1
|
Dou Y, Zhang M, Zhang H, Zhang C, Feng L, Hu J, Gao Y, Yuan XZ, Zhao Y, Zhao H, Chen ZJ. Lactating exposure to microplastics at the dose of infants ingested during artificial feeding induced reproductive toxicity in female mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174972. [PMID: 39053555 DOI: 10.1016/j.scitotenv.2024.174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) pollution poses a global environmental challenge with significant concerns regarding its potential impact on human health. Toxicological investigations have revealed multi-system impairments caused by MPs in various organisms. However, the specific reproductive hazards in human contexts remain elusive, and understanding the transgenerational reproductive toxicity of MPs remains limited. This study delves into the reproductive toxicity resulting from lactational exposure to polystyrene MPs (PS-MPs) in female mice, extending the inquiry to assess the reproductive effects on their offspring bred by rigorous natural mating. The MPs dosage corresponds to the detected concentration in infant formula prepared using plastic bottles. By systematically evaluating the reproductive phenotypes of F0 female mice from birth to adulthood, we found that female mice exposed to PS-MPs exhibited delayed puberty, disturbed estrous cyclicity, diminished fertility, elevated testosterone, abnormal follicle development, disrupted ovarian steroidogenesis, and ovarian inflammation. Importantly, the observed inheritable reproductive toxicity manifested with gender specificity, showcasing more pronounced abnormalities in male offspring. Specifically, reproductive disorders did not manifest in female offspring; however, a significant decrease in sperm count and viability was observed in PS-MPs-exposed F1 males. Testicular transcriptomics analysis of F1 males significantly enriched pathways associated with reproductive system development and epigenetic modification, such as male germ cell proliferation, DNA methylation, and histone modification. In summary, real-life exposure to PS-MPs impaired the reproductive function of female mice and threateningly disrupted the spermatogenesis of their F1 male offspring, which raises serious concerns about inter- and trans-generational reproductive toxicities of MPs in mammals. These findings underscore the potential threats of MPs to human reproductive health, emphasizing the need for continued vigilance and research in this critical area.
Collapse
Affiliation(s)
- Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China; Suzhou Municipal Hospital, Suzhou, China; Gusu School, Nanjing Medical University, Suzhou, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Lijuan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, China
| | - Jingmei Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Jones K, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Use of Cosmetics in Pregnancy and Neurotoxicity: Can It Increase the Risk of Congenital Enteric Neuropathies? Biomolecules 2024; 14:984. [PMID: 39199372 PMCID: PMC11352589 DOI: 10.3390/biom14080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a particularly vulnerable period for the growing fetus, when exposure to toxic agents, especially in the early phases, can decisively harm embryo development and compromise the future health of the newborn. The inclusion of various chemical substances in personal care products (PCPs) and cosmetic formulations can be associated with disruption and damage to the nervous system. Microplastics, benzophenones, parabens, phthalates and metals are among the most common chemical substances found in cosmetics that have been shown to induce neurotoxic mechanisms. Although cosmetic neurotoxin exposure is believed to be minimal, different exposure scenarios of cosmetics suggest that these neurotoxins remain a threat. Special attention should be paid to early exposure in the first weeks of gestation, when critical processes, like the migration and proliferation of the neural crest derived cells, start to form the ENS. Importantly, cosmetic neurotoxins can cross the placental barrier and affect the future embryo, but they are also secreted in breast milk, so babies remain exposed for longer periods, even after birth. In this review, we explore how neurotoxins contained in cosmetics and PCPs may have a role in the pathogenesis of various neurodevelopmental disorders and neurodegenerative diseases and, therefore, also in congenital enteric aganglionosis as well as in postnatal motility disorders. Understanding the mechanisms of these chemicals used in cosmetic formulations and their role in neurotoxicity is crucial to determining the safety of use for cosmetic products during pregnancy.
Collapse
Affiliation(s)
- Kendra Jones
- “Translational Medical Research” Master Program, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Kaiserslautern, Germany;
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Shi K, Zhang H, Gao J, Zhang J, Zhang X, Kan G, Jiang J. Detection of nanoplastics released from consumer plastic food containers by electromagnetic heating pyrolysis mass spectrometry. Anal Chim Acta 2024; 1296:342344. [PMID: 38401923 DOI: 10.1016/j.aca.2024.342344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Nanoplastics released from consumer plastic food containers are emerging environmental pollutants and directly ingested as part of the diet. However, quantification methods for nanoplastics are still lacking. Herein, a rapid identification and mass quantification approach was developed for nanoplastics analysis by combining electromagnetic heating with pyrolysis mass spectrometry (Eh-Py-MS). The pyrolysis products directly entered into the MS, which omits the gas phase separation process and shortens the detection time. A compact pyrolysis chamber was used and this increased the sample transfer efficiency and lowered power requirement. The operational parameters were systematically examined. The influence of nanoplastic size, additive, humic acid, and aging on detection was investigated, and it was concluded that environmental factors (humic acid, aging) and plastic properties (size, additives) did not influence the detection. The developed chamber showed that the limit of detection of polystyrene (PS) nanoplastics was 15.72 ng. Several typical food packages were demonstrated with satisfactory recovery rates (87.5-110%) and precision (RSD ≤11.36%). These results suggested that the consumer plastic food containers are a significant source of direct exposure to nanoplastics in humans from the environment.
Collapse
Affiliation(s)
- Ke Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| | - Jikun Gao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China
| | - Jiaqian Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Xiangnan Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong, 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
| |
Collapse
|
4
|
Liu Z, Wang G, Sheng C, Zheng Y, Tang D, Zhang Y, Hou X, Yao M, Zong Q, Zhou Z. Intracellular Protein Adsorption Behavior and Biological Effects of Polystyrene Nanoplastics in THP-1 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2652-2661. [PMID: 38294362 DOI: 10.1021/acs.est.3c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Micro(nano)plastics (MNPs) are emerging pollutants that can adsorb pollutants in the environment and biological molecules and ultimately affect human health. However, the aspects of adsorption of intracellular proteins onto MNPs and its biological effects in cells have not been investigated to date. The present study revealed that 100 nm polystyrene nanoplastics (NPs) could be internalized by THP-1 cells and specifically adsorbed intracellular proteins. In total, 773 proteins adsorbed onto NPs with high reliability were identified using the proteomics approach and analyzed via bioinformatics to predict the route and distribution of NPs following cellular internalization. The representative proteins identified via the Kyoto Encyclopedia of Genes and Genomes pathway analysis were further investigated to characterize protein adsorption onto NPs and its biological effects. The analysis revealed that NPs affect glycolysis through pyruvate kinase M (PKM) adsorption, trigger the unfolded protein response through the adsorption of ribophorin 1 (RPN1) and heat shock 70 protein 8 (HSPA8), and are chiefly internalized into cells through clathrin-mediated endocytosis with concomitant clathrin heavy chain (CLTC) adsorption. Therefore, this work provides new insights and research strategies for the study of the biological effects caused by NPs.
