1
|
Zhang Q, Liu M, Zhang J, Jiang H, Ma C, Jian Y, Chen Y, Liu H, Chen H, Chen J, Sun X, Wang JS, Zhao X, Geng X, Song F, Zhou J. Macrophage MAPK7/AhR/STAT3 Signaling Mediates Mitochondrial ROS Burst and Enterohepatic Inflammatory Responses Induced by Deoxynivalenol Relevant to Low-Dose Exposure in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18589-18602. [PMID: 39376183 DOI: 10.1021/acs.est.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Deoxynivalenol (DON) can induce endoplasmic reticulum (ER) stress, mitochondrial ROS burst, and macrophage polarization. Here, we investigated the mechanism linking the above three aspects with the dose range relevant to low-level exposure in children. At 0.5 μg/kg bw/day, we found remarkable liver and gut inflammatory responses after 6-week exposure in mice age comparable to humans 7-12 years old. Through antioxidant intervention, we found that ROS played a driver role in macrophage polarization and inflammatory responses induced by DON in the liver and gut. Further bioinformatics analysis uncovered that ER stress-associated protein MAPK7 (ERK5) may bind with AhR to initiate a mitochondrial ROS burst and macrophage M1 polarization. The downstream cellular events of MAPK7-AhR interaction may be mediated by the AhR/STAT3/p-STAT(Ser727) pathway. This mechanism was further supported by DON toxicity mitigation using cyanidin-3-glucoside (C-3-G), which docks to MAPK7 oligomerization region 200-400 aa and disrupts MAPK7-AhR interaction. Overall, our study provides novel evidence and mechanism for DON-induced inflammatory responses in the liver and gut system. Our findings call attention to the health risks associated with low-level DON exposure in the prepuberty children population.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Ming Liu
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Jing Zhang
- Division of Toxicology, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Huiyu Jiang
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Chuanmin Ma
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Yuanzhi Jian
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Yongchang Chen
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Hui Liu
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Hanri Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Jiaqi Chen
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia-Sheng Wang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Xingyi Geng
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan,Shandong 250021, China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
| | - Jun Zhou
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan,Shandong 250012, China
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
2
|
Nazdar N, Imani A, Abtahi Froushani SM, Farzaneh M, Sarvi Moghanlou K. Antioxidative properties, phenolic compounds, and in vitro protective efficacy of multi-herbal hydro-alcoholic extracts of ginger, turmeric, and thyme against the toxicity of aflatoxin B 1 on mouse macrophage RAW264.7 cell line. Food Sci Nutr 2024; 12:8013-8029. [PMID: 39479629 PMCID: PMC11521708 DOI: 10.1002/fsn3.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 11/02/2024] Open
Abstract
Aflatoxin B1 (AFB1), the most potent toxic and carcinogenic secondary fungal metabolite, has frequently been reported in food/feed. Nowadays, herbal extracts are considered safe dietary additives to reduce the toxicity of such compounds. The protective capability of various combinations of hydro-alcoholic extracts (HAEs) of ginger, turmeric, and Shirazi thyme, against the toxicity of AFB1 on the RAW264.7 cell line was investigated. The RAW264.7 cells were exposed to six different concentrations of AFB1 (0.09, 0.18, 0.37, 0.75, 1.5, and 3 μg mL-1) for 48 h to determine the IC50 of AFB1. AFB1 was estimated to have an IC50 of 1.5 μg mL-1 for RAW264.7 cells. Then, the cells were simultaneously incubated with 1.5 μg mL-1 AFB1 and the HAEs for 24 h. The HAEs significantly reduced the toxicity of AFB1 in RAW264.7 cells. HAE of Shirazi thyme showed the highest amount of total phenol content (TPC) and the highest DPPH• activity. In addition, a combination of ginger, turmeric, and Shirazi thyme extract showed the highest antioxidant activity. Rutin, quercetin, and apigenin were the main phenolic components of ginger HAE. A significantly positive correlation was observed between TPC of hydro-alcoholic extract with ferric reducing antioxidant power (FRAP) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) values. Consequently, the simultaneous consumption of such extracts is recommended to protect the cells against dietary toxins.
Collapse
Affiliation(s)
- Nina Nazdar
- Department of Fisheries, Faculty of Natural ResourcesUrmia UniversityUrmiaIran
| | - Ahmad Imani
- Department of Fisheries, Faculty of Natural ResourcesUrmia UniversityUrmiaIran
| | | | - Mohsen Farzaneh
- Department of AgricultureMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | | |
Collapse
|
3
|
Mwabulili F, Xie Y, Sun S, Ma W, Li Q, Yang Y, Jia H, Li X. Thermo-Alkali-Tolerant Recombinant Laccase from Bacillus swezeyi and Its Degradation Potential against Zearalenone and Aflatoxin B 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13371-13381. [PMID: 38809574 DOI: 10.1021/acs.jafc.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The enzymatic biodegradation of mycotoxins in food and feed has attracted the most interest in recent years. In this paper, the laccase gene from Bacillus swezeyi was cloned and expressed in Escherichia coli BL 21(D3). The sequence analysis indicated that the gene consisted of 1533 bp. The purified B. swezeyi laccase was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis -12% with an estimated molecular weight of 56.7 kDa. The enzyme is thermo-alkali-tolerant, displaying the optimal degradation of zearalenone (ZEN) and aflatoxin B1 (AFB1) at pH 8 and 9, with incubation temperatures of 55 and 50 °C, respectively, within 24 h. The degradation potentials of the 50 μg of the enzyme against ZEN (5.0 μg/mL) and AFB1 (2.5 μg/mL) were 99.60 and 96.73%, respectively, within 24 h. To the best of our knowledge, this is the first study revealing the recombinant production of laccase from B. swezeyi, its biochemical properties, and potential use in ZEN and AFB1 degradation in vitro and in vivo.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
- Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya 53119, Tanzania
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Tang Q, Lan T, Zhou C, Gao J, Wu L, Wei H, Li W, Tang Z, Tang W, Diao H, Xu Y, Peng X, Pang J, Zhao X, Sun Z. Nutrition strategies to control post-weaning diarrhea of piglets: From the perspective of feeds. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:297-311. [PMID: 38800731 PMCID: PMC11127239 DOI: 10.1016/j.aninu.2024.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tianyi Lan
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhou
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jingchun Gao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Liuting Wu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Haiyang Wei
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
- Yibin Academy of Southwest University, Yibin 644005, China
| |
Collapse
|
5
|
de Sá SVM, Faria MA, Fernandes JO, Cunha SC. Investigating the individual and mixture cytotoxicity of co-occurring aflatoxin B1, enniatin B, and sterigmatocystin on gastric, intestinal, hepatic, and renal cellular models. Food Chem Toxicol 2024; 188:114640. [PMID: 38583501 DOI: 10.1016/j.fct.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
6
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
7
|
Coulet F, Coton M, Iperi C, Belinger Podevin M, Coton E, Hymery N. Cytotoxic Effects of Major and Emerging Mycotoxins on HepaRG Cells and Transcriptomic Response after Exposure of Spheroids to Enniatins B and B1. Toxins (Basel) 2024; 16:54. [PMID: 38251270 PMCID: PMC10819306 DOI: 10.3390/toxins16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins, produced by fungi, frequently occur at different stages in the food supply chain between pre- and postharvest. Globally produced cereal crops are known to be highly susceptible to contamination, thus constituting a major public health concern. Among the encountered mycotoxigenic fungi in cereals, Fusarium spp. are the most frequent and produce both regulated (i.e., T-2 toxin, deoxynivalenol -DON-, zearalenone -ZEA-) and emerging (i.e., enniatins -ENNs-, beauvericin -BEA-) mycotoxins. In this study, we investigated the in vitro cytotoxic effects of regulated and emerging fusariotoxins on HepaRG cells in 2D and 3D models using undifferentiated and differentiated cells. We also studied the impact of ENN B1 and ENN B exposure on gene expression of HepaRG spheroids. Gene expression profiling pinpointed the differentially expressed genes (DEGs) and overall similar pathways were involved in responses to mycotoxin exposure. Complement cascades, metabolism, steroid hormones, bile secretion, and cholesterol pathways were all negatively impacted by both ENNs. For cholesterol biosynthesis, 23/27 genes were significantly down-regulated and could be correlated to a 30% reduction in cholesterol levels. Our results show the impact of ENNs on the cholesterol biosynthesis pathway for the first time. This finding suggests a potential negative effect on human health due to the essential role this pathway plays.
