1
|
Shiba F, Maekawara S, Inoue A, Ohta K, Miyauchi M. Antinociceptive effect of Equisetum arvense extract on the stomatitis hamster model. PLoS One 2024; 19:e0313747. [PMID: 39570913 PMCID: PMC11581248 DOI: 10.1371/journal.pone.0313747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
Recurrent aphthous stomatitis leads to ulcers that cause severe pain, which is a substantial burden on patients. Equisetum arvense extract (EA) is a crude drug that promotes wound healing of mucous membranes caused by perineal incision during childbirth and alleviates pain. Here, we elucidated the effects of EA on wound healing and pain in a stomatitis hamster model. After stomatitis induction, two different EA doses were continuously applied to the wound area through the intramucosal injection of acetic acid into the cheek pouch (stomatitis/100*EA group and stomatitis/EA group). The body weight and wound area were measured over time, and histological evaluation was performed after stomatitis induction. The wound area was harvested 10 h after stomatitis induction, and gene expression associated with pain and inflammation was analyzed using qPCR. The dorsal root ganglia of the rat spinal cord were isolated, dispersed, and cultured to examine the inhibitory effect of EA on the K+-evoked release of neurotransmitter substance P. In the stomatitis/100*EA group, a significant reduction in wound size was observed compared with the stomatitis/physiological saline (PS) group, and the weight gain rate was considerably higher. The stomatitis/EA group revealed similar histological changes in the wound and wound size as the stomatitis/PS group; however, the weight gain rate was considerably higher on day 7. The stomatitis/EA group suppressed the expression of inflammatory cytokine mRNA, such as Tnf-α and Il-6, and Cox-2 mRNA in the wound area compared with the stomatitis/PS group. EA treatment reduced the upregulated substance P release from the dorsal root ganglia following high-concentration K+ stimulation. EA alleviates pain in a stomatitis model by suppressing inflammatory cytokine expression in the wound area and substance P release from primary sensory neurons. Therefore, using oral care products containing EA is expected to suppress stomatitis pain.
Collapse
Affiliation(s)
- Fumie Shiba
- Collaborative Research Laboratory of Oral Inflammation Regulation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Atsuko Inoue
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
- Department of Pharmacotherapeutics, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Koji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Collaborative Research Laboratory of Oral Inflammation Regulation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Chen X, Yang Y, Zhou Z, Yu H, Zhang S, Huang S, Wei Z, Ren K, Jin Y. Unraveling the complex interplay between Mitochondria-Associated Membranes (MAMs) and cardiovascular Inflammation: Molecular mechanisms and therapeutic implications. Int Immunopharmacol 2024; 141:112930. [PMID: 39146786 DOI: 10.1016/j.intimp.2024.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant public health concern because of their associations with inflammation, oxidative stress, and abnormal remodeling of the heart and blood vessels. In this review, we discuss the intricate interplay between mitochondria-associated membranes (MAMs) and cardiovascular inflammation, highlighting their role in key cellular processes such as calcium homeostasis, lipid metabolism, oxidative stress management, and ERS. We explored how these functions impact the pathogenesis and progression of various CVDs, including myocardial ischemia-reperfusion injury, atherosclerosis, diabetic cardiomyopathy, cardiovascular aging, heart failure, and pulmonary hypertension. Additionally, we examined current therapeutic strategies targeting MAM-related pathways and proteins, emphasizing the potential of MAMs as therapeutic targets. Our review aims to provide new insights into the mechanisms of cardiovascular inflammation and propose novel therapeutic approaches to improve cardiovascular health outcomes.
Collapse
Affiliation(s)
- Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zheng Zhou
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Haihan Yu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shuwei Zhang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Siyuan Huang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Ziqing Wei
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
3
|
Feng X, Yan Z, Ren X, Jia Y, Sun J, Guo J, Gao Z, Li H, Long F. Sea Buckthorn Flavonoid Extracted with High Hydrostatic Pressure Alleviated Shrimp Allergy in Mice through the Microbiota and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25094-25102. [PMID: 39495351 DOI: 10.1021/acs.jafc.4c06928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Sea buckthorn (Hippophaë rhamnoides L.) known as the deciduous shrub has been reported to have effects of antioxidant, anti-inflammatory, and immunomodulatory activities. Tropomyosin (TM) induced a regulatory immune response associated with food allergy. In this study, a mouse model of food allergy sensitized to tropomyosin (TM) was established to assess the antiallergic properties of sea buckthorn flavonoid extract (SBF). SBF alleviated mice's allergic symptoms and exhibited a significant reduction in the levels of IgE and histamine. Meanwhile, SBF repaired the allergic Th2 cell overpolarization generated by TM, via downregulating the IL-4 production and upregulating IFN-γ production to restore the balance of Th1/Th2 cells. Furthermore, the 16S RNA analysis showed that SBF primarily restored the gut microbiota via increasing the abundance in Chitinophilidae and decreasing in Burkholderiaceae, Pneumatobacteriaceae, and Sphingomonadaceae. Gut metabolomes determined by liquid chromatography-mass spectrometry (LC-MS) suggested that TM upregulated PE (14:0/22:1(13Z)) and SBF decreased formimino-l-glutamic acid and urocanic acid levels. According to the KEGG pathway analysis, SBF treatment has been shown to modulate glycerophospholipid and histidine metabolism to improve allergic reactions. SBF holds great promise as a novel potential agent for the treatment of food allergies.
Collapse
Affiliation(s)
- Xiaoping Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuomin Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojing Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yining Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiao Sun
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huzhong Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Zhu Y, Liu Y, Wang Y, Chen T, Ma X, Li J, Wang D. Development of a Temperature and pH Dual-Sensitive In-Situ Gel for Treating Allergic Conjunctivitis. AAPS PharmSciTech 2024; 25:223. [PMID: 39322789 DOI: 10.1208/s12249-024-02931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The purpose of this study was to improve the efficacy of olopatadine hydrochloride (OT) in treating allergic conjunctivitis (AC). To achieve this goal, we developed an eye formulation without antimicrobial agents using a temperature-pH dual-sensitive in situ gel technology combined with heat sterilization. Various types of carbomers were evaluated and their optimal doses determined. The prescription containing poloxamer 407 (P407) and poloxamer 188 (P188) was optimized using central composite design for response surface methodology (CCD-RSM). The final optimized dual-sensitive in situ gel (TP-gel) consisted of 0.1% olopatadine hydrochloride, 18.80% P407, 0.40% P188, 0.30% Pemulen™TR-1(TR-1), 4.0% mannitol, and 0.08% Tri(hydroxymethyl)aminomethane(Tris).Sterilization was performed at a temperature of 121℃ for a duration of 20 min. Experimental results showed that TP-gel had good safety profile and remained on the ocular surface for approximately (65.83 ± 8.79) minutes, which is four times longer than eye drops. The expression levels of IL-13, IL-17, and OVA-IgE in mouse ocular tissues with allergic conjunctivitis treated with TP-gel were significantly reduced. This suggests that TP-gel has the potential to be an effective treatment method for allergic conjunctivitis.
Collapse
Affiliation(s)
- Yanpeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yinghui Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yongyue Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Tingting Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Xuerui Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China.
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China.
| |
Collapse
|
5
|
Rajamanikandan R, Sasikumar K, Ju H. Ti 3C 2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples. Anal Chim Acta 2024; 1322:343069. [PMID: 39182987 DOI: 10.1016/j.aca.2024.343069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium carbide (Ti3C2) were fabricated. Recently, MXene quantum dots (MX-QDs), the rapidly emerging zero-dimensional nanomaterials made from two-dimensional transition metal carbides, have attracted much interest due to their unique physical and chemical features. These include the extremely large surface-to-volume ratio, biocompatibility, luminescence tunability, and hybridization capability while retaining properties of their two-dimensional counterpart including good conductivity and charge transferability. RESULTS The fabricated Ti3C2 MX-QDs had a quantum yield of 8.13 % at the emission wavelength of λem = 465 nm and displayed excellent photostability with great colloidal stability. It was found that introducing QC to near Ti3C2 MX-QDs reduced their fluorescence signals due to quenching effects. These quenching effects that occurred in a very broad linear range of QC (25-600 nM) enabled QC to be sensed quantitatively with the limit of detection of QC (1.35 nM), being the lowest ever reported to date. The quenching phenomena that caused such excellent sensitivity could be accounted for by combined effects of static quenching/radiation-free complex formation and inner filter effects (IFE) of Ti3C2 MX-QDs with QC. SIGNIFICANCE In addition, the quenching-based detection demonstrated excellent specificity against structurally relevant interferants. Therefore, the presented sensing strategies with Ti3C2 MX-QDs-based fluorescence quenching can be one of the strongest candidates as a reliable and cost-effective solution to highly sensitive quantification of QC in food samples.
