1
|
Bakhtiari S, Asri N, Nikzamir A, Ahmadipour S, Rostami-Nejad M, Ciacci C. Exploring fatty acid effects in celiac disease: potential therapeutic avenues. Tissue Barriers 2024. [DOI: 10.1080/21688370.2024.2435552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 01/05/2025] Open
Affiliation(s)
- Sajjad Bakhtiari
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolrahim Nikzamir
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Ahmadipour
- Department of Pediatric, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolina Ciacci
- Department of Medicine, Surgery, Dentistry, University of Salerno, Fisciano, Italy
| |
Collapse
|
2
|
Saleh NEH, Ibrahim MY, Saad AH, Abdel-Hakeem EA, Saleh RK, Habeeb WN. The impact of consuming different types of high-caloric fat diet on the metabolic status, liver, and aortic integrity in rats. Sci Rep 2024; 14:18602. [PMID: 39127712 PMCID: PMC11316824 DOI: 10.1038/s41598-024-68299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Consumption of high-caloric diets contributes to the alarming number of overweight and obese individuals worldwide, which in turn leads to several diseases and multiple organ dysfunction. Not only has the number of calories taken per day but also the type of fat in the diet has an important impact on health. Accordingly, the purpose of the current study was to examine the impact of different types of high-caloric fat diets on the metabolic status and the integrity of the liver and aorta in albino rats. Adult male albino rats were divided into 6 groups: Control group, long chain-saturated fat group (SFD), long chain-monounsaturated fat (MUFAs) group, long chain-polyunsaturated fat (PUFAs) group, medium-chain fat (MCFAs) group, and short-chain fat (SCFAs) group. Body mass index (BMI), Lee index, and visceral fat amount were reported. Serum levels of insulin, liver transaminases, lipid profile, and different oxidative stress and inflammatory markers were evaluated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and adiponectin/leptin ratio were also calculated. Histopathological examinations of liver and aorta with Masson's trichrome stain, and immune-staining for Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) were also done. SFD group showed significantly elevated liver transaminases, inflammatory markers, HOMA-IR, dyslipidemia, reduced adiponectin, and deficient anti-oxidative response compared to other groups together with disturbed hepatic and aortic architecture. Other treated groups showed an improvement. PUFAs group showed the highest level of improvement. Not all high-fat diets are hazardous. Diets rich in PUFAs, MUFAs, MCFAs, or SCFAs may protect against the hazards of high caloric diet.
Collapse
Affiliation(s)
| | - Mariam Yahia Ibrahim
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Adel Hussein Saad
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Elshymaa A Abdel-Hakeem
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Rabeh Khairy Saleh
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Wagdy N Habeeb
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| |
Collapse
|
3
|
Liu Y, Liang Y, Zhao X, Ma S, Sun G, Li Y. Individual and interaction effects of monounsaturated fatty acids on their associations with hypertension in Chinese residents. Food Funct 2024; 15:7907-7919. [PMID: 38973334 DOI: 10.1039/d4fo01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Currently, associations between dietary intakes of individual monounsaturated fatty acids (MUFAs) and hypertension were not well disclosed, and the interaction effects of MUFAs on their associations with hypertension were unknown. Obesity was correlated with both MUFAs and hypertension, while if anthropometric obesity indices performed mediating roles in associations between MUFAs and hypertension remained underdetermined. In our study, 8509 Chinese adults investigated from 2004 to 2011 were included. Dietary information collection and physical examinations were performed at baseline and each timepoint of follow-up. As we found, inverse associations of MUFA17, MUFA18 and MUFA20 with hypertension were statistically significant after adjustments, hazard ratios (HRs) were 0.87, 0.90 and 0.91, respectively. MUFA15 was positively associated with hypertension, with an HR of 1.07 (95% confidence interval: 1.01, 1.12). By performing principal component analysis (PCA) to estimate the joint effects of MUFAs on hypertension, the PCA score of MUFAs was only inversely associated with blood pressure. No joint effect was observed in g-computation analyses. Both linear and nonlinear interactions of MUFAs on their associations with hypertension were estimated using restricted cubic spline analysis. The association between MUFA15 and hypertension was interacted by MUFA17, and the association between MUFA20 and hypertension was interacted by MUFA18. The mediation effects of body mass index and waist circumference were found on associations of hypertension with MUFA15, MUFA17 and MUFA20. Our findings suggested that associations with hypertension were different among individual MUFAs, and mutual interactions existed, implying that the utility of individual MUFAs might be recommended for estimating relationships between MUFAs and diseases. Moreover, fat accumulation might potentially underlie associations between MUFAs and hypertension.