Collapse
Affiliation(s)
- France Coulet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France; (F.C.); (M.C.); (M.B.P.); (E.C.)
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France; (F.C.); (M.C.); (M.B.P.); (E.C.)
| | - Cristian Iperi
- Autoimmunité et Immunothérapies UMR 51227, Inserm, University Brest, Lymphocytes B, F-29200 Brest, France;
| | - Marine Belinger Podevin
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France; (F.C.); (M.C.); (M.B.P.); (E.C.)
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France; (F.C.); (M.C.); (M.B.P.); (E.C.)
| | - Nolwenn Hymery
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France; (F.C.); (M.C.); (M.B.P.); (E.C.)
| |
Collapse
|
8
|
Zhou H, Yang Y, Kang Y, Guo T, Zhou Y, Zhang Y, Ma L. Synergistic toxicity induced by the co-exposure of tenuazonic acid and patulin in Caenorhabditis elegans: Daf-16 plays an important regulatory role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115871. [PMID: 38141335 DOI: 10.1016/j.ecoenv.2023.115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Tenuazonic acid (TeA) and patulin (PAT), as the naturally occurring mycotoxins with various toxic effects, are often detected in environment and food chain, has attracted more and more attention due to their widespread and high contaminations as well as the coexistence, which leads to potential human and animals' risks. However, their combined toxicity has not been reported yet. In our study, C. elegans was used to evaluate the type of combined toxicity caused by TeA+PAT and its related mechanisms. The results showed that TeA and PAT can induce synergistic toxic effects based on Combination Index (CI) evaluation model (Chou-Talalay method), that is, the body length, brood size as well as the levels of ROS, CAT and ATP were significantly affected in TeA+PAT-treated group compared with those in TeA- or PAT-treated group. Besides, the expressions of oxidative (daf-2, daf-16, cyp-35a2, ctl-1, ctl-3, pmk-1, jnk-1, skn-1) and intestinal (fat-5, pod-2, egl-8, pkc-3, ajm-1, nhx-2) stress-related genes were disrupted, among which daf-16 displayed the most significant alternation. Further study on daf-16 gene defective C. elegans showed that the damages to the mutant nematodes were significantly attenuated. Since daf-2, daf-16, jnk-1 and pmk-1 are evolutionarily conserved, our findings could hint synergistic toxic effects of TeA+PAT on higher organisms.
Collapse
Affiliation(s)
- Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yi Kang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
9
|
Zhang J, Zhao Q, Xue Z, Zhang S, Ren Z, Chen S, Zhou A, Chen H, Liu Y. Deoxynivalenol induces endoplasmic reticulum stress-associated apoptosis via the IRE1/JNK/CHOP pathway in porcine alveolar macrophage 3D4/21 cells. Food Chem Toxicol 2023; 180:114033. [PMID: 37739053 DOI: 10.1016/j.fct.2023.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
The interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention. Nevertheless, the precise involvement of the unfolded protein response (UPR) signaling in the apoptosis of porcine macrophage cells induced by Deoxynivalenol (DON) remains enigmatic. In this study, we revealed that exposure to 2 μM DON resulted in a substantial decline in cell viability, concomitant with the initiation of cell apoptosis and the halting of the G1 phase cell cycle in the porcine alveolar macrophage line 3D4/21. Transcriptomic analysis of DON-exposed cells showed distinct expression patterns in 3104 genes, with notable upregulation of ER stress-related genes, including IRE1, CHOP, XBP1 and JNK. Our subsequent validation via qPCR and Western blot analyses confirmed the attenuation of GRP78 and BCL-2, coupled with the upregulation of IRE1, CHOP, JNK, p-JNK, and Bax in DON-induced cells, indicating the instigation of ER stress-associated apoptosis by DON. The addition of 5 mM 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, decreased levels of CHOP, IRE1, JNK, p-JNK, and Bax, while increasing levels of GRP78 and Bcl-2, suggesting that 4-PBA alleviated DON-induced ER stress and apoptosis. Overall, our findings provide new insights into DON-induced ER stress via the IRE1/JNK/CHOP pathway, leading to subsequent cellular apoptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Siyi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zeyu Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
10
|
Kpan KKG, Manda P, Osseke SM, Tiho S, Ardjouma D. Dietary exposure to zearalenone in maize and millet grains and their porridges marketed in Abidjan (Côte d'Ivoire). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1264-1274. [PMID: 37561456 DOI: 10.1080/19440049.2023.2244085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Maize and millet are among the staple foods of sub-Saharan populations. In Côte d'Ivoire, maize and millet are, respectively, second and third most consumed cereals. In this work, we evaluate the health risk related to the presence of zearalenone in maize and millet and their porridges. The zearalenone contents of the foodstuffs were determined using HPLC-UV. The health risk was characterised by the ratio (R) of probable daily intake (PDI) to acceptable daily intake (ADI). The consumption of maize generates a significant health risk in infants (R = 163.4%). Likewise, millet contains excess zearalenone for infants and children with R = 2934.0% and 118.0%, respectively. The combination of maize and millet increases the risk for infants (R = 457.4%), children (R = 183.0%) and adolescents (R = 101.6%). Millet porridge caused a significant health risk in infants (R = 120%). Consumption of the two types of porridge significantly increases the health risk. Thus, the R ratio varies between 48% and 444% in the case of ingestion of both types of porridge, against 12-56% for maize porridge, and 24-120% for millet porridge. Children and infants were most exposed with respective R of 120% and 444%. These results suggest a need for vigilance to minimise exposure to zearalenone.