Collapse
Affiliation(s)
| | - Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
6
|
Mao Y, Yang Q, Liu J, Fu Y, Zhou S, Liu J, Ying L, Li Y. Quercetin Increases Growth Performance and Decreases Incidence of Diarrhea and Mechanism of Action in Weaned Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5632260. [PMID: 39139212 PMCID: PMC11321896 DOI: 10.1155/2024/5632260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the mechanism of quercetin increasing growth performance and decreasing incidence of diarrhea in weaned piglets. Forty-eight Duroc × Landrace × Large White weaned piglets with similar body weight (7.48 ± 0.20 kg, 28 days of age) were randomly divided into four treatments (control, 250 mg/kg quercetin, 500 mg/kg quercetin, and 750 mg/kg quercetin treatments) and fed with basal diet or experimental diet supplemented with quercetin. Performance, diarrhea rate and index, and content of serum anti-inflammatory factors were determined and calculated in weaned piglets; colonic flora and signaling pathways related to anti-inflammation were measured using 16S rDNA sequencing and RNA-seq, respectively. The results showed that compared with control, feed-to-gain ratio and content of serum interferon gamma (IFN-γ) were significantly decreased in the 500 and 750 mg/kg quercetin treatments (P < 0.05); quercetin significantly decreased diarrhea rate and diarrhea index (P < 0.05) and significantly increased the content of serum transforming growth factor (TGF-β) in weaned piglets (P < 0.05); the content of serum NF-κB was significantly decreased in the 750 mg/kg quercetin treatment (P < 0.05); moreover, quercetin significantly increased diversity of colonic flora (P < 0.05), and at the phylum level, the relative abundance of Actinobacteria in the 500 and 750 mg/kg treatments was significantly increased (P < 0.05), and the relative abundance of Proteobacteria in the three quercetin treatments were significantly decreased (P < 0.05) in the colon of weaned piglets; at the genus level, the relative abundance of Clostridium-sensu-stricto-1, Turicibacter, unclassified_f_Lachnospiraceae, Phascolarctobacterium, and Family_XIII _AD3011_group was significantly increased (P < 0.05); the relative abundance of Subdollgranulum and Blautia was significantly decreased in the 500 and 750 mg/kg treatments (P < 0.05); the relative abundance of Eschericha-Shigella, Terrisporobacter, and Eubacterium-coprostanoligenes was significantly increased (P < 0.05); the relative abundance of Streptocococcus, Sarcina, Staphylococcus, and Ruminococcaceae_UCG-008 was significantly decreased in the three quercetin treatments (P < 0.05); the relative abundance of Ruminococcaceae_UCG_014 was significantly increased in the 250 mg/kg quercetin treatment in the colon of weaned piglets (P < 0.05). The results of Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differentially expressed genes (DEGs) from the quercetin treatments were significantly enriched in nuclear transcription factor-κB (NF-κB) signal pathway (P < 0.05); mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1R1 (IL-1R1), conserved helix-loop-helix ubiquitous kinase (CHUK), toll-like receptor 4 (TLR4), and IL-1β from quercetin treatments were significantly decreased in colonic mucosa of weaned piglets (P < 0.05). In summary, quercetin increased feed conversion ratio and decreased diarrhea through regulating NF-κB signaling pathway, controlling the balance between anti-inflammatory and proinflammatory factors, and modulating intestinal flora, thus promoting the absorption of nutrients in weaned piglets. These results provided the theoretical foundation for applying quercetin in preventing weaning piglets' diarrhea and animal husbandry practices.
Collapse
Affiliation(s)
- Yanjun Mao
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Qinglin Yang
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Junhong Liu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Yuxin Fu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Shuaishuai Zhou
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Jiayan Liu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Linlin Ying
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Yao Li
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Kellett SK, Masterson JC. Cellular metabolism and hypoxia interfacing with allergic diseases. J Leukoc Biol 2024; 116:335-348. [PMID: 38843075 DOI: 10.1093/jleuko/qiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Allergic diseases display significant heterogeneity in their pathogenesis. Understanding the influencing factors, pathogenesis, and advancing new treatments for allergic diseases is becoming more and more vital as currently, prevalence continues to rise, and mechanisms of allergic diseases are not fully understood. The upregulation of the hypoxia response is linked to an elevated infiltration of activated inflammatory cells, accompanied by elevated metabolic requirements. An enhanced hypoxia response may potentially contribute to inflammation, remodeling, and the onset of allergic diseases. It has become increasingly clear that the process underlying immune and stromal cell activation during allergic sensitization requires well-tuned and dynamic changes in cellular metabolism. The purpose of this review is to examine current perspectives regarding metabolic dysfunction in allergic diseases. In the past decade, new technological platforms such as "omic" techniques have been applied, allowing for the identification of different biomarkers in multiple models ranging from altered lipid species content, increased nutrient transporters, and altered serum amino acids in various allergic diseases. Better understanding, recognition, and integration of these alterations would increase our knowledge of pathogenesis and potentially actuate a novel repertoire of targeted treatment approaches that regulate immune metabolic pathways.
Collapse
Affiliation(s)
- Shauna K Kellett
- Allergy, Inflammation & Remodelling Research Laboratory, Department of Biology, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodelling Research Laboratory, Department of Biology, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Department of Paediatrics, Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 C2N1, County Kildare, Ireland
| |
Collapse
|
8
|
Bhujel B, Oh S, Hur W, Lee S, Chung HS, Lee H, Park JH, Kim JY. Effect of Exposure to Particulate Matter on the Ocular Surface in an Experimental Allergic Eye Disease Mouse Model. Bioengineering (Basel) 2024; 11:498. [PMID: 38790364 PMCID: PMC11118833 DOI: 10.3390/bioengineering11050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In response to the escalating concern over the effect of environmental factors on ocular health, this study aimed to investigate the impact of air pollution-associated particulate matter (PM) on ocular allergy and inflammation. C57BL/6 mice were sensitized with ovalbumin (OVA) topically and aluminum hydroxide via intraperitoneal injection. Two weeks later, the mice were challenged with OVA and exposed to PM. Three groups-naive, OVA, and OVA-sensitized with PM exposure (OVA + PM) groups-were induced to an Allergic Eye disease (AED) model. Parameters including clinical signs, histological changes, inflammatory cell infiltration, serum OVA-specific immunoglobulins E (IgE) levels, mast cells degranulation, cellular apoptosis and T-cell cytokines were studied. The results demonstrate that exposure with PM significantly exacerbates ocular allergy, evidenced by increased eye-lid edema, mast cell degranulation, inflammatory cytokines (IL-4, IL-5 and TNF-α), cell proliferation (Ki67), and serum IgE, polymorphonuclear leukocytes (PMN), and apoptosis and reduced goblet cells. These findings elucidate the detrimental impact of PM exposure on exacerbating the severity of AED. Noticeably, diminished goblet cells highlight disruptions in ocular surface integrity, while increased PMN infiltration with an elevated production of IgE signifies a systemic allergic response with inflammation. In conclusion, this study not only scientifically substantiates the association between air pollution, specifically PM, and ocular health, but also underscores the urgency for further exploration and targeted interventions to mitigate the detrimental effects of environmental pollutants on ocular surfaces.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Seheon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Woojune Hur
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Seorin Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| | | | - Jae Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| |
Collapse
|
9
|
Yang Q, Jia B, Shang J, Wang X, Xu L, Liu X, Fang M, Zeng F, Zeng HL, Gong Z. Effects of rosmarinic acid on immune response and intestinal microbiota in ovalbumin-induced intestinal allergy mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3002-3012. [PMID: 38053408 DOI: 10.1002/jsfa.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Rosmarinic acid (RA) is an active polyphenol that is widely found in various edible herbs. This study explored the potential anti-allergic activities and the underlying mechanisms of RA in ovalbumin (OVA)-induced intestinal allergic mice. RESULTS Forty female BALB/c mice were randomly divided into five groups: control group, model group (OVA sensitized/challenged), RA-Low group (OVA sensitized/challenged, 30 mg kg-1 RA intervention), RA-Middle group (OVA sensitized/challenged, 90 mg kg-1 RA intervention) and RA-High group (OVA sensitized/challenged, 270 mg kg-1 RA intervention). RA effectively attenuated allergic reactions, including alleviating allergic symptoms and regulating the hypothermia of mice in the model group. Moreover, the anaphylactic mediator (OVA-specific IgE, histamine and mMCP-1) levels of OVA allergic mice were markedly decreased after RA intervention. Quantitative polymerase chain reaction analysis showed that RA significantly inhibited Th2 cytokine expression, while Th1 and Treg cytokines were markedly increased. 16S rRNA gene sequence analysis indicated that RA effectively regulated the richness and diversity of the intestinal microbiota in OVA allergic mice. At the phylum level, the relative abundance of Bacteroidetes and Firmicutes and the Firmicutes/Bacteroidetes ratio were altered by RA intervention. At the genus level, RA was found to regulate the disturbances in the relative abundance of Muribaculaceae, Lactobacillus and Prevotella. CONCLUSION RA exhibited potential anti-allergic activity in OVA allergic mice by regulating hypersensitive immune responses and the intestinal microbiota structure. These results provide important evidence that RA can be developed into a novel functional food-derived ingredient against food allergy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Binmei Jia
