1
|
Sun H, Qiu X, Li X, Wang H. Eco-friendly, pH-sensitive curcumin-loaded sodium alginate/hydroxyapatite/quaternary ammonium chitosan microspheres with enhanced antibacterial and antioxidant activities for fruit preservation. Int J Biol Macromol 2024; 279:135297. [PMID: 39233149 DOI: 10.1016/j.ijbiomac.2024.135297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres. The loading experiments showed that the efficiency of the microspheres was significantly increased by 49.47 % and 55.10 %, respectively, when HA and HACC were incorporated into the SA network. The release test results suggested that the release rate of SA/HA/HACC microspheres loading CUR (SA/HA/HACC@CUR) increased as the pH decreased, demonstrating notable pH-responsive release characteristics. DPPH free radical scavenging experiments demonstrated that the SA/HA/HACC@CUR had excellent and long-lasting antioxidant capacity. The antibacterial experiments revealed that the SA/HA/HACC@CUR had excellent antibacterial properties, with inhibition rates of 88.73 % and 92.52 % against E. coli and S. aureus, respectively. Making coatings out of microspheres could effectively slow down the rotting and deterioration of cherry tomatoes during storage, suggesting that microspheres with intelligent responses have a broad application prospect in fruit preservation.
Collapse
Affiliation(s)
- Haonan Sun
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaolin Qiu
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyi Li
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanyu Wang
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Upoma MA, He Z, Tran H, Sivells T, Cyran JD, Pack MY. Effects of Dye Addition on the Rheological Properties of Aqueous Polymer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19377-19387. [PMID: 39226404 DOI: 10.1021/acs.langmuir.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In many commercial applications, polymer-dye interactions are frequently encountered from food to wastewater treatment, and while shear rheology has been well characterized, the extensional properties are not well known. The extensional viscosity ηE and relaxation time λE are the extensional rheological parameters that provide valuable insights into how aqueous polymers respond during deformation, and this study investigated the effect of dyes on the extensional rheology of three different aqueous polymer solutions (e.g., anionic, cationic, and neutral) paired with two different dye salts (e.g., anionic and cationic) using drop pinch-off experiments. We have found that the influence of dyes on the pinch-off dynamics is complex but generally leads to a decrease in, for example, the apparent extensional relaxation time. We have utilized the dripping-onto-substrate method to probe the uniaxial deformation of widely used polymers such as xanthan gum (XG), poly(diallyldimethylammonium chloride) (PDADMAC), and poly(ethylene oxide) (PEO) as the anionic, cationic, and neutral polymers, respectively, paired with either fluorescein (Fl) or methylene blue (MB) as the anionic and cationic dyes, respectively. Polymer-dye pairs with opposite charges (e.g., XG-MB and PDADMAC-Fl) displayed a pronounced decrease in pinch-off times, but even PEO, which is a neutral polymer, resulted in decreased pinch-off times, which was restored by the addition of NaCl. The pinch-off times for the Boger fluid (mixture of poly(ethylene glycol) and PEO), however, were surprisingly uninfluenced by dyes. These results showed that not only did the small addition of dyes strongly decrease the polymer relaxation times, but the relative importance of the dye salts on the polymer pinch-off dynamics was also different from that of pure salts such as NaCl.
Collapse
Affiliation(s)
- Marufa Akter Upoma
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| | - Ziwen He
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| | - Huy Tran
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| | - Tiara Sivells
- Department of Chemistry, Boise State University, Boise 83725, Idaho, United States
| | - Jenée D Cyran
- Department of Chemistry, Boise State University, Boise 83725, Idaho, United States
| | - Min Young Pack
- Department of Mechanical Engineering, Baylor University, Waco 76798, Texas, United States
| |
Collapse
|
3
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
4
|
Chiu I, Yang T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2300065. [PMID: 38948319 PMCID: PMC11210745 DOI: 10.1002/ansa.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 07/02/2024]
Abstract
Increasing concerns about global food safety and security demands innovative solutions, particularly in food packaging technologies. This review paper investigates the advanced integration of natural colourimetric sensors with biopolymer-based packaging materials, with a focus on developments over the past 5 years. These sensors change colour in response to environmental stimuli such as oxygen, temperature, pH and relative humidity, intuitively indicating food freshness and safety. The paper emphasizes the recent advancements in using natural colourants, such as alizarin, anthocyanins, betacyanins, chlorophyll, curcumin and shikonin. When combined with either natural or synthetic biopolymers, these colourants contribute to a sustainable and eco-friendly approach to food packaging. Such technological advances could notably decrease the incidence of foodborne illnesses by signaling potential spoilage or contamination, while also addressing food wastage by providing clear indications of edibility. Although challenges remain in sensor longevity and widespread adoption, the prospects for biopolymer-based food packaging with embedded natural colourimetric sensors are promising.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food SystemsThe University of British ColumbiaVancouverCanada
| |
Collapse
|
5
|
Yli-Öyrä J, Juvonen RO, Lehtonen M, Herrala M, Finel M, Räisänen R, Rysä J. Anthraquinone biocolourant dermocybin is metabolized whereas dermorubin is not in in vitro liver fractions and recombinant metabolic enzymes. Basic Clin Pharmacol Toxicol 2024; 134:846-857. [PMID: 38664998 DOI: 10.1111/bcpt.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Fungal anthraquinones dermocybin and dermorubin are attractive alternatives for synthetic dyes but their metabolism is largely unknown. We conducted a qualitative in vitro study to identify their metabolism using human liver microsomes and cytosol, as well as recombinant human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes. Additionally, liver microsomal and cytosolic fractions from rat, mouse and pig were used. Following incubations of the biocolourants with the enzymes in the presence of nicotinamide adenine dinucleotide phosphate, UDP-glucuronic acid, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or S-adenosyl methionine (SAM) to enable CYP oxidation, glucuronidation, sulfonation or methylation, we observed several oxidation and conjugation metabolites for dermocybin but none for dermorubin. Human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A7 catalysed dermocybin oxidation. The formation of dermocybin glucuronides was catalysed by human UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10 and 2B15. Human SULT1B1, 1C2 and 2A1 sulfonated dermocybin. Dermocybin oxidation was faster than conjugation in human liver microsomes. Species differences were seen in dermocybin glucuronidation between human, rat, mouse and pig. In conclusion, many CYP and conjugation enzymes metabolized dermocybin, whereas dermorubin was not metabolized in human liver fractions in vitro. The results indicate that dermocybin would be metabolized in humans in vivo.