Collapse
Affiliation(s)
- Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100124, China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qi Zong
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
6
|
Kwon BG. Aquatic toxicity and fate of styrene oligomers in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115462. [PMID: 37738771 DOI: 10.1016/j.ecoenv.2023.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
Styrene oligomers (SOs) are ubiquitous contaminants that appear in the environment, sometimes to significant extent (see section 3.1). Despite the ongoing international debate on the human health risks posed by SOs, to the best of my knowledge, there are no studies on the aquatic toxicity and environmental fates (biodegradation and atmospheric degradation) of SOs in the environment. This study is to predict the aquatic toxicity and environmental fate of SOs by using the US EPA EPI suite program as an in-silico method. For better understanding, the risks and fates of SOs are compared with those of the well-known bisphenol A (BPA) and styrene monomer (SM or styrene). As a result of this study, SOs are predicted to be relatively more toxic than BPA and SM to aquatic and terrestrial organisms in the freshwater, marine, and terrestrial environments. In particular, the biodegradability of SOs is predicted to be relatively very slow in the environment, and most SOs are more likely to be effectively decomposed by hydroxyl radicals than by ozone in the atmosphere. As a result, this study can contribute to motivating understanding of the aquatic toxicity and fate of ubiquitous SOs in the environment.
Collapse
Affiliation(s)
- Bum Gun Kwon
- Department of Bioenvironmental and Chemical Engineering, Chosun College of Science and Technology, 309-1 Pilmundae-ro, Dong-gu, Gwangju 61453, Republic of Korea.
| |
Collapse
|
7
|
Le VR, Nguyen MK, Nguyen HL, Lin C, Rakib MRJ, Thai VA, Le VG, Malafaia G, Idris AM. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164758. [PMID: 37308024 DOI: 10.1016/j.scitotenv.2023.164758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.
Collapse
Affiliation(s)
- Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Van-Anh Thai
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
8
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
9
|
Qu M, Miao L, Chen H, Zhang X, Wang Y. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131840. [PMID: 37327611 DOI: 10.1016/j.jhazmat.2023.131840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of nanoplastics on transgenerational toxicity in environmental organisms and the involved mechanisms remain poorly comprehended. This study aimed to identify the role of SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis in response to transgenerational toxicity caused by changes in nanoplastic surface charges in Caenorhabditis elegans (C. elegans). Our results revealed that compared with the wild-type control and PS exposed groups, exposure to PS-NH2 or PS-SOOOH at environmentally relevant concentrations (ERC) of ≥ 1 μg/L caused transgenerational reproductive toxicity, inhibited mitochondrial unfolded protein responses (UPR) by downregulating the transcription levels of hsp-6, ubl-5, dve-1, atfs-1, haf-1, and clpp-1, membrane potential by downregulating phb-1 and phb-2, and promoted mitochondrial apoptosis by downregulating ced-4 and ced-3 and upregulating ced-9, DNA damage by upregulating hus-1, cep-1, egl-1, reactive oxygen species (ROS) by upregulating nduf-7 and nuo-6, ultimately resulting in mitochondrial homeostasis. Additionally, further study indicated that SKN-1/Nrf2 mediated antioxidant response to alleviate PS-induced toxicity in the P0 generation and dysregulated mitochondrial homeostasis to enhance PS-NH2 or PS-SOOOH-induced transgenerational toxicity. Our study highlights the momentous role of SKN-1/Nrf2 mediated mitochondrial homeostasis in the response to nanoplastics caused transgenerational toxicity in environmental organisms.
Collapse
Affiliation(s)
- Man Qu
- School of Public Health, Yangzhou University, Yangzhou 225000, China.
| | - Long Miao
- School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - He Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Xing Zhang
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210009, China
| | - Yang Wang
- Yangzhou Hospital of Traditional Chinese Medicine Affiliated to the School of Clinical Chinese Medicine, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
10
|
Wang Z, Li H, Li T, Zhang Q, Cai Y, Bai H, Lv Q. Application of validated migration models for the risk assessment of styrene and acrylonitrile in ABS plastic toys. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114570. [PMID: 36706528 DOI: 10.1016/j.ecoenv.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
With styrene and acrylonitrile in ABS plastic toys as examples, this paper introduces to the development of a systematic strategy for studying the chemical migration risk in toys. The approach, included the detection method, establishment of migration model, model verification, and the practical application of the model in risk assessment. First, simple and sensitive methods for detecting analyte residues and migration were developed by headspace GC-MS. Then, the migration models were established based on the migration data from 5 min to 168 h and verified using 11 ABS samples. The results showed that the predicted values of the models and the experimental values had a good fit (RMSE=0.10-8.72 %). Subsequently, the migration of analytes in 94 ABS toys was predicted with these models at specific migration times. The daily average exposure level to styrene and acrylonitrile were estimated for children (3 months to 3 years). At last, the migration models reasonably predicted that the cancer risk of styrene and acrylonitrile in ABS toys were 1.6 × 10-8-1.4 × 10-6 and 3.1 × 10-8-1.6 × 10-6, respectively. This research contributes to promote toy safety and child health by enriching migration models and risk assessments.
Collapse
Affiliation(s)
- Zhijuan Wang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, China
| | - Tao Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
11
|
Alberto Lopes J, Tsochatzis ED. Poly(ethylene terephthalate), Poly(butylene terephthalate), and Polystyrene Oligomers: Occurrence and Analysis in Food Contact Materials and Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2244-2258. [PMID: 36716125 DOI: 10.1021/acs.jafc.2c08558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyesters (PES) and polystyrene (PS) are among the most used plastics in the production of food contact materials (FCM). The existence of compounds that could migrate from these materials into food requires a constant analytical control to ensure the safety of consumers due to consumption. It also implies a significant research challenge for their identification and quantification. One of the most important groups of known FCM migrants are the substances known as oligomers. PES and PS oligomers have long been suspected to possess some toxicological effects. The International Agency for Research on Cancer and the European Food Safety Authority alerted recently to the potential carcinogenicity of styrene, with its oligomers consequently being also in the spotlight. At the same time, PES cyclic oligomers are categorized as having Cramer III toxicity. Many recent works on the occurrence of poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), and PS oligomers in FCM and food have been published. The oligomeric chemical analysis requires the use of demanding analytical strategies to address their different physicochemical characteristics (melting points, octanol/water partition coefficients, and solubility properties). Chromatographic methods are normally preferred due to the intrinsic complexity of the target matrices, but the reduced amount of reliable analytical standards still hinders the widespread screening analysis of oligomers in food. This work presents the most relevant recent studies and analytical methodologies used in the analysis of PET, PBT, and PS oligomers in food and FCM, as well as current and future challenges.