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Jieli Shang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Xuanpei Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Fengbo Zeng
- Wuhan BioCSi Tech Laboratory Co. Ltd, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| |
Collapse
|
10
|
Khil NHS, Sharma S, Sharma PK, Alam MA. Neoteric Role of Quercetin in Visual Disorders. Curr Drug Res Rev 2024; 16:164-174. [PMID: 37608659 DOI: 10.2174/2589977515666230822114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Flavonoids are a family of secondary metabolites found in plants and fungi that exhibit strong antioxidant properties and low toxicity, making them potential candidates for medicinal use. Quercetin, a flavonoid present in various plant-based foods, has gained attention for its numerous biological benefits, including anti-inflammatory, anti-fibrosis, and antioxidant properties. The ocular surface research community has recently focused on quercetin's therapeutic potential for managing ocular diseases, such as dry eye, keratoconus, corneal inflammation, and neovascularization. In this paper, we discuss the role of quercetin for ocular disease prevention, highlighting its fundamental characteristics, common biological properties, and recent applications. By reviewing the latest research conducted in the last 10 years which was focused on novel herbal formulations for ocular diseases, we aim to provide insights into the role of quercetin in managing ocular diseases and offer perspectives on its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Noor Hassan Sulaiman Khil
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Ke X, Chen Z, Wang X, Kang H, Hong S. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity 2023; 56:2189133. [PMID: 36938614 DOI: 10.1080/08916934.2023.2189133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Allergic rhinitis (AR) is a common inflammation that affects many people globally. Quercetin has anti-allergic biological activity in AR. Here, we aimed to explore the effects of quercetin on type 1 helper T (Th1)/Th2 and regulatory T cells (Treg)/Th17 balance. We established an ovalbumin (OVA)-induced mouse model and orally administered 20, 35, and 50 mg/kg/day quercetin. The nasal symptoms of mice were observed. The immunoglobulin levels, Treg/Th17-related factors, and pro-inflammatory factors were examined by ELISA. The differentiated inflammation cells were visualized using the diff-quick staining assay. The nasal histopathology was evaluated using H&E, periodic acid Schiff (PAS), and Giemsa staining assay. The results showed that quercetin attenuated OVA-induced rubbing and sneezing. Quercetin reduced IgE, IgG1, histamine, and increased IgG2 in serum. The number of differentiated inflammation cells and goblet cells in tissues that elevated by OVA was reduced by quercetin. Moreover, OVA increased the Treg cell percentage, the levels of IL-17, TGF-β, IL-6, TNF-α, and decreased Th17 cell percentage, IL-10 and FOXP3 levels, while quercetin abrogated their levels induced by OVA. Additionally, quercetin inactivated the NF-κB pathway. Taken together, quercetin attenuated AR symptoms by balancing the Th1/Th2, Treg/Th17 ratios, and inactivating the NF-κB pathway. The results suggested that quercetin may use for AR treatment.
Collapse
Affiliation(s)
- Xia Ke
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziqi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqiang Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Houyong Kang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suling Hong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Kaag S, Lorentz A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023; 12:2602. [PMID: 37998337 PMCID: PMC10670325 DOI: 10.3390/cells12222602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Allergic diseases affect an estimated 30 percent of the world's population. Mast cells (MC) are the key effector cells of allergic reactions by releasing pro-inflammatory mediators such as histamine, lipid mediators, and cytokines/chemokines. Components of the daily diet, including certain fatty acids, amino acids, and vitamins, as well as secondary plant components, may have effects on MC and thus may be of interest as nutraceuticals for the prevention and treatment of allergies. This review summarizes the anti-inflammatory effects of dietary components on MC, including the signaling pathways involved, in in vitro and in vivo models. Butyrate, calcitriol, kaempferol, quercetin, luteolin, resveratrol, curcumin, and cinnamon extract were the most effective in suppressing the release of preformed and de novo synthesized mediators from MC or in animal models. In randomized controlled trials (RCT), vitamin D, quercetin, O-methylated epigallocatechin gallate (EGCG), resveratrol, curcumin, and cinnamon extract improved symptoms of allergic rhinitis (AR) and reduced the number of inflammatory cells in patients. However, strategies to overcome the poor bioavailability of these nutrients are an important part of current research.
Collapse
Affiliation(s)
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
13
|
Parsaei M, Akhbari K. Magnetic UiO-66-NH 2 Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS OMEGA 2023; 8:41321-41338. [PMID: 37969997 PMCID: PMC10633860 DOI: 10.1021/acsomega.3c04863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, a magnetic core-shell metal-organic framework (MOF) nanocomposite, Fe3O4-COOH@UiO-66-NH2, was synthesized for tumor-targeting drug delivery by incorporating carboxylate groups as functional groups onto ferrite nanoparticle surfaces, followed by fabrication of the UiO-66-NH2 shell using a facile self-assembly approach. The anticancer drug quercetin (QU) was loaded into the magnetic core-shell nanoparticles. The synthesized magnetic nanoparticles were comprehensively evaluated through multiple techniques, including FT-IR, PXRD, FE-SEM, TEM, EDX, BET, UV-vis, ZP, and VSM. Drug release investigations were conducted to investigate the release behavior of QU from the nanocomposite at two different pH values (7.4 and 5.4). The results revealed that QU@Fe3O4-COOH@UiO-66-NH2 exhibited a high loading capacity of 43.1% and pH-dependent release behavior, maintaining sustained release characteristics over a prolonged duration of 11 days. Furthermore, cytotoxicity assays using the human breast cancer cell line MDA-MB-231 and the normal cell line HEK-293 were performed to evaluate the cytotoxic effects of QU, UiO-66-NH2, Fe3O4-COOH, Fe3O4-COOH@UiO-66-NH2, and QU@Fe3O4-COOH@UiO-66-NH2. Treatment with QU@Fe3O4-COOH@UiO-66-NH2 substantially reduced the cell viability in cancerous MDA-MB-231 cells. Cellular uptake and cell death mechanisms were further investigated, demonstrating the internalization of QU@Fe3O4-COOH@UiO-66-NH2 by cancer cells and the induction of cancer cell death through the apoptosis pathway. These findings highlight the considerable potential of Fe3O4-COOH@UiO-66-NH2 as a targeted nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
14
|
Li D, Ou Q, Shen Q, Lu MM, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li J, Lu L, Xu GT, Tian H. Subconjunctival injection of human umbilical cord mesenchymal stem cells alleviates experimental allergic conjunctivitis via regulating T cell response. Stem Cell Res Ther 2023; 14:281. [PMID: 37784129 PMCID: PMC10546642 DOI: 10.1186/s13287-023-03484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND T helper 2 (Th2) cells are thought to play critical roles in allergic conjunctivitis (AC). They release inflammatory cytokines to promote an allergic response in AC. Due to individual heterogeneity and long-term chronic management, current therapies do not always effectively control AC. Mesenchymal stem cells (MSCs) have been shown to be effective in treating allergy-related disorders, but it is unclear how exactly the Th2-mediated allergic response is attenuated. This study aims to elucidate the therapeutic effect and mechanism of the human umbilical cord MSCs (hUCMSCs) in a mouse model of experimental AC (EAC). METHODS A mouse EAC model was established by inoculating short ragweed (SRW) pollen. After the SRW pollen challenge, the mice received a single subconjunctival or tail vein injection of 2 × 106 hUCMSCs, or subconjunctival injection of hUCMSCs conditioned medium (hUCMSC-CM), and dexamethasone eye drops was used as positive control; subsequent scratching behavior and clinical symptoms were assessed. Immunostaining and flow cytometry were carried out to show allergic reactions and the activation of CD4 + T cell subsets in the conjunctiva and cervical lymph nodes (CLNs). Gene expression was determined by RNA-seq and further verified by qRT-PCR and Western blot. Co-culture assays were performed to explore the regulatory role of hUCMSCs in the differentiation of CD4 + naive T cells (Th0) into Th2 cells. RESULTS Subconjunctival administration of hUCMSCs resulted in fewer instances of scratching and lower inflammation scores in EAC mice compared to the tail vein delivery, hUCMSC-CM and control groups. Subconjunctival administration of hUCMSCs reduced the number of activated mast cells and infiltrated eosinophils in the conjunctiva, as well as decreased the number of Th2 cells in CLNs. After pretreatment with EAC mouse serum in vitro to mimic the in vivo milieu, hUCMSCs were able to inhibit the differentiation of Th0 into Th2 cells. Further evidence demonstrated that repression of Th2 cell differentiation by hUCMSCs is mediated by CRISPLD2 through downregulation of STAT6 phosphorylation. Additionally, hUMCSCs were able to promote the differentiation of Th0 cells into regulatory T cells in CLNs of EAC mice. CONCLUSIONS Subconjunctival injection of hUCMSCs suppressed the Th2-allergic response and alleviated clinical symptoms. This study provides not only a potential therapeutic target for the treatment of AC but also other T cell-mediated diseases.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Shen
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Michael Mingze Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital, Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
- Department of Physiology and Pharmacology, TUSM, Shanghai, 200092, China.