Collapse
Affiliation(s)
- Yuyan Liu
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanhong Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Shuxian Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Guifan Sun
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
- School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Ravaut G, Carneiro A, Mounier C. Exploring the impacts of ketogenic diet on reversible hepatic steatosis: initial analysis in male mice. Front Nutr 2024; 11:1290540. [PMID: 38577162 PMCID: PMC10991688 DOI: 10.3389/fnut.2024.1290540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Ketogenic diet (KD), a diet with very low intake in carbohydrates, gained popularity as a weight-loss approach. However, in mice models, it has been reported that an excess exposition of dietary fat induces hepatic insulin resistance and steatosis. However, data published is inconsistent. Herein, we investigated in a mouse model, the metabolic effects of KD and its contribution to the pathogenesis of NALFD. Mice were exposed to KD or CHOW diet for 12 weeks while a third group was exposed to KD for also 12 weeks and then switched to CHOW diet for 4 weeks to determine if we can rescue the phenotype. We evaluated the effects of diet treatments on fat distribution, glucose, and insulin homeostasis as well as hepatic steatosis. Mice fed with KD developed glucose intolerance but not insulin resistance accompanied by an increase of inflammation. KD-fed mice showed an increase of fat accumulation in white adipose tissue and liver. This effect could be explained by an increase in fat uptake by the liver with no changes of catabolism leading to MAFLD. Interestingly, we were able to rescue the phenotype by switching KD-fed mice for 4 weeks on a CHOW diet. Our studies demonstrate that even if mice develop hepatic steatosis and glucose intolerance after 12 weeks of KD, they do not develop insulin resistance and more importantly, the phenotype can be reversed by switching the mice from a KD to a CHOW.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- CERMO-FC Research Center, Molecular Metabolism of Lipids Laboratory, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC, Canada
| |
Collapse
|
5
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
6
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
7
|
Machado M, Costa EM, Silva S, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Understanding the Anti-Obesity Potential of an Avocado Oil-Rich Cheese through an In Vitro Co-Culture Intestine Cell Model. Molecules 2023; 28:5923. [PMID: 37570893 PMCID: PMC10421176 DOI: 10.3390/molecules28155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Nowadays, with consumers' requirements shifting towards more natural solutions and the advent of nutraceutical-based approaches, new alternatives for obesity management are being developed. This work aimed to show, for the first time, the potential of avocado oil-fortified cheese as a viable foodstuff for obesity management through complex in vitro cellular models. The results showed that oleic and palmitic acids' permeability through the Caco-2/HT29-MTX membrane peaked at the 2h mark, with the highest apparent permeability being registered for oleic acid (0.14 cm/s). Additionally, the permeated compounds were capable of modulating the metabolism of adipocytes present in the basal compartment, significantly reducing adipokine (leptin) and cytokine (MPC-1, IL-10, and TNF-α) production. The permeates (containing 3.30 µg/mL of palmitic acid and 2.16 µg/mL of oleic acid) also presented an overall anti-inflammatory activity upon Raw 264.7 macrophages, reducing IL-6 and TNF-α secretion. Despite in vivo assays being required, the data showed the potential of a functional dairy product as a valid food matrix to aid in obesity management.
Collapse
Affiliation(s)
| | - Eduardo M. Costa
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | | | | | | | - Manuela Pintado
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
8
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Salsinha AS, Rodríguez-Alcalá LM, Pimentel LL, Pintado M. Role of bioactive lipids in obesity. BIOACTIVE LIPIDS 2023:133-167. [DOI: 10.1016/b978-0-12-824043-4.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
11
|
Fatty Acid Levels and Their Inflammatory Metabolites Are Associated with the Nondipping Status and Risk of Obstructive Sleep Apnea Syndrome in Stroke Patients. Biomedicines 2022; 10:biomedicines10092200. [PMID: 36140306 PMCID: PMC9496373 DOI: 10.3390/biomedicines10092200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This paper discusses the role of inflammation in the pathogenesis of nondipping blood pressure and its role in the pathogenesis of obstructive sleep apnea syndrome. The aim of the study was to assess the impact of free fatty acids (FAs) and their inflammatory metabolites on the nondipping phenomenon and the risk of sleep apnea in stroke patients. Methods: Sixty-four ischemic stroke patients were included in the prospective study. Group I consisted of 33 patients with a preserved physiological dipping effect (DIP), while group II included 31 patients with the nondipping phenomenon (NDIP). All subjects had FA gas chromatography and inflammatory metabolite measurements performed with the use of liquid chromatography, their 24 h blood pressure was recorded, and they were assessed with the Epworth sleepiness scale (ESS). Results: In the nondipping group a higher level of C16:0 palmitic acid was observed, while lower levels were observed in regard to C20:0 arachidic acid, C22:0 behenic acid and C24:1 nervonic acid. A decreased leukotriene B4 level was recorded in the nondipping group. None of the FAs and derivatives correlated with the ESS scale in the group of patients after stroke. Correlations were observed after dividing into the DIP and NDIP groups. In the DIP group, a higher score of ESS was correlated with numerous FAs and derivatives. Inflammation of a lower degree and a higher level of anti-inflammatory mediators from EPA and DHA acids favored the occurrence of the DIP. A high level of C18: 3n6 gamma linoleic acid indicating advanced inflammation, intensified the NDIP effect. Conclusions: We demonstrated potential novel associations between the FA levels and eicosanoids in the pathogenesis of the nondipping phenomenon. There are common connections between fatty acids, their metabolites, inflammation, obstructive sleep apnea syndrome and nondipping in stroke patients.