Collapse
Affiliation(s)
- J Alberto Lopes
- European Innovation Council and SMEs Executive Agency, 1210 Brussels, Belgium
| | - E D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
12
|
Chen H, Chen H, Nan S, Liu H, Chen L, Yu L. Investigation of Microplastics in Digestion System: Effect on Surface Microstructures and Probiotics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:882-892. [PMID: 35920852 DOI: 10.1007/s00128-022-03571-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
There are increasingly attentions on the pollution from microplastics, especially the impact on human health. This work focuses on one hand the effect of digestion system on the surface microstructures of microplastics from the most popular sources such as polypropylene, polyethylene, polyethylene terephthalate, polystyrene and polyvinyl chloride. On the other hand, how these microplastic affect probiotics in digestion system was also investigated to evaluate their toxicity on health. All the samples were treated by in vitro simulating digestion consisting of three phases: oral, gastric and intestinal. There were no physical differences observed by both Scanning Electronic Microscopy and Atomic Force Microscopy, and no significant chemical changes detected by both Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy after digestion treatment. The effect of these microplastics on tested strains were investigated by in vitro culture method and results showed that polystyrene microplastics could inhibit the growth of the Lactobacillus significantly. The results indicated that the digestion system could not decompose microplastics, even on the surfaces, since plastics are inert due to their low chemical reactivity, but the microplastics might lead to imbalance of intestinal microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Centre for Polymers From Renewable Resources, School of Food Science and Engineering, SCUT, Guangzhou, 510640, China
| | - Hongmei Chen
- Centre for Polymers From Renewable Resources, School of Food Science and Engineering, SCUT, Guangzhou, 510640, China
| | - Shugang Nan
- Centre for Polymers From Renewable Resources, School of Food Science and Engineering, SCUT, Guangzhou, 510640, China
| | - Hongsheng Liu
- Centre for Polymers From Renewable Resources, School of Food Science and Engineering, SCUT, Guangzhou, 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou, China
| | - Ling Chen
- Centre for Polymers From Renewable Resources, School of Food Science and Engineering, SCUT, Guangzhou, 510640, China
| | - Long Yu
- Centre for Polymers From Renewable Resources, School of Food Science and Engineering, SCUT, Guangzhou, 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou, China.
| |
Collapse
|
13
|
Beneventi E, Goldbeck C, Zellmer S, Merkel S, Luch A, Tietz T. Migration of styrene oligomers from food contact materials: in silico prediction of possible genotoxicity. Arch Toxicol 2022; 96:3013-3032. [PMID: 35963937 PMCID: PMC9376037 DOI: 10.1007/s00204-022-03350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Styrene oligomers (SO) are well-known side products formed during styrene polymerization. They consist mainly of dimers (SD) and trimers (ST) that have been shown to be still residual in polystyrene (PS) materials. In this study migration of SO from PS into sunflower oil at temperatures between 5 and 70 °C and contact times between 0.5 h and 10 days was investigated. In addition, the contents of SD and ST in the fatty foodstuffs créme fraiche and coffee cream, which are typically enwrapped in PS, were measured and the amounts detected (of up to 0.123 mg/kg food) were compared to literature data. From this comparison, it became evident, that the levels of SO migrating from PS packaging into real food call for a comprehensive risk assessment. As a first step towards this direction, possible genotoxicity has to be addressed. Due to technical and experimental limitations, however, the few existing in vitro tests available are unsuited to provide a clear picture. In order to reduce uncertainty of these in vitro tests, four different knowledge and statistics-based in silico tools were applied to such SO that are known to migrate into food. Except for SD4 all evaluated SD and ST showed no alert for genotoxicity. For SD4, either the predictions were inconclusive or the substance was assigned as being out of the chemical space (out of domain) of the respective in silico tool. Therefore, the absence of genotoxicity of SD4 requires additional experimental proof. Apart from SD4, in silico studies supported the limited in vitro data that indicated the absence of genotoxicity of SO. In conclusion, the overall migration of all SO together into food of up to 50 µg/kg does not raise any health concerns, given the currently available in silico and in vitro data.
Collapse
Affiliation(s)
- Elisa Beneventi
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Christophe Goldbeck
- Chemical and Veterinary, Analytical Institute Muensterland-Emscher-Lippe (CVUA-MEL), 48147, Münster, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Stefan Merkel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Thomas Tietz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| |
Collapse
|
14
|
López de las Hazas MC, Boughanem H, Dávalos A. Untoward Effects of Micro- and Nanoplastics: An Expert Review of Their Biological Impact and Epigenetic Effects. Adv Nutr 2022; 13:1310-1323. [PMID: 34928307 PMCID: PMC9340974 DOI: 10.1093/advances/nmab154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
The production of plastic has dramatically increased in the last 50 y. Because of their stability and durability, plastics are ubiquitously incorporated in both marine and terrestrial ecosystems. Plastic is acted upon by biological, chemical, and physical agents, leading to fragmentation into small pieces [i.e., microplastics (MPs) or nanoplastics (NPs)], classified depending on their size. MPs range from 0.1 to 5000 μm and NPs are fragments between 0.001 to 0.1 μm. MPs and, especially NPs, are easily incorporated into living beings via ingestion. The penetration of MPs and NPs into the food system is an important issue, for both food security and health risk assessment. Ingestion of different MPs and NPs has been associated with different issues in the intestine, such as direct physical damage, increased intestinal permeability, diminished microbiota diversity, and increases in local inflammatory response. However, the potential harmful effects of low-dose dietary plastic are still unclear. Some evidence indicates that intestinal uptake of plastic particles is relatively low and is mostly dependent on the particle's size. However, other evidence highlights that NPs dysregulate key molecular signaling pathways, modify the gut microbiota composition, and may induce important epigenetic changes, including transgenerational effects that might be involved in the onset of many different metabolic disorders. Until now, experiments have been mostly performed on marine organisms, Caenorhabditis elegans, and mouse models, but some research indicates accidental plastic dietary consumption by humans, raising the issue of detrimental health effects of MPs and NPs. This review discusses the impact that MPs and NPs could have on the intestinal tract and the biodistribution and systemic, cellular, and molecular levels. Accumulated evidence of MPs' effects on the human gut suggests that large exposure to MPs and NPs may have phenotypical untoward effects in humans, calling for urgent research in this field.
Collapse
Affiliation(s)
- María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)–Food, CEI UAM + CSIC, Madrid, Spain
| | - Hatim Boughanem
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Málaga, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)–Food, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
15
|
Yasin NAE, El-Naggar ME, Ahmed ZSO, Galal MK, Rashad MM, Youssef AM, Elleithy EMM. Exposure to Polystyrene nanoparticles induces liver damage in rat via induction of oxidative stress and hepatocyte apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103911. [PMID: 35724857 DOI: 10.1016/j.etap.2022.103911] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 05/26/2023]
Abstract
Plastic products are widely used in different applications. Thus, exposure of human and other organisms to these products may affect their biological system. The current study was conducted to investigate the potential deleterious effect of Polysterene nanoparticles (PS-NPs) on the liver and to state the cellular and molecular mechanisms associated with exposure to PS-NPs.30 male rats were divided randomly and equally into 3 groups; control (distilled water), low dose (3 mg/kg/day) and high dose (10 mg/kg/day) exposed group via oral gavage for 5 successive weeks. PS-NPs caused elevation in ALT, AST and MDA, upregulation of apoptosis-related genes and significant decrease in GSH and mRNA expression for antioxidant-related genes (Nrf-2 and GPx). Moreover, alterations in hepatic tissue architecture and positive caspase-3 expression was noticed in a dose- dependent manner. Collectively, PS-NPs can induce hepatoxicity in rats in a dose dependent manner, so the health risk of PS-NPs should not be ignored.
Collapse
Affiliation(s)
- Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, Dokki, Cairo, Egypt.
| | - Zainab Sabry Othman Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, South Sinai, Egypt.