| |
Collapse
|
15
|
Zhang D, Hong L, Zhang RS, Zhang Q, Yao J, Wang J, Zhang N. Identification of the key mechanisms of action of Si-Ni-San in uveitis using bioinformatics and network pharmacology. Medicine (Baltimore) 2023; 102:e34615. [PMID: 37653797 PMCID: PMC10470687 DOI: 10.1097/md.0000000000034615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Uveitis is an eye disease with a high rate of blindness, whose pathogenesis is not completely understood. Si-Ni-San (SNS) has been used as a traditional medicine to treat uveitis in China. However, its mechanism of action remains unclear. This study explored the potential mechanisms of SNS in the treatment of uveitis through network pharmacology and bioinformatics. METHODS Using R language and Perl software, the active components and predicted targets of SNS, as well as the related gene targets of uveitis, were mined through the Traditional Chinese Medicine Systems Pharmacology, Therapeutic Target, Gene Expression Omnibus, GeneCards, and DrugBank databases. The network diagram of active components and intersection targets was constructed using Cytoscape software and the String database. The CytoNCA plug-in was used to conduct topological analysis on the network diagram and screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Chemoffice, Pymol, AutoDock, and Vina were used to analyze the molecular docking of key targets and core compounds of diseases through the PubChem database. RESULTS JUN, RELA, and MAPK may play important roles in the treatment of uveitis by SNS. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that core genes were mainly concentrated in MAPK, toll-like receptor, tumor necrosis factor, and nucleotide oligomerization domain-like receptor signaling pathways. In addition, molecular docking results showed that the bioactive compounds (kaempferol, luteolin, naringin, and quercetin) exhibited good binding ability to JUN, RELA, and MAPK. CONCLUSION Based on these findings, SNS exhibits multi-component and multi-target synergistic action in the treatment of uveitis, and its mechanism may be related to anti-inflammatory and immune regulation.
Collapse
Affiliation(s)
- Dandan Zhang
- Dalian Women and Children’s Medical Group, Dalian, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Ha Er Bin Shi, China
| | - Liu Hong
- Dalian Women and Children’s Medical Group, Dalian, China
| | - Rui Su Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Yao
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiadi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Banan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
17
|
Wu T, Li Z, Wu Y, Yang X, Li L, Chen S, Qi B, Wang Y, Li C, Zhao Y. Exploring plant polyphenols as anti-allergic functional products to manage the growing incidence of food allergy. Front Nutr 2023; 10:1102225. [PMID: 37360292 PMCID: PMC10290203 DOI: 10.3389/fnut.2023.1102225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023] Open
Abstract
The active substances derived from plants have received increasing attention owing to their wide range of pharmacological applications, including anti-tumor, anti-allergic, anti-viral, and anti-oxidative activities. The allergy epidemic is a growing global public health problem that threatens human health and safety. Polyphenols from plants have significant anti-allergic effects and are an important source of anti-allergic drug research and development. Here, we describe recent advances in the anti-allergic efficacy of plant polyphenols, including their comprehensive effects on cellular or animal models. The current issues and directions for future development in this field are discussed to provide a theoretical basis for the development and utilization of these active substances as anti-allergic products.
Collapse
Affiliation(s)
- Tianxiang Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Food Safety Laboratory, Ocean University of China, Qingdao, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhenxing Li
- Food Safety Laboratory, Ocean University of China, Qingdao, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
18
|
Kiouas K, Oussedik-Oumehdi H, Laraba-Djebari F. Therapeutic outcome of quercetin nanoparticles on Cerastes cerastes venom-induced hepatorenal toxicity: a preclinical study. Nanomedicine (Lond) 2023; 18:367-390. [PMID: 37125660 DOI: 10.2217/nnm-2022-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aim: The objective of this study was to investigate the therapeutic potential of quercetin (QT) and QT-loaded poly(lactic-co-glycolic acid) nanoparticles (QT-NPs) on Cerastes cerastes venom-mediated inflammation, redox imbalance, hepatorenal tissue damage and local hemorrhage. Methods: The developed QT-NPs were first submitted to physicochemical characterization and then evaluated in the 'challenge then treat' and 'preincubation' models of envenoming. Results: QT-NPs efficiently alleviated hepatorenal toxicity, inflammation and redox imbalance and significantly attenuated venom-induced local hemorrhage. Interestingly, QT-NPs were significantly more efficient than free QT at 24 h post-envenoming, pointing to the efficacy of this drug-delivery system. Conclusion: These findings highlight the therapeutic potential of QT-NPs on venom-induced toxicity and open up the avenue for their use in the management of snakebite envenoming.
Collapse
Affiliation(s)
- Kahina Kiouas
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
19
|
Tang D, Wang C, Gu Z, Li J, Jin L, Li J, Wang Z, Jiang RW. Discovery of anti-allergic components in Guomingkang Formula using sensitive HEMT biochips coupled with in vitro and in vivo validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154837. [PMID: 37126969 DOI: 10.1016/j.phymed.2023.154837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a prevalent allergic disease, which seriously affects the sufferers' life quality and increases the socioeconomic burden. Guominkang (GMK), a well-known prescription for AR treatment, showed satisfactory effects; while its anti-allergic components remain to be disclosed. AlGaN/GaN HEMT biochip is more sensitive and cost-effective than other binding equipments, indicating its great potential for screening of active ingredients from herbal medicines. METHODS AR mouse models were first established to test the anti-allergic effect of GMK and discover the ingredients absorbed into blood by ultra-high performance liquid chromatography-mass spectra (UHPLC-MS). Then, novel Syk/Lyn/Fyn-functionalized high electron mobility transistor (HEMT) biochips with high sensitivity and specificity were constructed and applied to screen the active components. Finally, the results from HEMT biochips screening were validated via in silico (molecular docking and molecular dynamics simulation), in vitro (RBL-2H3 cells), and in vivo (PCA mice model) assays. RESULTS GMK showed a potent therapeutic effect on AR mice, and fifteen components were identified from the medicated plasma. Furthermore, hamaudol was firstly found to selectively inhibit the Syk and Lyn, and emodin was to selectively inhibit Lyn, which were further confirmed by isothermal titration calorimetry, molecular docking, and molecular dynamics simulation analyses. Suppression of the activation of FcεRI-MAPK signals might be the possible mechanism of the anti-allergic effect of hamaudol. CONCLUSIONS The targets of emodin and hamaudol were discovered by HEMT biochips for the first time. This study provided a novel and effective strategy to discover active components in a complex herbal formula by using AlGaN/GaN HEMT biochips.
Collapse
Affiliation(s)
- Ding Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China; Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chen Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, PR China
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, PR China
| | - Lu Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China
| | - Juan Li
- Key Laboratory of Ministry of Education on Traditional Chinese Medicine Resource and Compound Prescription, Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Zhixin Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China.
