1
|
Zou Q, Zhou X, Lai J, Zhou H, Su J, Zhang Z, Zhuang X, Liu L, Yuan R, Li S, Yang S, Qu X, Feng J, Liu Y, Li Z, Huang S, Shi Z, Yan Y, Zheng Z, Ye W, Qi Q. Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment. Redox Biol 2024; 79:103460. [PMID: 39657365 DOI: 10.1016/j.redox.2024.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor in children and adolescents worldwide. Identification of novel therapeutic targets and development of targeted drugs are one of the most feasible strategies for OS treatment. Ferroptosis, a recently discovered mode of programmed cell death, has been implicated as a potential strategy for cancer therapy. Sulforaphane (SFN), the main bioactive compound derived from cruciferous vegetables, has shown potential anti-cancer effects with negligible toxicity. However, the role of ferroptosis in the effect of SFN on OS remains unknown. In the present study, we found that SFN acted as a potent ferroptosis inducer in OS, which was demonstrated by various inhibitors of cell death. The SFN-induced ferroptotic cell death was characterized by elevated ROS levels, lipid peroxidation, and GSH depletion, which was dependent on decreased levels of SLC7A11. Mechanically, SFN directly targeted p62 protein and enhanced p62/SLC7A11 protein-protein interaction, thereby promoting the lysosomal degradation of SLC7A11 and triggering ferroptosis. Notably, both subcutaneous and intratibial OS models in nude mice confirmed the ferroptosis associated anti-cancer efficacy of SFN in vivo. Hence, our findings demonstrate that SFN exerts its anti-cancer effects through inducing SLC7A11-dependent ferroptosis in OS, providing compelling evidence for the application of SFN in OS treatment.
Collapse
Affiliation(s)
- Qiuming Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianqin Lai
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Haixia Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinxuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhijing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaosong Zhuang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lili Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ruijie Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Sijia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Siyu Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xinyi Qu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yongqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zisheng Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shiting Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Shi Z, Zeng H, Zhao B, Zeng C, Zhang F, Liu Z, Kwan HY, Su T. Sulforaphane reverses the enhanced NSCLC metastasis by regulating the miR-7-5p/c-Myc/LDHA axis in the acidic tumor microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155874. [PMID: 39079314 DOI: 10.1016/j.phymed.2024.155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The presence of distant metastasis at the time of initial diagnosis is a prevalent issue in non-small cell lung cancer (NSCLC), affecting around 30-40 % of the patients. Acidic tumor microenvironment (TME) provides favorable conditions that increase the invasiveness and aggressiveness of NSCLC. The activity of the glycolytic enzyme lactate dehydrogenase (LDHA) increases intracellular lactate accumulation, which creates an acidic TME. However, it is not yet known whether LDHA is involved in enhancing the metastatic potential of NSCLC and if LDHA is a druggable therapeutic target for NSCLC. PURPOSE We aimed to investigate the molecular mechanisms underlying the enhanced NSCLC metastasis in acidic TME, and to explore whether sulforaphane (SFN), an active compound in Raphani Semen, can serve as a LDHA inhibitor to inhibit NSCLC metastasis in the acidic TME. METHODS To mimic the acidic TME, NSCLC cells were cultured in acidic medium (pH 6.6), normal medium (pH 7.4) served as control. Western blotting, bioinformatic analysis, luciferase assay and rescue experiments were used to explore the mechanism and investigate the anti-metastatic effect of SFN both in vitro and in vivo. RESULTS Acidic environment increases the expression of LDHA which in turn increases the production of lactic acid that contributes to the acidity of TME. Interestingly, elevated LDHA expression results from increased c-Myc expression, which transactivates LDHA. c-Myc expression is directly regulated by miR-7-5p. In vitro study shows that overexpression of miR-7-5p reverses the acidic pH-enhanced c-Myc and LDHA expressions and also abolishes the enhanced NSCLC cell migration. More importantly, SFN significantly inhibits NSCLC growth and metastasis by reducing lactate production via the miR-7-5p/c-Myc/LDHA axis. Besides, it also regulates the expressions of monocarboxylate transporter 1 (MCT1) and MCT4 that transport lactate across cell membrane. CONCLUSIONS The miR-7-5p/c-Myc/LDHA axis is involved in the enhanced NSCLC metastasis in the acidic TME. SFN, a novel LDHA inhibitor, reduces lactate production by targeting the miR-7-5p/c-Myc/LDHA axis, and hence inhibits NSCLC metastasis. Our findings not only delineate a novel mechanism, but also support the clinical translation of SFN as a novel therapeutic agent for treating metastatic NSCLC.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Huiyan Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Bingquan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Chen Zeng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Fan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Hiu Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China.
| | - Tao Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Liu P, Zhang B, Li Y, Yuan Q. Potential mechanisms of cancer prevention and treatment by sulforaphane, a natural small molecule compound of plant-derived. Mol Med 2024; 30:94. [PMID: 38902597 PMCID: PMC11191161 DOI: 10.1186/s10020-024-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.