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Ahmed M Youssef
- Packaging and packing materials Department, National Research Center, Dokki, Cairo, Egypt.
| | - Ebtihal M M Elleithy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
16
|
Abstract
Consumers’ interest in a high-quality healthy diet is creating a growing trend in the food industry, focusing on the design and development of new products rich in bioactive compounds. This work involves the formulation of a vegetable sauce obtained from a mixture of pumpkin and pepper, the study of the evolution of bioactive compounds, quality and sensory parameters during storage at 4 and 25 °C, the influence of the packaging materials (PVC, PE/PA, and PS), and the migration degree. Antioxidant activity, polyphenols, carotenoids, and brown pigments contents were studied at 25 °C. Overall migration of the containers and the evolution of the physicochemical parameters and sensory attributes of the sauce were analyzed. All plastic materials showed an overall migration lower than the limit of EU and Mercosur Regulations. PVC better preserved polyphenols, antioxidant activity, and carotenoids until 50, 10, and 30 days, respectively, and lower development of brown pigments was observed. Higher storage temperatures favored undesirable changes in sensory attributes before 50 days of storage. PVC can be used to achieve greater conservation of the sensory attributes of sauce, regardless of the storage temperature. It could be considered the best material to preserve the bioactive properties and sensory attributes of the sauce until 30 days.
Collapse
|
17
|
Zhang L, Wang S, Zhao Y, Nurdebek B, Bu Y, Wang D. Long-term exposure to polystyrene nanoparticles causes transgenerational toxicity by affecting the function and expression of MEV-1 and DAF-2 signals in Caenorhabditis elegans. NANOIMPACT 2022; 26:100403. [PMID: 35560288 DOI: 10.1016/j.impact.2022.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 05/21/2023]
Abstract
In this study, we determined the roles of oxidative stress and related signals in mediating transgenerational toxicity of 30 nm polystyrene nanoparticles (PS-NPs) in Caenorhabditis elegans. Using brood size and locomotion behavior as endpoints, exposure to 1-100 μg/L PS-NPs caused transgenerational toxicity. Meanwhile, the activation of reactive oxygen species (ROS) was also observed transgenerationally after exposure to 1-100 μg/L PS-NPs. After exposure to 1 μg/L PS-NPs, the transgenerational toxicity was monitored until F2 generation (F2-G) and recovered at F3-G. At the F1-G of 1 μg/L PS-NPs-exposed nematodes, RNAi knockdown of daf-2 with function to inhibit oxidative stress suppressed the transgenerational toxicity and increased the mitochondrial SOD-3 expression. In contrast, at F3-G of 1 μg/L PS-NPs-exposed nematodes, RNAi knockdown of mev-1 with function to induce oxidative stress promoted locomotion and brood size, and suppressed the SOD-3 expression. Moreover, we observed the dynamic expressions of mev-1, daf-2, and sod-2 transgenerationally after exposure to 1 μg/L PS-NPs at P0-G, which further suggested the involvement of MEV-1, DAF-2, and SOD-3 in affecting induction of transgenerational PS-NP toxicity. Therefore, we provided the evidence to suggest the roles of oxidative stress activation and related molecular signals in mediating induction of transgenerational PS-NP toxicity. Our data highlights the crucial function of oxidative stress-related signals during induction of transgenerational PS-NP toxicity.
Collapse
Affiliation(s)
- Le Zhang
- Medical School, Southeast University, Nanjing 210009, China
| | - Shuting Wang
- Medical School, Southeast University, Nanjing 210009, China
| | - Yunli Zhao
- Medical School, Southeast University, Nanjing 210009, China
| | | | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
18
|
Edo C, Fernández-Piñas F, Rosal R. Microplastics identification and quantification in the composted Organic Fraction of Municipal Solid Waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151902. [PMID: 34838550 DOI: 10.1016/j.scitotenv.2021.151902] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Composted Organic Fraction of Municipal Solid Waste (OFMSW) is used in agricultural soils as a source of organic matter and nutrients. Besides, its use avoids landfilling or incineration following the principles of circular economy. It is well established that source separated OFMSW is suitable for compost production, but its quality depends on their content in non-compostable materials. In this work, we selected and studied the final refined compost form five OFMSW facilities over a five-month period. The plants displayed differences in collection systems, concentration on non-desired materials, treatment technology and density of served population. The presence of plastic was studied using a separation and identification process that consisted of oxidation and flotation followed by spectroscopic identification. The results showed a concentration of plastic impurities in the 10-30 items/g of dry compost range. The concentration of small fragments and fibres (equivalent diameter < 5 mm) was in the 5-20 items/g of dry weight range and were dominated by fibres (25% of all particles <500 μm). Five polymers represented 94% of the plastic items: polyethylene, polystyrene, polyester, polypropylene, polyvinyl chloride, and acrylic polymers in order of abundance. Polyethylene was more abundant in films, polystyrene in fragments, polypropylene in filaments, and fibres were dominated by polyester. Our results showed that smaller plants, with OFMSW door-to-door collection systems produced compost with less plastic of all sizes. Compost from big facilities fed by OFMSW from street bin collection displayed the highest contents of plastics. No debris from compostable bioplastics were found in any of the samples, meaning that if correctly composted their current use does not contribute to the spreading of anthropogenic pollution. Our results suggested that the use of compostable polymers and the implementation of door-to-door collection systems could reduce the concentration of plastic impurities in compost from OFMSW.
Collapse
Affiliation(s)
- Carlos Edo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain.
| |
Collapse
|
19
|
Tamada H, Ebara T, Matsuki T, Kato S, Sato H, Ito Y, Saitoh S, Kamijima M, Sugiura-Ogasawara M. Impact of Ready-Meal Consumption during Pregnancy on Birth Outcomes: The Japan Environment and Children’s Study. Nutrients 2022; 14:nu14040895. [PMID: 35215545 PMCID: PMC8877490 DOI: 10.3390/nu14040895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ready-meal consumption is increasing worldwide; however, its impact on human health remains unclear. We aimed to examine the association between processed food and beverage consumption during pregnancy and pregnancy outcomes. Pregnant women were recruited for the Japan Environment and Children’s Study (JECS), a nationwide, large-scale, prospective cohort study. This study included 104,102 registered children (including fetuses or embryos) and collected questionnaire-based data during the first and second/third trimester of pregnancy. Participants’ medical records were transcribed at pregnancy registration, immediately after delivery, and 1 month after delivery. Logistic regression analysis was used to estimate the association between processed food consumption and pregnancy outcomes. The incidence of stillbirth was higher in the group that consumed moderate (1–2 times per week) and high (≥3–7 times per week) amounts of ready-meals (adjusted odds ratio (aOR) = 2.054, 95% confidence interval (CI): 1.442–2.926, q = 0.002; aOR = 2.632, 95% CI: 1.507–4.597, q = 0.007, respectively) or frozen meals (aOR = 2.225, 95% CI: 1.679–2.949, q < 0.001; aOR = 2.170, 95% CI: 1.418–3.322, q = 0.005, respectively) than in the group that rarely consumed such foods. Processed food consumption during pregnancy should be carefully considered.