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 511436, PR China.
| |
Collapse
|
20
|
Choi W, Lee HP, Manilack P, Saysavanh V, Lee BH, Lee S, Kim E, Cho JY. Antiallergic Effects of Callerya atropurpurea Extract In Vitro and in an In Vivo Atopic Dermatitis Model. PLANTS (BASEL, SWITZERLAND) 2023; 12:860. [PMID: 36840208 PMCID: PMC9959980 DOI: 10.3390/plants12040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: Callerya atropurpurea is found in Laos, Thailand, and Vietnam. Although the anti-inflammatory action of C. atropurpurea has been investigated, the functions of this plant in allergic responses are not understood. Here, we explored the antiallergic mechanism of C. atropurpurea ethanol extract (Ca-EE) using in vitro assays and an in vivo atopic model. (2) Methods: The constituents of Ca-EE were analyzed using GC/MS. Inhibition of lipoxygenase and β-hexosaminidase activity was examined, and the expression of inflammatory genes was measured by quantitative real-time PCR. The regulatory roles of Ca-EE in IgE/FcεRI signaling were examined by Western blotting. The DNCB-induced atopic dermatitis mouse model was performed with histological analysis. (3) Results: Ca-EE comprised cis-raphasatin, lupeol, some sugars, and fatty acids. In RBL-2H3 cells, treatment with Ca-EE significantly reduced the activities of lipoxygenase and β-hexosaminidase, as well as cytokine gene expression. IgE-mediated signaling was downregulated by blocking Lyn kinases. Moreover, Ca-EE effectively inhibited allergic symptoms in the DNCB-induced atopic dermatitis model without toxicity. (4) Conclusions: Ca-EE displayed antiallergic activities through regulating IgE/Lyn signaling in RBL-2H3 cells and a contact dermatitis model. These results indicate that Ca-EE could be effective for allergic disease treatment.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Veosavanh Saysavanh
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- R&D Center, Yungjin Pharmaceutical Co., Ltd., Suwon 16229, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
21
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods. Int J Biol Macromol 2023; 227:1151-1161. [PMID: 36464189 DOI: 10.1016/j.ijbiomac.2022.11.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 10/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The ability of a therapeutic compound to bind to proteins is critical for characterizing its therapeutic impacts. We have selected quercetin (Qu), a most common flavonoid found in plants and vegetables among therapeutic molecules that are known to have anti-inflammatory, antioxidant, anti-genotoxic, and anti-cancer effects. The current study aimed to see how quercetin interacts with pepsin in an aqueous environment under physiological conditions. Absorbance and emission spectroscopy, circular dichroism (CD), and kinetic methods, as well as molecular dynamic (MD) simulation and docking, were applied to study the effects of Qu on the structure, dynamics, and kinetics of pepsin. Stern-Volmer (Ksv) constants were computed for the pepsin-quercetin complex at three temperatures, showing that Qu reduces enzyme emission spectra using a static quenching. With Qu binding, the Vmax and the kcat/Km values decreased. UV-vis absorption spectra, fluorescence emission spectroscopy, and CD result indicated that Qu binding to pepsin leads to microenvironmental changes around the enzyme, which can alter the enzyme's secondary structure. Therefore, quercetin caused alterations in the function and structure of pepsin. Thermodynamic parameters, MD binding, and docking simulation analysis showed that non-covalent reactions, including the hydrophobic forces, played a key role in the interaction of Qu with pepsin. The findings conclude of spectroscopic experiments were supported by molecular dynamics simulations and molecular docking results.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
22
|
Zhang Y, Guan R, Huang H. Anti-Allergic Effects of Quercetin and Quercetin Liposomes in RBL-2H3 Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:692-701. [PMID: 35761488 DOI: 10.2174/1871530322666220627151830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quercetin is a kind of flavonoid with important bioactivities, such as hypoglycemic, antioxidant, anti-inflammatory, and anti-allergic properties. Although it is unstable, it is worth exploring how to better exert its anti-allergic effect. OBJECTIVE The current study aimed to elucidate the anti-allergic effect of quercetin liposomes on RBL-2H3 cells in vitro. METHODS Quercetin liposomes were prepared to improve the anti-allergic activity of quercetin through a green thin-film dispersion method. We compared the anti-allergic effects of quercetin and quercetin liposomes in RBL-2H3 cells. The anti-allergic activity of the quercetin liposomes was evaluated by the level of β-hexosaminidase, histamine, Ca2+, IL-4, IL-8, and MCP-1. RESULTS The results showed that quercetin liposomes could significantly restrain the release of β-hexosaminidase and histamine, calcium influx, and the expression of inflammatory factors, whose effect is stronger than quercetin. CONCLUSION Collectively, our research suggests that the quercetin liposome can be used as a potential allergy antagonist.
Collapse
Affiliation(s)
- Yanhui Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
23
|
Shu J, Cui X, Liu X, Yu W, Zhang W, Huo X, Lu C. Licochalcone A inhibits IgE-mediated allergic reaction through PLC/ERK/STAT3 pathway. Int J Immunopathol Pharmacol 2022; 36:3946320221135462. [PMID: 36263976 PMCID: PMC9597022 DOI: 10.1177/03946320221135462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Licochalcone (LicA) is a flavonoid commonly derived from the licorice plant that is reported to have a variety of pharmacological activities. However, few studies have focused on its anti-allergic properties. IgE-mediated passive and systemic anaphylaxis mice models were used to assess the in vivo anti-allergic effect of LicA and its underlying mechanism, while degranulation, cytokines, and chemokines released from laboratory of allergic disease (LAD2) cells were used to assess its in vitro anti-allergic effect. We used western blot analysis to explore the downstream signaling pathway of its anti-allergic effect. We found that in the mouse model, LicA attenuated IgE-mediated paw inflammation, recovered the allergy-induced drop in body temperature, and reduced the concentrations of tumor necrosis factor-alpha and monocyte chemo-attractant protein-1 in mouse serum in a dose-dependent manner. LicA inhibited the allergic reaction via inhibition of IgE-mediated LAD2 cell activation through the PLC/ERK/STAT3 pathway.
Collapse
Affiliation(s)
- Jin Shu
- Department of Gynecology, Xi’an Hospital of Traditional Chinese
Medicine, Xi’an, P. R. China
| | - Xu Cui
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China,Shaanxi University of Traditional
Chinese Medicine, Xi’an, P. R. China
| | - Xin Liu
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Wenxing Yu
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Weisong Zhang
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Xiaojing Huo
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China
| | - Chao Lu
- Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University Health
Science Center, Xi’an, P. R. China,Chao Lu, Department of Joint Surgery, Xi’an
Hong Hui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road,
Nanshaomen, Xi’an 710054, China.
| |
Collapse
|
24
|
Cheng J, Zhang M, Zheng Y, Wang J, Wang Q. Integrative analysis of network pharmacology and proteomics to identify key targets of Tuomin-Zhiti-Decoction for allergic rhinitis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115448. [PMID: 35680038 DOI: 10.1016/j.jep.2022.115448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergic rhinitis (AR) is one of most prevalent disease and it is urgent need to develop new drug. Tuomin-Zhiti-Decoction (TZD) is a traditional medicinal compound consisting of eleven different herbs and has a significant effect on AR, yet its underlying mechanism is still unknown. AIM OF THE STUDY The aim of this study was to confirm the anti-AR effects and the underlying mechanism of TZD. Integrative analysis of network pharmacology and proteomics to explore the common mechanism of TZD treating AR. MATERIALS AND METHODS Mice were subjected to serial intranasal challenge with ovalbumin (OVA), we examinaed the nasal symptoms, histopathology and Th1/Th2-related cytokines after TZD treatments. Active compounds, potential targets and underlying mechanisms of TZD against AR were systematically clarified by integrating network pharmacology and proteomics analysis. Then we validated the binding affinity between the key potential targets and matching active compounds using molecular docking evaluation. RESULTS TZD controlled allergy by reduction of OVA-specific immunoglobulin E (IgE) and histamine release. In nasal tissue, TZD decreased nasal rubbing, sneezing and reduced AR-induced damage to nasal mucosa, accordingly, the nasal symptoms were also clearly ameliorated. Moreover, TZD modulated the balance of Th1/Th2/Th17. The proteomics analysis recognized 41 differentially expressed proteins (DEPs). Integrative analysis of network pharmacology and proteomics, we found IL-6 and CD40 could be potential protein targets of TZD against AR, quercetin and wogonin may play more effective roles in AR. Active core compounds of TZD could bind closely to the key targets by molecular docking. CONCLUSION TZD may have therapeutic potential for treating AR, integrating analysis of network pharmacology and proteomics uncovered the underlying mechanism and targets of TZD, which provides a scientific method for the sensible development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Meiling Zhang
- DongZhiMen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
25
|
Mustafa AM, Abouelenein D, Angeloni S, Maggi F, Navarini L, Sagratini G, Santanatoglia A, Torregiani E, Vittori S, Caprioli G. A New HPLC-MS/MS Method for the Simultaneous Determination of Quercetin and Its Derivatives in Green Coffee Beans. Foods 2022; 11:foods11193033. [PMID: 36230109 PMCID: PMC9563038 DOI: 10.3390/foods11193033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Green coffee (Coffee arabica and Coffee robusta) is one of the most commonly traded goods globally. Their beans are enriched with polyphenols and numerous health benefits are associated with their consumption. The main aim of this work was to develop a new and fast analytical HPLC-MS/MS method to simultaneously determine six flavonoid polyphenolic compounds (quercetin, rutin, isorhamnetin, quercetin-3-glucouronide, hyperoside, and quercitrin) in 22 green coffee samples from six different geographical origins (Ethiopia, Brazil, Guatemala, Nicaragua, India and Colombia). In addition, by adjusting pH, temperature, solvent type, and extraction duration, several extraction methods such as acidic and alkaline hydrolysis, and extraction without hydrolysis were evaluated. The optimal extraction procedure in terms of recovery percentages (78.67–94.09%)was acidic hydrolysis at pH 2, extraction temperature of 60 °C, extraction solvent of 70% ethanol, and extraction duration of 1.5 h. Hyperoside (878–75 μg/kg) was the most abundant compound followed by quercitrin (408–38 μg/kg), quercetin (300–36 μg/kg), rutin (238–21 μg/kg), and quercetin-3-glucouronide (225–7 μg/kg), while isorhamnetin (34–3 μg/kg) showed the lowest amount. Overall, green coffee beans are rich in flavonoid polyphenolic compounds and could be used as part of a healthy diet.