Collapse
Affiliation(s)
- Pengtao Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
4
|
Tian S, Liu W, Liu B, Ye F, Xu Z, Wan Q, Li Y, Zhang X. Mechanistic study of C 5F 10O-induced lung toxicity in rats: An eco-friendly insulating gas alternative to SF 6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170271. [PMID: 38262248 DOI: 10.1016/j.scitotenv.2024.170271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The global warming and other environmental problems caused by SF6 emissions can be reduced due to the widespread use of eco-friendly insulating gas, perfluoropentanone (C5F10O). However, there is an exposure risk to populations in areas near C5F10O equipment, so it is important to clarify its biosafety and pathogenesis before large-scale application. In this paper, histopathology, transcriptomics, 4D-DIA proteomics, and LC-MS metabolomics of rats exposed to 2000 ppm and 6000 ppm C5F10O are analyzed to reveal the mechanisms of toxicity and health risks. Histopathological shows that inflammatory cell infiltration, epithelial cell hyperplasia, and alveolar atrophy accompanied by alveolar wall thickening are present in both low-dose and high-dose groups. Analysis of transcriptomic and 4D-DIA proteomic show that Cell cycle and DNA replication can be activated by both 2000 ppm and 6000 ppm C5F10O to induce cell proliferation. In addition, it also leads to the activation of pathways such as Antigen processing and presentation, Cell adhesion molecules and Complement and coagulation cascades, T cell receptor signal path, Th1 and T cell receptor signal path, Th1 and Th2 cell differentiation, complement and coagulation cascades. Finally, LC-MS metabolomics analysis confirms that the metabolic pathways associated with glycerophospholipids, arachidonic acid, and linoleic acid are disrupted and become more severe with increasing doses. The mechanism of lung toxicity caused by C5F10O is systematically expounded based on the multi-omics analysis and provided biosafety references for further promotion and application of C5F10O.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Weihao Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Benli Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Fanchao Ye
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Zhenjie Xu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qianqian Wan
- Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China; School of Electrical Engineering and Automation, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
6
|
Saeed RA, Maqsood M, Saeed RA, Muzammil HS, Khan MI, Asghar L, Nisa SU, Rabail R, Aadil RM. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit Rev Food Sci Nutr 2023; 63:11750-11783. [PMID: 35796706 DOI: 10.1080/10408398.2022.2095974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raafia Anam Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Un Nisa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Bernuzzi F, Maertens A, Saha S, Troncoso-Rey P, Ludwig T, Hiller K, Mithen RF, Korcsmaros T, Traka MH. Sulforaphane rewires central metabolism to support antioxidant response and achieve glucose homeostasis. Redox Biol 2023; 67:102878. [PMID: 37703668 PMCID: PMC10502441 DOI: 10.1016/j.redox.2023.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Cruciferous-rich diets, particularly broccoli, have been associated with reduced risk of developing cancers of various sites, cardiovascular disease and type-2 diabetes. Sulforaphane (SF), a sulfur-containing broccoli-derived metabolite, has been identified as the major bioactive compound mediating these health benefits. Sulforaphane is a potent dietary activator of the transcription factor Nuclear factor erythroid-like 2 (NRF2), the master regulator of antioxidant cell capacity responsible for inducing cytoprotective genes, but its role in glucose homeostasis remains unclear. In this study, we set to test the hypothesis that SF regulates glucose metabolism and ameliorates glucose overload and its resulting oxidative stress by inducing NRF2 in human hepatoma HepG2 cells. HepG2 cells were exposed to varying glucose concentrations: basal (5.5 mM) and high glucose (25 mM), in the presence of physiological concentrations of SF (10 μM). SF upregulated the expression of glutathione (GSH) biosynthetic genes and significantly increased levels of reduced GSH. Labelled glucose and glutamine experiments to measure metabolic fluxes identified that SF increased intracellular utilisation of glycine and glutamate by redirecting the latter away from the TCA cycle and increased the import of cysteine from the media, likely to support glutathione synthesis. Furthermore, SF altered pathways generating NADPH, the necessary cofactor for oxidoreductase reactions, namely pentose phosphate pathway and 1C-metabolism, leading to the redirection of glucose away from glycolysis and towards PPP and of methionine towards methylation substrates. Finally, transcriptomic and targeted metabolomics LC-MS analysis of NRF2-KD HepG2 cells generated using CRISPR-Cas9 genome editing revealed that the above metabolic effects are mediated through NRF2. These results suggest that the antioxidant properties of cruciferous diets are intricately connected to their metabolic benefits.
Collapse
Affiliation(s)
- Federico Bernuzzi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Andre Maertens
- Braunschweig Integrated Centre of System Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Shikha Saha
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Perla Troncoso-Rey
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Tobias Ludwig
- Braunschweig Integrated Centre of System Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of System Biology, Technical University of Braunschweig, Braunschweig, Germany
| | | | - Tamas Korcsmaros
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom; Imperial College London, London, United Kingdom; Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Maria H Traka
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
8
|
Asif Ali M, Khan N, Kaleem N, Ahmad W, Alharethi SH, Alharbi B, Alhassan HH, Al-Enazi MM, Razis AFA, Modu B, Calina D, Sharifi-Rad J. Anticancer properties of sulforaphane: current insights at the molecular level. Front Oncol 2023; 13:1168321. [PMID: 37397365 PMCID: PMC10313060 DOI: 10.3389/fonc.2023.1168321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate with multiple biomedical applications. Sulforaphane can be extracted from the plants of the genus Brassica. However, broccoli sprouts are the chief source of sulforaphane and are 20 to 50 times richer than mature broccoli as they contain 1,153 mg/100 g. SFN is a secondary metabolite that is produced as a result of the hydrolysis of glucoraphanin (a glucosinolate) by the enzyme myrosinase. This review paper aims to summarize and understand the mechanisms behind the anticancer potential of sulforaphane. The data was collected by searching PubMed/MedLine, Scopus, Web of Science, and Google Scholar. This paper concludes that sulforaphane provides cancer protection through the alteration of various epigenetic and non-epigenetic pathways. It is a potent anticancer phytochemical that is safe to consume with minimal side effects. However, there is still a need for further research regarding SFN and the development of a standard dose.
