YH, Yu HT, Pu XP, Du GH. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells. J Mol Neurosci 2014; 53:562-70. [PMID: 24510749 DOI: 10.1007/s12031-013-0222-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/25/2013] [Indexed: 12/17/2022]
Abstract
Advanced glycation end products (AGEs) have been identified in age-related intracellular protein deposits of neurodegenerative diseases. Methylglyoxal (MGO), a dicarbonyl metabolite, is a major precursor of AGEs which have been linked to the development of neurodegenerative diseases. Myricitrin, a flavanoid isolated from the root bark of Myrica cerifera, attenuated 6-OHDA-induced mitochondrial dysfunction and had a potential anti-Parkinson's disease in our previous investigation. The aims of this study were to investigate the protective effects of myricitrin against MGO-induced injury in SH-SY5Y cells and also to look for the possible mechanisms. The results showed that exposure of SH-SY5Y cells to MGO caused decreases of cell viability, intracellular ATP, mitochondrial redox activity, and mitochondrial membrane potential and an increase in reactive oxygen species generation. However, these mitochondrial dysfunctions were alleviated by co-treatment with myricitrin. Additionally, myricitrin was capable of inhibiting AGEs formation, blocking RAGE expression, and inhibiting NF-κB activation and translocation triggered by MGO in SH-SY5Y cells. Our results suggest that myricitrin alleviates MGO-induced mitochondrial dysfunction, and the possible mechanism is through modulating the AGEs/RAGE/NF-κB pathway. In summary, myricitrin might offer a promising therapeutic strategy to reduce the neurotoxicity of reactive dicarbonyl compounds, providing a potential benefit agent with age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue-Hua Wang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | | | | | | |
Collapse
|
27
|
Zhang L, Li X, Zheng W, Fu Z, Li W, Ma L, Li K, Sun L, Tian J. Proteomics analysis of UV-irradiated Lonicera japonica Thunb. with bioactive metabolites enhancement. Proteomics 2013; 13:3508-22. [PMID: 24167072 DOI: 10.1002/pmic.201300212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/29/2013] [Accepted: 10/11/2013] [Indexed: 11/08/2022]
Abstract
A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)-A or UV-B irradiation. To clarify the UV-responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI-TOF/TOF MS was employed. Seventy-five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic-related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport-related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase and 5-enol-pyruvylshikimate-phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV-responsive proteins in L. japonica.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory for Biomedical Engineering, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yoon SW, Jeong JS, Kim JH, Aggarwal BB. Cancer Prevention and Therapy: Integrating Traditional Korean Medicine Into Modern Cancer Care. Integr Cancer Ther 2013; 13:310-31. [PMID: 24282099 DOI: 10.1177/1534735413510023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In spite of billions of dollars spent on cancer research each year, overall cancer incidence and cancer survival has not changed significantly in the last half century. Instead, the recent projection from the World Health Organization suggests that global cancer incidence and death is expected to double within the next decade. This requires an "out of the box" thinking approach. While traditional medicine used for thousands of years is safe and affordable, its efficacy and mechanism of action are not fully reported. Demonstrating that traditional medicine is efficacious and how it works can provide a "bed to bench" and "bench to bed" back approach toward prevention and treatment of cancer. This current review is an attempt to describe the contributions of traditional Korean medicine (TKM) to modern medicine and, in particular, cancer treatment. TKM suggests that cancer is an outcome of an imbalance of body, mind, and spirit; thus, it requires a multimodal treatment approach that involves lifestyle modification, herbal prescription, acupuncture, moxibustion, traditional exercise, and meditation to restore the balance. Old wisdoms in combination with modern science can find a new way to deal with the "emperor of all maladies."
Collapse
Affiliation(s)
- Seong Woo Yoon
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Jong Soo Jeong
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Ji Hye Kim
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Bharat B Aggarwal
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Meng XB, Sun GB, Wang M, Sun J, Qin M, Sun XB. P90RSK and Nrf2 Activation via MEK1/2-ERK1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:971712. [PMID: 24159358 PMCID: PMC3789498 DOI: 10.1155/2013/971712] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/27/2013] [Accepted: 08/12/2013] [Indexed: 01/13/2023]
Abstract
6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24 h with 20 μ M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in the activation of P90RSK, inactivation of BAD, and inhibition of 6-OHDA-induced mitochondrial membrane depolarization, thus preventing the mitochondrial apoptosis pathway. NGR2 incubation also led to the activation of Nrf2 and subsequent activity enhancement of phase II detoxifying enzymes, thus suppressing 6-OHDA-induced oxidative stress, and these effects could be removed by Nrf2 siRNA. We also found that the upstream activators of P90RSK and Nrf2 were the MEK1/2-ERK1/2 pathways but not the JNK, P38, or PI3K/Akt pathways. Interestingly, NGR2 incubation could also activate MEK1/2 and ERK1/2. Most importantly, NGR2-mediated P90RSK and Nrf2 activation, respective downstream target activation, and neuroprotection were reversed by the genetic silencing of MEK1/2 and ERK1/2 by using siRNA and PD98059 application. These results suggested that the neuroprotection elicited by NGR2 against 6-OHDA-induced neurotoxicity was associated with NGR2-mediated P90RSK and Nrf2 activation through MEK1/2-ERK1/2 pathways.
Collapse
Affiliation(s)
- Xiang-Bao Meng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Gui-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jing Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meng Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiao-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
30
|
Tovilovic G, Zogovic N, Soskic V, Schrattenholz A, Kostic-Rajacic S, Misirkic-Marjanovic M, Janjetovic K, Vucicevic L, Arsikin K, Harhaji-Trajkovic L, Trajkovic V. Arylpiperazine-mediated activation of Akt protects SH-SY5Y neuroblastoma cells from 6-hydroxydopamine-induced apoptotic and autophagic death. Neuropharmacology 2013; 72:224-35. [DOI: 10.1016/j.neuropharm.2013.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/11/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022]
|
31
|
Nam ST, Kim DH, Lee MB, Nam HJ, Kang JK, Park MJ, Lee IH, Seok H, Lee DG, Hwang JS, Kim H. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis. Biochem Biophys Res Commun 2013; 437:35-40. [DOI: 10.1016/j.bbrc.2013.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
32
|
Xiao ZP, Wang XD, Peng ZY, Huang S, Yang P, Li QS, Zhou LH, Hu XJ, Wu LJ, Zhou Y, Zhu HL. Molecular docking, kinetics study, and structure-activity relationship analysis of quercetin and its analogous as Helicobacter pylori urease inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10572-10577. [PMID: 23067328 DOI: 10.1021/jf303393n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It was disclosed in our group for the first time that the flavonoids in Lonicera japonica Thunb. are related to its therapy for gastric ulcer. Based on this finding, 20 flavonoids were selected for Helicobacter pylori urease inhibitory activity evaluation, and quercetin showed excellent potency with IC(50) of 11.2 ± 0.9 μM. Structure-activity relationship analysis revealed that removal of the 5-, 3-, or 3'-OH in quercetin led to a sharp decrease in activity. Thus, 3- and 5-OH as well as 3',4'-dihydroxyl groups are believed to be the key structural characteristics for active compounds, which was supported by the molecular docking study. Meanwhile, the results obtained from molecular docking and enzymatic kinetics research strongly suggested that quercetin is a noncompetitive urease inhibitor, indicating that quercetin may be able to tolerate extensive structural modification irrespective of the shape of the active site cavity and could be used as a lead candidate for the development of novel urease inhibitors.
Collapse
Affiliation(s)
- Zhu-Ping Xiao
- College of Chemistry and Chemical Engineering, and Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Jishou 416000, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|