1
|
Nittayananta W, Srichana T, Chuerduangphui J, Hitakomate E, Netsomboon K. Formulation of 1% α-mangostin in orabase gel induces apoptosis in oral squamous cell carcinoma. BMC Complement Med Ther 2024; 24:276. [PMID: 39033112 PMCID: PMC11264970 DOI: 10.1186/s12906-024-04450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Plant-derived compounds have chemopreventive properties to be used as alternative medicine. Pericarp of Mangosteen (Garcinia mangostana Linn.), a tropical fruit in Southeast Asia contains a phytochemical α-mangostin (α-MG) that demonstrates potent anticancer effects against various types of cancer. α-MG has been reported to be the most effective agent in human cancer cell lines. The objectives of this study were to develop oral gel formulations containing α-MG and determine their (1) anticancer activity, (2) anti-HPV-16 and antimicrobial activities, (3) nitric oxide (NO) inhibitory activity, and (4) wound healing effect. METHODS Formulations of oral gel containing α-MG were developed. Anticancer activity on SCC-25 was assessed. Apoptotic induction was determined using flow cytometry technique. Antiviral activity against HPV-16 pseudovirus and antimicrobial activity against S. mutans, P. gingivalis and C. albicans were investigated. NO inhibition was carried out. Fibroblast cell migration was determined by in vitro scratch assay. RESULTS The formulation of 1% α-MG in orabase gel demonstrated anticancer activity by promoting apoptosis in SCC-25. The induction of apoptotic activity was dose dependent with pronounced effect in late apoptosis. The formulation appeared to reduce cell viability of oral keratinocytes (OKC). At CC50 it showed an inhibition against HPV-16 pseudovirus infection. The formulation had no antimicrobial activity against S. mutans, P. gingivalis and C. albicans. No significant NO inhibitory activity and wound healing effects were found. CONCLUSIONS 1% α-MG in orabase gel exhibited anticancer activity by inducing apoptosis although low level of cytotoxicity observed in OKC was present. The appropriate carrier for novel nano-particles targeting cancer cells should be further investigated.
Collapse
Affiliation(s)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | | - Kesinee Netsomboon
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
2
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
3
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Setyawati LU, Nurhidayah W, Khairul Ikram NK, Mohd Fuad WE, Muchtaridi M. General toxicity studies of alpha mangostin from Garcinia mangostana: A systematic review. Heliyon 2023; 9:e16045. [PMID: 37215800 PMCID: PMC10196863 DOI: 10.1016/j.heliyon.2023.e16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Alpha mangostin (AM), the main xanthone derivative contained in mangosteen pericarp (Garcinia mangostana/GM), has many pharmacological activities such as antioxidant, antiproliferation, antiinflammatory, and anticancer. Several general toxicity studies of AM have been previously reported to assess the safety profile of AM. Toxicity studies were carried out by various methods such as on test animals, interventions, and various routes of administration, but the test results have not been well documented. Our study aimed to systematically summarizes research on the safety profile of GM containing AM through general toxicity tests to get the LD50 and NOAEL values, and so, can be used as a database related to AM toxicity profiles. This could facilitate other researchers in determining further development of GM-or-AM-based products. Pubmed, Google scholar, ScienceDirect, and EBSCO were chosen to collect the articles while ARRIVE 2.0 was used to evaluate the quality and risk-of-bias of the in vivo toxicity studies included in this systematic review. A total of 20 articles met the eligibility criteria and were reviewed to predict the LD50 and NOAEL of AM. The results showed that the LD50 of AM is between >15.480 mg/kgBW to ≤6000 mg/kgBW while the NOAEL value is between <100 and ≤2000 mg/kgBW.