Collapse
Affiliation(s)
- Muhammad Asif Ali
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Noohela Khan
- Department of Nutrition Sciences, Rashid Latif Medical College, Lahore, Pakistan
| | - Nabeeha Kaleem
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmad
- Department of Food Science and Human Nutrition, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail, Saudi Arabia
| | - Hassan H. Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maher M. Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
9
|
Tuttis K, Machado ART, Santos PWDS, Antunes LMG. Sulforaphane Combined with Vitamin D Induces Cytotoxicity Mediated by Oxidative Stress, DNA Damage, Autophagy, and JNK/MAPK Pathway Modulation in Human Prostate Tumor Cells. Nutrients 2023; 15:2742. [PMID: 37375646 DOI: 10.3390/nu15122742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer ranks second in incidence worldwide. To date, there are no available therapies to effectively treat advanced and metastatic prostate cancer. Sulforaphane and vitamin D alone are promising anticancer agents in vitro and in vivo, but their low bioavailability has limited their effects in clinical trials. The present study examined whether sulforaphane combined with vitamin D at clinically relevant concentrations improved the cytotoxicity of the compounds alone towards DU145 and PC-3 human prostate tumor cells. To assess the anticancer activity of this combination, we analyzed cell viability (MTT assay), oxidative stress (CM-H2DCFDA), autophagy (fluorescence), DNA damage (comet assay), and protein expression (Western blot). The sulforaphane-vitamin D combination (i) decreased cell viability, induced oxidative stress, DNA damage, and autophagy, upregulated BAX, CASP8, CASP3, JNK, and NRF2 expression, and downregulated BCL2 expression in DU145 cells; and (ii) decreased cell viability, increased autophagy and oxidative stress, upregulated BAX and NRF2 expression, and downregulated JNK, CASP8, and BCL2 expression in PC-3 cells. Therefore, sulforaphane and vitamin D in combination have a potential application in prostate cancer therapy, and act to modulate the JNK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Katiuska Tuttis
- Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology, and Food Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil
| | - Patrick Wellington da Silva Santos
- Department of Clinical Analysis, Toxicology, and Food Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology, and Food Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
10
|
Linowiecka K, Slominski AT, Reiter RJ, Böhm M, Steinbrink K, Paus R, Kleszczyński K. Melatonin: A Potential Regulator of DNA Methylation. Antioxidants (Basel) 2023; 12:1155. [PMID: 37371885 PMCID: PMC10295183 DOI: 10.3390/antiox12061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| |
Collapse
|
11
|
Cao S, Hu S, Jiang P, Zhang Z, Li L, Wu Q. Effects of sulforaphane on breast cancer based on metabolome and microbiome. Food Sci Nutr 2023; 11:2277-2287. [PMID: 37181316 PMCID: PMC10171519 DOI: 10.1002/fsn3.3168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 04/03/2023] Open
Abstract
Sulforaphane (SFN) is a promising phytochemical with a wide range of antitumor activities. A comprehensive understanding of the effects of SFN on breast cancer based on the metabolome and microbiome is limited. Thus, we treated MCF-7 cell-transplanted nude mice with 50 mg/kg SFN. SFN inhibits breast cancer cell proliferation. SFN increased the levels of sulfate-related metabolites and glutathione-related metabolites and decreased tryptophan metabolites and methyl-purine metabolites in urinary metabolic profile. SFN indirectly affected the activation of aryl hydrocarbon receptor by tryptophan metabolism. The ratio of SAM to methionine was decreased by SFN while the global DNA methylation was downregulated in tumor tissue. SFN decreased the sulfate-reducing bacterium Desulfovibrio, which is related to reduced methylation capacity, and increased the genus Lactobacillus related to tryptophan metabolites with antitumor activities. In conclusion, we provide a perspective on the metabolome and microbiome to elucidate the antitumor activities of SFN.
Collapse
Affiliation(s)
- Shuyuan Cao
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Shengjie Hu
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Ping Jiang
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Zhan Zhang
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Lei Li
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Qian Wu
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
12
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
13
|
Bozic D, Živančević K, Baralić K, Miljaković EA, Djordjević AB, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Conducting bioinformatics analysis to predict sulforaphane-triggered adverse outcome pathways in healthy human cells. Biomed Pharmacother 2023; 160:114316. [PMID: 36731342 DOI: 10.1016/j.biopha.2023.114316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Sulforaphane (SFN) is a naturally occurring molecule present in plants from Brassica family. It becomes bioactive after hydrolytic reaction mediated by myrosinase or human gastrointestinal microbiota. Sulforaphane gained scientific popularity due to its antioxidant and anti-cancer properties. However, its toxicity profile and potential to cause adverse effects remain largely unidentified. Thus, this study aimed to generate SFN-triggered adverse outcome pathway (AOP) by looking at the relationship between SFN-chemical structure and its toxicity, as well as SFN-gene interactions. Quantitative structure-activity relationship (QSAR) analysis identified 2 toxophores (Derek Nexus software) that have the potential to cause chromosomal damage and skin sensitization in mammals or mutagenicity in bacteria. Data extracted from Comparative Toxicogenomics Database (CTD) linked SFN with previously proposed outcomes via gene interactions. The total of 11 and 146 genes connected SFN with chromosomal damage and skin diseases, respectively. However, network analysis (NetworkAnalyst tool) revealed that these genes function in wider networks containing 490 and 1986 nodes, respectively. The over-representation analysis (ExpressAnalyst tool) pointed out crucial biological pathways regulated by SFN-interfering genes. These pathways are uploaded to AOP-helpFinder tool which found the 2321 connections between 19 enriched pathways and SFN which were further considered as key events. Two major, interconnected AOPs were generated: first starting from disruption of biological pathways involved in cell cycle and cell proliferation leading to increased apoptosis, and the second one connecting activated immune system signaling pathways to inflammation and apoptosis. In both cases, chromosomal damage and/or skin diseases such as dermatitis or psoriasis appear as adverse outcomes.
Collapse
Affiliation(s)
- Dragica Bozic
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Center for Laser Microscopy, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
14
|
Shoaib S, Ansari MA, Ghazwani M, Hani U, Jamous YF, Alali Z, Wahab S, Ahmad W, Weir SA, Alomary MN, Yusuf N, Islam N. Prospective Epigenetic Actions of Organo-Sulfur Compounds against Cancer: Perspectives and Molecular Mechanisms. Cancers (Basel) 2023; 15:cancers15030697. [PMID: 36765652 PMCID: PMC9913804 DOI: 10.3390/cancers15030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F. Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Sydney A. Weir
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Correspondence: (M.N.A.); (N.I.)
