1
|
Wang Z, Yu ZW, Zhang Y, Wang WH, Wu XY, Liu SZ, Bin YL, Cai BP, Huang SY, Fang MJ, Qi R, Li MY, Qiu YK. Hinokione: an abietene diterpene with pancreatic β cells regeneration and hypoglycemic activity, and other derivatives with novel structures from the woods of Agathis dammara. J Nat Med 2024; 78:849-862. [PMID: 38724866 DOI: 10.1007/s11418-024-01816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 08/31/2024]
Abstract
In this study, 14 abietene and pimarene diterpenoids were isolated from the woods of Agathis dammara. Among them, 4 new compounds, dammarone A-C and dammaric acid A (1-4), were firstly reported, respectively. The structure of the new compounds was determined by HR ESI-MS and 1D/2D NMR spectroscopy, and their absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. The hypoglycemic effect of all compounds was evaluated by transgenic zebrafish model, and the structure-activity relationship was discussed. Hinokione (7, HO) has low toxicity and significant hypoglycemic effects on zebrafish, the mechanism is mainly by promoting the differentiation of zebrafish pancreatic endocrine precursor cells (PEP cells) into β cells, thereby promoting the regeneration of pancreatic β cells.
Collapse
Affiliation(s)
- Zheng Wang
- Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361001, China
| | - Zhe-Wei Yu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wen-Hui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xin-Yi Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shun-Zhi Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan-Lin Bin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Bang-Ping Cai
- Xiamen Botanical Garden, Xiamen, 361003, Fujian, China
| | - Shi-Yan Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Mei-Juan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Rong Qi
- School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ming-Yu Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ying-Kun Qiu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Sirajudeen F, Malhab LJB, Bustanji Y, Shahwan M, Alzoubi KH, Semreen MH, Taneera J, El-Huneidi W, Abu-Gharbieh E. Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives. Biomol Ther (Seoul) 2024; 32:38-55. [PMID: 38148552 PMCID: PMC10762267 DOI: 10.4062/biomolther.2023.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 12/28/2023] Open
Abstract
Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.
Collapse
Affiliation(s)
- Fazila Sirajudeen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, Aniza Yusof Y. Optimization of Pluchea indica (L.) leaf extract using ultrasound-assisted extraction and its cytotoxicity on the HT-29 colorectal cancer cell line. ULTRASONICS SONOCHEMISTRY 2023; 101:106702. [PMID: 38041881 PMCID: PMC10701412 DOI: 10.1016/j.ultsonch.2023.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
Collapse
Affiliation(s)
- Siti Aishah Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, 11200 Tanjong Bungah, Penang, Malaysia
| | - Nor Nadiah Abd Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit, Institute for Medical Research, National Institutes of Health, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Alhussein M Al-Awaadh
- Department of Agricultural Engineering, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
García-Muñoz AM, García-Guillén AI, Victoria-Montesinos D, Abellán-Ruiz MS, Alburquerque-González B, Cánovas F. Effect of the Combination of Hibiscus sabdariffa in Combination with Other Plant Extracts in the Prevention of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12112269. [PMID: 37297513 DOI: 10.3390/foods12112269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Metabolic syndrome is a complex and multifactorial disorder associated with increased risk of cardiovascular disease and type 2 diabetes, exacerbated by a sedentary lifestyle and situations such as the COVID-19 pandemic. Recent studies have shown that consumption of fruits and vegetables high in polyphenols has a protective effect, reducing cardiovascular risk. Hibiscus sabdariffa (HS) in combination with other plant extracts has recently attracted scientists' attention due to its potential use in the treatment of metabolic syndrome. This systematic review and meta-analysis examines the effects of HS in combination with other plant extracts on the prevention of metabolic syndrome, exploring their synergistic effects and potential as therapeutic agents. For this purpose, a systematic search of randomized clinical trials (RCTs) was conducted in four different databases and the data obtained were then used for a meta-analysis. Initially, the titles and abstracts of 1368 studies were read. From these, 16 studies were examined closely for their eligibility, and finally, seven RCTs with 332 participants were included in both the meta-analysis and the qualitative analysis. Our results show that HS in combination with other plant extracts improved anthropometric parameters, blood pressure, and lipid profile (low density lipoprotein cholesterol and total cholesterol) compared to a placebo control group. It is important to note that although this meta-analysis suggests that HS in combination with other plant extracts may have a beneficial effect on cardiovascular parameters, further research is needed to determine the optimal dose and intake duration.
Collapse
Affiliation(s)
- Ana María García-Muñoz
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Ana I García-Guillén
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | | | | | - Begoña Alburquerque-González
- Izpisua Lab, HiTech, Sport and Health Innovation Hub, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Fernando Cánovas
- Faculty of Medicine, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
6
|
Cintya Felipe Dos Santos E, Alves Viturino da Silva W, Carla Barbosa Machado J, Rhayanny Assunção Ferreira M, Alberto Lira Soares L. Evaluation of the Antioxidant and Antifungal Actions of the Optimized Crude Extract and Fractions from the Aerial Parts of Acanthospermum hispidum. Chem Biodivers 2023; 20:e202200905. [PMID: 36487190 DOI: 10.1002/cbdv.202200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
This study investigated the phytochemical characteristics of the aerial parts of Acanthospermum hispidum, by chromatographic and spectrophotometric methods, and evaluated the antioxidant and antifungal activities of the crude extract and polyphenol-enriched fractions of the species. The phytochemical prospection showed the presence of polyphenols from the groups of hydroxycinnamic derivatives and flavonoids in the crude extract (CE) and fractions of the aerial parts of A. hispidum. In the chromatographic analysis, it was possible to observe that the fractionation process of the CE with hexane and ethyl acetate was efficient in enriching the fractions in phenolic compounds. This enrichment provided an increase in antioxidant activity by the DPPH and ABTS methods, in which it was observed a higher antioxidant activity for EAF in the DPPH test and higher activity against the ABTS radical by the fractions AqF and RAqF. The extract and fractions were effective against Candida non-Candida albicans strains, mainly against C. glabrata, C. parapsilosis and C. krusei, acting predominantly fungicidal. The results indicate that the aerial parts of A. hispidum can serve as a basis for the development of new antioxidant and antifungal products. Moreover, the fractionation process can contribute to increasing the biological potential of the species.