Collapse
Affiliation(s)
- Luthfi Utami Setyawati
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| | - Wiwit Nurhidayah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, 45363 Sumedang, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Indonesia
| |
Collapse
|
5
|
The Polyphenols α-Mangostin and Nordihydroguaiaretic Acid Induce Oxidative Stress, Cell Cycle Arrest, and Apoptosis in a Cellular Model of Medulloblastoma. Molecules 2021; 26:molecules26237230. [PMID: 34885809 PMCID: PMC8659270 DOI: 10.3390/molecules26237230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is a common malignant brain tumor in the pediatric age. The current therapeutics present serious collateral effects. Polyphenols α-mangostin and nordihydroguaiaretic acid (NDGA) exert potent antitumoral activity in different cancer models, although their antitumoral effects have not been described in medulloblastoma cells yet. This study aimed to examine the proapoptotic effects of these polyphenols on human medulloblastoma cells. Medulloblastoma cell line Daoy was incubated with increasing concentrations of α-mangostin or NDGA for 24 h. The cell viability was analyzed using crystal violet and trypan blue dyes. Determination of the glutathione (GSH)/glutathione disulfide (GSSG) ratio and levels of carbonylated proteins was performed to evaluate the oxidative stress. Cell cycle progression and induction of cell death by fluorochrome-couple and TUNEL assays were evaluated using flow cytometry assays. Individual treatments with α-mangostin or NDGA decreased the viability of Daoy cells in a dose-dependent manner, inducing G2/M and S-G2/M cell cycle arrest, respectively. Both polyphenols induced cell death and increased oxidative stress. Very interestingly, α-mangostin showed more potent effects than NDGA. Our results indicate that α-mangostin and NDGA exert important cytostatic and cytotoxic effects in the Daoy cell line. These data highlight the potential usefulness of these compounds as an alternative strategy in medulloblastoma treatment.
Collapse
|
6
|
Markowicz J, Uram Ł, Wołowiec S, Rode W. Biotin Transport-Targeting Polysaccharide-Modified PAMAM G3 Dendrimer as System Delivering α-Mangostin into Cancer Cells and C. elegans Worms. Int J Mol Sci 2021; 22:ijms222312925. [PMID: 34884739 PMCID: PMC8657743 DOI: 10.3390/ijms222312925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/21/2023] Open
Abstract
The natural xanthone α-mangostin (αM) exhibits a wide range of pharmacological activities, including antineoplastic and anti-nematode properties, but low water solubility and poor selectivity of the drug prevent its potential clinical use. Therefore, the targeted third-generation poly(amidoamine) dendrimer (PAMAM G3) delivery system was proposed, based on hyperbranched polymer showing good solubility, high biocompatibility and low immunogenicity. A multifunctional nanocarrier was prepared by attaching αM to the surface amine groups of dendrimer via amide bond in the ratio 5 (G32B12gh5M) or 17 (G32B10gh17M) residues per one dendrimer molecule. Twelve or ten remaining amine groups were modified by conjugation with D-glucoheptono-1,4-lactone (gh) to block the amine groups, and two biotin (B) residues as targeting moieties. The biological activity of the obtained conjugates was studied in vitro on glioma U-118 MG and squamous cell carcinoma SCC-15 cancer cells compared to normal fibroblasts (BJ), and in vivo on a model organism Caenorhabditis elegans. Dendrimer vehicle G32B12gh at concentrations up to 20 µM showed no anti-proliferative effect against tested cell lines, with a feeble cytotoxicity of the highest concentration seen only with SCC-15 cells. The attachment of αM to the vehicle significantly increased cytotoxic effect of the drug, even by 4- and 25-fold for G32B12gh5M and G32B10gh17M, respectively. A stronger inhibition of cells viability and influence on other metabolic parameters (proliferation, adhesion, ATP level and Caspase-3/7 activity) was observed for G32B10gh17M than for G32B12gh5M. Both bioconjugates were internalized efficiently into the cells. Similarly, the attachment of αM to the dendrimer vehicle increased its toxicity for C. elegans. Thus, the proposed α-mangostin delivery system allowed the drug to be more effective in the dendrimer-bound as compared to free state against both cultured the cancer cells and model organism, suggesting that this treatment is promising for anticancer as well as anti-nematode chemotherapy.
Collapse
Affiliation(s)
- Joanna Markowicz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland;
- Correspondence: (J.M.); (W.R.)
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959 Rzeszow, Poland;
| | - Stanisław Wołowiec
- Medical College, Rzeszow University, 1a Warzywna Str., 35-310 Rzeszow, Poland;
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
- Correspondence: (J.M.); (W.R.)