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202001, Uttar Pradesh, India
- Correspondence: (M.N.A.); (N.I.)
| |
Collapse
|
15
|
Chaiwangyen W, Chumphukam O, Kangwan N, Pintha K, Suttajit M. Anti-aging effect of polyphenols: possibilities and challenges. PLANT BIOACTIVES AS NATURAL PANACEA AGAINST AGE-INDUCED DISEASES 2023:147-179. [DOI: 10.1016/b978-0-323-90581-7.00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Ling Y, Li J, Zhou L. Smoking-related epigenetic modifications are associated with the prognosis and chemotherapeutics of patients with bladder cancer. Int J Immunopathol Pharmacol 2023; 37:3946320231166774. [PMID: 37011378 PMCID: PMC10074629 DOI: 10.1177/03946320231166774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Epidemiologic studies have linked smoking to various malignancies, including bladder cancer, but its underlying biological functions remain elusive. Currently, we aimed to identify the smoking-related epigenetic modifications and disclose their impacts on prognosis and therapies in bladder cancer. METHODS DNA methylation, transcriptome, and clinical profiles were acquired from The Cancer Genome Atlas (TCGA) using "TCGAbiolinks" Differential expression analyses were performed with "limma" and visualized by the "pheatmap" package. Smoking-related interactions were displayed using Cytoscape. Least absolute shrinkage and selection operator (LASSO) algorithm was for generation of a smoking-related prognostic model. Kaplan-Meier analysis with log-rank test was for survival analysis, followed by a prognostic nomogram. The Gene Set Enrichment Analysis (GSEA) was used for functional analysis. The "oncoPredict" package was applied for drug sensitivity analysis. RESULTS We recruited all types of bladder cancers and found that smoking was involved in poor prognosis, with the hazard ratio (HR) of 1.600 (95%CI: 1.028-2.491). A total of 1078 smoking-related DNA methylations (526 hypermethylation and 552 hypomethylation) were identified and 9 methylation-driven genes differentially expressed in bladder cancer. Also, 506lncRNAs (448 upregulated and 58 downregulated lncRNAs) and 102 miRNAs (74 upregulated and 28 downregulated miRNAs) were determined as smoking-related ncRNAs. We then calculated the smoking-related risk score and observed that cases of high risk were predicted with poor prognosis. We constructed a prognostic nomogram to predict the 1-, 3-, and 5-year overall survival rates. Several cancer-related pathways were enriched in the high-risk group, and patients with high-risk were more sensitive to Gemcitabine, Wnt-C59, JAK1_8709, KRAS (G12C) Inhibitor-12, and LY2109761. Whereas, those with low-risk were more sensitive to Cisplatin, AZ960, and Buparlisib. CONCLUSIONS Totally, we initially identified the smoking-related epigenetic modifications in bladder cancer and constructed a corresponding prognostic model, which was also linked to disparate sensitivities to chemotherapeutics. Our findings would provide novel insights into the carcinogenesis, prognosis, and therapies in bladder cancer.
Collapse
Affiliation(s)
- Ya Ling
- 74566The first Affiliated Hospital of Soochow University, Suzhou, China
| | - Jindong Li
- 372209Taizhou People's Hospital, Taizhou, China
| | - Lijuan Zhou
- 74566The first Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Ye Y, Ma Y, Kong M, Wang Z, Sun K, Li F. Effects of Dietary Phytochemicals on DNA Damage in Cancer Cells. Nutr Cancer 2023; 75:761-775. [PMID: 36562548 DOI: 10.1080/01635581.2022.2157024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the increasing incidence of cancer worldwide, the prevention and treatment of cancer have garnered considerable scientific attention. Traditional chemotherapeutic drugs are highly toxic and associated with substantial side effects; therefore, there is an urgent need for developing new therapeutic agents. Dietary phytochemicals are important in tumor prevention and treatment because of their low toxicity and side effects at low concentrations; however, their exact mechanisms of action remain obscure. DNA damage is mainly caused by physical or chemical factors in the environment, such as ultraviolet light, alkylating agents and reactive oxygen species that cause changes in the DNA structure of cells. Several phytochemicals have been shown inhibit the occurrence and development of tumors by inducing DNA damage. This article reviews the advances in phytochemical research; particularly regarding the mechanisms related to DNA damage and provide a theoretical basis for future chemoprophylaxis research.
Collapse
Affiliation(s)
- Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mei Kong
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhihua Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kang Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Anticarcinogenic Effects of Isothiocyanates on Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213834. [PMID: 36430307 PMCID: PMC9693344 DOI: 10.3390/ijms232213834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.
Collapse
|
19
|
Zhao Y, Zeng X, Xu X, Wang W, Xu L, Wu Y, Li H. Low-dose 5-aza-2'-deoxycytidine protects against early renal injury by increasing klotho expression. Epigenomics 2022; 14:1411-1425. [PMID: 36695107 DOI: 10.2217/epi-2022-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aim: To explore the effect of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza) on early renal injury. Materials & methods: Cell damage and inflammation are features of early renal injury. The apoptosis and inflammation in hypoxia/reoxygenation (H/R)-induced human proximal tubular epithelial cells (HK-2) and ischemia-reperfusion kidney were studied, and expression of the protein klotho was investigated. Results: Aza induced HK-2 apoptosis in a dose-dependent manner, but low-dose Aza attenuated the apoptosis and inflammation in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Low-dose Aza ameliorated renal function in mice with renal ischemia-reperfusion injury. Meanwhile, low-dose Aza upregulated klotho expression in H/R-induced HK-2 cells and ischemia-reperfusion kidney. Klotho knockdown abrogated the effects of low-dose Aza on apoptosis and inflammation. Conclusion: Low-dose Aza protects against renal early injury by increasing klotho expression.