Collapse
Affiliation(s)
- Ahmed M. Mustafa
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
- Correspondence:
| | | | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
| | - Agnese Santanatoglia
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
| | - Elisabetta Torregiani
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
26
|
Fernandez A, Asbell P, Roy N. Emerging therapies targeting eosinophil-mediated inflammation in chronic allergic conjunctivitis. Ocul Surf 2022; 26:191-196. [PMID: 35970432 DOI: 10.1016/j.jtos.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Ocular allergy remains a significant burden to the population while the treatment for the severe, chronic forms of allergic conjunctivitis remains largely limited to non-specific immunosuppressants. Eosinophils are central to the pathophysiology and sustaining the immunologic response found in the chronic forms of ocular allergy such as vernal keratoconjunctivitis and atopic keratoconjunctivitis. Several mediators of eosinophil recruitment, chemotaxis, adhesion, activation, and survival have been identified that offer potential therapeutic targets for ocular allergy. Based on preclinical and clinical data available in both ocular and non-ocular allergy studies, these emerging therapies warrant further investigation in reducing the severity of disease in patients with chronic ocular allergy.
Collapse
Affiliation(s)
- Andrew Fernandez
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Penny Asbell
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Neeta Roy
- University of Tennessee Health Sciences Center, Memphis, TN, USA; Now Affiliated with Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
27
|
Samadi F, Kahrizi MS, Heydari F, Arefnezhad R, Roghani-Shahraki H, Mokhtari Ardekani A, Rezaei-Tazangi F. Quercetin and Osteoarthritis: A Mechanistic Review on the Present Documents. Pharmacology 2022; 107:464-471. [PMID: 35793647 DOI: 10.1159/000525494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteoarthritis (OA), as one of the chronic debilitating conditions, affects 15% of people globally and is linked with serious problems, such as cardiovascular diseases, metabolic syndrome, and autoimmune inflammatory disorders. The current therapeutic options for this disease include nonsteroidal anti-inflammatory drugs, surgery, gene therapy, intrasynovial gel injection, and warm needle penetration. However, these approaches may be accompanied by considerable side effects, high costs, and some limitations for patients. Thus, using an alternative way is needed. SUMMARY Presently, natural compounds based-therapies, like flavonoids, have acquired much attention in the current era. One of the compounds belonging to the flavonoid family is quercetin, and its therapeutic effects on disorders related to joints and cartilage have been addressed in vivo and in vitro studies. KEY MESSAGES In this review, we summarized evidence indicating its curative capacity against OA with a mechanistic insight.
Collapse
Affiliation(s)
- Faezeh Samadi
- School of Nursing and Midwifery, Tehran University of Medical Science, Tehran, Iran
| | | | - Fateme Heydari
- Student Research Committee, School of Medicine, Shahid Beheshti of Medical Sciences, Tehran, Iran
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Physiology Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
28
|
Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, Zhang X, Wang J, Wan Y. Discovery of Quercetin and Its Analogs as Potent OXA-48 Beta-Lactamase Inhibitors. Front Pharmacol 2022; 13:926104. [PMID: 35814247 PMCID: PMC9258905 DOI: 10.3389/fphar.2022.926104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem resistance in Enterobacteriaceae caused by OXA-48 β-lactamase is a growing global health threat and has rapidly spread in many regions of the world. Developing inhibitors is a promising way to overcome antibiotic resistance. However, there are few options for problematic OXA-48. Here we identified quercetin, fisetin, luteolin, 3′,4′,7-trihydroxyflavone, apigenin, kaempferol, and taxifolin as potent inhibitors of OXA-48 with IC50 values ranging from 0.47 to 4.54 μM. Notably, the structure-activity relationship revealed that the substitute hydroxyl groups in the A and B rings of quercetin and its structural analogs improved the inhibitory effect against OXA-48. Mechanism studies including enzymatic kinetic assay, isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) analysis demonstrated that quercetin reversibly inhibited OXA-48 through a noncompetitive mode. Molecular docking suggested that hydroxyl groups at the 3′, 4′ and 7 positions in flavonoids formed hydrogen-bonding interactions with the side chains of Thr209, Ala194, and Gln193 in OXA-48. Quercetin, fisetin, luteolin, and 3′,4′,7-trihydroxyflavone effectively restored the antibacterial efficacy of piperacillin or imipenem against E. coli producing OXA-48, resulting in 2–8-fold reduction in MIC. Moreover, quercetin combined with piperacillin showed antimicrobial efficacy in mice infection model. These studies provide potential lead compounds for the development of β-lactamase inhibitors and in combination with β-lactams to combat OXA-48 producing pathogen.
Collapse
Affiliation(s)
- Yuejuan Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Cheng Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Gao
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Lixia Zhang
- Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xu Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Jun Wang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Yi Wan
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
- *Correspondence: Yi Wan,
| |
Collapse
|
29
|
Che D, Zheng Y, Hou Y, Li T, Du X, Geng S. Dehydroandrographolide targets CD300f and negatively regulated MRGPRX2-induced pseudo-allergic reaction. Phytother Res 2022; 36:2173-2185. [PMID: 35312106 DOI: 10.1002/ptr.7445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Mas-related G protein-coupled receptor X2 (MRGPRX2) mediates mast cells (MCs) activation, which is a key target for the treatment of allergic diseases. However, there are few drugs targeting MRGPRX2. Leukocyte mono-immunoglobulin-like receptor 3 (CD300f) is a negative regulator of FcεRΙ-mediated MC activation. However, the regulatory effect of CD300f on MRGPRX2 remains unclear. Dehydroandrographolide (DA) is a main contributor of Andrographis paniculata (Burm.f.) Nees (family: Acanthaceae) have been shown to inhibit type I hypersensitivity. The aim of this study was to determine whether DA negatively regulated MRGPRX2-mediated MC activation via CD300f and showed therapeutic effect on pseudo-allergic reactions. Mouse allergic models and MC degranulation were detected in vivo and in vitro, and inflammatory mediators were detected. siRNA interference and Biacore were used to verify the target. DA inhibited pseudo-allergic reactions by reducing vasodilation and serum cytokine levels in mice and inhibited MRGPRX2-mediated MC activation. The regulatory effect of DA was significantly decreased after the knockdown of CD300f expression. Moreover, DA upregulated the phosphorylation level of Src homology region 2 domain-containing phosphatase (SHP)-1 and SHP-2, which are key kinases in the negative regulatory signaling pathways associated with CD300f. In conclusion, DA negatively regulates MRGPRX2-mediated MC activation via CD300f to inhibit pseudo-allergic reactions.