Collapse
|
12
|
Jiang J, Meng S, Li L, Duan X, Xu H, Li S. Correlation of acetyl-coenzyme A carboxylase 1 with Th17 and Th1 cells, serving as a potential prognostic biomarker for acute ischemic stroke patients. J Clin Lab Anal 2022; 36:e24607. [PMID: 36059084 PMCID: PMC9550961 DOI: 10.1002/jcla.24607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Acetyl‐coenzyme A carboxylase 1 (ACC1) regulates lipid homeostasis, T helper (Th) cell differentiation, oxidative stress, inflammation response, and neurological process, engaging in acute ischemic stroke (AIS) pathogenesis, while its clinical utility in AIS is unclear. Hence, this study intended to explore the correlation among blood ACC1, Th17, and Th1 cells, and ACC1’s potency as a prognostic biomarker for AIS management. Methods ACC1 in peripheral blood mononuclear cells (PBMCs) of 160 AIS patients and 30 controls were determined using RT‐qPCR; blood Th17 and Th1 cells in AIS patients were quantified by flow cytometry. Results ACC1 was increased in AIS patients compared with controls (median (interquartile range): 2.540 (1.753–3.548) vs. 0.980 (0.655–1.743), p < 0.001), which exhibited a good value to reflect AIS risk with the area under the curve of 0.872 (95% CI: 0.805–0.939). Moreover, ACC1 was positively linked with Th17 (r = 0.374, p < 0.001) and Th1 (r = 0.178, p = 0.024) cells in AIS patients. Additionally, ACC1 (r = 0.328, p < 0.001), Th17 (r = 0.272, p = 0.001), and Th1 cells (r = 0.195, p = 0.014) were positively associated with the National Institutes of Health Stroke Scale score in AIS patients. ACC1 high vs. low (p = 0.038) and Th17 high vs. low (p = 0.026) were related to shortened recurrence‐free survival (RFS) in AIS patients, while Th1 cells (p = 0.179) were not correlated with RFS. Whereas ACC1 (p = 0.248), Th17 (p = 0.079), and Th1 cells (p = 0.130) were not linked with overall survival (OS) in AIS patients. Conclusion Circulating ACC1 overexpression correlates with increased Th17, Th1 cells, NIHSS score, and shortened RFS in AIS patients.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Geriatrics, HanDan Central Hospital, Handan, China
| | - Shifeng Meng
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Linlin Li
- Department of Geriatrics, HanDan Central Hospital, Handan, China
| | - Xinfei Duan
- Department of Neurology, HanDan Central Hospital, Handan, China
| | - Haifa Xu
- Department of Emergency, HanDan Central Hospital, Handan, China
| | - Shurui Li
- Department of Deanery, HanDan Central Hospital, Handan, China
| |
Collapse
|
13
|
Ekici Ö, Aslan E, Aladağ T, Güzel H, Korkmaz ÖA, Bostancı A, Sadi G, Pektaş MB. Masseter muscle and gingival tissue inflammatory response following treatment with high-fructose corn syrup in rats: Anti-inflammatory and antioxidant effects of kefir. J Food Biochem 2022; 46:e13732. [PMID: 33864286 DOI: 10.1111/jfbc.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
The aim of the study was to evaluate whether high-fructose corn syrup (HFCS) intake (20% beverages) impacts antioxidative structures and inflammation in the gingival tissue and masseter muscle of rats. Kefir was tested for its potential utility on changes induced by HFCS. Animals were randomly divided into four groups as control, kefir, HFCS, and HFCS plus kefir. HFCS was given as 20% solutions in drinking water while kefir supplementations were given by gastric gavage for 8 weeks. It has been clearly determined that the HFCS diet increased expressions of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α proinflammatory structures via lymphocyte infiltration by suppressing antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in both tissues. Kefir improved these undesirable changes in rats fed with HFCS. The results of this current study, the first investigation to examine the effects of kefir on masseter muscle and gingival tissue, may provide new access to the restorative effects of kefir consumption on oral health disorders caused by high fructose in the diet. PRACTICAL APPLICATIONS: In this study, at an early age, the effects of kefir on improving inflammation via antioxidation in the masseter muscle and gingival tissue were investigated for the first time. We showed that kefir feeding ameliorates lymphocyte infiltration on the high-fructose corn syrup (HFCS)-induced masseter muscle and gingival tissue inflammation in rats. The mRNA expressions of inflammatory parameters measured in the study were supported by protein measurements via ELISA or immunohistochemistry. In the present study, kefir may play an important role in the antioxidation and inflammation process on the masseter muscle and gingival tissue against HFCS.