Collapse
Affiliation(s)
- Yanlong Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xiaorong Zeng
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xinli Xu
- Dialysis Department of Nephrology Hospital, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Wenjing Wang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Lei Xu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yiying Wu
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Hang Li
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
20
|
Liu Z, Qi Y, Wang H, Zhang Q, Wu Z, Wu W. Risk model of hepatocellular carcinoma based on cuproptosis-related genes. Front Genet 2022; 13:1000652. [PMID: 36186455 PMCID: PMC9521278 DOI: 10.3389/fgene.2022.1000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Owing to the heterogeneity displayed by hepatocellular carcinoma (HCC) and the complexity of tumor microenvironment (TME), it is noted that the long-term effectiveness of the cancer therapy poses a severe clinical challenge. Hence, it is essential to categorize and alter the treatment intervention decisions for these tumors. Materials and methods: "ConsensusClusterPlus" tool was used for developing a secure molecular classification system that was based on the cuproptosis-linked gene expression. Furthermore, all clinical properties, pathway characteristics, genomic changes, and immune characteristics of different cell types involved in the immune pathways were also assessed. Univariate Cox regression and the least absolute shrinkage and selection operator (Lasso) analyses were used for designing the prognostic risk model associated with cuproptosis. Results: Three cuproptosis-linked subtypes (clust1, clust2, and clust3) were detected. Out of these, Clust3 showed the worst prognosis, followed by clust2, while Clust1 showed the best prognosis. Three subtypes had significantly different enrichment in pathways related to Tricarboxylic Acid (TCA) cycle, cell cycle, and cell senescence (p < 0.01). The clust3 subtype with poor prognosis had a low "ImmuneScore" and low immune cell infiltration, and the three subtypes had significant differences in the antigen processing and presentation pathway of the macrophages. Clust1 had a low TIDE score and was sensitive to immunotherapy. Then, according to the prognosis-related genes of cuproptosis, a prognosis risk model related to cuproptosis was constructed, containing seven genes (KIF2C, PTTG1, CENPM, CDC20, CYP2C9, SFN, and CFHR3). "High" group had a higher TIDE score compared to the TIDE score value shown by the "Low" group, which benefited less from immunotherapy, whereas the "High" group patients were more sensitive to the conventional drugs. Finally, the prognosis risk model related to cuproptosis was combined with clinical pathological characteristics to further improve the prognostic model and survival prediction. Conclusion: Three new molecular subgroups based on cuproptosis-linked genes were revealed, and a cuproptosis-related prognostic risk model comprising seven genes was established in this study, which could assist in predicting the prognosis and identifying the patients benefit from immunotherapy.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haibo Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qikun Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Anti-tumor pharmacology of natural products targeting mitosis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0006. [PMID: 35699421 PMCID: PMC9257311 DOI: 10.20892/j.issn.2095-3941.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer has been an insurmountable problem in the history of medical science. The uncontrollable proliferation of cancer cells is one of cancer’s main characteristics, which is closely associated with abnormal mitosis. Targeting mitosis is an effective method for cancer treatment. This review summarizes several natural products with anti-tumor effects related to mitosis, focusing on targeting microtubulin, inducing DNA damage, and modulating mitosis-associated kinases. Furthermore, the main disadvantages of several typical compounds, including drug resistance, toxicity to non-tumor tissues, and poor aqueous solubility and pharmacokinetic properties, are also discussed, together with strategies to address them. Improved understanding of cancer cell mitosis and natural products may pave the way to drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Manru Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caiyan Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyue Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gaoyong Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
22
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
23
|
Yan J, Man Z, Gao L, Cai L, Lu Q, Dong J. The role of CpG island methylator phenotype in the clinical course of hepatocellular carcinoma. Bioinformatics 2021; 38:9-15. [PMID: 34406374 DOI: 10.1093/bioinformatics/btab600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Aberrant DNA methylation is strongly associated with heterogeneity in tumors. This study investigated the prognostic value of CpG island methylator phenotype in hepatocellular carcinoma (HCC). RESULTS A total of 319 HCC samples with 21 121 CpG sites were included in this study and 215 disease-free survival (DFS) and overall survival (OS)-related CpG sites were identified. These CpG sites were divided into seven clusters by using consensus clustering method. Cluster 4, which constructed the prognostic prediction model as the seed cluster to evaluate survival risk for DFS and OS of HCC patients, had the lowest methylation level with the worse prognosis. The low-risk group patients had a significantly prolonged DFS and OS than the patients in the high-risk group (P = 0.008 and P < 0.001, respectively). A receiver operating characteristic curve results for predicting DFS and OS were 0.691 and 0.695, respectively. These results suggested that the CpG site methylation appears to be an informative prognostic biomarker in HCC. The CpG site methylation-related prognostic model may be an innovative insight to evaluate clinical outcomes for HCC patients. AVAILABILITY AND IMPLEMENTATION The code of the analysis is available at https://www.bioconductor.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Yan
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China.,Department of Hepatobiliary Surgery, Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou 221000, China
| | - Zhongsong Man
- Department of Hepatobiliary Surgery, Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou 221000, China.,Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China
| | - Lu Gao
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China
| | - Lei Cai
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen 518000, China
| | - Qian Lu
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China
| | - Jiahong Dong
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
24
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
25
|
Chen B, Ying X, Bao L. MGMT gene promoter methylation in humoral tissue as biomarker for lung cancer diagnosis: An update meta-analysis. Thorac Cancer 2021; 12:3194-3200. [PMID: 34651448 PMCID: PMC8636218 DOI: 10.1111/1759-7714.14186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023] Open
Abstract
Objective To investigate O‐6‐methylguanine‐DNA methyltransferase (MGMT) gene promoter methylation in humoral tissue as biomarker for lung cancer diagnosis by pooling relevant open published data. Methods Clinical studies relevant to MGMT gene promoter methylation and lung cancer were systematic electronic searched in the databases of Medline, EMBASE, Ovid, Web of Science, and CNKI. Data of true positive (tp), false positive (fp), false negative (fn), and true negative (tn) were extracted from the included studies and made combination. The diagnostic sensitivity, specificity, diagnostic odds ratio (DOR) and summary receiver operating characteristic (SROC) of MGMT gene methylation for lung cancer diagnosis were pooled. Results Twelve studies were included in the meta‐analysis. The diagnostic sensitivity, specificity, DOR were 0.39 (95% CI = 0.31–0.49) 0.92 (95% CI = 0.77–0.97), and 4.20 (95% CI = 2.09–8.44), respectively under random effect model. The SROC of MGMT gene methylation for lung cancer diagnosis was 0.58 (95% CI = 0.53–0.62). Conclusion MGMT methylation rate was higher in plasma and bronchoalveolar lavage fluid (BLAF) of lung cancer cases compared to controls. High diagnostic specificity indicated that MGMT methylation in plasma and BLAF can be applied as lung cancer confirmation test.