Collapse
Affiliation(s)
- Johanna Yli-Öyrä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Risto O Juvonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Moshe Finel
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Yli-Öyrä J, Herrala M, Kovakoski H, Huuskonen E, Toukola P, Räisänen R, Rysä J. In Vitro Toxicity Assessment of Cortinarius sanguineus Anthraquinone Aglycone Extract. J Fungi (Basel) 2024; 10:369. [PMID: 38921356 PMCID: PMC11204901 DOI: 10.3390/jof10060369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Biocolourants could be a sustainable option for dyes that require fossil-based chemicals in their synthesis. We studied the in vitro toxicity of anthraquinone aglycone extract obtained from Cortinarius sanguineus fungus and compared it to the toxicity of its two main components, emodin and previously studied dermocybin. Cell viability, cytotoxicity, and oxidative stress responses in HepG2 liver and THP-1 immune cell lines were studied along with skin sensitisation. In addition, genotoxicity was studied with comet assay in HepG2 cells. Cellular viability was determined by MTT, propidium iodide, and lactate dehydrogenase assays, which showed that the highest doses of both the aglycone extract and emodin affected the viability. However, the effect did not occur in all of the used assays. Notably, after both exposures, a dose-dependent increase in oxidative stress factors was observed in both cell lines as measured by MitoSOX and dihydroethidium assays. C. sanguineus extract was not genotoxic in the comet assay. Importantly, both emodin and the extract activated the skin sensitisation pathway in the KeratinoSens assay, suggesting that they can induce allergy in humans. As emodin has shown cytotoxic and skin-sensitising effects, it is possible that the adverse effects caused by the extract are also mediated by it since it is the main component present in the fungus.
Collapse
Affiliation(s)
- Johanna Yli-Öyrä
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (J.Y.-Ö.); (M.H.); (H.K.); (E.H.)
| | - Mikko Herrala
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (J.Y.-Ö.); (M.H.); (H.K.); (E.H.)
| | - Harri Kovakoski
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (J.Y.-Ö.); (M.H.); (H.K.); (E.H.)
| | - Eevi Huuskonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (J.Y.-Ö.); (M.H.); (H.K.); (E.H.)
| | - Peppi Toukola
- Craft Studies, University of Helsinki, 00014 Helsinki, Finland; (P.T.); (R.R.)
| | - Riikka Räisänen
- Craft Studies, University of Helsinki, 00014 Helsinki, Finland; (P.T.); (R.R.)
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland; (J.Y.-Ö.); (M.H.); (H.K.); (E.H.)
| |
Collapse
|
7
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
8
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
9
|
de Oliveira Filho JG, Bertolo MRV, Fernandes SS, Lemes AC, da Cruz Silva G, Junior SB, de Azeredo HMC, Mattoso LHC, Egea MB. Intelligent and active biodegradable biopolymeric films containing carotenoids. Food Chem 2024; 434:137454. [PMID: 37716153 DOI: 10.1016/j.foodchem.2023.137454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There is growing interest in the use of natural bioactive compounds for the development of new bio-based materials for intelligent and active food packaging applications. Several beneficial effects have been associated with the antioxidant and antimicrobial potentials of carotenoid compounds. In addition, carotenoids are sensitive to pH changes and oxidation reactions, which make them useful bioindicators of food deterioration. This review summarizes the current research on the application of carotenoids as novel intelligent and active biodegradable food packaging materials. Carotenoids recovered from food processing by-products can be used in the development of active food packaging materials due to their antioxidant properties. They help maintain the stability of lipid-rich foods, such as vegetable oils. Additionally, when incorporated into films, carotenoids can monitor food oxidation, providing intelligent functionalities.
Collapse
Affiliation(s)
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-carlense, 400, CP-780, 13560-970 São Carlos, São Paulo, Brazil.
| | | | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
10
|
Wu Y, Gao Y, Li C. Preparation and characterization of smart indicator films based on gellan gum/modified black rice anthocyanin/curcumin for improving the stability of natural anthocyanins. Int J Biol Macromol 2023; 253:127436. [PMID: 37839606 DOI: 10.1016/j.ijbiomac.2023.127436] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
In order to improve the stability of natural anthocyanins in intelligent packaging materials, this work first modified black rice anthocyanins (BRA) by acylation with acetic acid, then modified the acylated BRA by co-coloring with different ratios of curcumin (CUR), and finally added the mixed indicator to gellan gum (GG) to develop intelligent packaging films with good stability. The UV spectroscopy results showed that acetic acid had successfully modified the BRA, while the thermal, photostability and pH stability of the modified black rice anthocyanin (MBRA) were significantly enhanced. The indicators of BRA, MBRA and MBRA mixed with CUR showed excellent pH sensitivity in different buffer solutions. The SEM, FT-IR and XRD results indicated apparent crystalline aggregates on the surface of the films added with a high concentration of CUR. Compared with GG-BRA film, GG-MBRA film improved all properties except for antioxidant performance. Notably, the GG-MBRA/CUR series composite films exhibited significant improvements over the GG-BRA and GG-MBRA films in terms of optical characteristics, mechanical properties, water vapor barrier, oxidation resistance, and color stability; meanwhile, all films exhibited excellent pH sensitivity. Considering all the properties of the films, GG-MBRA/CUR3 film has tremendous potential as a smart indicator film for improving freshness accuracy.