Collapse
Affiliation(s)
| | - Pierre Manda
- Department of Pharmaceutical and Biological Sciences, University of Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Syrlie Marina Osseke
- Department of Pharmaceutical and Biological Sciences, University of Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Seydou Tiho
- Department of Natural Sciences, University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Dembélé Ardjouma
- Department of Pharmaceutical and Biological Sciences, University of Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| |
Collapse
|
11
|
Sharma M, Rajput D, Kumar V, Jatain I, Aminabhavi TM, Mohanakrishna G, Kumar R, Dubey KK. Photocatalytic degradation of four emerging antibiotic contaminants and toxicity assessment in wastewater: A comprehensive study. ENVIRONMENTAL RESEARCH 2023; 231:116132. [PMID: 37207734 DOI: 10.1016/j.envres.2023.116132] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 μg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 μg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Indu Jatain
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
12
|
Gajęcka M, Otrocka-Domagała I, Brzuzan P, Zielonka Ł, Dąbrowski M, Gajęcki MT. Influence of deoxynivalenol and zearalenone on the immunohistochemical expression of oestrogen receptors and liver enzyme genes in vivo in prepubertal gilts. Arch Toxicol 2023; 97:2155-2168. [PMID: 37328583 PMCID: PMC10322793 DOI: 10.1007/s00204-023-03502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are often detected in plant materials used to produce feed for pre-pubertal gilts. Daily exposure to small amounts of these mycotoxins causes subclinical conditions in pigs and affects various biological processes (e.g. mycotoxin biotransformation). The aim of this preclinical study was to evaluate the effect of low monotonic doses of DON and ZEN (12 µg/kg body weight-BW-and 40 µg/kg BW, respectively), administered alone or in combination to 36 prepubertal gilts for 42 days, on the degree of immunohistochemical expression of oestrogen receptors (ERs) in the liver and the mRNA expression of genes encoding selected liver enzymes during biotransformation processes. The level of expression of the analysed genes proves that the tested mycotoxins exhibit variable biological activity at different stages of biotransformation. The biological activity of low doses of mycotoxins determines their metabolic activity. Therefore, taking into account the impact of low doses of mycotoxins on energy-intensive processes and their endogenous metabolism, it seems that the observed situation may lead to the activation of adaptation mechanisms.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13D, 10-718, Olsztyn, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| |
Collapse
|
13
|
Gajęcki MT, Gajęcka M. The Multidirectional Influence of Feed-Borne Deoxynivalenol and Zearalenone on Animal Health. Toxins (Basel) 2023; 15:419. [PMID: 37505688 PMCID: PMC10467141 DOI: 10.3390/toxins15070419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites which pose a significant threat for global food and feed security [...].
Collapse
Affiliation(s)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| |
Collapse
|
14
|
Sanei S, Kasgari MB, Abedinzadeh F, Sasan AP, Hassani S, Karimi E, Oskoueian E, Jahromi MF. Microcapsules loaded with date seed extract and its inhibitory potential to modulate the toxic effects of mycotoxins in mice received mold-contaminated diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58654-58662. [PMID: 36991200 DOI: 10.1007/s11356-023-26640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Mycotoxins are the secondary fungal metabolites generally produced by wide range of fungi including aflatoxins (AF), ochratoxin A (OTA), fumonisins (FB), zearalenone (ZEN), and deoxynivalenol (DON). Nowadays, they are main concern to food and agricultural commodities due to undesirable health and socio-economic effect. This investigation was designed to synthesized microcapsules loaded the bioactive compounds of date seed and evaluated its inhibitory activities in mice received mold-contaminated diet. The finding revealed that the developed microcapsule is homogenous and mostly spherical with size of 2.58 μm with acceptable PDI of 0.21. The main phytochemical has been confirmed by HPLC analysis were xylose, fructose, mannose, glucose, and galactose with the respective values of 41.95%, 2.24%, 5.27%, and 0.169%. The in vivo analyses manifested that the mice received date seed microcapsules significantly (p < 0.05) improved the average daily weight gain, feed intake, liver enzymes (ALT, ALP, and AST), and lipid peroxidation values compare to mice group received mycotoxin-contaminated diet. Furthermore, encapsulation date seed bioactive compounds notably up-regulated the expression of GPx, SOD, IFN-γ, and IL-2 genes while down-regulated the iNOS gene. Consequently, the novel microcapsules loaded date seed is suggested to be considered as a promising mycotoxin inhibitor.
Collapse
Affiliation(s)
- Sogand Sanei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Fatemeh Abedinzadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Atena Poor Sasan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saeid Hassani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| | | |
Collapse
|
15
|
Impact of Deoxynivalenol and Zearalenone as Single and Combined Treatment on DNA, Cell Cycle and Cell Proliferation in HepG2 Cells. Int J Mol Sci 2023; 24:ijms24044082. [PMID: 36835492 PMCID: PMC9958612 DOI: 10.3390/ijms24044082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The study aimed to investigate toxicity and the mechanism of toxicity of two Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA). DON and ZEA were applied to HepG2 cells as single compounds and in combination at low environmentally relevant concentrations. HepG2 cells were exposed to DON (0.5, 1, and 2 µM), ZEA (5, 10, and 20 µM) or their combinations (1 µM DON + 5 µM ZEA, 1 µM DON + 10 µM ZEA and 1 µM DON + 20 µM ZEA) for 24 h and cell viability, DNA damage, cell cycle and proliferation were assessed. Both mycotoxins reduced cell viability, however, combined treatment with DON and ZEA resulted in higher reduction of cell viability. DON (1 µM) induced primary DNA damage, while DON (1 µM) in combination with higher ZEA concentrations showed antagonistic effects compared to DON alone at 1 µM. DON arrested HepG2 cells in G2 phase and significantly inhibited cell proliferation, while ZEA had no significant effect on cell cycle. The combined treatment with DON and ZEA arrested cells in G2 phase to a higher extend compared to treatment with single mycotoxins. Potentiating effect observed after DON and ZEA co-exposure at environmentally relevant concentrations indicates that in risk assessment and setting governments' regulations, mixtures of mycotoxins should be considered.