Collapse
Affiliation(s)
- Bizheng Chen
- Department of Radiotherapy, Lishui Central Hospital, Lishui, Zhejiang Province, China
| | - Xiaozhen Ying
- Department of Radiotherapy, Lishui Central Hospital, Lishui, Zhejiang Province, China
| | - Liming Bao
- Department of Radiotherapy, Lishui Central Hospital, Lishui, Zhejiang Province, China
| |
Collapse
|
26
|
Improvement of glucosinolates by metabolic engineering in Brassica crops. ABIOTECH 2021; 2:314-329. [PMID: 36303883 PMCID: PMC9590530 DOI: 10.1007/s42994-021-00057-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Glucosinolates (GSLs) are a class of sulfur- and nitrogen-containing, and amino acid-derived important secondary metabolites, which mainly present in plants of Brassicaceae family, including Brassica crops, such as broccoli, cabbage, and oilseed rape. The bioactive GSL metabolites confer benefits to plant defense, human health, and the unique flavor of some Brassica crops. However, certain GSL profiles have adverse effects and are known as anti-nutritional factors. This has attracted mounting attempts to increase beneficial GSLs and reduce detrimental ones in the most commonly consumed Brassica crops. We provide a comprehensive overview of metabolic engineering applied in Brassica crops to achieve this purpose, including modulation of GSL biosynthesis, ablation of GSL hydrolysis, inhibition of GSL transport processes, and redirection of metabolic flux to GSL. Moreover, advances in omics approaches, i.e., genomics, transcriptome, and metabolome, applied in the elucidation of GSL metabolism in Brassica crops, as well as promising and potential genome-editing technologies are also discussed.
Collapse
|
27
|
Gao L, Du F, Wang J, Zhao Y, Liu J, Cai D, Zhang X, Wang Y, Zhang S. Examination of the differences between sulforaphane and sulforaphene in colon cancer: A study based on next-generation sequencing. Oncol Lett 2021; 22:690. [PMID: 34457045 PMCID: PMC8358736 DOI: 10.3892/ol.2021.12951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sulforaphane and sulforaphene are isothiocyanate compounds derived from cruciferous vegetables that have demonstrated antiproliferative properties against colon cancer. However, the underlying mechanism of action of these two compounds has yet to be elucidated. The aim of the present study was to examine the effects of sulforaphane and sulforaphene on colon cancer using next-generation sequencing (NGS). The SW480 colon cancer cell line was cultured with 25 µmol/l sulforaphane or sulforaphene. Total RNA was extracted from the cells following 48 h of incubation with these compounds, and NGS was performed. Pearson's correlation and principal component analyses were performed on the NGS data in order to determine sample homogeneity followed by hierarchical clustering, chromosomal location, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A total of 873 probes in the sulforaphene group were differentially expressed compared with the control group. Similarly, 959 probes in the sulforaphane group were differentially expressed compared with the control group. The differentially expressed genes were dispersed on the chromosomes, across 22 pairs of autosomes, as well as the X and Y chromosomes. GO and KEGG analyses demonstrated that both drugs affected the ‘p53 signaling pathway’, ‘MAPK signaling pathway’, ‘FOXO signaling pathway’ and ‘estrogen signaling pathway’, while ‘Wnt signaling pathway’ was enriched in the sulforaphane group, and ‘ubiquitin mediated proteolysis’ and ‘estrogen signaling pathway’ in the sulforaphene group. Thus, sulforaphane and sulforaphene exhibited similar biological activities on colon cancer cells. Sulforaphane and sulforaphene may be associated with Wnt and estrogen signaling, respectively.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuhua Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Junhua Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Da Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Xiao Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Shuqiu Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
28
|
Composition of the Gut Microbiome Influences Production of Sulforaphane-Nitrile and Iberin-Nitrile from Glucosinolates in Broccoli Sprouts. Nutrients 2021; 13:nu13093013. [PMID: 34578891 PMCID: PMC8468500 DOI: 10.3390/nu13093013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.
Collapse
|
29
|
Naves MPC, de Morais CR, de Freitas V, Ribeiro DL, Lopes DS, Antunes LMG, de Melo Rodrigues V, de Rezende AAA, Spanó MA. Mutagenic and genotoxic activities of Phospholipase A 2 Bothropstoxin-I from Bothrops jararacussu in Drosophila melanogaster and human cell lines. Int J Biol Macromol 2021; 182:1602-1610. [PMID: 34033823 DOI: 10.1016/j.ijbiomac.2021.05.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A2 Bothropstoxin-I (PLA2 BthTX-I) is a myotoxic Lys49-PLA2 from Bothrops jararacussu snake venom. In order to evaluate the DNA damage caused by BthTX-I, we used the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster and Comet assay in HUVEC and DU-145 cells. For SMART, different concentrations of BthTX-I (6.72 to 430 μg/mL) were used and no significant changes in the survival rate were observed. Significant frequency of mutant spots was observed for the ST cross at the highest concentration of BthTX-I due to recombinogenic activity. In the HB cross, BthTX-I increased the number of mutant spots at intermediate concentrations, being 53.75 μg/mL highly mutagenic and 107.5 μg/mL predominantly recombinogenic. The highest concentrations were neither mutagenic nor recombinogenic, which could indicate cytotoxicity in the wing cells of D. melanogaster. In vitro, all BthTX-I concentrations (1 to 50 μg/mL) induced decrease in HUVEC cell viability, as well as in DU-145 cells at concentrations of 10, 25, and 50 μg/mL. The comet assay showed that in HUVEC and DU-145 cells, all BthTX-I concentrations promoted increase of DNA damage. Further studies should be performed to elucidate the mechanism of action of PLA2 BthTX-I and its possible use in therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Vitor de Freitas