Collapse
Affiliation(s)
- Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Gao
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
11
|
R G, M PE, A RK, S S, Krishna KR. Natural colour extraction from horticultural crops, advancements, and applications-a review. Nat Prod Res 2023:1-19. [PMID: 37977854 DOI: 10.1080/14786419.2023.2280796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
The scope for natural colours is increasing because of the awareness of allergic, toxic, and hazardous reactions associated with synthetic dyes. Natural colours are extracted from sources that are naturally available, such as flora, fauna, and minerals. Nature sourced us multiple possibilities of colours with varied shades and hues that are subtle and harmonious when combined. Reasons like the instability of natural colours during industrial processing, seasonal availability of raw materials, fading of colour over time, cost of the benefit, and struggles in attaining sustainability have reduced commercialisation success as synthetic colours. Some plants that yield natural colours are also included in crop rotation practice. Natural dye extraction is a source of employment for the countrified subdivisions of poor developing countries. Indigenous technologies on natural colour extraction are available and have been practiced over the years; due to a lack of documentation and information on colour-yielding plants or products from horticultural crops, and their extraction methods, the use of natural colours is diminishing day by day. Even in recent years, emerging techniques have been adopted in research and development, and the information has not been brought together for the use of industries and allied sectors. Several modern approaches, such as Ultrasonication, microwave, enzymatic, supercritical, pressurised liquid extraction, etc., have proven to give better results in extracting natural colours. Thereby, having instantaneous information will help to go green, be eco-friendly, and effectively utilise all the resources without compromising industrial benefits. Reviewing the availability of natural colours from horticultural crops, classifications, recent trends in their extraction process, and applications in various fields will help achieve the above.
Collapse
Affiliation(s)
- Gokiladevi R
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - P Ellampirai M
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ramesh Kumar A
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Srivignesh S
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - K Rama Krishna
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
12
|
Siddiqui SA, Khan S, Mehdizadeh M, Bahmid NA, Adli DN, Walker TR, Perestrelo R, Câmara JS. Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon 2023; 9:e21196. [PMID: 37954257 PMCID: PMC10632435 DOI: 10.1016/j.heliyon.2023.e21196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Designing and manufacturing functional bioactive ingredients and pharmaceuticals have grown worldwide. Consumers demand for safe ingredients and concerns over harmful synthetic additives have prompted food manufacturers to seek safer and sustainable alternative solutions. In recent years the preference by consumers to natural bioactive agents over synthetic compounds increased exponentially, and consequently, naturally derived phytochemicals and bioactive compounds, with antimicrobial and antioxidant properties, becoming essential in food packaging field. In response to societal needs, packaging needs to be developed based on sustainable manufacturing practices, marketing strategies, consumer behaviour, environmental concerns, and the emergence of new technologies, particularly bio- and nanotechnology. This critical systematic review assessed the role of antioxidant and antimicrobial compounds from natural resources in food packaging and consumer behaviour patterns in relation to phytochemical and biologically active substances used in the development of food packaging. The use of phytochemicals and bioactive compounds inside packaging materials used in food industry could generate unpleasant odours derived from the diffusion of the most volatile compounds from the packaging material to the food and food environment. These consumer concerns must be addressed to understand minimum concentrations that will not affect consumer sensory and aroma negative perceptions. The research articles were carefully chosen and selected by following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Iran
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
- Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene, 90311, Indonesia
| | - Danung Nur Adli
- Faculty of Animal Science, University of Brawijaya, Malang, East Java, 65145, Indonesia
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, B3H, 4R2, Canada
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
13
|
Nansu W, Ross S, Waisarikit A, Ross GM, Charoensit P, Suphrom N, Mahasaranon S. Exploring the Potential of Roselle Calyx and Sappan Heartwood Extracts as Natural Colorants in Poly(butylene Succinate) for Biodegradable Packaging Films. Polymers (Basel) 2023; 15:4193. [PMID: 37896436 PMCID: PMC10610882 DOI: 10.3390/polym15204193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, there has been a growing concern among consumers regarding the safety of packaging products, particularly due to the presence of potentially harmful substances like synthetic pigments and inorganic dyes. These substances, which are often used to attract consumer attention, can migrate and contaminate products over extended shelf storage periods. To address this issue, the focus of this research was the development of a biodegradable packaging film using poly(butylene succinate) (PBS) incorporated with natural colorants extracted from roselle (RS) and sappan heartwood (SP). RS and SP serve as non-toxic and alternative pigments when compared to synthetic colorants. The biodegradable packaging films were prepared using blown film extrusion, encompassing different weight percentages of RS and SP (0.1%, 0.2%, and 0.3%). The films exhibited distinct colors, with RS films appearing pink to purple and SP films exhibiting an orange hue. The water vapor transmission rate slightly decreased with an increasing content of RS and SP extracts, indicating improved barrier properties. Additionally, the films showed reduced light transmittance, as evidenced by the UV-Vis light barrier results. The degree of crystallinity in the films was enhanced, as confirmed by X-ray diffraction and differential scanning calorimetry techniques. Regarding mechanical properties, the PBS/RS and PBS/SP films exhibited slight increases in tensile strength and elongation compared to neat PBS films. Moreover, the blended films demonstrated higher stability after undergoing an aging test, further highlighting their potential for use in biodegradable packaging applications. The key advantages of these films lie in their non-toxicity, biodegradability, and overall environmental friendliness.