Collapse
Affiliation(s)
- Ewelyn Cintya Felipe Dos Santos
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil.,Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, 50740-600, Recife, PE, Brazil
| | - Wliana Alves Viturino da Silva
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil.,Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, 50740-600, Recife, PE, Brazil
| | - Janaína Carla Barbosa Machado
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil.,Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, 50740-600, Recife, PE, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil
| | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av Prof Arthur de Sá, SN, Várzea, 50740-521, Recife-PE, Brazil
| |
Collapse
|
7
|
Rajčević N, Bukvički D, Dodoš T, Marin PD. Interactions between Natural Products-A Review. Metabolites 2022; 12:metabo12121256. [PMID: 36557296 PMCID: PMC9786035 DOI: 10.3390/metabo12121256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based natural products have been used as a source for therapeutics since the dawn of civilization. According to the World Health Organization (WHO), more than 80% of the world's population relies on traditional medicine for their primary healthcare. Numerous natural extracts, widely known in Traditional Chinese Medicine, Indian Ayurveda medicine and other practices, have led to the modern discovery and development of new drugs. Plants continuously interact with their environment, producing new compounds and ever-changing combinations of existing ones. Interestingly, some of the compounds have shown lower therapeutic activity in comparison to the extract they were isolated from. These findings suggest that the higher therapeutic activity of the source extract was due to the synergistic effect of several compounds. In other words, the total therapeutic potential of the extract cannot be explained only by the sum of its parts alone. In traditional medicine, most herbal remedies are based on a mixture of plants, and it is the interaction between different constituents that amplifies their therapeutic potential. Considering the significant influence traditional medicine has on human healthcare, knowing and studying the synergistic effect of compounds is paramount in designing smart therapeutic agents.
Collapse
|
8
|
Kamli MR, Sharaf AAM, Sabir JSM, Rather IA. Phytochemical Screening of Rosmarinus officinalis L. as a Potential Anticholinesterase and Antioxidant-Medicinal Plant for Cognitive Decline Disorders. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040514. [PMID: 35214846 PMCID: PMC8877369 DOI: 10.3390/plants11040514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/13/2023]
Abstract
The inhibition of acetylcholinesterase (AChE) by cholinergic agents has been promoted as a potent strategy for treating and managing cognitive decline disorders. A wide range of natural products has long been used as potential sources or formulations of cholinergic inhibitors. Therefore, this study aimed to evaluate different Rosmarinus officinalis L. (R. officinalis) extracts for their AChE inhibitory activity using galanthamine as a standard AChE inhibitor. In this study, the ethyl-acetate extract (at a concentration of 250 µg/mL) exhibited the greatest inhibitory effect against AChE with significant inhibition of 75%, comparable to the inhibitor galanthamine with an inhibition of 88%. Kinetic analysis revealed that the extracts could induce a mixed type of inhibition, as observed in the case of galanthamine, with the highest increased Km and decreased Vmax values in the ethyl acetate extract. The antioxidant potential of the three extracts tested was found to be in the order of ethyl-acetate > ethanol > aqueous, with IC50 values of 272 µg/mL, 387 µg/mL, and 534 µg/mL, respectively. Ethyl-acetate was found to have the highest total phenolic content in all extracts. Further, in silico study showed structural binding characterization of rosmarinic acid and carnosic acid with human AChE enzyme. Rosmarinic acid showed strong binding and formed two hydrogen-bonding interactions with Ser-293 and Arg-296. In light of this, the ethyl-acetate extract of the plant may provide some novel potential pharmacological leads for treating and managing cognitive disorders such as Alzheimer's.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Chan EWC, Wong SK, Chan HT. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rosemary (Rosmarinus officinalis L.), a culinary herb of the family Lamiaceae, has promising anticancer activity. This overview has updated the current knowledge on the chemistry and anticancer properties of rosemary extract, carnosic acid, carnosol, and rosmanol, focusing on colon and prostate cancer cells since they are the most susceptible. The information was procured from Google, Google Scholar, PubMed, PubMed Central, Science Direct, J-Stage, and PubChem. Phenolic compounds isolated from the aerial parts of R. officinalis are flavonoids, phenolic acids, diterpenes, triterpenes, terpenoids, and phenylpropanoids. Some of the compounds are new to science, to the genus, and to the species. Almost 30 compounds possess anticancer properties. Rosemary extracts contain abietane diterpenes, with carnosic acid, carnosol, and rosmanol being the most common. Their molecular structures are similar to three fused aromatic rings. Carnosic acid has a –COOH group at C20, carnosol has a lactone ring occurs across the B ring, and rosmanol has a –OH group at C7. Against colon and prostate cancer cells, the rosemary extract and diterpenes inhibited cell viability and induced apoptosis and G2/M phase cell cycle arrest. The inhibition of cell migration and adhesion has also been reported. The rosemary extract and diterpenes also inhibited colon and prostate cancer xenograft in mice. Rosemary extract is more cytotoxic than the diterpenes due to its polyphenols such as flavonoids and triterpenes. In vitro and in vivo cytotoxic activities involve different molecular targets and signalling pathways. Some prospects and areas for future research are suggested.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Siu Kuin Wong
- School of Foundation Studies, Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems (ISME), Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
10
|
Agatonovic-Kustrin S, Balyklova KS, Gegechkori V, Morton DW. HPTLC and ATR/FTIR Characterization of Antioxidants in Different Rosemary Extracts. Molecules 2021; 26:6064. [PMID: 34641608 PMCID: PMC8513062 DOI: 10.3390/molecules26196064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The effect of spontaneous fermentation by lactic acid bacteria on the extraction yield of bioactive compounds and antioxidant activity from rosemary leaf extracts was investigated using high-performance thin-layer chromatography (HPTLC). Brining and spontaneous fermentation with lactic acid bacteria more than doubled extraction of polyphenolics and antioxidants from the rosemary leaves. The results show that lactic acid fermentation enhances antioxidant activity in extracts by increasing the total phenolic content but does not increase extraction of phytosterols. Increased extraction of phenolic oxidants during fermentation assisted extraction, results from the in situ generated natural eutectic solvent from the plant sample. ATR-FTIR spectra from the bioactive bands suggests that this increased antioxidant activity is associated with increased extraction of rosmarinic acid, depolymerised lignin, abietane diterpenoids and 15-hydroxy-7-oxodehydroabietic acid.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (K.S.B.); (V.G.); (D.W.M.)