Collapse
Affiliation(s)
- Delu Che
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Yi Zheng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Yajing Hou
- Department of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Ting Li
- Department of Pharmacy, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Xueshan Du
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
30
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
31
|
Potassium Complexes of Quercetin-5'-Sulfonic Acid and Neutral O-Donor Ligands: Synthesis, Crystal Structure, Thermal Analysis, Spectroscopic Characterization and Physicochemical Properties. MATERIALS 2021; 14:ma14226798. [PMID: 34832203 PMCID: PMC8625810 DOI: 10.3390/ma14226798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
The coordination ability of QSA- ligand towards potassium cations was investigated. Potassium complex of quercetin-5'-sulfonate of the general formula [KQSA(H2O)2]n was obtained. The [KQSA(H2O)2] (1) was a starting compound for solvothermal syntheses of acetone (2) and dimethylsulfoxide (3) complexes. For the crystalline complexes 1-3, crystals morphology was analyzed, IR and Raman spectra were registered, as well as thermal analysis for 1 was performed. Moreover, for 1 and 3, molecular structures were established. The potassium cations are coordinated by eight oxygen atoms (KO8) of a different chemical nature; coordinating groups are sulfonic, hydroxyl, and carbonyl of the QSA- anion, and neutral molecules-water (1) or DMSO (3). The detailed thermal studies of 1 confirmed that water molecules were strongly bonded in the complex structure. Moreover, it was stated that decomposition processes depended on the atmosphere used above 260 °C. The TG-FTIR-MS technique allowed the identification of gaseous products evolving during oxidative decomposition and pyrolysis of the analyzed compound: water vapor, carbon dioxide, sulfur dioxide, carbonyl sulfide, and carbon monoxide. The solubility studies showed that 1 is less soluble in ethanol than quercetin dihydrate in ethanol, acetone, and DMSO. The exception was aqueous solution, in which the complex exhibited significantly enhanced solubility compared to quercetin. Moreover, the great solubility of 1 in DMSO explained the ease of ligand exchange (water for DMSO) in [KQSA(H2O)2].
Collapse
|
32
|
Manzoor MF, Hussain A, Sameen A, Sahar A, Khan S, Siddique R, Aadil RM, Xu B. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review. ULTRASONICS SONOCHEMISTRY 2021; 78:105686. [PMID: 34358980 PMCID: PMC8350193 DOI: 10.1016/j.ultsonch.2021.105686] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
Quercetin (QUR) have got the attention of scientific society frequently due to their wide range of potential applications. QUR has been the focal point for research in various fields, especially in food development. But, the QUR is highly unstable and can be interrupted by using conventional assessment methods. Therefore, researchers are focusing on novel extraction and non-invasive tools for the non-destructive assessment of QUR. The current review elaborates the different novel extraction (ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, and enzyme-assisted extraction) and non-destructive assessment techniques (fluorescence spectroscopy, terahertz spectroscopy, near-infrared spectroscopy, hyperspectral imaging, Raman spectroscopy, and surface-enhanced Raman spectroscopy) for the extraction and identification of QUR in agricultural products. The novel extraction approaches facilitate shorter extraction time, involve less organic solvent, and are environmentally friendly. While the non-destructive techniques are non-interruptive, label-free, reliable, accurate, and environmental friendly. The non-invasive spectroscopic and imaging methods are suitable for the sensitive detection of bioactive compounds than conventional techniques. QUR has potential therapeutic properties such as anti-obesity, anti-diabetes, antiallergic, antineoplastic agent, neuroprotector, antimicrobial, and antioxidant activities. Besides, due to the low bioavailability of QUR innovative drug delivery strategies (QUR loaded gel, QUR polymeric micelle, QUR nanoparticles, glucan-QUR conjugate, and QUR loaded mucoadhesive nanoemulsions) have been proposed to improve its bioavailability and providing novel therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad 38000, Pakistan
| | - Abid Hussain
- Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
33
|
Yang T, Li C, Xue W, Huang L, Wang Z. Natural immunomodulating substances used for alleviating food allergy. Crit Rev Food Sci Nutr 2021; 63:2407-2425. [PMID: 34494479 DOI: 10.1080/10408398.2021.1975257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.
Collapse
Affiliation(s)
- Tian Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
34
|
Chen JJ, Zhang LN, Wang HN, Xie CC, Li WY, Gao P, Hu WZ, Zhao ZF, Ji K. FAK inhibitor PF-431396 suppresses IgE-mediated mast cell activation and allergic inflammation in mice. Biochem Pharmacol 2021; 192:114722. [PMID: 34384759 DOI: 10.1016/j.bcp.2021.114722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) initiate and maintain allergic inflammation. Upon being stimulated with immunoglobulin (Ig)E and antigen (Ag), MCs exhibit FcεRI (high-affinity IgE) receptor-mediated degranulation, cytokine secretion, and increased focal adhesion kinase (FAK) activity. The aims of this study were to examine mechanisms of FAK regulation in IgE-mediated MC activation and the effects of FAK inhibition on MC-mediated allergic responses. FAK activity was manipulated with short hairpin RNA (shRNA) knockdown, FAK overexpression, and the FAK inhibitor PF-431396 (PF). Gene expression and kinase activation were analyzed with quantitative molecular biology assays. PF effects were tested in the passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and allergic conjunctivitis (AC) mouse models. Our results showed that FAK overexpression increased IgE-mediated degranulation and reduced the dexamethasone inhibitory effect on MCs activation. The FAK inhibitor PF diminished MC release of β-hexosaminidase (β-hex), histamine, and inflammatory cytokines, via a mechanism that involves MAPK and NF-κB signaling pathways. CaMKII was identified as a robust FAK-associating protein. Inhibition of CaMKII activation by KN-93 suppressed FAK activity and its downstream pathway. PF attenuated inflammatory responses in our PCA and ASA models, and relieved signs of allergic disease in AC model mice. In conclusions, MC degranulation and production of inflammatory mediators in allergic disease may be consequent to FcεRI crosslinking inducing CaMKII-mediated activation of FAK activity. FAK inhibition may represent a new MC-suppressing treatment strategy for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Pan Gao
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Wan-Zhen Hu
- Shenzhen University General Hospital, Shenzhen 518060, China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Bakhshi O, Bagherzade G, Ghamari kargar P. Biosynthesis of Organic Nanocomposite Using Pistacia vera L. Hull: An Efficient Antimicrobial Agent. Bioinorg Chem Appl 2021; 2021:4105853. [PMID: 34335708 PMCID: PMC8286193 DOI: 10.1155/2021/4105853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Here presented a quick and easy synthesis of copper nanoparticles (CuNPs). Pistachio hull extract has been used as a reducing and stabilizing agent in the preparation of CuNPs. This biosynthesis is a kind of supporter of the environment because chemical agents were not used to making nanoparticles, and on the other hand, it prevents the release of pistachio waste in nature and its adverse effects on nature. The biosynthesized CuNPs and CuNPs/silver Schiff base nanocomposite (CSS NC) were characterized by UV-VIS spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). CuNP and CSS NC antimicrobial activity was examined by both well diffusion and determination MIC methods against four bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and two fungi Aspergillus Niger and Candida albicans. CuNPs and CSS NC showed significant antimicrobial activity on the samples, preventing the growth of bacteria and fungi at very low concentrations. CuNPs and CSS NC had the greatest effect on Escherichia coli bacteria and Aspergillus niger fungi. Phenolic compounds are one of the most important antioxidants that are involved in various fields, including pharmacy. Pistacia vera hull is a rich source of phenolic compounds. In this study, the most phenolic compound in Pistacia vera hull is gallic acid and rutin, which has been identified by HPLC analysis. In this study, Pistacia vera hull essential oil analysis was performed by the GC-MS method, in which α-pinene, D-limonene, and isobornyl acetate compounds constitute the highest percentage of Pistacia vera hull essential oil.
Collapse
Affiliation(s)
- Omolbanin Bakhshi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| | - Pouya Ghamari kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
| |
Collapse
|
36
|
Fan PS, Sun MJ, Qin D, Yuan CS, Chen XG, Liu Y. Nanosystems as curative platforms for allergic disorder management. J Mater Chem B 2021; 9:1729-1744. [PMID: 33475131 DOI: 10.1039/d0tb02590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allergy, IgE-mediated inflammatory disorders including allergic rhinitis, asthma, and conjunctivitis, affects billions of people worldwide. Conventional means of allergy management include allergen avoidance, pharmacotherapy, and emerging therapies. Among them, chemotherapeutant intake via oral, intravenous, and intranasal routes is always the most common mean. Although current pharmacotherapy exhibit splendid anti-allergic effects, short in situ retention, low bioavailability, and systemic side effects are inevitable. Nowadays, nanoplatforms have provided alternative therapeutic options to obviate the existing weakness via enhancing the solubility of hydrophobic therapeutic agents, achieving in situ drug accumulation, exhibiting controlled and long-time drug release at lesion areas, and providing multi-functional therapeutic strategies. Herein, we highlight the clinical therapeutic strategies and deal with characteristics of the nanoplatform design in allergy interventions via intratracheal, gastrointestinal, intravenous, and ocular paths. The promising therapeutic utilization in a variety of allergic disorders is discussed, and recent perspectives on the feasible advances of nanoplatforms in allergy management are also exploited.