Collapse
Affiliation(s)
- Wordpools Nansu
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Amonrut Waisarikit
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Gareth M. Ross
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Pensri Charoensit
- Faculty of Pharmaceutical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science and Centre of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand; (W.N.); (S.R.); (A.W.); (G.M.R.); (N.S.)
| |
Collapse
|
14
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Echegaray N, Guzel N, Kumar M, Guzel M, Hassoun A, Lorenzo JM. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chem 2023; 404:134453. [PMID: 36252374 DOI: 10.1016/j.foodchem.2022.134453] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023]
Abstract
Colorants are widely employed in the food industry as an essential ingredient in many products since color is one of the most valued attributes by consumers. Furthermore, the utilization of colorants is currently being extended to the food packaging technologies. The objective of this review was to compile recent information about the main families of natural coloring compounds, and to describe their real implications in food coloring. In addition, their technological use in different food systems (namely, bakery products, beverages, meat and meat products, and dairy products) and their utilization in intelligent packaging to monitor the freshness of foodstuffs with the aim of extending food shelf life and improving food properties was discussed. The potential of using natural colorant in different food to improve their color has been demonstrated, although color stability is still a challenging task. More interestingly, the application of intelligent colorimetric indicators to exhibit color changes with variations in pH can enable real-time monitoring of food quality.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Nihal Guzel
- Department of Food Engineering, Hitit University, Corum, Turkey
| | - Manoj Kumar
- Chemicaland Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Corum, Turkey; Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), 62000 Arras, France; Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
16
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
17
|
Chen K, Li J, Li L, Wang Y, Qin Y, Chen H. A pH indicator film based on sodium alginate/gelatin and plum peel extract for monitoring the freshness of chicken. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Fernandez CM, Alves J, Gaspar PD, Lima TM, Silva PD. Innovative processes in smart packaging. A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:986-1003. [PMID: 35279845 DOI: 10.1002/jsfa.11863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/13/2022] [Indexed: 05/15/2023]
Abstract
Smart packaging provides one possible solution that could reduce greenhouse gas emissions. In comparison with traditional packaging, which aims to extend the product's useful life and to facilitate transport and marketing, smart packaging allows increased efficiency, for example by ensuring authenticity and traceability from the product's origin, preventing fraud and theft, and improving security. Consequently, it may help to reduce pollution, food losses, and waste associated with the food supply chain. However, some questions must be answered to fully understand the advantages and limitations of its use. What are the most suitable smart packaging technologies for use in agro-industrial subsectors such as meat, dairy, fruits, and vegetables, bakery, and pastry? What are the opportunities from a perspective of life extension, process optimization, traceability, product quality, and safety? What are the future challenges? An up-to-date, systematic review was conducted of literature relevant to the application of indicator technologies, sensors, and data carriers in smart packaging, to answer these questions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos M Fernandez
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro Dinis Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| |
Collapse
|
19
|
A brief review on natural dyes, pigments: Recent advances and future perspectives. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Zeng F, Ye Y, Liu J, Fei P. Intelligent pH indicator composite film based on pectin/chitosan incorporated with black rice anthocyanins for meat freshness monitoring. Food Chem X 2022; 17:100531. [PMID: 36845515 PMCID: PMC9943846 DOI: 10.1016/j.fochx.2022.100531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
With the improvement of consumer awareness of food safety and the increasing concern about plastic pollution, the development of novel intelligent packaging film is imminent. This project aims to develop an environmentally friendly pH-sensitive intelligent food packaging film for meat freshness monitoring. In this study, anthocyanin-rich extract from black rice (AEBR) was added to composite film formed by the co-polymerisation of pectin and chitosan. AEBR showed strong antioxidant activity, and different colour responses to different conditions. The mechanical properties of the composite film remarkably improved when AEBR was incorporated into. Besides, the introduction of anthocyanins enables the colour of composite film to change from red to blue with the degree of meat spoilage increased which shows the indicative effect of composite films on meat putrification. Therefore, the AEBR-loaded pectin/chitosan film could be used as an indicator to monitor meat freshness in real-time.
Collapse
Affiliation(s)
- Fansen Zeng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,College of Food Science and Technology, Nanchang University, Nanchang 330000, PR China
| | - Yanqi Ye
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350000, PR China
| | - Jingna Liu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,Corresponding authors.
| | - Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China,Corresponding authors.
| |
Collapse
|
21
|
Herrala M, Yli-Öyrä J, de Albuquerque AF, de Farias NO, Morales DA, Räisänen R, Freeman HS, Umbuzeiro GA, Rysä J. Waterless Dyeing and In Vitro Toxicological Properties of Biocolorants from Cortinarius sanguineus. J Fungi (Basel) 2022; 8:1129. [PMID: 36354896 PMCID: PMC9694584 DOI: 10.3390/jof8111129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 09/25/2023] Open
Abstract
As a part of an ongoing interest in identifying environmentally friendly alternatives to synthetic dyes and in using liquid CO2 as a waterless medium for applying the resulting colorants to textiles, our attention turned to yellow-to-red biocolorants produced by Cortinarius sanguineus fungus. The three principal target anthraquinone colorants (emodin, dermocybin, and dermorubin) were isolated from the fungal bodies using a liquid-liquid separation method and characterized using 700 MHz NMR and high-resolution mass spectral analyses. Following structure confirmations, the three colorants were examined for dyeing synthetic polyester (PET) textile fibers in supercritical CO2. We found that all three biocolorants were suitable for dyeing PET fibers using this technology, and our attention then turned to determining their toxicological properties. As emodin has shown mutagenic potential in previous studies, we concentrated our present toxicity studies on dermocybin and dermorubin. Both colorants were non-mutagenic, presented low cellular toxicity, and did not induce skin sensitization. Taken together, our results indicate that dermocybin and dermorubin possess the technical and toxicological properties needed for consideration as synthetic dye alternatives under conditions that are free of wastewater production.