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute in Health, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
30
|
Ribeiro DL, Machado ART, Machado C, Ferro Aissa A, Dos Santos PW, Barcelos GRM, Antunes LMG. p-synephrine induces transcriptional changes via the cAMP/PKA pathway but not cytotoxicity or mutagenicity in human gastrointestinal cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:196-212. [PMID: 33292089 DOI: 10.1080/15287394.2020.1855490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
p-Synephrine (SN) is an alkaloid added to thermogenic formulations for weight loss that is predominantly absorbed in the human gastrointestinal tract (GI). As the adverse effects of SN on GI cells remain unclear, the aim of present study was to examine whether SN affected cell viability, cell cycle kinetics, genomic stability, redox status, and expression of cAMP/PKA pathway genes related to metabolism/energy homeostasis in stomach mucosa (MNP01) and colon adenocarcinoma (Caco-2) human cells. p-Synephrine at 25-5000 μM was not cytotoxic to both cell lines. At 2-200 μM, SN increased the formation of reactive oxygen species (ROS) but also enhanced levels of antioxidant defense molecules glutathione (GSH) and catalase (CAT) activity, which may account for the absence of cytotoxicity/mutagenicity in both cell lines. SN induced expression of the cAMP/PKA pathway genes ADCY3 and MAPK1 in MNP01 cells and MAPK1, GNAS, PRKACA, and PRKAR2A in Caco-2 cells, as well as modulated the transcription of genes related to cell proliferation (JUN; AKT1) and inflammation (RELA; TNF) in both cell lines. Therefore, the improved antioxidant state mitigated pro-oxidative effects attributed to SN. Evidence indicates that SN does not appear to exhibit adverse potential but modulated the cAMP/PKA pathway in human GI cell lines.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo ,Ribeirão Preto, Brazil
| | - Ana Rita Thomazela Machado
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | - Carla Machado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo ,Ribeirão Preto, Brazil
| | - Alexandre Ferro Aissa
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | - Patrick Wellington Dos Santos
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | | | - Lusânia Maria Greggi Antunes
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| |
Collapse
|
31
|
Zhang F, Ni ZJ, Ye L, Zhang YY, Thakur K, Cespedes-Acuña CL, Han J, Zhang JG, Wei ZJ. Asparanin A inhibits cell migration and invasion in human endometrial cancer via Ras/ERK/MAPK pathway. Food Chem Toxicol 2021; 150:112036. [PMID: 33561516 DOI: 10.1016/j.fct.2021.112036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Asparanin A (AA), a natural compound present in vegetables and medicinal herbs like Asparagus officinalis L., has been investigated extensively for its pharmacological attributes. So far, the effect of AA on endometrial cancer (EC) cell migration and invasion has not been explored. Herein, we elucidated the anti-metastasis mechanism of AA on Ishikawa cells based on miRNA-seq and mRNA-seq integrated analyses. AA treatment led to altered miRNAs expression in Ishikawa cells and inhibited the cell wound healing, cell migration and invasion. Gene Ontology and KEGG enrichment analyses showed that the target genes of different expression miRNAs were significantly enriched in Ras, Rap1 and MAPK signaling pathways. Further verification of these changes via qRT-PCR and Western blot assays in vitro and in vivo demonstrated that AA could suppress human EC cell migration and invasion through Ras/ERK/MAPK pathway. Furthermore, top two miRNAs (miR-6236-p5 and miR-12136_R+8) and top three target genes (KITLG, PDGFD, and NRAS) were identified as functional hub miRNAs and genes through miRNA-target gene network analysis. Our data presented a holistic approach to comprehend the anti-metastatic role of AA in EC after in vitro and in vivo analyses.
Collapse
Affiliation(s)
- Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China; School of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Lei Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Jinzhi Han
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
32
|
Gu HF, Mao XY, Du M. Metabolism, absorption, and anti-cancer effects of sulforaphane: an update. Crit Rev Food Sci Nutr 2021; 62:3437-3452. [PMID: 33393366 DOI: 10.1080/10408398.2020.1865871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is one of the most devastating diseases, and recently, a variety of natural compounds with preventive effects on cancer developments have been reported. Sulforaphane (SFN) is a potent anti-cancer isothiocyanate originating from Brassica oleracea (broccoli). SFN, mainly metabolized via mercapturic acid pathway, has high bioavailability and absorption. The present reviews mainly discussed the metabolism and absorption of SFN and newly discovered mechanistic understanding recent years for SFN's anti-cancer effects including promoting autophagy, inducing epigenetic modifications, suppressing glycolysis and fat metabolism. Moreover, its inhibitory effects on cancer stem cells and synergetic effects with other anti-cancer agents are also reviewed along with the clinical trials in this realm.
Collapse
Affiliation(s)
- Hao-Feng Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue-Ying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
33
|
Sharma M, Arora I, Stoll ML, Li Y, Morrow CD, Barnes S, Berryhill TF, Li S, Tollefsbol TO. Nutritional combinatorial impact on the gut microbiota and plasma short-chain fatty acids levels in the prevention of mammary cancer in Her2/neu estrogen receptor-negative transgenic mice. PLoS One 2020; 15:e0234893. [PMID: 33382695 PMCID: PMC7774855 DOI: 10.1371/journal.pone.0234893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia, Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.