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Ksenia S. Balyklova
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (K.S.B.); (V.G.); (D.W.M.)
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (K.S.B.); (V.G.); (D.W.M.)
| | - David W. Morton
- Department of Pharmaceutical and Toxicological Chemistry named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (K.S.B.); (V.G.); (D.W.M.)
- School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
11
|
Urquiza-López A, Álvarez-Rivera G, Ballesteros-Vivas D, Cifuentes A, Del Villar-Martínez AA. Metabolite Profiling of Rosemary Cell Lines with Antiproliferative Potential against Human HT-29 Colon Cancer Cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:319-325. [PMID: 34264453 DOI: 10.1007/s11130-021-00892-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Rosemary (Rosmarinus officinalis) is a culinary and medicinal plant used in food and pharmaceutical industry. The wide range of biological activities is mainly related to phenolic and terpenic compounds; like carnosic acid (CA), carnosol (CS) and rosmarinic acid (RA), mainly reported in rosemary leaf extracts, and recently described in rosemary callus extracts. The aim of this work was to investigate the chemical profile of rosemary cell lines and evaluate their antiproliferative potential against human HT-29 colorectal cancer cell lines. For this purpose, rosemary leaf explants were dedifferentiated on MS medium and added with 2, 4-D (2, 4-dichlorophenoxyacetic acid; 2 mg/L) and BAP (6-benzylaminopurine; 2 mg/L). Cell aggregates were separated according to colour and three rosemary cell lines cultures were established: green (RoG), yellow (RoY) and white (RoW). The chemical profile of rosemary cell lines extracts was characterized by combining HPLC and GC platforms coupled to HR-MS/MS. The antiproliferative activity against HT-29 cell line was analyzed with MTT assay. A total of 71 compounds, including hydroxycinnamic acid and hydroxybenzoic acid derivatives, flavonoids, phenolic di- and triterpenes, as well as relevant unsaturated fatty acids and their esters, phytosterols, and carotenoids were tentatively identified in the extract of the target cell lines. The antiproliferative activity test against HT-29 cell using the MTT assay revealed that the viability of HT-29 colon cancer cells was affected after treatment with the RoW extract (IC50 of 49.63 μg/mL) at 48 h. These results showed that rosemary cell lines can also accumulate other bioactive phytochemicals with demonstrated antiproliferative potential.
Collapse
Affiliation(s)
- Araceli Urquiza-López
- Laboratorio de Biología Molecular, Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, carretera Yautepec-Jojutla Km. 6, Calle CeProBi No 8, Col. San Isidro, 62731, Yautepec, Mor, Mexico
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Diego Ballesteros-Vivas
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Carrera 30 #45-03, Bogotá D.C., 111321, Colombia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049, Madrid, Spain.
| | - Alma Angélica Del Villar-Martínez
- Laboratorio de Biología Molecular, Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, carretera Yautepec-Jojutla Km. 6, Calle CeProBi No 8, Col. San Isidro, 62731, Yautepec, Mor, Mexico.
| |
Collapse
|
12
|
Gîrd CE, Costea T, Mitran V. Evaluation of cytotoxic activity and anticancer potential of indigenous Rosemary (Rosmarinus officinalis L.) and Oregano (Origanum vulgare L.) dry extracts on MG-63 bone osteosarcoma human cell line. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:525-535. [PMID: 35024741 PMCID: PMC8848263 DOI: 10.47162/rjme.62.2.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We aimed to investigate the cytotoxic activity of indigenous Rosemary and Oregano freeze-dried extracts upon MG-63 osteosarcoma human cell line. We have determined the influence of analyzed dry extracts on cell morphology, cell survival and cell proliferation. The evaluation of dry extracts effect upon cell proliferation and viability was assessed by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) method. For cytotoxicity evaluation, Live & Dead and lactate dehydrogenase assays have been used. To further investigate the potential anticancer effect, we have studied the influence of dry extracts upon cells, by means of caspase-3/7 assay and proliferation cell nuclear antigen (PCNA) expression. Cells were incubated with extracts in the following concentration range (100–700 μg/mL) for 24 hours. According to our results, both dry extracts have shown cytotoxic effects by means of all used methods. Bone osteosarcoma cells viability significantly decreased with increasing concentration of analyzed extracts (beyond 300 μg/mL for Rosemary dry extract and only at 700 μg/mL for Oregano dry extract). According to our results, apoptosis is one of the main mechanisms involved in the cytotoxic properties of analyzed extracts. Moreover, Rosemary extract has also shown decreased expression of PCNA, when compared to control (untreated cells). Both extracts were standardized in phenolic compounds (being a rich source of flavones and phenolcarboxylic acids), so we assume that these are the main constituents involved in the cytotoxic effect. Still, further preclinical studies are needed to confirm the antitumor properties and to go deeply in the molecular mechanisms involved.