Collapse
Affiliation(s)
- Mikko Herrala
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Johanna Yli-Öyrä
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | | | | | | | - Riikka Räisänen
- Craft Studies, University of Helsinki, 00014 Helsinki, Finland
| | - Harold S. Freeman
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | | | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
22
|
Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Teymouri Z, Shekarchizadeh H. A colorimetric indicator based on copper nanoparticles for volatile sulfur compounds to monitor fish spoilage in intelligent packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|
25
|
Romruen O, Kaewprachu P, Karbowiak T, Rawdkuen S. Development of Intelligent Gelatin Films Incorporated with Sappan ( Caesalpinia sappan L.) Heartwood Extract. Polymers (Basel) 2022; 14:2487. [PMID: 35746061 PMCID: PMC9228210 DOI: 10.3390/polym14122487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.25, 0.50, 0.75, and 1.00%, w/v). The thickness of the developed films ranged from 43 to 63 μm. The lightness and transparency of the films decreased with the increasing concentration of SE (p < 0.05). All concentrations of gelatin films incorporated with SE exhibited great pH sensitivity, as indicated by changes in film color at different pH levels (pH 1−12). Significant decreases in tensile strength were observed at 1.00% SE film (p < 0.05). The addition of SE reduced gelatin films’ solubility and water vapor permeability (p < 0.05). The chemical and physical interactions between gelatin and SE affected the absorption peaks in FTIR spectra. SE was affected by increased total phenolic content (TPC) and antioxidant activity of the gelatin film, and the 1.00% SE film showed the highest TPC (15.60 mg GAE/g db.) and antioxidant activity (DPPH: 782.71 μM Trolox/g db. and FRAP: 329.84 mM/g db.). The gelatin films combined with SE could inhibit S. aureus and E. coli, while the inhibition zone was not observed for E. coli; it only affected the film surface area. The result suggested that gelatin films incorporated with SE can be used as an intelligent film for pH indicators and prolong the shelf life of food due to their antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Orapan Romruen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Pimonpan Kaewprachu
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand;
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thomas Karbowiak
- UMR PAM-Food and Wine Science & Technology, Agrosup Dijon, Université de Bourgogne Franche-Comté, Esplanade Erasme, 21000 Dijon, France;
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
26
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
27
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Zheng L, Liu L, Yu J, Shao P. Novel trends and applications of natural pH-responsive indicator film in food packaging for improved quality monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Gupta P, Toksha B, Rahaman M. A Review on Biodegradable Packaging Films from Vegetative and Food Waste. CHEM REC 2022; 22:e202100326. [PMID: 35253984 DOI: 10.1002/tcr.202100326] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/19/2022] [Indexed: 01/11/2023]
Abstract
Plastics around the globe have been a matter of grave concern due to the unavoidable habits of human mankind. Taking waste statistics in India for the year 2019-20 into account, the data of 60 major cities show that the generation of plastic waste stands tall at around 26,000 tonnes/day, of which only about 60 % is recycled. A majority of the non-recycled plastic waste is petrochemical-based packaging materials that are non-biodegradable in nature. Vegetative/food waste is another global issue, evidenced by vastly populated countries such as China and India accounting for 91 and 69 tonnes of food wastage, respectively in 2019. The mitigation of plastic packaging issues has led to key scientific developments, one of which is biodegradable materials. However, there is a way that these two waste-related issues can be fronted as the analogy of "taking two shots with the same arrow". The presence of various bio-compounds such as proteins, cellulose, starch, lipids, and waxes, etc., in food and vegetative waste, creates an opportunity for the development of biodegradable packaging films. Although these flexible packaging films have limitations in terms of mechanical, permeation, and moisture absorption characteristics, they can be fine-tuned in order to convert the biobased raw material into a realizable packaging product. These strategies could work in replacing petrochemical-based non-biodegradable packaging plastics which are used in enormous quantities for various household and commercial packaging applications to combat the ever-increasing pollution in highly populated countries. This paper presents a systematic review based on modern scientific tools of the literature available with a major emphasis on the past decade and aims to serve as a standard resource for the development of biodegradable packaging films from food/vegetative waste.