Collapse
|
16
|
Rong X, Wang Y, Ouyang F, Song W, Li S, Li F, Zhao S, Li D. Combined effects of zearalenone and deoxynivalenol on oxidative stress, hepatotoxicity, apoptosis, and inflammation in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160233. [PMID: 36403834 DOI: 10.1016/j.scitotenv.2022.160233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/22/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Co-existence of mycotoxins may pose a greater risk. It remains less known about the toxic effect of co-exposure of zearalenone (ZEA) and deoxynivalenol (DON) on aquatic life. In the present study, the toxic effects of the combine treatment of ZEA and DON on zebrafish (Danio rerio) embryos were investigated. The results showed that the combined treatment of ZEA (200, 400, 800 μg/L) and DON (4000 μg/L) did not cause apparent deaths, but induced a developmental toxicity as indicated by decreased movement times and heartbeat. At 96 h post-fertilization (hpf), co-exposure of ZEA and DON (Z400 + D4000 and Z800 + D4000 group) led to significant oxidative stress as evidenced by the increased ROS level and MDA content, as well as the changes of antioxidant enzymes (SOD, CAT and GPX) and their genes. Besides, the combined treatment of ZEA and DON triggered hepatotoxicity as shown by the changes of Fabp10a, Gclc, Gsr, Nqo1 genes, apoptosis through upregulating apoptosis-related genes (p53, Caspase-9, Caspase-3) and downregulating Bcl-2 gene, as well as inflammation by promoting the expression of IL-1β, IL-6, TNF-α, TLR4, MyD88, NF-κBp65 genes. These results indicated the co-exposure of ZEA and DON caused oxidative stress, leading to stronger potential toxic effects to zebrafish embryos than their respective single treatment. Therefore, more attention should be paid to risk management of the co-contamination of mycotoxins.
Collapse
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yuli Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Fangxin Ouyang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Weixuan Song
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Songhua Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences, Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province, Jinan 250100, Shandong, China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
17
|
Chen Z, Wang F, Zhang W, Zhou S, Wen D, Mu R. Chronic exposure to zearalenone induces intestinal inflammation and oxidative injury in adult Drosophila melanogaster midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114555. [PMID: 36680988 DOI: 10.1016/j.ecoenv.2023.114555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In the past decade, mycotoxin zearalenone (ZEN)-induced gastrointestinal adverse effects have been increasingly attracting worldwide attention. This study aimed to determine the gastrointestinal adverse effects of ZEN in Drosophila melanogaster (D. melanogaster) and reveal possible mechanisms of action of ZEN in insects. Here, chronic exposure of D. melanogaster to ZEN killed flies in a dose-dependent manner (2-20 µM). ZEN (20 µM) decreased the survival rates and climbing ability of flies, and activated immune deficiency-mediated intestinal immunity in midgut, leading to the production of antimicrobial peptides. Meanwhile, ZEN exposure induced morphological alteration of adult midgut. Further study suggested that high levels of oxidative stress was observed in ZEN-treated midgut due to the imbalance between the production of reactive oxygen species and the expression and activities of cellular antioxidant enzyme, including superoxide dismutase and catalase. ZEN-induced oxidative stress then caused cell death, impaired gut barrier function and increased gut permeability, leading to oxidative injury in midgut. Subsequently, ZEN-induce midgut injury further disrupted intestinal stem cell (ISC) homeostasis, stimulating ISC proliferation and tissue regeneration, but did not alter cell fate specification of ISC. Additionally, activation of Jun N-terminal kinase pathway was involved in ZEN-induced oxidative injury and tissue regeneration in midgut. Antioxidant vitamin E alleviated ZEN-induced oxidative injury to midgut epithelium. Collectively, this study provided additional evidences for ZEN-induced gastrointestinal adverse effects from an invertebrate model, extended our understanding of the mechanisms mediating mycotoxin toxicity in organisms.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Wen Zhang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Shuangshuang Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
18
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
20
|
Fu Y, Yin S, Zhao C, Fan L, Hu H. Combined toxicity of food-borne mycotoxins and heavy metals or pesticides. Toxicon 2022; 217:148-154. [PMID: 35995097 DOI: 10.1016/j.toxicon.2022.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Food can be contaminated by multiple classes of toxic substances, mainly including mycotoxins, heavy metals and pesticides, which leads to a possibility of simultaneous exposure to two or more food contaminants for humans. Thus, it is necessary to examine whether the combined exposure could result in enhanced toxicity. Initially, the studies on the combined toxicity of food contaminants mainly focus on the mixtures of same classes of food contaminants due to their co-occurrence feature in foodstuffs, such as mixtures of mycotoxins or mixtures of heavy metals. Given the possibility that consumers are likely exposed to mixtures of different classes of food contaminants, recently, studies on the combined toxicity of different classes of food contaminants have been receiving increasing attentions. In this review article, we summarize the findings of combined toxicity studies related to co-exposure to food-borne mycotoxins and other classes of food contaminants mainly heavy metals or pesticides, and propose issues that need to be addressed in future studies for more accurately performing risk assessment of co-exposure to mycotoxins and other classes of food contaminants.
Collapse
Affiliation(s)
- Yuhan Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No2 Yunamingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
21
|
Shao L, Majumder S, Liu Z, Xu K, Dai R, George S. Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112450. [PMID: 35500384 DOI: 10.1016/j.jphotobiol.2022.112450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
Plasmonic nanomaterials of gold and silver have been reported to have antibacterial effect. In this study, three gold nanomaterials (NMs) of different aspect rations (Gold nanospheres (AuNSs, aspect ratio 1), and two gold nanorods (AuNRs636, aspect ratio 2.79; AuNRs772, aspect ratio 3.42)) and silver nanoparticles (AgNPs) were synthesized, characterized and the effect of incandescent light on their antibacterial properties were examined. Bacterial inactivation during photoinactivation of nanomaterials and antibacterial mechanisms (biotic ROS, membrane potential, membrane damage) were investigated using Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Salmonella enterica serovar Typhimurium, and methicillin-resistant S. aureus. The results indicated that AuNSs had no antibacterial activity in the tested concentration (0.49-250 μg/mL), while AuNR636 and AuNRs772 showed significant bactericidal effect on all tested bacteria. Notably, AuNRs636 presented higher antibacterial effect than AuNRs772, which could result from higher surface reactivity of AuNRs636 owing to higher dangling bonds. Further studies showed that AuNRs but not AuNSs generated hydroxyl radicals (·OH) (photodynamic effect) and photothermal effect when exposed to incandescent light. The combined photodynamic and photothermal effect resulted in bacterial inactivation through cell membrane damage, lowering of cell membrane potential and DNA degradation. In summary, this investigation showed that Au NRs but not Au NSs exhibit photodynamic and photothermal effects suggesting the potential of fabricating material surfaces with Au NRs for photoactivated bacterial inactivation.