| |
Collapse
|
7
|
Adenina S, Louisa M, Soetikno V, Arozal W, Wanandi SI. The Effect of Alpha Mangostin on Epithelial-Mesenchymal Transition on Human Hepatocellular Carcinoma HepG2 Cells Surviving Sorafenib via TGF-β/Smad Pathways. Adv Pharm Bull 2020; 10:648-655. [PMID: 33062605 PMCID: PMC7539313 DOI: 10.34172/apb.2020.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: This study was intended to find out the impact of alpha mangostin administration on the epithelial-mesenchymal transition (EMT) markers and TGF-β/Smad pathways in hepatocellular carcinoma Hep-G2 cells surviving sorafenib. Methods: Hepatocellular carcinoma HepG2 cells were treated with sorafenib 10 μM. Cells surviving sorafenib treatment (HepG2surv) were then treated vehicle, sorafenib, alpha mangostin, or combination of sorafenib and alpha mangostin. Afterward, cells were observed for their morphology with an inverted microscope and counted for cell viability. The concentrations of transforming growth factor (TGF)-β1 in a culture medium were examined using ELISA. The mRNA expressions of TGF-β1, TGF-β1-receptor, Smad3, Smad7, E-cadherin, and vimentin were evaluated using quantitative reverse transcriptase–polymerase chain reaction. The protein level of E-cadherin was also determined using western blot analysis. Results: Treatment of alpha mangostin and sorafenib caused a significant decrease in the viability of sorafenib-surviving HepG2 cells versus control (both groups with P <0.05). Our study found that alpha mangostin treatment increased the expressions of vimentin (P <0.001 versus control). In contrast, alpha mangostin treatment tends to decrease the expressions of Smad7 and E-cadherin (both with P >0.05). In line with our findings, the expressions of TGF-β1 and Smad3 are significantly upregulated after alpha mangostin administration (both with P <0.05) versus control. Conclusion: Alpha mangostin reduced cell viability of sorafenib-surviving HepG2 cells; however, it also enhanced epithelial–mesenchymal transition markers by activating TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Syarinta Adenina
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics Faculty of Medicine, Universitas Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics Faculty of Medicine, Universitas Indonesia
| | - Wawaimuli Arozal
- Department of Pharmacology and Therapeutics Faculty of Medicine, Universitas Indonesia
| | | |
Collapse
|
8
|
Chandra Boinpelly V, Verma RK, Srivastav S, Srivastava RK, Shankar S. α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. J Cell Mol Med 2020; 24:11343-11354. [PMID: 32830433 PMCID: PMC7576287 DOI: 10.1111/jcmm.15731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer‐related mortality. Recent studies have stated that Notch signalling is highly activated in cancer stem cells (CSCs) and plays an important role in the development and progression of CRC. Like normal colorectal epithelium, CRCs are organized hierarchically and include populations of CSCs. In order to enhance the biological activity of α‐mangostin, we formulated α‐mangostin‐encapsulated PLGA nanoparticles (Mang‐NPs) and examined the molecular mechanisms by which Mang‐NPs inhibit CRC cell viability, colony formation, epithelial‐mesenchymal transition (EMT) and induce apoptosis. Mang‐NPs inhibited cell viability, colony formation and induced apoptosis. Mang‐NPs also inhibited EMT by up‐regulating E‐cadherin and inhibiting N‐cadherin and transcription factors Snail, Slug and Zeb1. As dysregulated signalling through the Notch receptors promotes oncogenesis, we measured the effects of Mang‐NPs on Notch pathway. Mang‐NPs inhibited Notch signalling by suppressing the expression of Notch receptors (Notch1 and Notch2), their ligands (Jagged 1 and DLL4), γ‐secretase complex protein (Nicastrin) and downstream target (Hes‐1). Notch receptor signalling regulates cell fate determination in stem cell population. Finally, Mang‐NPs inhibited the self‐renewal capacity of CSCs, stem cell markers (CD133, CD44, Musashi and LGR5) and pluripotency maintaining factors (Oct4, Sox‐2, KLF‐4, c‐Myc and Nanog). Overall, our data suggest that Mang‐NPs can inhibit CRC growth, EMT and CSCs’ population by suppressing Notch pathway and its target. Therefore, Mang‐NPs can be used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
| | | | - Sudesh Srivastav
- Department of Biostatistics and Data ScienceSchool of Public Health and Tropical MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Rakesh K. Srivastava
- Kansas City VA Medical CenterKansas CityMOUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Sharmila Shankar
- Kansas City VA Medical CenterKansas CityMOUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
9
|
Bissoli I, Muscari C. Doxorubicin and α-Mangostin oppositely affect luminal breast cancer cell stemness evaluated by a new retinaldehyde-dependent ALDH assay in MCF-7 tumor spheroids. Biomed Pharmacother 2020; 124:109927. [PMID: 31982725 DOI: 10.1016/j.biopha.2020.109927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