Collapse
Affiliation(s)
- Prashant Gupta
- MIT - Centre for Advanced Materials Research and Technology, Department of Plastic and Polymer Engineering, Maharashtra Institute of Technology, Aurangabad, 431010
| | - Bhagwan Toksha
- MIT - Centre for Advanced Materials Research and Technology, Department of Electronics and Telecommunication Engineering, Maharashtra Institute of Technology, Aurangabad, 431010
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Kaewnu K, Samoson K, Thiangchanya A, Phonchai A, Limbut W. A novel colorimetric indicator for ethanol detection in preserved baby mangoes. Food Chem 2022; 369:130769. [PMID: 34461509 DOI: 10.1016/j.foodchem.2021.130769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
A colorimetric indicator cube for use in smart packaging was designed and fabricated to detect ethanol produced by microbial fermentation in preserved baby mangoes. The presence and level of ethanol was indicated by color variations of the indicator cube, which consists of porous melamine foam (MF) that entraps an indicator solution of potassium dichromate and sulfuric acid. Within the packaging, the cube sits behind a gas-permeable membrane. The morphological structure of MF was studied by digital microscope and X-ray fluorescence analysis. In the optimal condition, the indicator cube exhibited distinct color changes from yellow to brown, green and blue over an ethanol concentration range from 0.25% to 5.0%. Color changes were clearly visible to the naked eye. The repeatability of the ethanol indicator cube was good and storage stability was maintained for up to 19 and 74 days at room and refrigeration temperatures, respectively. The smart packaging was applied to detect ethanol in preserved baby mangoes at different storage times.
Collapse
Affiliation(s)
- Krittapas Kaewnu
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kritsada Samoson
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Adul Thiangchanya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Forensic Innovation Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
32
|
Mazur KE, Bazan P, Liber-Kneć A, Stępień J, Puckowski A, Mirowski A, Kuciel S. Analysis of the Effect of Photo and Hydrodegradation on the Surface Morphology and Mechanical Properties of Composites Based on PLA and PHI Modified with Natural Particles. MATERIALS 2022; 15:ma15030878. [PMID: 35160821 PMCID: PMC8836860 DOI: 10.3390/ma15030878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023]
Abstract
Biodegradable polymer materials are increasingly used in the packaging industry due to their good properties and low environmental impact. Therefore, the work was performed on the injection molding of the bio-based composites of polylactide (PLA) and polyhydroxyalcanates (PHI) modified with two phases: reinforcing (walnut shell flour and cellulose) and coloring (beta carotene and anthocyanin). The produced materials were subjected to wide mechanical characteristics—tensile, flexural, and fatigue tests. Additionally, the influence of photo and hydrodegradation on the change of the surface structure and mechanical properties of the composites was assessed. The addition of natural fillers contributed to the improvement of the stiffness of the tested composites. PHI composites withstood a higher number of cycles during cyclic loading, but the stress values obtained in the static tensile test were higher for PLA composites. Moreover, a clear change of color was observed after both the photo and hydrodegradation process for all tested materials; however, after the degradation processes, the filler-modified materials underwent greater discoloration. For the composites based on PHI, the type of degradation did not affect the mechanical properties. On the other hand, for PLA composites, hydrolytic degradation contributed to a higher decrease in properties—the decrease in tensile strength for unmodified PLA after photodegradation was 4%, while after hydrodegradation it was 24%.
Collapse
Affiliation(s)
- Karolina E. Mazur
- Faculty of Materials Engineering and Physics, Institute of Materials Engineering, Tadeusz Kosciuszko Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland; (K.E.M.); (P.B.)
| | - Patrycja Bazan
- Faculty of Materials Engineering and Physics, Institute of Materials Engineering, Tadeusz Kosciuszko Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland; (K.E.M.); (P.B.)
| | - Aneta Liber-Kneć
- Faculty of Mechanical Engineering, Institute of Applied Mechanics and Biomechanics, Tadeusz Kosciuszko Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland; (A.L.-K.); (J.S.)
| | - Julia Stępień
- Faculty of Mechanical Engineering, Institute of Applied Mechanics and Biomechanics, Tadeusz Kosciuszko Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland; (A.L.-K.); (J.S.)
| | - Alan Puckowski
- Bioliwer Technologies, Górki 3A, 82-500 Kwidzyn, Poland; (A.P.); (A.M.)
| | - Adrian Mirowski
- Bioliwer Technologies, Górki 3A, 82-500 Kwidzyn, Poland; (A.P.); (A.M.)
| | - Stanisław Kuciel
- Faculty of Materials Engineering and Physics, Institute of Materials Engineering, Tadeusz Kosciuszko Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland; (K.E.M.); (P.B.)
- Correspondence: ; Tel.: +48-12-628-33-338
| |
Collapse
|
33
|
Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei. Biomolecules 2021; 11:biom11121869. [PMID: 34944513 PMCID: PMC8699788 DOI: 10.3390/biom11121869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/02/2022] Open
Abstract
In the search for new biodegradable materials and greater microbiological safety and stability of perishable food products, this study aimed to develop a bioplastic antibacterial film incorporating bacteriocin for application in commercial curd cheese and monitoring of microbiological stability. Films with good handling characteristics as well as physical, barrier, and mechanical properties were obtained. Regarding the antibacterial activity, the microbial reduction was demonstrated in a food matrix, obtaining a reduction of 3 logarithmic cycles for the group of coagulase positive staphylococci and from 1100 to <3.00 MPN/g in the analysis of thermotolerant coliforms. Therefore, the film presented food barrier characteristics with the external environment and adequate migration of the antibacterial compound to the product, contributing to the reduction of contamination of a food with high initial microbial load.