Collapse
Affiliation(s)
- Lele Shao
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada; China Agricultural University, College of Food Science and Nutritional Engineering, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Satwik Majumder
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Ziruo Liu
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Ke Xu
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| | - Ruitong Dai
- China Agricultural University, College of Food Science and Nutritional Engineering, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Saji George
- McGill University, Department of Food and Agricultural Chemistry, Macdonald Campus, 21111 Lakeshore Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
22
|
Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins (Basel) 2022; 14:toxins14040244. [PMID: 35448853 PMCID: PMC9031280 DOI: 10.3390/toxins14040244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are secondary metabolites of molds and mainly produced by species of the genera Aspergillus, Penicillium and Fusarium. They can be synthesized on the field, during harvest as well as during storage. They are fairly stable compounds and difficult to remove. Among several hundreds of mycotoxins, according to the WHO, ochratoxin A, aflatoxins, zearalenone, deoxynivalenol, patulin, fumonisins as well as T-2 and HT-2 toxins deserve special attention. Cytotoxicity is one of the most important adverse properties of mycotoxins and is generally assessed via the MTT assay, the neutral red assay, the LDH assay, the CCK-8 assay and the ATP test in different cell lines. The apoptotic cell ratio is mainly assessed via flow cytometry. Aside from the assessment of the toxicity of individual mycotoxins, it is important to determine the cytotoxicity of mycotoxin combinations. Such combinations often exhibit stronger cytotoxicity than individual mycotoxins. The cytotoxicity of different mycotoxins often depends on the cell line used in the experiment and is frequently time- and dose-dependent. A major drawback of assessing mycotoxin cytotoxicity in cell lines is the lack of interaction typical for complex organisms (for example, immune responses).
Collapse
|
23
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
24
|
Rong X, Jiang Y, Li F, Sun-Waterhouse D, Zhao S, Guan X, Li D. Close association between the synergistic toxicity of zearalenone-deoxynivalenol combination and microRNA221-mediated PTEN/PI3K/AKT signaling in HepG2 cells. Toxicology 2022; 468:153104. [DOI: 10.1016/j.tox.2022.153104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
|
25
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Bernal-Algaba E, Pulgarín-Alfaro M, Fernández-Cruz ML. Cytotoxicity of Mycotoxins Frequently Present in Aquafeeds to the Fish Cell Line RTGill-W1. Toxins (Basel) 2021; 13:581. [PMID: 34437452 PMCID: PMC8402477 DOI: 10.3390/toxins13080581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the aquaculture industry has introduced plant-based ingredients as a source of protein in aquafeeds. This has led to mycotoxin contaminations, representing an ecological, health and economic problem. The aim of this study was to determine in the RTgill-W1 fish cell line the toxicity of fifteen mycotoxins of common occurrence in aquafeeds. To identify the most sensitive endpoint of toxicity, the triple assay was used. It consisted of three assays: alamarBlue, Neutral Red Uptake and CFDA-AM, which revealed the mitochondrial activity, the lysosomal integrity and the plasma membrane integrity, respectively. Most of the assayed mycotoxins were toxic predominantly at lysosomal level (enniatins, beauvericin, zearalenone, ochratoxin A, deoxynivalenol (DON) and its acetylated metabolites 15-O-acetyl-DON and 3-acetyl-DON). Aflatoxins B1 and B2 exerted the greatest effects at mitochondrial level, while fumonisins B1 and B2 and nivalenol were not toxic up to 100 µg/mL. In general, low toxicity was observed at plasma membrane level. The vast majority of the mycotoxins assayed exerted a pronounced acute effect in the fish RTgill-W1 cell line, emphasizing the need for further studies to ascertain the impact of mycotoxin contamination of fish feeds in the aquaculture industry and to establish safe limits in aquafeeds.
Collapse
Affiliation(s)
| | | | - María Luisa Fernández-Cruz
- Department of Environment and Agronomy, National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040 Madrid, Spain; (E.B.-A.); (M.P.-A.)
| |
Collapse
|
27
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
28
|
Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. Occurrence of Aflatoxin B 1, deoxynivalenol and zearalenone in feeds in China during 2018-2020. J Anim Sci Biotechnol 2021; 12:74. [PMID: 34243805 PMCID: PMC8272344 DOI: 10.1186/s40104-021-00603-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The current study was conducted to investigate the individual and combined occurrence of aflatoxin B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEN) in feeds from various Provinces of China during 2018 to 2020. A total of 3,507 feed samples, including 2,090 feed ingredients and 1,417 complete feed samples, were collected from different areas of China for mycotoxins analysis. RESULTS The individual contamination of AFB1, DON and ZEN were present in more than 81.9%, 96.4% and 96.9% of feed samples, respectively, with average concentration ranges of AFB1 between 1.2-27.4 μg/kg, DON between 458.0-1,925.4 μg/kg and ZEN between 48.1-326.8 μg/kg. Notably, 0.9%, 0.5% and 0.1% of feed ingredients, and 1.2-12.8%, 0.9-2.9% and 0-8.9% of complete feeds for pigs, poultry and ruminants with AFB1, ZEN and DON that exceeded China's safety standards, respectively. Moreover, more than 81.5% of feed ingredients and 95.7% of complete feeds were co-contaminated with various combinations of these mycotoxins. CONCLUSION This study indicates that the feeds in China were universally contaminated with AFB1, DON and ZEN during the past 3 years. These findings highlight the significance of monitoring mycotoxin contaminant levels in the domestic animal feed, and the importance of carrying out feed administration and remediation strategies for mycotoxin control.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zijian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingda Liu
- Guilin Li Yuan Grain and Oil Food Group Co., Ltd, Guilin, 541001, Guangxi, China
| | - Liyuan Chen
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, 211226, China
| | - Jiefan Dai
- Department of Agriculture of Sichuan Province, Chengdu, 610041, China
| | | | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
29
|
Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Transcriptional Profiling of Aflatoxin B1-Induced Oxidative Stress and Inflammatory Response in Macrophages. Toxins (Basel) 2021; 13:401. [PMID: 34199697 PMCID: PMC8228812 DOI: 10.3390/toxins13060401] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a highly toxic mycotoxin that causes severe suppression of the immune system of humans and animals, as well as enhances reactive oxygen species (ROS) formation, causing oxidative damage. However, the mechanisms underlying the ROS formation and immunotoxicity of AFB1 are poorly understood. This study used the mouse macrophage RAW264.7 cell line and whole-transcriptome sequencing (RNA-Seq) technology to address this knowledge-gap. The results show that AFB1 induced the decrease of cell viability in a dose- and time-dependent manner. AFB1 also significantly increased intracellular productions of ROS and malondialdehyde and decreased glutathione levels. These changes correlated with increased mRNA expression of NOS2, TNF-α and CXCL2 and decreased expression of CD86. In total, 783 differentially expressed genes (DEGs) were identified via RNA-Seq technology. KEGG analysis of the oxidative phosphorylation pathway revealed that mRNA levels of ND1, ND2, ND3, ND4, ND4L, ND5, ND6, Cyt b, COX2, ATPeF0A and ATPeF08 were higher in AFB1-treated cells than control cells, whereas 14 DEGs were downregulated in the AFB1 group. Furthermore, seven immune regulatory pathways mediated by oxidative stress were identified by KEGG analysis. Altogether, these data suggest that AFB1 induces oxidative stress in macrophages via affecting the respiratory chain, which leads to the activation of several signaling pathways related to the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.M.); (Y.L.); (Y.G.); (Q.M.); (C.J.)