Collapse
Affiliation(s)
- Peng-Sheng Fan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Meng-Jie Sun
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Cong-Shan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P. R. China.
| |
Collapse
|
37
|
Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, Xiong H, He Y, Qian Y, Fan C. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol 2021; 12:649285. [PMID: 34093537 PMCID: PMC8173182 DOI: 10.3389/fimmu.2021.649285] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is one of the most intractable disorders following musculoskeletal injury and is characterized by the ectopic presence of bone tissue in the soft tissue leading to severe loss of function in the extremities. Recent studies have indicated that immune cell infiltration and inflammation are involved in aberrant bone formation. In this study, we found increased monocyte/macrophage and mast cell accumulation during early HO progression. Macrophage depletion by clodronate liposomes and mast cell stabilization by cromolyn sodium significantly impeded HO formation. Therefore, we proposed that the dietary phytochemical quercetin could also suppress immune cell recruitment and related inflammatory responses to prevent HO. As expected, quercetin inhibited the monocyte-to-macrophage transition, macrophage polarization, and mast cell activation in vitro in a dose-dependent manner. Using a murine burn/tenotomy model, we also demonstrated that quercetin attenuated inflammatory responses and HO in vivo. Furthermore, elevated SIRT1 and decreased acetylated NFκB p65 expression were responsible for the mechanism of quercetin, and the beneficial effects of quercetin were reversed by the SIRT1 antagonist EX527 and mimicked by the SIRT agonist SRT1720. The findings in this study suggest that targeting monocyte/macrophage and mast cell activities may represent an attractive approach for therapeutic intervention of HO and that quercetin may serve as a promising therapeutic candidate for the treatment of trauma-induced HO by modulating SIRT1/NFκB signaling.
Collapse
Affiliation(s)
- Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Cui
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunwei He
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Zhao L, Wang H, Du X. The therapeutic use of quercetin in ophthalmology: recent applications. Biomed Pharmacother 2021; 137:111371. [PMID: 33561647 DOI: 10.1016/j.biopha.2021.111371] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Quercetin is a natural flavonol antioxidant found in various plant sources and food samples. It is well known for its notable curative effects on the treatment of ophthalmic diseases due to various biological activities, such as antioxidant, anti-inflammatory, and anti-fibrosis activities. This review will discuss the latest developments in therapeutic quercetin for the treatment of keratoconus, Graves' orbitopathy, ocular surface, cataracts, glaucoma, retinoblastoma, and other retinal diseases.
Collapse
Affiliation(s)
- Lianghui Zhao
- Weifang Medical University, Weifang, Shandong 261021, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China
| | - Hongwei Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| | - Xianli Du
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, Shandong 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
39
|
Sun Y, Yang Y, Zhao Y, Li X, Zhang Y, Liu Z. The role of the tyrosine kinase Lyn in allergy and cancer. Mol Immunol 2021; 131:121-126. [PMID: 33419562 DOI: 10.1016/j.molimm.2020.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
With worsening air pollution brought by global social development, the prevalence of allergic diseases has increased dramatically in the past few decades. The novel Lck/yes-related protein tyrosine kinase (Lyn) belongs to the Src kinase family (SFK) and plays a pivotal role in the pathogenesis of inflammation, tumor, and allergy. This signaling molecule is vital in the IgE/FcεRI signaling pathway that regulates allergy. The Lyn-FcεRIβ interaction is essential for mast cell activation. The signaling pathway of Lyn has become the focus of immune, inflammatory, tumor, and allergy research. This molecule has positive and negative regulatory effects, which have attracted researchers' attention. This paper reviews the basic characteristics of Lyn and its regulatory mechanism and role in tumor and other diseases, specifically in allergies.
Collapse
Affiliation(s)
- Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
40
|
Loaiza-Cano V, Monsalve-Escudero LM, Filho CDSMB, Martinez-Gutierrez M, de Sousa DP. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020; 11:biom11010011. [PMID: 33374457 PMCID: PMC7823413 DOI: 10.3390/biom11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | | | - Marlen Martinez-Gutierrez
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP 58051-970 João Pessoa, PB, Brazil;
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| |
Collapse
|
41
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Wang Y, Tao B, Wan Y, Sun Y, Wang L, Sun J, Li C. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases. Biomed Pharmacother 2020; 128:110372. [PMID: 32521458 DOI: 10.1016/j.biopha.2020.110372] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
The heavy burden of oral diseases such as oral cancers, dental caries, periodontitis, etc. and their consequence on the patient's quality of life demonstrated an urgent demand for developing effective therapeutics. Quercetin as a natural derived flavonoid, could be utilized in the therapeutic formulation of various diseases such as diabetes, breast cancer and asthma, owing to its prominent pharmacological values. In the last decade, the applications of quercetin as a natural compound in oral treatment have attracted increasing interest due to its multifunction including antioxidant, antibacterial, anti-inflammatory and antineoplastic activities. Besides, considering the low bioavailability of quercetin, great efforts have been made in its drug delivery systems to address the problem of limited application. Therefore, this review summarized the cutting-edge researches on versatile effects and enhanced bioavailability of quercetin resulting from innovative drug delivery systems, particularly focused on its potential against oral diseases. The application of quercetin would provide novel and promising therapeutic approach for clinical treatment, promoting the development of global dental public health.
Collapse
Affiliation(s)
- Yu Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China
| | - Baoxin Tao
- Department of Oral Implantology, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wan
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China.
| | - Chunyan Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
43
|
Yang L, Zeng Y, Wang J, Zhang Y, Hou Y, Qin Q, Ma W, Wang N. Discovery and analysis the anti-pseudo-allergic components from Perilla frutescens leaves by overexpressed MRGPRX2 cell membrane chromatography coupled with HPLC-ESI-IT-TOF system. J Pharm Pharmacol 2020; 72:852-862. [DOI: 10.1111/jphp.13246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/09/2020] [Indexed: 12/28/2022]
Abstract
Abstract
Objectives
Screen and identify the anti-pseudo-allergic activity components of Perilla frutescens leaves that interacted with MRGPRX2 (a new reported pseudo-allergic reaction-related receptor).
Methods
An overexpressed MRGPRX2 cell membrane chromatography (CMC) coupled with HPLC-ESI-IT-TOF system has been established to screen and identify the effective components from P. frutescens leaves. A frontal analysis method was performed to investigate the binding affinity between ligands and MRGPRX2. Their activity of relieving pseudo-allergic reaction was evaluated in vitro by histamine release assay, β-hexosaminidase release assay and intracellular Ca2+ mobilization assay.
Key findings
Extract of P. frutescens leaves was proved to be effective in anti-pseudo-allergic reaction by inhibiting MRGPRX2. Apigenin (API) and rosmarinic acid (ROS) were confirmed to be the potential anti-allergy compounds that could bind with MRGPRX2. The binding affinity (KD) of ROS and API with MRGPRX2 was (8.79 ± 0.13) × 10−8 m and (6.54 ± 1.69) × 10−8 m, respectively. The IC50 of API inhibiting laboratory of allergic disease 2 cells degranulation was also determined to be (51.96 ± 0.18) μm.
Conclusions
A MRGPRX2/CMC coupled with HPLC-ESI-IT-TOF system was successfully established and applied to discover the effective components from P. frutescens leaves.
Collapse
Affiliation(s)
- Liu Yang
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yingnan Zeng
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jue Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yongjing Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yajing Hou
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Weina Ma
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Ho TY, Lo HY, Liu IC, Lin KA, Liao YF, Lo YC, Hsiang CY. The protective effect of quercetin on retinal inflammation in mice: the involvement of tumor necrosis factor/nuclear factor-κB signaling pathways. Food Funct 2020; 11:8150-8160. [DOI: 10.1039/d0fo01324b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oral administration of quercetin ameliorated LPS-induced retinal inflammation in mice by down-regulating TNF, cytokine, and NF-κB pathways.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
- Department of Health and Nutrition Biotechnology
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Ken-An Lin
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Yi-Fang Liao
- Graduate Institute of Biomedical Sciences
- China Medical University
- Taichung 40402
- Taiwan
| | - Yuan-Chun Lo
- School of Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology
- China Medical University
- Taichung 40402
- Taiwan
| |
Collapse
|