According to cancer stem cell theory, only a limited number of self-renewing and cloning cells are responsible for tumor relapse after a period of remittance. The aim of the present study was to investigate the effects of Doxorubicin and α-Mangostin, two antiproliferative drugs, on both tumor bulk and stem cells in multicellular tumor spheroids originated from the luminal MCF-7 breast cancer cell line. A new and original fluorimetric assay was used to selectively measure the activity of the retinaldehyde-dependent isoenzymes of aldehyde dehydrogenase (RALDH), which are markers of a subpopulation of breast cancer stem cells. The administration of 5 μg/ml (12.2 μM) α-Mangostin for 48 h provoked: i) a marked disaggregation of the spheroids, leading to a doubling of their volume (p < 0.01), ii) a 40 % decrease in cell viability (p < 0.01), evaluated by the acid phosphatase assay, and iii) a reduction by more than 90 % of RALDH activity. By contrast, Doxorubicin given for 48 h in the range of 0.1-40 μM did not significantly reduce cell viability and caused only a modest modification of the spheroid morphology. Moreover, 40 μM Doxorubicin increased RALDH activity 2.5-fold compared to the untreated sample. When the two drugs were administered together using 5 μg/ml α-Mangostin, the IC50 of Doxorubicin referred to cell viability decreased six-fold and the RALDH activity was further reduced. In conclusion, the combined administration of Doxorubicin and α-Mangostin provoked a significant cytotoxicity and a remarkable inhibition of RALDH activity in MCF-7 tumor spheroids, suggesting that these drugs could be effective in reducing cell stemness in luminal breast cancer.
Collapse
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Ibraheem Z, Basir R, Majid R, Alapid A, Sedik H, Sabariah MN, Faruq M, Chin V. In vitro antiplasmodium and chloroquine resistance reversal effects of mangostin. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_510_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Suwanseree V, Phansiri S, Yapwattanaphun C. A comparison of callus induction in 4 Garcinia species. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
12
|
Biological properties in relation to health promotion effects of Garcinia mangostana (queen of fruit). JOURNAL OF HEALTH RESEARCH 2018. [DOI: 10.1108/jhr-08-2018-043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose
For the prevention and cure of disease, patient use various types of chemical and drug agents. Along with their curative effect, almost all drugs have some destructive effects and side-effects. Due to the minimal and/or none of unwanted side-effect, recently, the use of herbal remedy as the drug of choice becomes the preference choice. The mangosteen, Garcinia mangostana, contains various types of polyphenols. It has been used as a traditional medicine from the ancient times till present days. The purpose of this paper is to investigate the biological properties of mangosteen in relation to health promotion effects.
Design/methodology/approach
Several research papers from well-known database (such as PubMed, Google scholar, Scopus and Sciencedirect) were reviewed without considering publication-times to understand the biological properties of mangosteen.
Findings
Mangosteen and its xanthone exerted diverse biological activities such as anti-oxidant, anti-inflammatory, anti-allergy, anti-bacteria, anti-fungal, anti-malaria, anticancer and anti-diabetes.
Originality/value
Based on these studies, mangosteen is beneficial dietary supplement of overall human health.
Collapse
|
13
|
Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem Toxicol 2017; 109:102-122. [PMID: 28842267 DOI: 10.1016/j.fct.2017.08.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Garcinia mangostana L. (Clusiaceae) is a tropical tree native to Southeast Asia known as mangosteen which fruits possess a distinctive and pleasant taste that has granted them the epithet of "queen of the fruits". The seeds and pericarps of the fruit have a long history of use in the traditional medicinal practices of the region, and beverages containing mangosteen pulp and pericarps are sold worldwide as nutritional supplements. The main phytochemicals present in the species are isoprenylated xanthones, a class of secondary metabolites with multiple reports of biological effects, such as antioxidant, pro-apoptotic, anti-proliferative, antinociceptive, anti-inflammatory, neuroprotective, hypoglycemic and anti-obesity. The diversity of actions displayed by mangosteen xanthones shows that these compounds target multiple signaling pathways involved in different pathologies, and place them as valuable sources for developing new drugs to treat chronic and degenerative diseases. This review article presents a comprehensive update of the toxicological findings on animal models, and the preclinical anticancer, analgesic, neuroprotective, antidiabetic and hypolipidemic effects of G. mangostana L. extracts and its main isolates. Pharmacokinetics, drug delivery systems and reports on dose-finding human trials are also examined.