| |
Collapse
|
30
|
Olopade BK, Oranusi SU, Nwinyi OC, Gbashi S, Njobeh PB. Occurrences of Deoxynivalenol, Zearalenone and some of their masked forms in selected cereals from Southwest Nigeria. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Guo H, Ji J, Wei K, Sun J, Zhang Y, Sun X. MAPK/AP-1 and ROS participated in ratio- and time-dependent interaction effects of deoxynivalenol and cadmium on HT-29 cells. Food Chem Toxicol 2021; 148:111921. [DOI: 10.1016/j.fct.2020.111921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022]
|
32
|
Direct and Competitive Optical Grating Immunosensors for Determination of Fusarium Mycotoxin Zearalenone. Toxins (Basel) 2021; 13:toxins13010043. [PMID: 33430121 PMCID: PMC7827007 DOI: 10.3390/toxins13010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Novel optical waveguide lightmode spectroscopy (OWLS)-based immunosensor formats were developed for label-free detection of Fusarium mycotoxin zearalenone (ZON). To achieve low limits of detection (LODs), both immobilised antibody-based (direct) and immobilised antigen-based (competitive) assay setups were applied. Immunoreagents were immobilised on epoxy-, amino-, and carboxyl-functionalised sensor surfaces, and by optimising the immobilisation methods, standard sigmoid curves were obtained in both sensor formats. An outstanding LOD of 0.002 pg/mL was obtained for ZON in the competitive immunosensor setup with a dynamic detection range between 0.01 and 1 pg/mL ZON concentrations, depending on the covalent immobilisation method applied. This corresponds to a five orders of magnitude improvement in detectability of ZON relative to the previously developed enzyme-linked immonosorbent assay (ELISA) method. The selectivity of the immunosensor for ZON was demonstrated with structural analogues (α-zearalenol, α-zearalanol, and β-zearalanol) and structurally unrelated mycotoxins. The method was found to be applicable in maize extract using acetonitrile as the organic solvent, upon a dilution rate of 1:10,000 in buffer. Thus, the OWLS immunosensor method developed appears to be suitable for the quantitative determination of ZON in aqueous medium. The new technique can widen the range of sensoric detection methods of ZON for surveys in food and environmental safety assessment.
Collapse
|
33
|
Pickova D, Ostry V, Toman J, Malir F. Presence of Mycotoxins in Milk Thistle ( Silybum marianum) Food Supplements: A Review. Toxins (Basel) 2020; 12:E782. [PMID: 33302488 PMCID: PMC7763672 DOI: 10.3390/toxins12120782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/29/2022] Open
Abstract
The consumption of herbal-based supplements, which are believed to have beneficial effects on human health with no side effects, has become popular around the world and this trend is still increasing. Silybum marianum (L.) Gaertn, commonly known as milk thistle (MT), is the most commonly studied herb associated with the treatment of liver diseases. The hepatoprotective effects of active substances in silymarin, with silybin being the main compound, have been demonstrated in many studies. However, MT can be affected by toxigenic micro-fungi and contaminated by mycotoxins with adverse effects. The beneficial effect of silymarin can thus be reduced or totally antagonized by mycotoxins. MT has proven to be affected by micro-fungi of the Fusarium and Alternaria genera, in particular, and their mycotoxins. Alternariol-methyl-ether (AME), alternariol (AOH), beauvericin (BEA), deoxynivalenol (DON), enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1), HT-2 toxin (HT-2), T-2 toxin (T-2), tentoxin (TEN), and zearalenone (ZEA) seem to be most significant in MT-based dietary supplements. This review focuses on summarizing cases of mycotoxins in MT to emphasize the need for strict monitoring and regulation, as mycotoxins in relation with MT-based dietary supplements are not covered by European Union legislation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, National Institute of Public Health in Prague, Nutrition and Food in Brno, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
34
|
Donato MT, Tolosa L. Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food Chem Toxicol 2020; 147:111872. [PMID: 33220391 DOI: 10.1016/j.fct.2020.111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 01/17/2023]
Abstract
Safety evaluation of thousands of chemicals that are directly added to or come in contact with food is needed. Due to the central role of the liver in intermediary and energy metabolism and in the biotransformation of foreign compounds, the hepatotoxicity assessment is essential. New approach methodologies have been proposed for the safety evaluation of compounds with the idea of rapidly gaining insight into effects on biochemical mechanisms and cellular processes and screening large number of compounds. In this sense, high-content screening (HCS) is the application of automated microscopy and image analysis for better understanding of complex biological functions and mechanisms of toxicity. HCS multiparametric measurements have been shown to be a useful tool in early toxicity testing during drug development, but also in assessing the impact from food chemicals and environmental toxicants. Reviewing the use of cellular imaging technology in the safety evaluation of food-relevant chemicals offers evidence about the impact of this technology in safety assessment.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
35
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|
36
|
Huang B, Chen Q, Wang L, Gao X, Zhu W, Mu P, Deng Y. Aflatoxin B1 Induces Neurotoxicity through Reactive Oxygen Species Generation, DNA Damage, Apoptosis, and S-Phase Cell Cycle Arrest. Int J Mol Sci 2020; 21:ijms21186517. [PMID: 32899983 PMCID: PMC7554769 DOI: 10.3390/ijms21186517] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in a variety of food commodities and exhibits strong toxicity toward multiple tissues and organs. However, little is known about its neurotoxicity and the associated mechanism. In this study, we observed that brain integrity was markedly damaged in mice after intragastric administration of AFB1 (300 μg/kg/day for 30 days). The toxicity of AFB1 on neuronal cells and the underlying mechanisms were then investigated in the neuroblastoma cell line IMR-32. A cell viability assay showed that the IC50 values of AFB1 on IMR-32 cells were 6.18 μg/mL and 5.87 μg/mL after treatment for 24 h and 48 h, respectively. ROS levels in IMR-32 cells increased significantly in a time- and AFB1 concentration-dependent manner, which was associated with the upregulation of NOX2, and downregulation of OXR1, SOD1, and SOD2. Substantial DNA damage associated with the downregulation of PARP1, BRCA2, and RAD51 was also observed. Furthermore, AFB1 significantly induced S-phase arrest, which is associated with the upregulation of CDKN1A, CDKN2C, and CDKN2D. Finally, AFB1 induced apoptosis involving CASP3 and BAX. Taken together, AFB1 manifests a wide range of cytotoxicity on neuronal cells including ROS accumulation, DNA damage, S-phase arrest, and apoptosis-all of which are key factors for understanding the neurotoxicology of AFB1.