Collapse
Affiliation(s)
- Ömer Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Tuğçe Aladağ
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hilal Güzel
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ömer Adil Korkmaz
- Department of Chemistry, Faculty of Science, Yildiz Technical University, Istanbul, Turkey
| | - Aykut Bostancı
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Mehmet Bilgehan Pektaş
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
14
|
A Lard and Soybean Oil Mixture Alleviates Low-Fat-High-Carbohydrate Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Nutrients 2022; 14:nu14030560. [PMID: 35276916 PMCID: PMC8840387 DOI: 10.3390/nu14030560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
Dietary habit is highly related to nonalcoholic fatty liver disease (NAFLD). Low-fat–high-carbohydrate (LFHC) diets could induce lean NAFLD in Asians. Previously, we found that a lard and soybean oil mixture reduced fat accumulation with a medium-fat diet; therefore, in this study, we evaluated the effect of a lard and soybean oil mixture (LFHC diet) on NAFLD and its underlying mechanisms. Mice in groups were fed with lard, soybean oil, or a lard and soybean oil mixture—an LFHC diet—separately. Our results showed that mixed oil significantly inhibited serum triglyceride, liver triglyceride, serum free fatty acids (FFAs), and liver FFAs compared with soybean oil or lard, and we found fewer inflammatory cells in mice fed with mixed oil. RNA-seq results indicate that mixed oil reduced FFAs transportation into the liver via decreasing liver fatty acid-binding protein 2 expression, inhibited oxidative phosphorylation via tumor necrosis factor receptor superfamily member 6 downregulation, and alleviated inflammation via downregulating inflammatory cytokine. The liquid chromatography–mass spectrometry results showed that the mixed oil promoted bile acid conjugated with taurine and glycine, thus activating G-protein-coupled bile acid receptor 1 for improved lipids metabolism. In conclusion, the lard and soybean oil mixture alleviated NAFLD.
Collapse
|
15
|
Shen J, Yu H, Li K, Ding B, Xiao R, Ma W. The Association Between Plasma Fatty Acid and Cognitive Function Mediated by Inflammation in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1423-1436. [PMID: 35573864 PMCID: PMC9091472 DOI: 10.2147/dmso.s353449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To verify the mediating role of inflammatory factors in plasma fatty acid-induced changes in cognitive function in patients with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS In this study, we evaluated the cognitive function of 372 Chinese patients (the average age was 58.00 (52.50, 63.00) years) with T2DM by using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA), with plasma fatty acids measured by gas chromatography analysis and inflammatory cytokines determined by immune turbidimetric analysis and enzyme-linked immunosorbent assay (ELISA) to investigate whether there was a correlation between the plasma fatty acids, inflammatory cytokine levels and cognitive test scores in Chinese patients with T2DM. RESULTS We found that the increase of waist circumference and hip circumference might lead to cognitive impairment and induce the inflammatory response. Higher saturated fatty acids (SFAs) levels in plasma were linked to cognitive decline, while higher monounsaturated fatty acids (MUFAs) intake might be a protective factor for cognitive function. In addition, higher levels of plasma n-6 polyunsaturated fatty acids (n-6 PUFAs) stood out as having association with lower cognitive function scores, while higher level of plasma C22:6 n-3 could be a predictor of better cognitive function. In our study, higher SFAs led to higher proinflammatory factor levels. Apart from that, MUFAs and stearoyl-CoA desaturase-18 (SCD-18) were positively related to hypersensitive C-reactive protein (hs-CRP). Meanwhile, higher level of plasma C20:0 could lead to better MMSE delayed recall by reduce the expression of hs-CRP. CONCLUSION Levels of plasma SFAs, C18:3 n-6, and C20:3 n-6 could be a predictor for worse cognitive function, while MUFAs and C22:6 n-3 could be a predictor for better cognitive function. The level of hs-CRP could be a mediator of C20:0 induced the change of cognitive function.