Collapse
Affiliation(s)
- Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | |
Collapse
|
13
|
Himed‐Idir H, Mouhoubi K, Siar E, Boudries H, Mansouri H, Adjeroud N, Madani K, Boulekbache‐Makhlouf L. Effect of rosemary (
Rosmarinus officinalis
L.) supplementation on fresh cheese: Physicochemical properties, antioxidant potential, and sensory attributes. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hayat Himed‐Idir
- Laboratoire De Biomathématiques, Biophysique, Biochimie Et Scientométrie, Faculté Des Sciences De La Nature Et De La Vie Université De Bejaia Bejaia Algérie
- Centre de Recherche Scientifique et Technique sur les Régions Aride (CRSTRA) Division: Phœniciculture, Biotechnologie et Valorisation des Produits et Sous‐produits du Palmier Dattier Biskra Algérie
| | - Khokha Mouhoubi
- Laboratoire De Biomathématiques, Biophysique, Biochimie Et Scientométrie, Faculté Des Sciences De La Nature Et De La Vie Université De Bejaia Bejaia Algérie
| | - El‐hocine Siar
- Institut de la Nutrition, de l’Alimentation et des Technologies Agro‐alimentaires (INATAA) Université de Constantine Constantine Algérie
| | - Halim Boudries
- Laboratoire De Biomathématiques, Biophysique, Biochimie Et Scientométrie, Faculté Des Sciences De La Nature Et De La Vie Université De Bejaia Bejaia Algérie
| | - Hafid Mansouri
- Laboratoire de contrôle de qualité et de conformité (QualiLab) Bejaia Algérie
| | - Nawel Adjeroud
- Laboratoire De Biomathématiques, Biophysique, Biochimie Et Scientométrie, Faculté Des Sciences De La Nature Et De La Vie Université De Bejaia Bejaia Algérie
| | - Khodir Madani
- Laboratoire De Biomathématiques, Biophysique, Biochimie Et Scientométrie, Faculté Des Sciences De La Nature Et De La Vie Université De Bejaia Bejaia Algérie
- Centre De Recherche En Technologies Agro‐Alimentaires (CRTAA) Bejaia Algérie
| | - Lila Boulekbache‐Makhlouf
- Laboratoire De Biomathématiques, Biophysique, Biochimie Et Scientométrie, Faculté Des Sciences De La Nature Et De La Vie Université De Bejaia Bejaia Algérie
| |
Collapse
|
14
|
Ma YY, Zhao DG, Zhang R, He X, Li BQ, Zhang XZ, Wang Z, Zhang K. Identification of bioactive compounds that contribute to the α-glucosidase inhibitory activity of rosemary. Food Funct 2020; 11:1692-1701. [PMID: 32037413 DOI: 10.1039/c9fo02448d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To investigate the bioactive compounds that contribute to the α-glucosidase inhibitory activity of rosemary, phenolics and triterpene acids were characterized and quantified using quadrupole-Orbitrap mass spectrometry and enzyme assay. Two phenolic diterpenes (carnosol and hydroxy p-quinone carnosic acid) and two triterpene acids (betulinic acid and ursolic acid) were identified as potent α-glucosidase inhibitors. Carnosol, a major diterpene in rosemary, showed significant α-glucosidase inhibitory activity with IC50 value of 12 μg mL-1, and its inhibition mode was competitive. The inhibition mechanism of carnosol on α-glucosidase was further investigated by a combination of surface plasmon resonance (SPR) spectroscopy, fluorescence quenching studies and molecular-modeling techniques. The SPR assay suggested that carnosol had a high affinity to α-glucosidase with equilibrium dissociation constant (KD) value of 72.6 M. Fluorescence quenching studies indicated that the binding between carnosol and α-glucosidase was spontaneous and mainly driven by hydrophobic forces. Molecular docking studies revealed that carnosol bound to the active site of α-glucosidase. Furthermore, the oral administration of carnosol at 30 mg kg-1 significantly reduced the postprandial blood glucose levels of normal mice. This is the first report on the α-glucosidase inhibition and hypoglycemic activity of phenolic diterpenes, and these results could facilitate the utilization of rosemary as a dietary supplement for the treatment of diabetes.