Collapse
|
34
|
Masek A, Plota A, Chrzastowska J, Piotrowska M. Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials. Int J Mol Sci 2021; 22:ijms222212524. [PMID: 34830404 PMCID: PMC8618499 DOI: 10.3390/ijms222212524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
This study aimed to present the influence of bio-based and anthraquinone dyes and their combinations on the optical properties of ethylene-propylene (EPM) composites after thermo-oxidative and climatic aging. Therefore, the chosen polymer was filled with a natural, plant-origin flavonoid—quercetin, and with two commercial anthraquinone dyes (C.I. Solvent Yellow 163 and C.I. Solvent Red 207). The manufactured polymer composites were subjected to accelerated aging tests: weathering and thermo-oxidation, respectively. Examination of the materials’ properties indicated that the combination of synthetic and natural dyes can result in better resistance to oxidizing agents and higher thermal stability of ethylene-propylene products. Moreover, color change of quercetin-containing samples due to exposure to simulated atmospheric conditions could be a promising solution for use as aging indicators in intelligent packaging materials that will inform about the ongoing degradation process. Another interesting finding is that these samples exhibited good fungistatic activity against Candida albicans yeast and Aspergillus niger mold. Overall, this novel solution based on hybrid polymer composites containing natural and commercial dyes is a more environmentally friendly alternative to traditional materials used in the plastic packaging industry with better and more desirable properties.
Collapse
Affiliation(s)
- Anna Masek
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.P.); (J.C.)
- Correspondence:
| | - Angelika Plota
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.P.); (J.C.)
| | - Julia Chrzastowska
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.P.); (J.C.)
| | - Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| |
Collapse
|
35
|
Ahari H, Soufiani SP. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front Microbiol 2021; 12:657233. [PMID: 34305829 PMCID: PMC8299788 DOI: 10.3389/fmicb.2021.657233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
The demand for more healthy foods with longer shelf life has been growing. Food packaging as one of the main aspects of food industries plays a vital role in meeting this demand. Integration of nanotechnology with food packaging systems (FPSs) revealed promising promotion in foods’ shelf life by introducing novel FPSs. In this paper, common classification, functionalities, employed nanotechnologies, and the used biomaterials are discussed. According to our survey, FPSs are classified as active food packaging (AFP) and smart food packaging (SFP) systems. The functionality of both systems was manipulated by employing nanotechnologies, such as metal nanoparticles and nanoemulsions, and appropriate biomaterials like synthetic polymers and biomass-derived biomaterials. “Degradability and antibacterial” and “Indicating and scavenging” are the well-known functions for AFP and SFP, respectively. The main purpose is to make a multifunctional FPS to increase foods’ shelf life and produce environmentally friendly and smart packaging without any hazard to human life.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz P Soufiani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Preface. Food Chem Toxicol 2021; 155:112372. [PMID: 34175404 DOI: 10.1016/j.fct.2021.112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106593] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Biocomposites of Epoxidized Natural Rubber/Poly(Lactic Acid) Modified with Natural Substances: Influence of Biomolecules on the Aging Properties (Part II). Polymers (Basel) 2021; 13:polym13111677. [PMID: 34064033 PMCID: PMC8196701 DOI: 10.3390/polym13111677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study is to present the possible influence of natural substances on the aging properties of epoxidized natural rubber (ENR) and poly(lactic acid) (PLA) eco-friendly elastic blends. Therefore, the ENR/PLA blends were filled with natural pro-health substances of potentially antioxidative behavior, namely, δ-tocopherol (vitamin E), curcumin, β-carotene and quercetin. In this way, the material biodeterioration potential was maintained and the material’s lifespan was prolonged while subjected to increased temperatures or high-energy UVA irradiation (340 nm). The investigation of the samples’ properties indicated that curcumin and quercetin are the most promising natural additives that may contribute to the delay of ENR/PLA degradation under the above-mentioned conditions. The efficiency of the proposed new natural anti-aging additives was proven with static mechanical analysis, color change investigation, as well as mass loss during a certain aging. The aging coefficient, which compares the mechanical properties before and after the aging process, indicated that the ENR/PLA performance after 200 h of accelerated aging might decrease only by approximately 30% with the blend loaded with quercetin. This finding paves new opportunities for bio-based and green anti-aging systems employed in polymer technology.
Collapse
|
39
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
40
|
Roy S, Kim HJ, Rhim JW. Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. Int J Biol Macromol 2021; 183:305-315. [PMID: 33932410 DOI: 10.1016/j.ijbiomac.2021.04.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022]
Abstract
Natural colorants (anthocyanin and shikonin) were blended in different ratios (3:1 and 1:3) and used for the preparation of carboxymethyl cellulose (CMC)/agar-based functional halochromic films. The colorants were compatible with the polymer matrix and evenly spread over the polymer matrix. The addition of colorants slightly improved the mechanical strength and significantly improved the water vapor barrier properties of CMC/agar-based films without altering the thermal stability. The color indicator film exhibited excellent UV- barrier properties without substantially reducing the transparency. It also showed distinct pH-responsive color-changing properties in the pH range of 2-12, showing excellent acid and base gas sensing properties. The shikonin-added film showed potent antimicrobial activity against food-borne pathogenic bacteria, and the color indicator films exhibited intense antioxidant activities. The CMC/agar-based color indicator films with improved physical and functional properties are likely to be used in active and intelligent food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyun-Ji Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
41
|
Bio-Based Sensors for Smart Food Packaging-Current Applications and Future Trends. SENSORS 2021; 21:s21062148. [PMID: 33803914 PMCID: PMC8003241 DOI: 10.3390/s21062148] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Intelligent food packaging is emerging as a novel technology, capable of monitoring the quality and safety of food during its shelf-life time. This technology makes use of indicators and sensors that are applied in the packaging and that detect changes in physiological variations of the foodstuffs (due to microbial and chemical degradation). These indicators usually provide information, e.g., on the degree of freshness of the product packed, through a color change, which is easily identified, either by the food distributor and the consumer. However, most of the indicators that are currently used are non-renewable and non-biodegradable synthetic materials. Because there is an imperative need to improve food packaging sustainability, choice of sensors should also reflect this requirement. Therefore, this work aims to revise the latest information on bio-based sensors, based on compounds obtained from natural extracts, that can, in association with biopolymers, act as intelligent or smart food packaging. Its application into several perishable foods is summarized. It is clear that bioactive extracts, e.g., anthocyanins, obtained from a variety of sources, including by-products of the food industry, present a substantial potential to act as bio-sensors. Yet, there are still some limitations that need to be surpassed before this technology reaches a mature commercial stage.