Collapse
Affiliation(s)
- Hazuki Tamada
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
| | - Taro Matsuki
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
| | - Sayaka Kato
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan;
| | - Hirotaka Sato
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
| | - Yuki Ito
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan;
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan; (H.T.); (T.E.); (T.M.); (S.K.); (H.S.); (Y.I.); (M.K.)
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, Mizuho-ku, Nagoya 4678601, Japan
- Correspondence: ; Tel.: +81-52-853-8241
| | | |
Collapse
|
20
|
Conti I, Simioni C, Varano G, Brenna C, Costanzi E, Neri LM. Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117708. [PMID: 34256282 DOI: 10.1016/j.envpol.2021.117708] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
Plastic pollution is an emerging problem and is a consequence of the post-consumer plastic waste accumulation in the environment coupled to mismanaged waste programmes. Countries are counteracting the continuous growth of plastic litter with different strategies: introducing bans and limits on both plastic items and materials, promoting plastic recycling and recovery strategies and encouraging voluntary clean up actions, as well as raising public awareness. However, the toxicity of plastics to the environment and organisms is not only related to their polymer chains, but also to the fact that plastic materials contain hazardous additives and can adsorb environmental pollutants (i.e. heavy metals and persistent organic contaminants, respectively). The plastic/additives/pollutants combination may be ingested by marine organisms and then enter in the food chain. Therefore, legislation for additives and contaminants is crucial both to reduce environmental pollution and their toxic effects on organisms, which of course includes humans. In this review, the current policies on plastics and related contaminants are described focusing on current laws. Moreover, recommendations for seafood consumption are suggested, since each fish or mollusc eaten may potentially result in plastic particles, additives or contaminants ingestion.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy; LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy; LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
21
|
Ubeda S, Aznar M, Nerín C, Kabir A. Fabric phase sorptive extraction for specific migration analysis of oligomers from biopolymers. Talanta 2021; 233:122603. [PMID: 34215091 DOI: 10.1016/j.talanta.2021.122603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Oligomers are potential migrants from polymers or biopolymers intended to food packaging and they have to be under control. In order to comply with European regulation 10/2011, their concentration in migration must be below 0.01 μg g-1. In this work, fabric phase sorptive extraction (FPSE) was explored as an effective method for extraction and pre-concentration of oligomers migrated from a blend PLA-polyester material. Both food simulant B (3% acetic acid) and juice, as real food, were used for migration experiments. The parameters of FPSE were optimized and the analysis was done by UHPLC-QTOF and UHPLC-QqQ. A total of 21 oligomers were identified, 9 of them coming from PLA and 12 oligomers from the polyester part. These oligomers were formed by adipic acid (AA), phthalic acid (PA) and/or butanediol (BD), ten were cyclic and 11 were linear molecules. Using the optimized FPSE procedure in 3% acetic acid as food simulant, it was possible to identify 3 new compounds that were not detected by direct injection of the simulant into UHPLC-QTOF. In addition, 2 extra compounds, cyclic PA-BD4-AA3 and cyclic PA2-BD3-AA, were only identified in juice samples after FPSE extraction. Besides, in order to quantify the compounds identified, an isolation procedure for PLA oligomers was carried out. Two oligomers were isolated: cyclic (LA)6 and linear HO-(LA)4-H, both with a purity higher than 90% (LA: lactic acid). The highest concentration value was found for the cyclic oligomer [AA-BD]2, that showed 22.63 μg g-1 in 3% acetic acid and 19.64 μg g-1 in juice. The concentration of the total amount of remaining oligomers was below 7.56 μg g-1 in 3% acetic acid as well as in juice.
Collapse
Affiliation(s)
- Sara Ubeda
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Margarita Aznar
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain.
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Fl, 33199, USA
| |
Collapse
|
22
|
Kato LS, Conte-Junior CA. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers (Basel) 2021; 13:2077. [PMID: 34202594 PMCID: PMC8271870 DOI: 10.3390/polym13132077] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. This review aimed to situate the main challenges involving unknown NIAS in plastic food packaging in terms of identification, migration tests, prediction, sample preparation, determination methods and risk assessment trials. Most studies have identified NIAS in plastic materials as polyurethane adhesives (PU), polyethylene terephthalate (PET), polyester coatings, polypropylene materials (PP), multilayers materials, plastic films, polyvinyl chloride (PVC), recycled materials, high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Degradation products are almost the primary source of NIAS in plastic FCMs, most from antioxidants as Irganox 1010 and Irgafos 168, following by oligomers and side reaction products. The NIAS assessment in plastics FCMs is usually made by migration tests under worst-case conditions using food simulants. For predicted NIAS, targeted analytical methods are applied using GC-MS based methods for volatile NIAS and GC-MS and LC-MS based methods for semi- and non-volatile NIAS; non-targeted methods to analyze unknown NIAS in plastic FCMs are applied using GC and LC techniques combined with QTOF mass spectrometry (HRMS). In terms of NIAS risk assessment and prioritization, the threshold of toxicological concern (TTC) concept is the most applied tool for risk assessment. Bioassays with sensitive analytical techniques seem to be an efficient method to identify NIAS and their hazard to human exposure; the combination of genotoxicity testing with analytical chemistry could allow the Cramer class III TTC application to prioritize unknown NIAS. The scientific justification for implementing a molecular weight-based cut-off (<1000 Da) in the risk assessment of FCMs should be reevaluated. Although official guides and opinions are being issued on the subject, the whole chain's alignment is needed, and more specific legislation on the steps to follow to get along with NIAS.