Collapse
Affiliation(s)
- Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sitarek P, Merecz-Sadowska A, Śliwiński T, Zajdel R, Kowalczyk T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers (Basel) 2020; 12:E2957. [PMID: 33066157 PMCID: PMC7601952 DOI: 10.3390/cancers12102957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
It is predicted that 1.8 million new cancer cases will be diagnosed worldwide in 2020; of these, the incidence of lung, colon, breast, and prostate cancers will be 22%, 9%, 7%, and 5%, respectively according to the National Cancer Institute. As the global medical cost of cancer in 2020 will exceed about $150 billion, new approaches and novel alternative chemoprevention molecules are needed. Research indicates that the plants of the Lamiaceae family may offer such potential. The present study reviews selected species from the Lamiaceae and their active compounds that may have the potential to inhibit the growth of lung, breast, prostate, and colon cancer cells; it examines the effects of whole extracts, individual compounds, and essential oils, and it discusses their underlying molecular mechanisms of action. The studied members of the Lamiaceae are sources of crucial phytochemicals that may be important modulators of cancer-related molecular targets and can be used as effective factors to support anti-tumor treatment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
16
|
Allegra A, Tonacci A, Pioggia G, Musolino C, Gangemi S. Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials. Nutrients 2020; 12:E1739. [PMID: 32532056 PMCID: PMC7352773 DOI: 10.3390/nu12061739] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative treatments for neoplastic diseases with new drugs are necessary because the clinical effectiveness of chemotherapy is often reduced by collateral effects. Several natural substances of plant origin have been demonstrated to be successful in the prevention and treatment of numerous tumors. Rosmarinus officinalis L. is a herb that is cultivated in diverse areas of the world. There is increasing attention being directed towards the pharmaceutical capacities of rosemary, utilized for its anti-inflammatory, anti-infective or anticancer action. The antitumor effect of rosemary has been related to diverse mechanisms, such as the antioxidant effect, antiangiogenic properties, epigenetic actions, regulation of the immune response and anti-inflammatory response, modification of specific metabolic pathways, and increased expression of onco-suppressor genes. In this review, we aim to report the results of preclinical studies dealing with the anticancer effects of rosemary, the molecular mechanisms related to these actions, and the interactions between rosemary and anticancer drugs. The prospect of utilizing rosemary as an agent in the treatment of different neoplastic diseases is discussed. However, although the use of rosemary in the therapy of neoplasms constitutes a fascinating field of study, large and controlled studies must be conducted to definitively clarify the real impact of this substance in clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
17
|
Feng X, Wu X, Wu Y, Zhao Z, Xiang C, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Critical roles of tyrosyl-DNA phosphodiesterases in cell tolerance to carnosol-induced DNA damage. Cell Biol Int 2020; 44:1640-1650. [PMID: 32301547 DOI: 10.1002/cbin.11357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 02/05/2023]
Abstract
Carnosol is a natural compound with pharmacological action due to its anti-cancer properties. However, the precise mechanism for its anti-carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double-strand breaks (DSBs). We also found that cells lacking tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1-DNA cleavage complex (TOP1cc) and TOP2-DNA cleavage complex (TOP2cc). When comparing the accumulation of γ-H2AX foci and the number of chromosomal aberrations (CAs) with wild-type (WT) cells, the susceptivity of the TDP1-/- and TDP2-/- cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti-cancer effect of carnosol.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Laila F, Fardiaz D, Yuliana ND, Damanik MRM, Nur Annisa Dewi F. Methanol Extract of Coleus amboinicus (Lour) Exhibited Antiproliferative Activity and Induced Programmed Cell Death in Colon Cancer Cell WiDr. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:9068326. [PMID: 32047805 PMCID: PMC7003269 DOI: 10.1155/2020/9068326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022]
Abstract
Coleus amboinicus(Lour) (CA) has been reported to possess many pharmacological activities. In this study, evaluation of cytotoxicity using brine shrimp lethality bioassay and MTT assay using WiDr cell lines was carried out. The expression of several genes responsible for programmed cell death of the methanol extract of CA was also investigated. The morphology of the cells undergoing apoptosis was detected using Hoechst staining assay. The gene expression of BAX, BCL2, P53, Caspase 1, 7, 8, and 9 of treated samples with different concentrations (10, 15, 25 & 50 µg/ml) were measured with RT PCR. The phytochemical profiles were investigated using LC MS. The results showed that the lethality concentration (LC50) of methanol extract using brine shrimp was 34.545 µg/ml and the extract exhibited good antiproliferative activity against cancer cells WiDr with IC50 value (8.598 ± 2.68 µg/ml) as compared to standard drug 5-fluorouracil (IC50 value 1.839 ± 0.03 µg/ml). There was apoptotic evidences from the morphology of treated cells. The expressions of BAX,P53, and Caspase 9 were upregulated in lower concentration of the extract (10 and 15 µg/ml) but downregulated in higher concentration (25 and 50 µg/ml). BCL2 as anti-apoptotic gene was downregulated in all concentrations. Caspase 1 and Caspase 7 were upregulated in high concentration (25 and 50 µg/ml), but downregulated in lower concentrations. These data provide a mode of cell death for the methanol extract of CA in low concentrations corresponding to apoptosis with intrinsic pathway. Many valuable compounds identified including caffeic acid, rosmarinic acid, malic acid, eicosapentanoic acid, benserazide, alpha-linolenic acid, betaine, Salvanolic B, 4-hydroxibenzoic acid and firulic acid have been previously reported as being active agents against many cancer cells. This study suggested that CA might become an effective ingredient for health-beneficial foods to prevent colon cancer.
Collapse
Affiliation(s)
- Farida Laila
- Department of Food Science and Technology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | - Dedi Fardiaz
- Department of Food Science and Technology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Nancy Dewi Yuliana
- Department of Food Science and Technology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - M. Rizal M. Damanik
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Fitriya Nur Annisa Dewi
- Primate Research Center, Bogor Agricultural University, Jalan Lodaya II/5, Bogor 16151, Indonesia
| |
Collapse
|
19
|
Nassazi W, K’Owino I, Makatiani J, Wachira S. Phytochemical composition, antioxidant and antiproliferative activities of Rosmarinus officinalis leaves. FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY 2020. [DOI: 10.17721/fujcv8i2p150-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phytochemicals in Rosmarinus officinalis leaves, their total phenolic content, antioxidant potential and antiproliferative activity against human prostate (DU145), colon (CT26) and cervical (HeLa 229) cancer cells were investigated. Extraction was done separately using hexane, dichloromethane, ethyl acetate and methanol. A total of 32 compounds were identified, eight of which were reported for the first time. The highest phenolic content was 476.80 ± 0.69 µg/ml for the methanolic extract which also had the highest antioxidant activity with a minimum inhibitory concentration of 5.39 ± 0.09 mg/ml. Extracts exhibited the highest toxicity against prostate cancer cells and the least against cervical cancer cells.