Collapse
Affiliation(s)
- Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Huiyan Yu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Kaifeng Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, 100015, People’s Republic of China
| | - Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Weiwei Ma, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China, Tel/Fax +86-10-83911651, Email
| |
Collapse
|
16
|
Deng Q, Du L, Zhang Y, Liu G. NEFAs Influence the Inflammatory and Insulin Signaling Pathways Through TLR4 in Primary Calf Hepatocytes in vitro. Front Vet Sci 2021; 8:755505. [PMID: 34966805 PMCID: PMC8710596 DOI: 10.3389/fvets.2021.755505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Transition dairy cows are often in a state of negative energy balance because of decreased dry matter intake and increased energy requirements, initiating lipid mobilization and leading to high serum β-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFAs) levels, which can induce ketosis and fatty liver in dairy cows. Inflammation and insulin resistance are also common diseases in the perinatal period of dairy cows. What is the relationship between negative energy balance, insulin resistance and inflammation in dairy cows? To study the role of non-esterified fatty acids in the nuclear factor kappa beta (NF-κB) inflammatory and insulin signaling pathways through Toll-like receptor 4 (TLR4), we cultured primary calf hepatocytes and added different concentrations of NEFAs to assess the mRNA and protein levels of inflammatory and insulin signaling pathways. Our experiments indicated that NEFAs could activate the NF-κB inflammatory signaling pathway and influence insulin resistance through TLR4. However, an inhibitor of TLR4 alleviated the inhibitory effects of NEFAs on the insulin pathway. In conclusion, all of these results indicate that high-dose NEFAs (2.4 mM) can activate the TLR4/NF-κB inflammatory signaling pathway and reduce the sensitivity of the insulin pathway through the TLR4/PI3K/AKT metabolic axis.
Collapse
Affiliation(s)
- Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,Inner Mongolia Minzu University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao, China
| | - Guowen Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
17
|
Sun S, Cao X, Gao J. C24:0 avoids cold exposure-induced oxidative stress and fatty acid β-oxidation damage. iScience 2021; 24:103409. [PMID: 34849471 PMCID: PMC8607208 DOI: 10.1016/j.isci.2021.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Low temperatures can cause severe growth inhibition and mortality in fish. Previous studies about the cold resistance of fish mainly focused on the role of unsaturated fatty acids, rather than saturated fatty acids (SFAs). In this study, the role of very-long-chain SFA synthetized by fatty acyl elongase 1 gene (elovl1) in cold resistance was explored. Both an aggravated liver oxidative stress and a mitochondrial metabolism disorder were observed in elovl1a–/– and elovl1b–/– zebrafish with cold stress. In vitro studies confirmed that high levels of C20:0 and C22:0 obviously increased the hepatocyte oxidative stress and activated the extracellular signal-regulated kinases 1/2 (Erk1/2) pathway to further induce apoptosis and inflammation. We further demonstrated that C24:0 could promote mitochondrial β-oxidation to improve the cold resistance of zebrafish. Overall, our results define a positive role of C24:0 fatty acids synthetized by elovl1 in the cold resistance of fish. elovl1, closely associated with C24:0, was activated in ZFL cells with cold stress C20:0 and C22:0 induced Erk1/2 expression and apoptosis to impair cold tolerance This study showed the positive role of C24:0 in the cold resistance of fish
Collapse
Affiliation(s)
- Shouxiang Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan 430070, Hubei Province, China.,College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, No.1 Shizishan Stress, Hongshan District, Wuhan 430070, Hubei Province, China.,College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Emma EM, Amanda J. Dietary lipids from body to brain. Prog Lipid Res 2021; 85:101144. [PMID: 34915080 DOI: 10.1016/j.plipres.2021.101144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Dietary habits have drastically changed over the last decades in Western societies. The Western diet, rich in saturated fatty acids (SFA), trans fatty acids (TFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and cholesterol, is accepted as an important factor in the development of metabolic disorders, such as obesity and diabetes type 2. Alongside these diseases, nutrition is associated with the prevalence of brain disorders. Although clinical and epidemiological studies revealed that metabolic diseases and brain disorders might be related, the underlying pathology is multifactorial, making it hard to determine causal links. Neuroinflammation can be a result of unhealthy diets that may cause alterations in peripheral metabolism. Especially, dietary fatty acids are of interest, as they act as signalling molecules responsible for inflammatory processes. Diets rich in n-6 PUFA, SFA and TFA increase neuroinflammation, whereas diets rich in monounsaturated fatty acids (MUFA), omega-3 (n-3) PUFA and sphingolipids (SL) can diminish neuroinflammation. Moreover, these pro- and anti-inflammatory diets might indirectly influence neuroinflammation via the adipose tissue, microbiome, intestine and vasculature. Here, we review the impact of nutrition on brain health. In particular, we will discuss the role of dietary lipids in signalling pathways directly applicable to inflammation and neuronal function.