Collapse
Affiliation(s)
- Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wenya Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| |
Collapse
|
37
|
Preparation of multitarget Fusarium toxin (zearalenone, deoxynivalenol, T-2, and HT-2) immunoaffinity columns using poly(glycidyl methacrylate–divinylbenzene) as a matrix. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02991-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Xing C, Dong X, Xu T, Yuan J, Yan W, Sui X, Zhao X. Analysis of multiple mycotoxins-contaminated wheat by a smart analysis platform. Anal Biochem 2020; 610:113928. [PMID: 32860746 DOI: 10.1016/j.ab.2020.113928] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023]
Abstract
This study describes a smart analysis platform capable of quantitative measurements using a multiplex lateral flow strip. Using the multi-mycotoxin strip, five fungal toxins were simultaneously and quantitatively detected in naturally contaminated wheat. First, a matrix-based standard curve was established for the detection of aflatoxin B1 (AFB1), fumonisin B1 (FB1), T-2, deoxynivalenol (DON), and zearalenone (ZEN). Established on an open android system, the platform is able to read 6 lines on the strip simultaneously. The platform is equipped with a Quick Response code scanning model, which reads the established standard curves, and then rapidly quantify mycotoxins in naturally contaminated wheat. All the data and sample information are stored on a central server through the platform which is linked to the cloud. The limits of detection (LOD) for AFB1, FB1, T-2, DON, and ZEN in wheat were 4, 20, 10, 200, and 40 μg/kg and the visual cut off values was 20, 1000, 200, 4000, and 400 μg/kg, separately. To validate the platform and the multi-mycotoxin detection method, 10 wheat samples were analyzed and the results were in a good agreement with those obtained by LC-MS/MS. The platform will be a powerful tool for crop monitoring services.
Collapse
Affiliation(s)
- Changrui Xing
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xue Dong
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Tao Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jian Yuan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Wenjing Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaoxu Zhao
- Beijing Huaan Magnech Bio-Tech Co., Ltd, Beijing, 102200, China
| |
Collapse
|
39
|
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. ROS: Trichothecenes’ handy weapon? Food Chem Toxicol 2020; 142:111438. [DOI: 10.1016/j.fct.2020.111438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
|
40
|
Ling A, Sun L, Guo W, Sun S, Yang J, Zhao Z. Individual and combined cytotoxic effects of T-2 toxin and its four metabolites on porcine Leydig cells. Food Chem Toxicol 2020; 139:111277. [DOI: 10.1016/j.fct.2020.111277] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 01/29/2023]
|
41
|
Zhou H, Guog T, Dai H, Yu Y, Zhang Y, Ma L. Deoxynivalenol: toxicological profiles and perspective views for future research. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) is a secondary metabolite mainly produced by the fungi Fusarium in agricultural crops, widely existing in feeds and cereal-based foodstuffs. Because of the high occurrence and potentials to induce a variety of toxic effects on animals and humans, DON has been a very harmful exogenous dietary toxicant threating public health. The focus of this review is to summarise the DON-induced broad spectrum of adverse health effects, to probe the current state of knowledge of combined toxicity of DON with other mycotoxins and its derivatives, and to put forward prospective ideas that multi-generational toxicity of DON and its overall impacts on intestinal-immuno-neuroendocrine system could receive more attention in future investigations. The general aim is to provide a scientific basis for the necessity to re-consider risk-assessment and regulations.
Collapse
Affiliation(s)
- H. Zhou
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - T. Guog
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - H. Dai
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Yu
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
| | - Y. Zhang
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| | - L. Ma
- College of Food Science, Southwest University, Tiansheng Road #2, Chongqing 400715, China P.R
- Biological Science Research Center, Southwest University, Chongqing 26463, China P.R
| |
Collapse
|
42
|
Assessing the Effect of Mycotoxin Combinations: Which Mathematical Model Is (the Most) Appropriate? Toxins (Basel) 2020; 12:toxins12030153. [PMID: 32121330 PMCID: PMC7150917 DOI: 10.3390/toxins12030153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
In the past decades, many studies have examined the nature of the interaction between mycotoxins in biological models classifying interaction effects as antagonisms, additive effects, or synergisms based on a comparison of the observed effect with the expected effect of combination. Among several described mathematical models, the arithmetic definition of additivity and factorial analysis of variance were the most commonly used in mycotoxicology. These models are incorrectly based on the assumption that mycotoxin dose-effect curves are linear. More appropriate mathematical models for assessing mycotoxin interactions include Bliss independence, Loewe’s additivity law, combination index, and isobologram analysis, Chou-Talalays median-effect approach, response surface, code for the identification of synergism numerically efficient (CISNE) and MixLow method. However, it seems that neither model is ideal. This review discusses the advantages and disadvantages of these mathematical models.