Collapse
Affiliation(s)
- Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Carlos A. Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil;
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology, (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
23
|
Liu H, Qiu Y, Wang D. Alteration in expressions of ion channels in Caenorhabditis elegans exposed to polystyrene nanoparticles. CHEMOSPHERE 2021; 273:129686. [PMID: 33486351 DOI: 10.1016/j.chemosphere.2021.129686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Ion channels on cytoplasmic membrane function to sense various environmental stimuli. We here determined the changes of genes encoding ion channels in Caenorhabditis elegans after exposure to polystyrene nanoparticles (PS-NPs). Exposure to 1-1000 μg/L PS-NPs could increase expressions of egl-19, mec-10, trp-4, trp-2, tax-4, cca-1, unc-2, and unc-93, and decrease the expressions of cng-3, mec-6, ocr-2, deg-1, exc-4, kvs-1, and eat-2. Among these 15 ion channel genes, RNAi knockdown of cng-3 or eat-2 caused resistance to PS-NPs toxicity and RNAi knockdown of egl-19, cca-1, tax-4, or unc-93 induced susceptibility to PS-NPs toxicity, suggesting that cng-3, eat-2, egl-19, cca-1, tax-4, and unc-93 were involved in the control of PS-NPs toxicity. EGL-19 and CCA-1 functioned in intestinal cells to control PS-NPs toxicity, and CNG-3, EAT-2, EGL-19, TAX-4, and UNC-93 functioned in neuronal cells to control PS-NPs. Moreover, in intestinal cells of PS-NPs exposed worms, cca-1 RNAi knockdown decreased elt-2 expression, and egl-19 RNAi knockdown decreased daf-16 and elt-2 expressions. In neuronal cells of PS-NPs exposed worms, eat-2 RNAi knockdown increased jnk-1, mpk-1, and dbl-1 expressions, unc-93 RNAi knockdown decreased mpk-1 and daf-7 expressions, and tax-4 RNAi knockdown decreased jnk-1 and daf-7 expressions. Therefore, two molecular networks mediated by ion channels in intestinal cells and neuronal cells were dysregulated by PS-NPs exposure in C. elegans. Our data suggested that the dysregulation in expressions of these ion channels mediated a protective response to PS-NPs in the range of μg/L in worms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
24
|
Wang S, Zhang R, Wang D. Induction of protective response to polystyrene nanoparticles associated with methylation regulation in Caenorhabditis elegans. CHEMOSPHERE 2021; 271:129589. [PMID: 33453486 DOI: 10.1016/j.chemosphere.2021.129589] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The epigenetic regulation mechanisms for toxicity induction of nanoplastics in organisms remain largely unknown. In Caenorhabditis elegans, we found that prolonged exposure to 1-100 μg/L polystyrene nanoparticles (PS-NPs) decreased expression of MET-2, a H3K9 methyltransferase. Meanwhile, RNAi knockdown of met-2 suppressed the PS-NPs toxicity in inducing production of reactive oxygen species (ROS) and in decreasing locomotion behavior, which suggesting that the decrease in MET-2 expression reflected a protective response. This resistance to PS-NPs toxicity could be further detected in worms with met-2 RNAi knockdown in both intestinal cells and germline cells. In PS-NPs exposed worms, intestinal RNAi knockdown of met-2 significantly increased expressions of daf-16, bar-1, and elt-2. Intestinal RNAi knockdown of daf-16, bar-1, or elt-2 suppressed the resistance of met-2(RNAi) worms to PS-NPs toxicity, suggesting that MET-2 functioned upstream of ELT-2, BAR-1, and DAF-16 in intestinal cells to control PS-NPs toxicity. Moreover, in PS-NPs exposed worms, germline RNAi knockdown of met-2 significantly decreased expressions of wrt-3 and pat-12. RNAi knockdown of wrt-3 or pat-12 further inhibited the susceptibility of worms overexpressing germline MET-2 to PS-NPs toxicity, suggesting that MET-2 functioned upstream of PAT-12 and WRT-3 in germline cells to control PS-NPs toxicity. Therefore, our data provided an important molecular basis for MET-2-mediated methylation regulation in causing protective response to nanoplastics in organisms.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Ruijie Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
25
|
Yang Y, Dong W, Wu Q, Wang D. Response of G protein-coupled receptor CED-1 in germline to polystyrene nanoparticles in Caenorhabditis elegans. NANOSCALE ADVANCES 2021; 3:1997-2006. [PMID: 36133095 PMCID: PMC9419163 DOI: 10.1039/d0na00867b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 05/30/2023]
Abstract
The deposition of a certain amount of nanopolystyrene (NPS) can be observed in the gonad of Caenorhabditis elegans. However, we still know little about the response of germline towards NPS exposure. In the germline of C. elegans, NPS (1-1000 μg L-1) increased the expression levels of two G protein-coupled receptors (GPCRs), namely PAQR-2 and CED-1. Moreover, susceptibility to NPS toxicity was observed in ced-1(RNAi) worms, which suggested that the protective response of germline was mediated by GPCR CED-1. In the germline, five proteins (CED-10, VPS-34, SNX-1, RAB-7, and RAB-14) functioned as downstream targets of GPCR CED-1 in controlling NPS toxicity. Furthermore, these five targets in the germline regulated NPS toxicity by affecting the activities of p38 MAPK and insulin signaling pathways in intestinal cells. Therefore, we raised a GPCR CED-1-mediated signaling cascade in the germline in response to NPS exposure, which is helpful for understanding the molecular basis of the germline in response to NPS exposure.
Collapse
Affiliation(s)
- Yunhan Yang
- Medical School, Southeast University Nanjing 210009 China
| | - Wenting Dong
- Medical School, Southeast University Nanjing 210009 China
| | - Qiuli Wu
- Medical School, Southeast University Nanjing 210009 China
| | - Dayong Wang
- Medical School, Southeast University Nanjing 210009 China
| |
Collapse
|
26
|
Liu H, Zhao Y, Bi K, Rui Q, Wang D. Dysregulated mir-76 mediated a protective response to nanopolystyrene by modulating heme homeostasis related molecular signaling in nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112018. [PMID: 33550076 DOI: 10.1016/j.ecoenv.2021.112018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 05/21/2023]
Abstract
The underlying mechanisms of microRNAs (miRNAs) in regulating nanoplastic toxicity are still largely unclear in organisms. In nanopolystyrene (NPS) exposed Caenorhabditis elegans, the expression of mir-76 (a neuronal miRNA) was significantly decreased, and the mir-76 mutant was resistant to the toxicity of NPS. The aim of this study was to determine the molecular basis of mir-76 in controlling NPS toxicity in nematodes. The mir-76 mutation increased expression of glb-10 encoding a globin protein in NPS (1 μg/L) exposed nematodes. Exposure to NPS (1-100 μg/L) increased the glb-10 expression, and the glb-10(RNAi) worm was susceptible to NPS toxicity in inducing reactive oxygen species (ROS) production and in decreasing locomotion behavior. Using ROS production and locomotion behavior as endpoints, mutation of glb-10 inhibited resistance of mir-76 mutant to NPS toxicity, and neuronal overexpression of mir-76 inhibited the resistance to NPS toxicity in nematodes overexpressing neuronal glb-10 containing 3' untranslated region (3'UTR). Thus, GLB-10 functioned as a target of mir-76 in the neurons to regulate the NPS toxicity. Moreover, a signaling cascade of HRG-7-HRG-5 required for the control of heme homeostasis was identified to function downstream of neuronal GLB-10 to regulate the NPS toxicity. In this signaling cascade, the neuronal HRG-7 regulated the NPS toxicity by antagonizing function of intestinal HRG-5. Furthermore, in the intestine, HRG-5 controlled NPS toxicity by inhibiting functions of hypoxia-inducible transcriptional factor HIF-1 and transcriptional factor ELT-2. Our results highlight the crucial function of heme homeostasis related signaling in regulating the NPS toxicity in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Bi
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
27
|
Glenn G, Shogren R, Jin X, Orts W, Hart-Cooper W, Olson L. Per- and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr Rev Food Sci Food Saf 2021; 20:2596-2625. [PMID: 33682364 DOI: 10.1111/1541-4337.12726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in food contact paper and paperboard for decades due to their unique ability to provide both moisture and oil/grease resistance. Once thought to be innocuous, it is now clear that long chain PFAS bioaccumulate and are linked to reproductive and developmental abnormalities, suppressed immune response, and tumor formation. Second-generation PFAS have shorter biological half-lives but concerns about health risks from chronic exposure underscore the need for safe substitutes. Waxes and polymer film laminates of polyethylene, poly(ethylene-co-vinyl alcohol), and polyethylene terephthalate are commonly used alternatives. However, such laminates are neither compostable nor recyclable. Lamination with biodegradable polymers, including polyesters, such as polylactic acid (PLA), polybutylene adipate terephthalate, polybutylene succinate, and polyhydroxyalkanoates, are of growing research and commercial interest. PLA films are perhaps the most viable alternative, but performance and compostability are suboptimal. Surface sizings and coatings of starches, chitosan, alginates, micro- and nanofibrilated cellulose, and gelatins provide adequate oil barrier properties but have poor moisture resistance without chemical modification. Plant proteins, including soy, wheat gluten, and corn zein, have been tested as paper coatings with soy being the most commercially important. Internal sizing agents, such as alkyl ketene dimers, alkenyl succinic anhydride, and rosin, improve moisture resistance but are poor oil/grease barriers. The difficulty in finding a viable replacement for PFAS chemicals that is cost-effective, fully biodegradable, and environmentally sound underscores the need for more research to improve barrier properties and process economics in food packaging products.