Collapse
Affiliation(s)
- Berenice Ovalle-Magallanes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Dianelena Eugenio-Pérez
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
14
|
Abstract
Mangosteen (Garcinia mangostana Linn.) is a well-known tropical tree indigenous to Southeast Asia. Its fruit's pericarp abounds with a class of isoprenylated xanthones which are referred as mangostins. Numerous in vitro and in vivo studies have shown that mangostins and their derivatives possess diverse pharmacological activities, such as antibacterial, antifungal, antimalarial, anticarcinogenic, antiatherogenic activities as well as neuroprotective properties in Alzheimer's disease (AD). This review article provides a comprehensive review of the pharmacological activities of mangostins and their derivatives to reveal their promising utilities in the treatment of certain important diseases, mainly focusing on the discussions of the underlying molecular targets/pathways, modes of action, and relevant structure-activity relationships (SARs). Meanwhile, the pharmacokinetics (PK) profile and recent toxicological studies of mangostins are also described for further druggability exploration in the future.
Collapse
|
15
|
Synergic Effect of α-Mangostin on the Cytotoxicity of Cisplatin in a Cervical Cancer Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7981397. [PMID: 28053694 PMCID: PMC5178369 DOI: 10.1155/2016/7981397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Cervical cancer is the second leading cause of death among Mexican women. The treatment with cis-diamminedichloroplatinum (II) (CDDP) has some serious side effects. Alpha-mangostin (α-M), has a protective effect against CDDP-induced nephrotoxicity, as well as antioxidant, antitumor, and anti-inflammatory properties. Hence, we explored the in vitro and in vivo effect of α-M on human cervical cancer cell proliferation when combined with CDDP. In vitro, The cytotoxic effect of α-M and/or CDDP was measured by the 3-(3,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium assay. Meanwhile, apoptosis, reactive oxygen species (ROS) production, and the cell cycle were determined with flow cytometry. For α-M+CDDP treatment, both a coincubation and preincubation scheme were employed. In vivo, xenotransplantation was performed in female athymic BALB/c (nu/nu) mice, and then tumor volume and body weight were measured weekly, whereas α-M interfered with the antiproliferative activity of CDDP in the coincubation scheme, with preincubation with α-M+CDDP showing significantly greater cytotoxicity than CDDP or α-M alone, significantly inhibiting average tumor volume and preventing nephrotoxicity. This effect was accompanied by increased apoptosis and ROS production by HeLa cervical cancer cells, as well as an arrest in the cell cycle. These results suggest that α-M may be useful as a neoadjuvant agent in cervical cancer therapy.
Collapse
|
16
|
Verma RK, Yu W, Shrivastava A, Shankar S, Srivastava RK. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (Kras(G12D), and Kras(G12D)/tp53R270H) mice. Sci Rep 2016; 6:32743. [PMID: 27624879 PMCID: PMC5021984 DOI: 10.1038/srep32743] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of sonic hedgehog (Shh) in cancer stem cell (CSC) has been demonstrated with aggressiveness of pancreatic cancer. In order to enhance the biological activity of α-mangostin, we formulated mangostin-encapsulated PLGA nanoparticles (Mang-NPs) and examined the molecular mechanisms by which they inhibit human and KC mice (PdxCre;LSL-KrasG12D) pancreatic CSC characteristics in vitro, and pancreatic carcinogenesis in KPC (PdxCre;LSLKrasG12D;LSL-Trp53R172H) mice. Mang-NPs inhibited human and KrasG12D mice pancreatic CSC characteristics in vitro. Mang-NPs also inhibited EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Slug, and pluripotency maintaining factors Nanog, c-Myc, and Oct4. Furthermore, Mang-NPs inhibited the components of Shh pathway and Gli targets. In vivo, Mang-NPs inhibited the progression of pancreatic intraneoplasia to pancreatic ductal adenocarcinoma and liver metastasis in KPC mice. The inhibitory effects of Mang-NPs on carcinogenesis in KPC mice were associated with downregulation of pluripotency maintaining factors (c-Myc, Nanog and Oct4), stem cell markers (CD24 and CD133), components of Shh pathway (Gli1, Gli2, Patched1/2, and Smoothened), Gli targets (Bcl-2, XIAP and Cyclin D1), and EMT markers and transcription factors (N-cadherin, Slug, Snail and Zeb1), and upregulation of E-cadherin. Overall, our data suggest that Mang-NPs can inhibit pancreatic cancer growth, development and metastasis by targeting Shh pathway.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA
| | - Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA
| | - Anju Shrivastava
- St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA.,Department of Pathology and Laboratory Medicine, University of Missouri Kansas City, MO, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA.,Department of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
17
|
α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5352412. [PMID: 27478478 PMCID: PMC4960343 DOI: 10.1155/2016/5352412] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023]
Abstract
Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.