Collapse
|
20
|
Antioxidant and Antiproliferative Activities of Bioactive Compounds Contained in Rosmarinus officinalis Used in the Mediterranean Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7623830. [PMID: 31827560 PMCID: PMC6885246 DOI: 10.1155/2019/7623830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022]
Abstract
Background Rosmarinus officinalis (R. officinalis) is a medicinal plant called rosemary, largely used in the Mediterranean diet for many decades ago. Objective The aim of the present study was to investigate the polyphenolic content, the antioxidant activity, and the antiproliferative effect against human prostate cancer cell lines (LNCaP) of carnosol and carnosic acid as bioactive compounds contained in R. officinalis growing in Morocco. Materials and Methods Polyphenolic content of R. officinalis ethanolic extract was studied using colorimetric assay. Carnosol and carnosic acid contained in R. officinalis extract were quantified using high-performance liquid chromatography (HPLC). The antiproliferative effect of the studied extracts on LNCaP was evaluated by WST-1 bioassay, and the antioxidant activity was assessed using DPPH assay. Results The extracts of R. officinalis showed an important polyphenolic content ranging from 74.15 μg·GAE/mg to 146.63 μg·GAE/mg. The percentage of carnosol and carnosic acid in rosemary crops ranges from 11.7 to 17.3% and 1.09% to 3%, respectively. The extracts of R. officinalis exhibited a promoting antioxidant activity with IC50 ranging from 0.236 mg/mL to 0.176 mg/mL. Regarding the antiproliferative effect, the WST-1 assay revealed that all the tested extracts reduced notably the cell viability with IC50 values ranging from 14.15 to 15. 04 μg/mL. Conclusion In the current work, carnosol and carnosic acid exhibit antioxidant and antiproliferative activities in a concentration-dependent manner.
Collapse
|
21
|
The abietane diterpene taxodione contributes to the antioxidant activity of rosemary by-product in muscle tissue. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
22
|
Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep 2019; 9:808. [PMID: 30692565 PMCID: PMC6349921 DOI: 10.1038/s41598-018-37173-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is the third most common diagnosed cancer globally. Although substantial advances have been obtained both in treatment and survival rates, there is still a need for new therapeutical approaches. Natural compounds are a realistic source of new bioactive compounds with anticancer activity. Among them, rosemary polyphenols have shown a vast antiproliferative capacity against colon cancer cells in vitro and in animal models. We have investigated the antitumor activity of a rosemary extract (RE) obtained by using supercritical fluid extraction through its capacity to inhibit various signatures of cancer progression and metastasis such as proliferation, migration, invasion and clonogenic survival. RE strongly inhibited proliferation, migration and colony formation of colon cancer cells regardless their phenotype. Treatment with RE led to a sharp increase of intracellular ROS that resulted in necrosis cell death. Nrf2 gene silencing increased RE cytotoxic effects, thus suggesting that this pathway was involved in cell survival. These in vitro results were in line with a reduction of tumor growth by oral administration of RE in a xenograft model of colon cancer cells using athymic nude mice. These findings indicate that targeting colon cancer cells by increasing intracellular ROS and decreasing cell survival mechanisms may suppose a therapeutic option in colon cancer through the combination of rosemary compounds and chemotherapeutic drugs.
Collapse
|
23
|
Herranz-López M, Losada-Echeberría M, Barrajón-Catalán E. The Multitarget Activity of Natural Extracts on Cancer: Synergy and Xenohormesis. MEDICINES (BASEL, SWITZERLAND) 2018; 6:E6. [PMID: 30597909 PMCID: PMC6473537 DOI: 10.3390/medicines6010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
It is estimated that over 60% of the approved drugs and new drug developments for cancer and infectious diseases are from natural origin. The use of natural compounds as a potential source of antitumor agents has been deeply studied in many cancer models, both in vitro and in vivo. Most of the Western medicine studies are based on the use of highly selective pure compounds with strong specificity for their targets such as colchicine or taxol. Nevertheless, approximately 60% of fairly specific drugs in their initial research fail because of toxicity or ineffectiveness in late-stage preclinical studies. Moreover, cancer is a multifaceted disease that in most cases deserves a polypharmacological therapeutic approach. Complex plant-derived mixtures such as natural extracts are difficult to characterize and hardly exhibit high pharmacological potency. However, in some cases, these may provide an advantage due to their multitargeted mode of action and potential synergistic behavior. The polypharmacology approach appears to be a plausible explanation for the multigargeted mechanism of complex natural extracts on different proteins within the same signalling pathway and in several biochemical pathways at once. This review focuses on the different aspects of natural extracts in the context of anticancer activity drug development, with special attention to synergy studies and xenohormesis.
Collapse
Affiliation(s)
- María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández 03202 Elche, Spain.
| | - María Losada-Echeberría
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández 03202 Elche, Spain.