Collapse
Affiliation(s)
- E M Emma
- Department of Medical Imaging, Anatomy, Radboud university medical center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - J Amanda
- Department of Medical Imaging, Anatomy, Radboud university medical center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, del Moral-Hernández Ó, Flores-Alfaro E. Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. Int J Mol Sci 2021; 22:7256. [PMID: 34298896 PMCID: PMC8306787 DOI: 10.3390/ijms22147256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.
Collapse
Affiliation(s)
- Vianet Argelia Tello-Flores
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Marco Antonio Ramírez-Vargas
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Brenda Ely Esteban-Casales
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Carlos Aldair Luciano-Villa
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Mónica Ramírez
- CONACyT, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Óscar del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| |
Collapse
|
20
|
Huang T, Zhou W, Ma X, Jiang J, Zhang F, Zhou W, He H, Cui G. Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiol Lett 2021; 368:6293841. [PMID: 34089327 DOI: 10.1093/femsle/fnab063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity, which is often caused by adipocyte metabolism dysfunction, is rapidly becoming a serious global health issue. Studies in the literature have shown that camellia oil (Camellia oleifera Abel) exerted potential lipid regulation and other multiple biological activities. Here, we aimed to investigate the effects of camellia oil on obese mice induced by a high-fat diet and to explore gut microbiota alterations after camellia oil intervention. The results showed that oral administration of camellia oil dramatically attenuated the fat deposits, serum levels of the total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting plasma glucose, the atherosclerosis index, the hepatic steatosis and inflammation in high-fat diet-induced obese mice. Meanwhile, the high-density lipoprotein cholesterol level in obese mice was enhanced after the camellia oil treatment. Furthermore, 16S rRNA analysis showed that certain aspects of the gut microbiota, especially the gut microbiota diversity and the relative abundance of Actinobacteria, Coriobacteriaceae, Lactobacillus and Anoxybacillus, were significantly increased by camellia oil treatment while the ratio of Firmicutes to Bacteroidetes was decreased. Taken together, our finding suggested that camellia oil was a potential dietary supplement and functional food for ameliorating fat deposits, hyperglycemia and fatty liver, probably by modifying the gut microbiota composition.
Collapse
Affiliation(s)
- Tianyang Huang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Weikang Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiangguo Ma
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Jianhui Jiang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Fuan Zhang
- Guizhou Camellia Oil Engineering Technology Research Center, Tongren, Guizhou, China
| | - Wanmeng Zhou
- Guizhou Camellia Oil Engineering Technology Research Center, Tongren, Guizhou, China
| | - Hao He
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
21
|
Turner L, Santosa S. Putting ATM to BED: How Adipose Tissue Macrophages Are Affected by Bariatric Surgery, Exercise, and Dietary Fatty Acids. Adv Nutr 2021; 12:1893-1910. [PMID: 33979430 PMCID: PMC8483961 DOI: 10.1093/advances/nmab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
With increasing adiposity in obesity, adipose tissue macrophages contribute to adipose tissue malfunction and increased circulating proinflammatory cytokines. The chronic low-grade inflammation that occurs in obesity ultimately gives rise to a state of metainflammation that increases the risk of metabolic disease. To date, only lifestyle and surgical interventions have been shown to be somewhat effective at reversing the negative consequences of obesity and restoring adipose tissue homeostasis. Exercise, dietary interventions, and bariatric surgery result in immunomodulation, and for some individuals their effects are significant with or without weight loss. Robust evidence suggests that these interventions reduce chronic inflammation, in part, by affecting macrophage infiltration and promoting a phenotypic switch from the M1- to M2-like macrophages. The purpose of this review is to discuss the impact of dietary fatty acids, exercise, and bariatric surgery on cellular characteristics affecting adipose tissue macrophage presence and phenotypes in obesity.
Collapse
Affiliation(s)
- Laurent Turner
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Graneri LT, Mamo JCL, D’Alonzo Z, Lam V, Takechi R. Chronic Intake of Energy Drinks and Their Sugar Free Substitution Similarly Promotes Metabolic Syndrome. Nutrients 2021; 13:nu13041202. [PMID: 33917297 PMCID: PMC8067378 DOI: 10.3390/nu13041202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Energy drinks containing significant quantities of caffeine, taurine and sugar are increasingly consumed, particularly by adolescents and young adults. The putative effects of chronic ingestion of either standard energy drink, MotherTM (ED), or its sugar-free formulation (sfED) on metabolic syndrome were determined in wild-type C57BL/6J mice, in comparison to a soft drink, Coca-Cola (SD), a Western-styled diet enriched in saturated fatty acids (SFA), and a combination of SFA + ED. Following 13 weeks of intervention, mice treated with ED were hyperglycaemic and hypertriglyceridaemic, indicating higher triglyceride glucose index, which was similar to the mice maintained on SD. Surprisingly, the mice maintained on sfED also showed signs of insulin resistance with hyperglycaemia, hypertriglyceridaemia, and greater triglyceride glucose index, comparable to the ED group mice. In addition, the ED mice had greater adiposity primarily due to the increase in white adipose tissue, although the body weight was comparable to the control mice receiving only water. The mice maintained on SFA diet exhibited significantly greater weight gain, body fat, cholesterol and insulin, whilst blood glucose and triglyceride concentrations remained comparable to the control mice. Collectively, these data suggest that the consumption of both standard and sugar-free forms of energy drinks induces metabolic syndrome, particularly insulin resistance.