Collapse
Affiliation(s)
- Gregory Glenn
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | | | - Xing Jin
- World Centric, Rohnert Park, California, USA
| | - William Orts
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | - William Hart-Cooper
- Bioproduct Research Unit, USDA-ARS, Western Regional Research Center, Albany, California, USA
| | | |
Collapse
|
28
|
Oligomers: Hidden sources of bisphenol A from reusable food contact materials. Food Res Int 2021; 139:109959. [PMID: 33509509 DOI: 10.1016/j.foodres.2020.109959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/11/2020] [Accepted: 11/28/2020] [Indexed: 11/23/2022]
Abstract
A recent European Regulation further restricted the use of bisphenol A in food-contact materials, reducing its limit of migration. However, all analytical systems of control are aimed at identifying and quantifying the molecules of this monomer without taking in consideration the possible presence of its oligomers, species originating from material degradation and able to follow an in-vivo hydrolysis providing bisphenol A generation. Thus, the presence of oligomers of polycarbonate deriving by unreacted species or polymer degradation can be considered a hidden source of several bisphenol A units, that remains outside the control of legislation and should be considered of high concern. This work was focused on the identification and the description of kinetics of release of different molecules migrating from polycarbonate food contact materials to simulants and to a model food sample such as melted chocolate. Analyses were performed by UHPLC system coupled to a Q-Exactive mass spectrometer. Targeted and untargeted analysis through data dependent acquisition mode allowed to detect the occurrence of several species deriving from polycarbonate, and permitted to investigate the polymer degradation pattern and explore the correlation of the recorded amounts of each product with age, hours of usage, and washing cycles of the plastic items.
Collapse
|
29
|
Tsochatzis E, Lopes JA, Gika H, Theodoridis G. Polystyrene Biodegradation by Tenebrio molitor Larvae: Identification of Generated Substances Using a GC-MS Untargeted Screening Method. Polymers (Basel) 2020; 13:polym13010017. [PMID: 33374608 PMCID: PMC7793077 DOI: 10.3390/polym13010017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
A GC-MS method has been applied to screen and evaluate the generation of chemical compounds during the biodegradation of polystyrene (PS) with Tenebrio molitor larvae. Several resulting compounds have been identified, including trimers 2,4,6-triphenyl-1-hexene and 1,3,5-triphenylcyclohexane, the volatiles acetophenone and cumyl alcohol, and 2,4-di-tert butylphenol, a non-intentionally added substance (NIAS) present in the plastic material. The PS monomers styrene and α-methyl styrene were also identified in the extracts. Bioactive molecules present in the biomass of the studied insects were identified, such as the free fatty acids myristic, palmitic, and oleic acid. Undecanoic acid was also found, but in lower mass fractions. Finally, biochemically formatted amides resulting from their respective fatty acids were identified, namely tetradecanamide, hexadecanamide and oleamide. The formation of all these substances seems to suggest enzymatic and biochemical activity occurring during the biodegradation of PS, and their amounts varied throughout the experience. The overall degradation rate of PS resulted in a 13% rate, which highlights the potential of biorecycling using these insects.
Collapse
Affiliation(s)
- Emmanouil Tsochatzis
- Department of Food Science, Centre of Innovative Food Research (iFood), Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45-4189-3130
| | - Joao Alberto Lopes
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium; (J.A.L.); (G.T.)
| | - Helen Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Georgios Theodoridis
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium; (J.A.L.); (G.T.)
| |
Collapse
|
30
|
Abstract
Food contact materials (FCM) can contain chemicals that could migrate from the material itself to the foodstuff posing health concerns if ingested in non-safe quantities by the consumer. FCM include containers, packaging, machinery or kitchenware and can be made from different materials like plastics, paper and board, metal or glass. Printing inks are also an important part of FCM. FCM have an important role in preventing damage or spoilage of the foodstuff and are essential along the food chain. Therefore, their safety needs to be carefully assessed in order to reduce the exposure to potentially hazardous substances and protect the health of the consumer. At the EU level, the legislation on FCM establishes general safety requirements for FCM. In addition, for certain materials, specific measures concerning usage and release of substances have been set. For materials or articles not specifically regulated in this harmonised framework, safety must be proven on a case-by-case basis. National legislations and lists of substances evaluated by competent authorities are important data sources in this context. One of the most important databases are the 'BfR Recommendations on Food Contact Materials' and the soon to come German national regulation on printing inks. BfR Unit 74, besides dealing with chemical risk assessment of FCM, is responsible for the evaluation of application dossiers for including substances into the BfR recommendations on FCM or the substance list of the printing inks regulation. Through the proposed work programme the fellow has been involved in risk assessment of substances that migrate from FCM into foodstuff gaining experience in the methodologies used to perform the scientific data evaluation as well as to support the BfR Unit 74s work.
Collapse
|
31
|
Lestido-Cardama A, Sendón R, Bustos J, Lomo ML, Losada PP, de Quirós ARB. Dietary Exposure Estimation to Chemicals Transferred from Milk and Dairy Products Packaging Materials in Spanish Child and Adolescent Population. Foods 2020; 9:E1554. [PMID: 33121003 PMCID: PMC7694080 DOI: 10.3390/foods9111554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
Packaging materials are subject to risk assessment since they can transfer their components to the food, and they may constitute a risk for the consumers' health. Therefore, estimating the exposure to chemicals migrating from packaging is required. In this study, a novel approach based on a total diet study (TDS)-like investigation to evaluate the exposure to chemicals transferred from the packaging was presented. The proposed methodology involved a non-targeted gas chromatography coupled to mass spectrometry (GC-MS) method to identify potential migrants and the determination of the migrants in composite food samples. The method was applied to evaluate the dietary exposure to chemicals from food packaging materials used for milk and dairy products in the Spanish child and adolescent populations. Several migrants identified in packaging materials were selected to determine their concentration in composite food samples. These chemicals included diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), bis(2ethylhexyl) phthalate (DEHP), benzophenone (BP), 1,3-diphenylpropane (1,3-DPP), and bis(2-ethylhexyl) terephthalate (DEHT). The method exhibited a good sensitivity (limit of detection, LOD ≤ 0.05 µg/g) and a satisfactory recovery (78.4-124%). Finally, the exposure was estimated using the Spanish national dietary survey ENALIA. Phthalates DBP and DEHP showed the highest mean exposure, ranging from 2.42 (10-17 years)-4.40 (12-35 months) and 1.35 (10-17 years)-4.07 (12-35 months) µg/kg bw/day for DBP and DEHP, respectively.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.S.); (P.P.L.); (A.R.B.d.Q.)