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández 03202 Elche, Spain.
| |
Collapse
|
24
|
Dienaitė L, Pukalskienė M, Matias AA, Pereira CV, Pukalskas A, Venskutonis PR. Valorization of six Nepeta species by assessing the antioxidant potential, phytochemical composition and bioactivity of their extracts in cell cultures. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
25
|
Matejczyk M, Świsłocka R, Golonko A, Lewandowski W, Hawrylik E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv Med Sci 2018; 63:14-21. [PMID: 28818744 DOI: 10.1016/j.advms.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/10/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023]
Abstract
PURPOSE The aim of this study was to examine the cytotoxic, genotoxic, antioxidant and antimicrobial activity of caffeic and rosmarinic acids and their salts with Li, Na and K with use of Escherichia coli K-12 recA:gfp strain as a model organism. METHODS Cytotoxic potency of tested chemicals were calculated on the basis on the dose that confers inhibition percentage such as 20% for each concentrations of analysed chemicals. Genotoxic properties were calculated on the basis of the fold increase (FI) of SFI values normalized with control. Antioxidant potencies were established on the base of DPPH assay. Antimicrobial activity of chemicals were established on the value of minimal inhibitory concentration (MIC). RESULTS Obtained results indicated that lower concentrations of tested compounds exhibited stronger GFP fluorescence response after rosmarinic acids and their salts treatment. Genotoxic effects seemed to be independent of the salt ions. The caffeic acid salts with Li, Na and K showed reduced genotoxic effect in comparison to the caffeic acid while increased cytotoxic effect than that of caffeic acid. Moreover, caffeinate salts exhibited better antimicrobial activity against E. coli (MIC=250μg/mL) than K caffeinate salt (MIC>500μg/mL). The MIC values of Li, Na and K rosmarinate salts were above 500μg/mL against all tested microorganisms. CONCLUSION The results of the experiment show that there is no clear positive correlation between the antioxidant potency of caffeic and rosmarinic acids and their Li, Na and K salts and their cytotoxic effect. Used salts ions Li, Na and K do not significantly affect the antioxidant effect of natural phenolic compounds and they do not have a significant impact on the biological parameters such as cyto- and genotoxicity. Perhaps it is connected with the reaction environment including polarity of the solvent (water).
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Sanitary Biology and Biotechnology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland
| | - Aleksandra Golonko
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Eliza Hawrylik
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Sanitary Biology and Biotechnology, Wiejska 45E, 15-351 Bialystok, Poland
| |
Collapse
|
26
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Braconi D, Bernardini G, Millucci L, Santucci A. Foodomics for human health: current status and perspectives. Expert Rev Proteomics 2017; 15:153-164. [PMID: 29271263 DOI: 10.1080/14789450.2018.1421072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In the post-genomic era, the opportunity to combine and integrate cutting-edge analytical platforms and data processing systems allowed the birth of foodomics, 'a discipline that studies the Food and Nutrition domains through the application of advanced omics technologies to improve consumer's well-being, health, and confidence'. Since then, this discipline has rapidly evolved and researchers are now facing the daunting tasks to meet consumers' needs in terms of food traceability, sustainability, quality, safety and integrity. Most importantly, today it is imperative to provide solid evidence of the mechanisms through which food can promote human health and well-being. Areas covered: In this review, the complex relationships connecting food, nutrition and human health will be discussed, with emphasis on the relapses for the development of functional foods and nutraceuticals, personalized nutrition approaches, and the study of the interplay among gut microbiota, diet and health/diseases. Expert commentary: Evidence has been provided supporting the role of various omic platforms in studying the health-promoting effects of food and customized dietary interventions. However, although associated to major analytical challenges, only the proper integration of multi-omics studies and the implementation of bioinformatics tools and databases will help translate findings from clinical practice into effective personalized treatment strategies.
Collapse
Affiliation(s)
- Daniela Braconi
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| | - Giulia Bernardini
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| | - Lia Millucci
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie, Chimica e Farmacia , Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
28
|
Phenolic compounds in rosemary as potential source of bioactive compounds against colorectal cancer: In situ absorption and metabolism study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Maalej A, Bouallagui Z, Hadrich F, Isoda H, Sayadi S. Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation. Biomed Pharmacother 2017; 90:179-186. [DOI: 10.1016/j.biopha.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 01/23/2023] Open
|
30
|
Pérez-Sánchez A, Borrás-Linares I, Barrajón-Catalán E, Arráez-Román D, González-Álvarez I, Ibáñez E, Segura-Carretero A, Bermejo M, Micol V. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS One 2017; 12:e0172063. [PMID: 28234919 PMCID: PMC5325326 DOI: 10.1371/journal.pone.0172063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/30/2017] [Indexed: 11/18/2022] Open
Abstract
Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category.
Collapse
Affiliation(s)
- Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology, Miguel Hernández University, Avda. Universidad s/n, Elche, Spain
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento n° 37, Armilla, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology, Miguel Hernández University, Avda. Universidad s/n, Elche, Spain
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- INVTROTECNIA S.L., Santiago Grisolía 2, Tres Cantos, Madrid, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento n° 37, Armilla, Spain
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research-CIAL (CSIC-UAM), Nicolás Cabrera 9, Campus Cantoblanco, Madrid, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, Avda. del Conocimiento n° 37, Armilla, Spain
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Engineering Department, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Vicente Micol
- Institute of Molecular and Cell Biology, Miguel Hernández University, Avda. Universidad s/n, Elche, Spain
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
- * E-mail:
| |
Collapse
|
31
|
Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells. Int J Mol Sci 2016; 17:ijms17122046. [PMID: 27941607 PMCID: PMC5187846 DOI: 10.3390/ijms17122046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022] Open
Abstract
In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116). The processes, carried out under optimal conditions, were: (1) pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent) at lab-scale; (2) Single-step supercritical fluid extraction (SFE) at pilot scale; (3) Intensified two-step sequential SFE at pilot scale; (4) Integrated PLE plus supercritical antisolvent fractionation (SAF) at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight), this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA) and carnosol (CS) at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide), suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts.