Collapse
Affiliation(s)
- Liam T. Graneri
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Zachary D’Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- Correspondence: ; Tel.: +61-8-92662607
| |
Collapse
|
23
|
Coskun ZM, Beydogan AB, Yanar K, Atukeren P, Bolkent S. Oxidative stress and inflammatory response of ghrelin on myocardial and aortic tissues in insulin-resistant rats. J Pharm Pharmacol 2021; 73:692-699. [PMID: 33772291 DOI: 10.1093/jpp/rgab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/29/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES This study was designed to clarify the effects of ghrelin on myocardial and aortic tissues in insulin-resistant rats. METHODS Sprague-Dawley rats were divided into the following groups: control (Group 1), insulin resistance (IR, Group 2), ghrelin (Group 3) and IR+Ghrelin (Group 4) groups. Levels of HOMA-IR, fibronectin, hydroxyproline, collagen-1, collagen-3, matrix metalloproteinase-3, and matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1, and oxidative stress parameters as protein carbonyl (PCO), lipid hydroperoxides (LHPs), malondialdehyde, total thiol were determined in myocardial tissue. Expressions of IL-6, NF-κB and TNF-α mRNAs were detected by RT-qPCR. Aorta tissue was stained Masson trichrome. KEY FINDINGS The HOMA-IR level decreased in the IR+Ghrelin group compared with the IR group (P < 0.001). The PCO and LHP concentrations were higher in the IR group compared with control rats (P < 0.05). The PCO level was reduced by ghrelin in the IR+Ghrelin group compared with the IR group (P < 0.001). Ghrelin treatment reduced the mRNA expression levels of IL-6, NF-κB and TNF-α in the IR+Ghrelin group compared with the IR group (P < 0.001). There was no difference among the groups in the histology of aortic tissue. CONCLUSIONS Ghrelin, a regulator of appetite and energy homeostasis, may be effective in regulating oxidative stress and the inflammatory response when impaired by IR. Therefore, ghrelin may reduce the risks of myocardial dysfunction in IR.
Collapse
Affiliation(s)
- Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Karolin Yanar
- Department of Biochemistry, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pınar Atukeren
- Department of Biochemistry, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
24
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
25
|
Farokh Nezhad R, Nourbakhsh M, Razzaghy-Azar M, Sharifi R, Yaghmaei P. The effect of trans-palmitoleic acid on cell viability and sirtuin 1 gene expression in hepatocytes and the activity of peroxisome-proliferator-activated receptor-alpha. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:105. [PMID: 33824670 PMCID: PMC8019128 DOI: 10.4103/jrms.jrms_16_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
Background: Accumulation of fatty acids in liver causes lipotoxicity which is followed by nonalcoholic fatty liver disease. The association between intakes of trans-fatty acids with metabolic diseases is still controversial. Accordingly, the objective of this study was to investigate the in vitro effects of trans-palmitoleic acid (tPA) and palmitic acid (PA) on lipid accumulation in hepatocytes, focusing on the gene expression of sirtuin 1 (SIRT1) as well as the transcriptional activity of peroxisome proliferator-activated receptor alpha (PPARα). Materials and Methods: In this experimental study, hepatocellular carcinoma (HepG2) cells were cultured and treated with various concentrations of tPA and PA (C16:0). The accumulation of triglyceride in the cells was measured by enzymatic method. Gene expression was evaluated by real-time polymerase chain reaction. The activity of PPARα was assessed by luciferase reporter assay after transfection of human embryonic kidney 293T cells by a vector containing the PPAR response element. Results: While concentration >1 mM for PA and cis-PA (cPA) reduced the viability of hepatocytes, tPA revealed an opposite effect and increased cell survival. Lipid accumulation in HepG2 cells after treatment with tPA was significantly lower than that in cells treated with PA. In addition, tPA at physiological concentration had no effect on the expression of SIRT1 while at high concentration significantly augmented its expression. There was a modest increase in PPARα activity at low concentration of tPA. Conclusion: tPA causes less lipid accumulation in hepatocytes with no detrimental effect on cell viability and might be beneficial for liver cells by the activation of SIRT1 and induction of PPARα activity.