Collapse
|
43
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
44
|
Chen Y, Yang Y, Wang Y, Peng Y, Nie J, Gao G, Zhi J. Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry 2020; 133:107453. [PMID: 31972449 DOI: 10.1016/j.bioelechem.2019.107453] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
Abstract
Mycotoxin contamination in food and feed is a global concern because mycotoxin contamination can cause both acute and chronic health effects in humans and animals. In the present work, an Escherichia coli-based biosensor is described for the toxicity assessment of aflatoxin B1 (AFB1) and zearalenone (ZEN). In this electrochemical biosensor, E. coli is used as the signal recognition element, p-benzoquinone is used as the mediator, and a two-step reaction procedure has been developed to separate the mediator from the mycotoxins. The current value of the as-prepared microbial biosensor exhibits a linear decrease with concentrations of AFB1 and ZEN in the range of 0.01-0.3 and 0.05-0.5 μg/mL, with detection limits reaching 1 and 6 ng/mL, respectively. The IC25 values obtained by the present method are 0.25 and 0.40 μg/mL for AFB1 and ZEN, which shows that the cytotoxicity of AFB1 to E. coli is more severe than the cytotoxicity of ZEN to E. coli. The combined toxic effect of these two mycotoxins has also been explored, and synergistic biotoxicity has been observed. Moreover, the biosensor is successfully applied to the toxicity evaluation of mycotoxins in real samples, including peanut and corn oils. This work could provide new insight into mycotoxin and microorganism interactions and could establish a new approach for future mycotoxin detection.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yajie Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Wang
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Ye Peng
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Jinmei Nie
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
45
|
Dalinova A, Dubovik V, Chisty L, Kochura D, Ivanov A, Smirnov S, Petrova M, Zolotarev A, Evidente A, Berestetskiy A. Stagonolides J and K and Stagochromene A, Two New Natural Substituted Nonenolides and a New Disubstituted Chromene-4,5-dione Isolated from Stagonospora cirsii S-47 Proposed for the Biocontrol of Sonchus arvensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13040-13050. [PMID: 31670962 DOI: 10.1021/acs.jafc.9b04573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two new natural 10-membered macrolides (1, 2) and one chromene-4,5-dione derivative (3), named stagonolides J and K and stagochromene A, respectively, were isolated from the phytopathogenic fungus Stagonospora cirsii S-47, together with two known compounds, stagonolide A (4) and herbarumin I (5). Stagonolides J and K and stagochromene A were characterized as (5E,7R*,8S*,9R*)-7,8-dihydroxy-9-propyl-5-nonen-9-olide, (5E,7R,9S)-7-hydroxy-9-propyl-5-nonen-9-olide, and (2R*,3R*)-3-hydroxy-2-propyltetrahydro-2H-chromene-4,5(3H,4aH)-dione, respectively, by spectroscopic (mostly by NMR and ESIMS) data. Compounds 1-5 showed different rates of phytotoxic activity on punctured leaf discs of Sonchus arvensis. The antimicrobial, cytotoxic, and antiprotozoal activity of isolated compounds was also evaluated. Based on our data, stagonolide K and herbarumin I can be proposed as a potential scaffold for the development of a new natural herbicide and estimated as possible selection/quality markers of a bioherbicide based on S. cirsii, while stagonolide A can be considered as a mycotoxin.
Collapse
Affiliation(s)
- Anna Dalinova
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
| | - Vsevolod Dubovik
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
- Higher School of Technology and Energy (HSTE) , Saint Petersburg State University of Technology and Design , Ivana Chernyh st., 4 , Saint-Petersburg 198095 , Russian Federation
| | - Leonid Chisty
- Research Institute of Hygiene, Occupational Pathology and Human Ecology , Federal Medical Biological Agency , p/o Kuz'molovsky, Kapitolovo, 93 , Saint-Petersburg 188663 , Russian Federation
| | - Dmitriy Kochura
- Research Institute of Hygiene, Occupational Pathology and Human Ecology , Federal Medical Biological Agency , p/o Kuz'molovsky, Kapitolovo, 93 , Saint-Petersburg 188663 , Russian Federation
| | - Alexander Ivanov
- St. Petersburg State University , Universitetsky Av. 26 , St. Petersburg 198504 , Russian Federation
| | - Sergey Smirnov
- St. Petersburg State University , Universitetsky Av. 26 , St. Petersburg 198504 , Russian Federation
| | - Maria Petrova
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
| | - Andrey Zolotarev
- St. Petersburg State University , Universitetsky Av. 26 , St. Petersburg 198504 , Russian Federation
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo , Via. Cintia 4 , 80126 Napoli , Italy
| | - Alexander Berestetskiy
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
| |
Collapse
|
46
|
Qu D, Liu C, Jiang M, Feng L, Chen Y, Han J. After In Vitro Digestion, Jackfruit Flake Affords Protection against Acrylamide-Induced Oxidative Damage. Molecules 2019; 24:E3322. [PMID: 31547332 PMCID: PMC6766818 DOI: 10.3390/molecules24183322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 01/16/2023] Open
Abstract
Some studies have demonstrated that acrylamide (AA) was correlated with oxidative stress, resulting in physical damage. The jackfruit flake was an immature pulp that contained a high level of antioxidant activity. This study aimed to assess the defensive efficacy of jackfruit flake in AA-induced oxidative stress before and after simulated gastrointestinal digestion. Our results indicate that the total polyphenol content of Jackfruit flake digest (Digestive products of jackfruit flake after gastrointestinal, JFG) was diminished; however, JFG had raised the relative antioxidant capacity compared to Jackfruit flake extract (JFE). Additionally, the results of High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) implied that a proportion of compounds were degraded/converted into other unknown and/or undetected metabolites. Further, by high content analysis (HCA) techniques, JFG markedly reduced cytotoxicity and excessive production of reactive oxygen species (ROS) in cells, thereby alleviating mitochondrial disorders. In this study, it may be converted active compounds after digestion that had preferable protective effects against AA-induced oxidative damage.
Collapse
Affiliation(s)
- Daofeng Qu
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Chu Liu
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Mengxue Jiang
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Lifang Feng
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Yuewen Chen
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| | - Jianzhong Han
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China.
| |
Collapse
|
47
|
Rogowska A, Pomastowski P, Rafińska K, Railean-Plugaru V, Złoch M, Walczak J, Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon 2019; 169:81-90. [PMID: 31493420 DOI: 10.1016/j.toxicon.2019.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
A study of the mechanism responsible for the zearalenone (ZEA) neutralization by lactic acid bacteria Lactococcus lactis 56 and L929 cell line was carried out by determination of the kinetics of the binding process. In the case of prokaryotic cells the biosorption process was non-linear and three steps were identified. The maximum efficiency of zearalenone binding to L. lactis was almost 30% and no metabolites were observed. In turn, for eukaryotic cells only two steps of the binding process were differentiated, and the efficiency of zearalenone binding was 53.99%. Furthermore, L929 cell line metabolizes zearalenone to α-ZOL and β-ZOL. Additionally, Fourier transform infrared spectroscopy (FTIR) was used for description of the structural changes at the protein and lipid level, while Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) was applied to detect changes at the molecular level.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Michał Złoch
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland.
| |
Collapse
|
48
|
Leiva A, Méndez G, Rodríguez C, Molina A, Granados-Chinchilla F. Chemical assessment of mycotoxin contaminants and veterinary residues in Costa Rican animal feed. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2019. [DOI: 10.1186/s40550-019-0075-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|