Collapse
|
32
|
Kashyap D, Kumar G, Sharma A, Sak K, Tuli HS, Mukherjee TK. Mechanistic insight into carnosol-mediated pharmacological effects: Recent trends and advancements. Life Sci 2016; 169:27-36. [PMID: 27871947 DOI: 10.1016/j.lfs.2016.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Abstract
For several decades, bioactive phytochemicals have been appreciated to prevent and cure various lethal diseases. Many studies have proven the ability of dietary phytochemicals to avoid and retard tumor initiation and progression. Among the pharmacologically active moieties, terpenoids are considered one of the most important classes. Carnosol, is also a kind of diterpenoid, which known to possess a range of therapeutic effects such as anti-cancer, anti-inflammatory, and anti-oxidant activities. All these effects are mediated via modulating different signaling cascades, including apoptosis regulating molecules (Bax/Bcl2), prosurvival-proproliferative molecules (Akt/mTOR, MAPK), transcription factors like NF-kappaB, STAT3-6, and steroid receptors, such as androgen and estrogen receptors. The present review highlights the recent trends and advancements have been done in the field of research by using carnosol.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Gaurav Kumar
- School of Biochemistry, University of Delhi, South Campus, New Delhi, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur, Himachal Pradesh 17604, India
| | - Katrin Sak
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, Estonia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Tapan K Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|
33
|
Moore J, Yousef M, Tsiani E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients 2016; 8:E731. [PMID: 27869665 PMCID: PMC5133115 DOI: 10.3390/nu8110731] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival. Compounds of plant origin, including food components, have attracted scientific attention for use as agents for cancer prevention and treatment. The exploration into natural products offers great opportunity to evaluate new anticancer agents as well as understand novel and potentially relevant mechanisms of action. Rosemary extract has been reported to have antioxidant, anti-inflammatory, antidiabetic and anticancer properties. Rosemary extract contains many polyphenols with carnosic acid and rosmarinic acid found in highest concentrations. The present review summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of rosemary extract and the rosemary extract polyphenols carnosic acid and rosmarinic acid, and their effects on key signaling molecules.
Collapse
Affiliation(s)
- Jessy Moore
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
34
|
Bahri S, Jameleddine S, Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed Pharmacother 2016; 84:569-582. [PMID: 27694001 DOI: 10.1016/j.biopha.2016.09.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/29/2016] [Accepted: 09/18/2016] [Indexed: 12/14/2022] Open
Abstract
Carnosic acid is a phenolic diterperne compound found in abundance in sage and rosemary, which are both widely used in traditional medicine. Research over the past decade indicates that carnosic acid has multiple bioactive properties including antioxidant, anti-inflammatory and anticancer activities among others. This review summarizes the current in vitro and in vivo data about the efficacy of carnosic acid in the prevention or treatment of various experimental health disorders. The analysis of the literature allows an insight into the participation of numerous signaling pathways modulated by carnosic acid, into its synergistic potential and, thus, into the divergence in cellular mechanisms of action of this molecule.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia; Laboratory of Physiopathology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta 1007, Tunis, Tunisia
| | - Vadim Shlyonsky
- Laboratory of Physiopathology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
35
|
Wiemann J, Deckelmann AM, Csuk R. A remarkably simple and convergent partial synthesis of pomolic acid. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Bai L, Zhang H, Liu Q, Zhao Y, Cui X, Guo S, Zhang L, Ho CT, Bai N. Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. Food Funct 2016; 7:2870-7. [DOI: 10.1039/c6fo00613b] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fruit of Ziziphus jujuba Mill., also called hongzao in Chinese, has a long history of cultivation in China.
Collapse
Affiliation(s)
- Lu Bai
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| | - Hai Zhang
- Laboratory Animal Center
- Fourth Military Medical University
- Xi'an
- China
| | - Qingchao Liu
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| | - Yong Zhao
- Laboratory Animal Center
- Fourth Military Medical University
- Xi'an
- China
| | - Xueqin Cui
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| | - Sen Guo
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| | - Li Zhang
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Naisheng Bai
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| |
Collapse
|
37
|
Marrelli M, Cristaldi B, Menichini F, Conforti F. Inhibitory effects of wild dietary plants on lipid peroxidation and on the proliferation of human cancer cells. Food Chem Toxicol 2015; 86:16-24. [PMID: 26408343 DOI: 10.1016/j.fct.2015.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022]
Abstract
Thirteen hydroalcoholic extracts of edible plants from Southern Italy were evaluated for their in vitro antioxidant and antiproliferative activity on three human cancer cell lines: breast cancer MCF-7, hepatic cancer HepG2 and colorectal cancer LoVo. After 48 h of incubation the most antiproliferative plant extract was rosemary (Rosmarinus officinalis L.) on LoVo cell line with IC50 of 16.60 µg/ml. Oregano (Origanum vulgare L. subsp. viridulum) showed a selective antiproliferative activity on hepatic cancer with IC50 of 32.59 µg/ml. All the extracts, with the exception of Diplotaxis tenuifolia (L.) DC., exerted antioxidant properties, the most active plants being dewberry (Rubus caesius L.) and "laprista" (Rumex conglomerates Murray) with IC50 of 4.91 and 5.53 µg/ml, respectively. Rumex conglomeratus contained the highest amount of flavonoids (15.5 mg/g) followed by Portulaca oleracea L. (11.8 mg/g). Rosmarinus officinalis contained the highest number of terpenes. Among them ketoursene (14.7%) and aristolone (11.3%) were found to be the major constituents. P. oleracea and Raphanus raphanistrum L. subsp. landra contained the highest number of sterols.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy
| | - Brigida Cristaldi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy
| | - Francesco Menichini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende (CS), Italy.
| |
Collapse
|