Collapse
Affiliation(s)
- Ramesh Farokh Nezhad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,H. Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
26
|
Khlifi R, Dhaouefi Z, Toumia IB, Lahmar A, Sioud F, Bouhajeb R, Bellalah A, Chekir-Ghedira L. Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats. J Nutr Biochem 2020; 86:108490. [PMID: 32920086 DOI: 10.1016/j.jnutbio.2020.108490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/28/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
The wide morbidity of obesity has heightened interest in providing natural and safe compounds to maintain optimal health. The present study was designed to determine the chemical constituents and the effects of methanol leaf extract from Erica multiflora (M-EML) on mitigating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome (MS). LC-MS/MS characterization of M-EML allowed the identification of 14 secondary metabolites and showed that quercetin-3-O-glucoside and kaempferol-3-O-glucoside were the main compounds of our extract. In the in vivo study, the oral administration of M-EML (250 mg/kg) during the last 4 weeks of the experimentation alleviated HFFD-induced obesity, insulin resistance (IR) and cardiovascular diseases. Thus, M-EML treatment significantly normalized body and liver weight, allowed to a sharp decline in plasma levels of TC, TG and LDL-c by 32%, 35% and 66%, respectively. Moreover, hepatic enzymes, total and direct bilirubin, lipase and uric acid levels have been diminished in treated group. Histopathology of the liver confirmed the changes induced by HFFD and the hepatoprotective effect of M-EML. The supply of M-EML reduced NO production and cellular lysosomal enzyme activity by 44% and 60%, respectively compared to HFFD. Besides, M-EML showed decreased pro-inflammatory cytokines levels (259.5±47.35 pg/ml and 56.08±1.56 pg/ml) of TNF-α and IL-6, respectively. In addition, M-EML reduced liver malondialdehyde (MDA) content and enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. In contrast, these enzymatic activities have been disrupted in HFFD rats. Overall, M-EML prevented obesity through the modulation of metabolic syndrome, reducing inflammation and promoting antioxidant enzymes activities.
Collapse
Affiliation(s)
- Rihab Khlifi
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia.
| | - Zaineb Dhaouefi
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Imène Ben Toumia
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Aida Lahmar
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Fairouz Sioud
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Rim Bouhajeb
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| | - Ahlem Bellalah
- Department of Pathology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Unity of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Avicenna Street, 5000 Monastir, Tunisia
| |
Collapse
|
27
|
Nergiz-Unal R, Ulug E, Kisioglu B, Tamer F, Bodur M, Yalcimin H, Yuruk AA. Hepatic cholesterol synthesis and lipoprotein levels impaired by dietary fructose and saturated fatty acids in mice: Insight on PCSK9 and CD36. Nutrition 2020; 79-80:110954. [PMID: 32862122 DOI: 10.1016/j.nut.2020.110954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the uncertain effects of high saturated fatty acids (SFAs) or fructose intake on cholesterol and lipoproteins with an insight of proprotein convertase subtilisin/kexin type 9 (PCSK9)- and cluster of differentiation 36 (CD36)-induced mechanisms. METHODS Forty male C57 BL/6 mice (8 wks of age) were divided into four groups and fed ad libitum with standard chow or three isocaloric diets containing high SFAs (SFA group), monounsaturated fatty acids (MUFA group, vehicle), or fructose for 15 wks. Subsequently, mice were sacrificed and blood, liver, and heart were collected for further analysis. RESULTS Consequently, fructose or SFA intake resulted in higher plasma and liver total cholesterol (TC) levels, plasma low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo)-B levels, TC/HDL-C, and LDL-C/HDL-C ratios, and lower plasma levels of HDL-C and Apo-A1 (P < 0.05). Levels of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA acetyltransferase 1 enzymes in liver and CD36 levels in plasma were elevated by high SFAs and fructose intake (P < 0.05), whereas plasma PCSK9 levels were not significantly changed. Fructose and SFA intake increased PCSK9 and CD36 levels in the heart, along with increased CD36 levels in the liver (P < 0.05). Furthermore, plasma LDL-C was found to be positively correlated with liver PCSK9 (r = 0.85, P = 0.02), and CD36 (r = 0.70, P = 0.02) in the SFA and fructose groups. CONCLUSION High intakes of dietary SFAs and fructose might induce dysregulations in the cholesterol synthesis and blood lipoprotein levels via proposed nutrient-sensitive biomarkers PCSK9 and CD36 in liver and extrahepatic tissues involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.
| | - Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Funda Tamer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mahmut Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Hacer Yalcimin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Armagan Aytug Yuruk
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|