Collapse
|
18
|
Xia Y, Chen J, Gong C, Chen H, Sun J. α-Mangostin, a Natural Agent, Enhances the Response of NRAS Mutant Melanoma to Retinoic Acid. Med Sci Monit 2016; 22:1360-7. [PMID: 27104669 PMCID: PMC4844330 DOI: 10.12659/msm.898204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The identification and use of novel compounds alone or in combination hold promise for the fight against NRAS mutant melanoma. MATERIAL AND METHODS We screened a kinase-specific inhibitor library through combining it with α-Mangostin in NRAS mutant melanoma cell line, and verified the enhancing effect of α-Mangostin through inhibition of the tumorigenesis pathway. RESULTS Within the kinase inhibitors, retinoic acid showed a significant synergistic effect with α-Mangostin. α-Mangostin also can reverse the drug resistance of retinoic acid in RARa siRNA-transduced sk-mel-2 cells. Colony assay, TUNEL staining, and the expressions of several apoptosis-related genes revealed that a-Mangostin enhanced the effect of retinoic acid-induced apoptosis. The combination treatment resulted in marked induction of ROS generation and inhibition of the AKT/S6 pathway. CONCLUSIONS These results indicate that the combination of these novel natural agents with retinoid acid may be clinically effective in NRAS mutant melanoma.
Collapse
Affiliation(s)
- Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jing Chen
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chongwen Gong
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
19
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, Mezzetti B, Battino M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016; 21:169. [PMID: 26840292 PMCID: PMC6273426 DOI: 10.3390/molecules21020169] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| |
Collapse
|
20
|
Nugitrangson P, Puthong S, Iempridee T, Pimtong W, Pornpakakul S, Chanchao C. In vitro and in vivo characterization of the anticancer activity of Thai stingless bee (Tetragonula laeviceps) cerumen. Exp Biol Med (Maywood) 2015; 241:166-76. [PMID: 26290139 DOI: 10.1177/1535370215600102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022] Open
Abstract
Tetragonula laeviceps cerumen was sequentially extracted with 80% (v/v) methanol, dichloromethane, and hexane and also in the reverse order. By the MTT assay and the respective 50% inhibition concentration value, the most active fraction was further purified to apparent homogeneity by bioassay-guided silica gel column chromatography. α-Mangostin was identified by high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses. It had a potent cytotoxicity against the BT474, Chago, Hep-G2, KATO-III, and SW620 cell lines (IC50 values of 1.22 ± 0.03, 2.25 ± 0.20, 0.94 ± 0.01, 0.88 ± 0.16, and 1.50 ± 0.39 µmol/L, respectively). The in vitro cytotoxicity of α-mangostin against the five human cancer cell lines and primary fibroblasts was further characterized by real-time impedance-based analysis. Interestingly, α-mangostin was more cytotoxic against the cancer-derived cell lines than against the primary fibroblasts. Later, the migration assay was performed by continuously measuring the attachment of cells to the plate electrodes at the bottom of the transwell membrane. The combined caspase-3 and -7 activities were assayed by the Caspase-Glo® 3/7 kit. It showed that the cytotoxic mechanism involved caspase-independent apoptosis, while at low (non-toxic) concentrations α-mangostin did not significantly alter cell migration. Furthermore, the in vivo cytotoxicity and angiogenesis were determined by alkaline phosphatase staining in zebrafish embryos along with monitoring changes in the transcript expression level of two genes involved in angiogenesis (vegfaa and vegfr2) by quantitative real-time reverse transcriptase- polymerase chain reaction. It was found that the in vivo cytotoxicity of α-mangostin against zebrafish embryos had a 50% lethal concentration of 9.4 µM, but no anti-angiogenic properties were observed in zebrafish embryos at 9 and 12 µM even though it downregulated the expression of vegfaa and vegfr2 transcripts. Thus, α-mangostin is a major active compound with a potential anticancer activity in T. laeviceps cerumen in Thailand.