Collapse
|
42
|
Nour HF, El Malah T, Radwan EK, Abdel Mageid RE, Khattab TA, Olson MA. Main-chain donor-acceptor polyhydrazone mediated adsorption of an anionic dye from contaminated water. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. Int J Biol Macromol 2020; 162:1780-1789. [DOI: 10.1016/j.ijbiomac.2020.08.094] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
|
44
|
Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Bhargava N, Sharanagat VS, Mor RS, Kumar K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
The Effect of Natural Additives on the Composting Properties of Aliphatic Polyesters. Polymers (Basel) 2020; 12:polym12091856. [PMID: 32824947 PMCID: PMC7564863 DOI: 10.3390/polym12091856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Compounds of plant origin are used with polymers as functional additives. However, these substances often have biological (antimicrobial) activity. The bactericidal and fungicidal properties of natural additives can affect the composting process of biodegradable polymers. The scientific novelty of the manuscript is the investigation of the effect of the addition of herbal antimicrobial functional substances on the composting process of green polymers. The aim of the study is to analyze composting processes of biodegradable polymers polylactide (PLA) and polyhydroxyalkanoate (PHA) containing β-carotene, juglone, morin, and curcumin. As part of the research, six-month composting of materials was performed. At time intervals of one month, the weight loss of samples, surface energy, colour change, mechanical properties, and carbonyl indices (based on FTIR spectroscopy) of composted materials were examined. The research results showed that the addition of selected plant substances slightly slowed down the process of polymer composting. Slower degradation of samples with plant additives was confirmed by the results of mechanical strength tests and the analysis of changes in carbonyl index (CI). The CI analysis showed that PLA and PHA containing a natural additive degrade a month later than reference samples. However, PLA and PHA polyesters with β-carotene, juglone, morin, and curcumin were still very biodegradable.
Collapse
|
47
|
Abstract
Nowadays, technological advancement is in continuous development in all areas, including food packaging, which tries to find a balance between consumer preferences, environmental safety, and issues related to food quality and control. The present paper concretely details the concepts of smart, active, and intelligent packaging and identifies commercially available examples used in the food packaging market place. Along with this purpose, several bioactive compounds are identified and described, which are compounds that can be recovered from the by-products of the food industry and can be integrated into smart food packaging supporting the “zero waste” activities. The biopolymers obtained from crustacean processing or compounds with good antioxidant or antimicrobial properties such as carotenoids extracted from agro-industrial processing are underexploited and inexpensive resources for this purpose. Along with the main agro-industrial by-products, more concrete examples of resources are presented, such as grape marc, banana peels, or mango seeds. The commercial and technological potential of smart packaging in the food industry is undeniable and most importantly, this paper highlights the possibility of integrating the by-products derived compounds to intelligent packaging elements (sensors, indicators, radio frequency identification).
Collapse
|
48
|
Mitrea L, Călinoiu LF, Martău GA, Szabo K, Teleky BE, Mureșan V, Rusu AV, Socol CT, Vodnar DC. Poly(vinyl alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products. Polymers (Basel) 2020; 12:E532. [PMID: 32131384 PMCID: PMC7182853 DOI: 10.3390/polym12030532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 01/19/2023] Open
Abstract
In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as coloring agents. The outcomes showed that β-carotene was the major carotenoid in the TP (1.605 mg β-carotene/100 DW), which imprinted the orange color to the biofilms. The flow behavior indicated that with the increase of shear rate the viscosity of biofilm solutions also increased until 50 s-1, reaching values at 37 °C of approximately 9 ± 0.5 mPa·s for PVOH, and for PVOH+TP, 14 ± 0.5 mPa·s in combination with Gly, PDO, and BDO. The weight, thickness, and density of samples increased with the addition of polyols and TP. Biofilms with TP had lower transparency values compared with control biofilms (without vegetal pigments). The presence of BDO, especially, but also of PDO and glycerol in biofilms created strong bonds within the PVOH matrix by increasing their mechanical resistance. The novelty of the present approach relies on the replacement of synthetic colorants with natural pigments derived from agro-industrial by-products, and the use of a combination of biodegradable polymers and polyols, as an integrated solution for packaging application in the bioplastic industry.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.M.); (L.-F.C.); (G.-A.M.); (K.S.); (B.-E.T.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Clu-Napoca, Romania;
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.M.); (L.-F.C.); (G.-A.M.); (K.S.); (B.-E.T.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Clu-Napoca, Romania;
| | - Gheorghe-Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.M.); (L.-F.C.); (G.-A.M.); (K.S.); (B.-E.T.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Clu-Napoca, Romania;
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.M.); (L.-F.C.); (G.-A.M.); (K.S.); (B.-E.T.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.M.); (L.-F.C.); (G.-A.M.); (K.S.); (B.-E.T.)
| | - Vlad Mureșan
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Clu-Napoca, Romania;
| | - Alexandru-Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania; (A.-V.R.); (C.-T.S.)
| | - Claudia-Terezia Socol
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania; (A.-V.R.); (C.-T.S.)
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (L.M.); (L.-F.C.); (G.-A.M.); (K.S.); (B.-E.T.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Clu-Napoca, Romania;
| |
Collapse
|