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.S.); (P.P.L.); (A.R.B.d.Q.)
| | - Juana Bustos
- National Food Center, Spanish Agency of Food Safety and Nutrition, E-28220 Majadahonda, Spain; (J.B.); (M.L.L.)
| | - Mª Luisa Lomo
- National Food Center, Spanish Agency of Food Safety and Nutrition, E-28220 Majadahonda, Spain; (J.B.); (M.L.L.)
| | - Perfecto Paseiro Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.S.); (P.P.L.); (A.R.B.d.Q.)
| | - Ana Rodríguez Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (R.S.); (P.P.L.); (A.R.B.d.Q.)
| |
Collapse
|
32
|
Ong HT, Samsudin H, Soto-Valdez H. Migration of endocrine-disrupting chemicals into food from plastic packaging materials: an overview of chemical risk assessment, techniques to monitor migration, and international regulations. Crit Rev Food Sci Nutr 2020; 62:957-979. [DOI: 10.1080/10408398.2020.1830747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hooi-Theng Ong
- Seberang Perai Selatan District Health Office, Nibong Tebal, Pulau Pinang, Malaysia
| | - Hayati Samsudin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Herlinda Soto-Valdez
- Laboratorio de Envases, Centro de Investigaciόn en Alimentaciόn y Desarrollo, A.C., Hermosillo Sonora, Mexico
| |
Collapse
|
33
|
Turner A. Foamed Polystyrene in the Marine Environment: Sources, Additives, Transport, Behavior, and Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10411-10420. [PMID: 32786582 DOI: 10.1021/acs.est.0c03221] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Foamed polystyrene (PS) that may be either expanded (EPS) or extruded (XPS) is a rigid, lightweight insulating thermoplastic that has a variety of uses in the consumer, packaging, construction, and marine sectors. The properties of the material also result in waste that is readily generated, dispersed, and fragmented in the environment. This review focuses on foamed PS in the marine setting, including its sources, transport, degradation, acquisition of contaminants, ingestion by animals, and biological impacts arising from the mobilization of chemical additives. In the ocean, foamed PS is subject to wind-assisted transport and fracturing via photolytic degradation. The material may also act as a substrate for rafting organisms while being exposed to elevated concentrations of natural and anthropogenic surface-active chemicals in the sea surface microlayer. In the littoral setting, fragmentation is accentuated by milling in the swash zone and abrasion when beached, with wind transport leading to the temporary burial of significant quantities of material. Ingestion of EPS and XPS has been documented for a variety of marine animals, but principally those that feed at the sea surface or use the material as a habitat. As well as risking injuries due to gastro-intestinal blockage, ingestion of foamed PS exposes animals to harmful chemicals, and of greatest concern in this respect is the presence of the historical, but still recycled, flame-retardant, hexabromocyclododecane. Because foamed PS is particularly difficult to retrieve as a constituent of marine litter, means of reducing its presence and impacts will rely on the elimination of processes that generate foamed waste, modification of current storage and disposal practices, and the development of more durable and sustainable alternatives.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences University of Plymouth Plymouth PL4 8AA, U.K
| |
Collapse
|
34
|
Tsochatzis ED, Gika H, Theodoridis G. Development and validation of a fast gas chromatography mass spectrometry method for the quantification of selected non-intentionally added substances and polystyrene/polyurethane oligomers in liquid food simulants. Anal Chim Acta 2020; 1130:49-59. [PMID: 32892938 DOI: 10.1016/j.aca.2020.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
A simple, fast, sensitive and reliable method was developed for the simultaneous determination of 13 food contact materials (FCM) regulated substances and non-intentionally added substances (NIAS) migrating into official food simulants. The method has been optimized to quantify the monomers styrene and α-methyl styrene, selected polystyrene oligomers (dimers, trimers) and polyester urethane-based oligomers (PU) cyclic oligomers, as well as cyclic NIAS originating from food packaging such as 2,6-Di-tert-butylbenzoquinone and 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione. The method employs liquid-liquid extraction of aqueous ethanol food simulants with dichloromethane, and analysis with gas chromatography coupled to mass spectrometry (GC-MS) with a total analysis time of less than 16 min, with limits of detections ranging from 0.32 ng mL-1 (1,1-diphenyl-ethylene) to 14.8 ng mL-1 for 7,9-di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione and respective limits of quantification from 1.0 ng mL-1 to 41.7 ng mL-1, for the same analytes. Accuracy and precision results showed that the method is sufficiently accurate for all target analytes, with recoveries ranging between 80 and 110% and relative standard deviations (RSDs) smaller than 16% at the three selected concentration levels. The method has been successfully applied to seven FCM. Results indicated that significant amounts of polystyrene monomers, dimers and trimers are migrating into food simulants; this is also the case for polyester urethane-based oligomers (PU). Exposure assessment estimation was performed using EFSA's approach on the total sum of migrating oligomers. In certain cases, amounts of PS and PU oligomers found to be in some cases higher than the respective limits, for the sum of oligomers with a MW lower than 1000 Da.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece.
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
35
|
Liu W, Liu A, Zhao R, Pan F, Liu Z, Sui H, Li J. Development of packaging factors for the risk assessment of food contact substances from food consumption survey of Chinese infants and toddlers. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Wrona M, Nerín C. Analytical Approaches for Analysis of Safety of Modern Food Packaging: A Review. Molecules 2020; 25:E752. [PMID: 32050512 PMCID: PMC7037176 DOI: 10.3390/molecules25030752] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, food packaging is a crucial tool for preserving food quality and has become an inseparable part of our daily life. Strong consumer demand and market trends enforce more advanced and creative forms of food packaging. New packaging development requires safety evaluations that always implicate the application of complex analytical methods. The present work reviews the development and application of new analytical methods for detection of possible food contaminants from the packaging origin on the quality and safety of fresh food. Among food contaminants migrants, set-off migrants from printing inks, polymer degradation products, and aromatic volatile compounds can be found that may compromise the safety and organoleptic properties of food. The list of possible chemical migrants is very wide and includes antioxidants, antimicrobials, intentionally added substances (IAS), non-intentionally added substances (NIAS), monomers, oligomers, and nanoparticles. All this information collected prior to the analysis will influence the type of analyzing samples and molecules (analytes) and therefore the selection of a convenient analytical method. Different analytical strategies will be discussed, including techniques for direct polymer analysis.
Collapse
Affiliation(s)
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, University of Zaragoza, María de Luna, 3, 50018 Zaragoza, Spain;
| |
Collapse
|
37
|
Gelbke HP, Banton M, Block C, Dawkins G, Leibold E, Pemberton M, Sakoda A, Yasukawa A. Oligomers of styrene are not endocrine disruptors. Crit Rev Toxicol 2018; 48:471-499. [DOI: 10.1080/10408444.2018.1447547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Gordon Dawkins
- INEOS Styrolution Group GmbH, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|