Collapse
Affiliation(s)
- Pongvit Nugitrangson
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center, National Science and Technology Development Agency, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- National Nanotechnology Center, National Science and Technology Development Agency, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Surachai Pornpakakul
- Research Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
A Method of Effectively Improved α-Mangostin Bioavailability. Eur J Drug Metab Pharmacokinet 2015; 41:605-13. [DOI: 10.1007/s13318-015-0283-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
|
22
|
Morelli CF, Biagiotti M, Pappalardo VM, Rabuffetti M, Speranza G. Chemistry of α-mangostin. Studies on the semisynthesis of minor xanthones from Garcinia mangostana. Nat Prod Res 2014; 29:750-5. [DOI: 10.1080/14786419.2014.986729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Carlo F. Morelli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Biagiotti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Valeria M. Pappalardo
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Rabuffetti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Giovanna Speranza
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
23
|
α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway. BIOMED RESEARCH INTERNATIONAL 2014; 2014:546353. [PMID: 24812621 PMCID: PMC4000937 DOI: 10.1155/2014/546353] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
α-Mangostin, a natural product isolated from the pericarp of the mangosteen fruit, has been shown to inhibit the growth of tumor cells in various types of cancers. However, the underlying molecular mechanisms are largely unclear. Here, we report that α-mangostin suppressed the viability and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells through inhibition of the PI3K/Akt pathway. Treatment of pancreatic cancer BxPc-3 and Panc-1 cells with α-mangostin resulted in loss of cell viability, accompanied by enhanced cell apoptosis, cell cycle arrest at G1 phase, and decrease of cyclin-D1. Moreover, Transwell and Matrigel invasion assays showed that α-mangostin significantly reduced the migration and invasion of pancreatic cancer cells. Consistent with these results, α-mangostin decreased the expression of MMP-2, MMP-9, N-cadherin, and vimentin and increased the expression of E-cadherin. Furthermore, we found that α-mangostin suppressed the activity of the PI3K/Akt pathway in pancreatic cancer cells as demonstrated by the reduction of the Akt phosphorylation by α-mangostin. Finally, α-mangostin significantly inhibited the growth of BxPc-3 tumor mouse xenografts. Our results suggest that α-mangostin may be potentially used as a novel adjuvant therapy or complementary alternative medicine for the management of pancreatic cancers.
Collapse
|
24
|
Peerapattana J, Otsuka K, Hattori Y, Otsuka M. Quantitative analysis ofα-mangostin in hydrophilic ointment using near-infrared spectroscopy. Drug Dev Ind Pharm 2014; 41:515-21. [DOI: 10.3109/03639045.2014.884115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Griffipavixanthone from Garcinia oblongifolia champ induces cell apoptosis in human non-small-cell lung cancer H520 cells in vitro. Molecules 2014; 19:1422-31. [PMID: 24473206 PMCID: PMC6270873 DOI: 10.3390/molecules19021422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 01/14/2023] Open
Abstract
Griffipavixanthone (GPX) is a dimeric xanthone which was isolated in a systematic investigation of Garcinia oblongifolia Champ. In this study, we investigate the effect of GPX on cell proliferation and apoptosis on human Non-small-cell lung cancer (NSCLC) cells in vitro and determine the mechanisms of its action. GPX inhibited the growth of H520 cells in dose- and time-dependent manners, with IC50 values of 3.03 ± 0.21 μM at 48 h. The morphologic characteristics of apoptosis and apoptotic bodies were observed by fluorescence microscope and transmission electron microscope. In addition, Annexin V/PI double staining assay revealed that cells in early stage of apoptosis were significantly increased upon GPX treatment dose-dependently. Rh123 staining assay indicated that GPX reduced the mitochondrial membrane potential. DCFH-DA staining revealed that intracellular ROS increased with GPX treatment. Moreover, GPX cleaved and activated caspase-3. In summary, this study showed that GPX inhibited H520 cell proliferation in dose- and time-dependent manner. Further mechanistic study indicated that GPX induced cell apoptosis through mitochondrial apoptotic pathway accompanying with ROS production. Our results demonstrate the potential application of GPX as an anti-non-small cell lung cancer agent.
Collapse
|