Collapse
MESH Headings
- Actinobacteria/drug effects
- Actinobacteria/isolation & purification
- Actinobacteria/physiology
- Animals
- Brassica/chemistry
- Clostridiales/drug effects
- Clostridiales/isolation & purification
- Clostridiales/physiology
- Diet/methods
- Fatty Acids, Volatile/blood
- Female
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/physiology
- Gene Expression
- Lactobacillus/drug effects
- Lactobacillus/isolation & purification
- Lactobacillus/physiology
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/blood
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Knockout
- Polyphenols/chemistry
- Polyphenols/pharmacology
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Seedlings/chemistry
- Tea/chemistry
Collapse
Affiliation(s)
- Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew L Stoll
- Division of Pediatric Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yuanyuan Li
- Department of Obstetrics, Gynecology & Women's Heath, University of Missouri, Columbia, Missouri, United States of America
- Department of Surgery, University of Missouri, Columbia, Missouri, United States of America
| | - Casey D Morrow
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephen Barnes
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Taylor F Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
34
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Huang W, Chen J, Weng W, Xiang Y, Shi H, Shan Y. Development of cancer prognostic signature based on pan-cancer proteomics. Bioengineered 2020; 11:1368-1381. [PMID: 33200655 PMCID: PMC8291886 DOI: 10.1080/21655979.2020.1847398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Utilizing genomic data to predict cancer prognosis was insufficient. Proteomics can improve our understanding of the etiology and progression of cancer and improve the assessment of cancer prognosis. And the Clinical Proteomic Tumor Analysis Consortium (CPTAC) has generated extensive proteomics data of the vast majority of tumors. Based on CPTAC, we can perform a proteomic pan-carcinoma analysis. We collected the proteomics data and clinical features of cancer patients from CPTAC. Then, we screened 69 differentially expressed proteins (DEPs) with R software in five cancers: hepatocellular carcinoma (HCC), children’s brain tumor tissue consortium (CBTTC), clear cell renal cell carcinoma (CCRC), lung adenocarcinoma (LUAD) and uterine corpus endometrial carcinoma (UCEC). GO and KEGG analysis were performed to clarify the function of these proteins. We also identified their interactions. The DEPs-based prognostic model for predicting over survival was identified by least absolute shrinkage and selection operator (LASSO)-Cox regression model in training cohort. Then, we used the time-dependent receiver operating characteristics analysis to evaluate the ability of the prognostic model to predict overall survival and validated it in validation cohort. The results showed that the DEPs-based prognostic model could accurately and effectively predict the survival rate of most cancers.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou, China
| | - Jianhui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou, China
| | - Wanqing Weng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou, China
| | - Yukai Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou, China
| | - Hongqi Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University , Wenzhou, China
| |
Collapse
|
36
|
Visalli G, Facciolà A, Laganà P, Di Pietro A. Food chemoprevention and air pollution: the health comes with eating. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:471-479. [PMID: 32573482 DOI: 10.1515/reveh-2019-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution is known to be an important causative agent of many non-communicable diseases, mainly due to fine particulate matter (PM2.5). According to Global Burden Disease study in 2015, the estimated premature deaths caused by PM2.5 were 4.2 million. Besides deaths, airborne pollution's effect on human health also has dramatic economic and social costs, contributing greatly to disability-adjusted life-year (DALY). To reduce the health impact is necessary a double approach, which includes the improvement of air quality and food chemoprevention, aimed at enhancing the homeostatic abilities of exposed subjects. The scavenging, antioxidant, and anti-inflammatory properties of nutraceuticals effectively counteract the pathogenic mechanisms common in almost all non-communicable diseases associated with air pollutants. Moreover, several bioactive compounds of food modulate, by epigenetic mechanisms, the metabolism of xenobiotics, favouring conjugation reactions and promoting excretion. This narrative review summarize the numerous pieces of evidence collected in the last decades by observational and experimental studies which underline the chemopreventive role of flavonoids, contained in several fruits and consumer beverages (wine, tea, etc.), and isothiocyanate sulforaphane, contained in the cruciferous vegetables belonging to the genus Brassica. These bioactive compounds, enhancing the individual homeostatic abilities, reduce the harmful effects of airborne pollution.
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Epidemiology Operative Unit, Department of Prevention, Health Provincial Agency, Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Bian J, Wang K, Wang Q, Wang P, Wang T, Shi W, Ruan Q. Dracocephalum heterophyllum (DH) Exhibits Potent Anti-Proliferative Effects on Autoreactive CD4 + T Cells and Ameliorates the Development of Experimental Autoimmune Uveitis. Front Immunol 2020; 11:575669. [PMID: 33117376 PMCID: PMC7578250 DOI: 10.3389/fimmu.2020.575669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/23/2020] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) is a CD4+ T cell–mediated organ-specific autoimmune disease and has been considered as a model of human autoimmune uveitis. Dracocephalum heterophyllum (DH) is a Chinese herbal medicine used in treating hepatitis. DH suppressed the production of inflammatory cytokines through the recruitment of myeloid-derived suppressor cells (MDSCs) to the liver. However, it remains elusive whether DH can directly regulate CD4+ T cell biology and hence ameliorates the development of CD4+ T cell–mediated autoimmune disease. In the current study, we found that DH extract significantly suppressed the production of pro-inflammatory cytokines by CD4+ T cells. Further study showed that DH didn’t affect the activation, differentiation, and apoptosis of CD4+ T cells. Instead, it significantly suppressed the proliferation of conventional CD4+ T cells both in vitro and in vivo. Mechanistic study showed that DH-treated CD4+ T cells were partially arrested at the G2/M phase of the cell cycle because of the enhanced inhibitory phosphorylation of Cdc2 (Tyr15). In addition, we demonstrated that treatment with DH significantly ameliorated EAU in mice through suppressing the proliferation of autoreactive antigen specific CD4+ T cells. Taken together, the current study indicates that DH-mediated suppression of CD4+ T cell proliferation may provide a promising therapeutic strategy for treating CD4+ T cell–mediated diseases.
Collapse
Affiliation(s)
- Jiang Bian
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ke Wang
- Department of Ophthalmology, Qingdao University Medical College, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qilan Wang
- Northwest Plateau Institutes of Biology, Chinese Academy of Sciences, Xining, China
| | - Pu Wang
- Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingguo Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Center for Antibody Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
38
|
Charron CS, Vinyard BT, Jeffery EH, Ross SA, Seifried HE, Novotny JA. BMI Is Associated With Increased Plasma and Urine Appearance of Glucosinolate Metabolites After Consumption of Cooked Broccoli. Front Nutr 2020; 7:575092. [PMID: 33072799 PMCID: PMC7542245 DOI: 10.3389/fnut.2020.575092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction: Preclinical studies suggest that brassica vegetable diets decrease cancer risk, but epidemiological studies show varied effects, resulting in uncertainty about any health impact of brassicas. Factors controlling absorption of glucosinolate metabolites may relate to inconsistent results. We reported previously that subjects with BMI > 26 kg/m2 (HiBMI), given cooked broccoli plus raw daikon radish (as a source of plant myrosinase) daily for 17 days, had lower glucosinolate metabolite absorption than subjects given a single broccoli meal. This difference was not seen in subjects with BMI < 26 kg/m2 (LoBMI). Our objective in this current study was to determine whether a similar response occurred when cooked broccoli was consumed without a source of plant myrosinase. Methods: In a randomized crossover study (n = 18), subjects consumed no broccoli for 16 days or the same diet with 200 g of cooked broccoli daily for 15 days and 100 g of broccoli on day 16. On day 17, all subjects consumed 200 g of cooked broccoli. Plasma and urine were collected for 24 h and analyzed for glucosinolate metabolites by LC-MS. Results: There was no effect of diet alone or interaction of diet with BMI. However, absorption doubled in HiBMI subjects (AUC 219%, plasma mass of metabolites 202% compared to values for LoBMI subjects) and time to peak plasma metabolite values and 24-h urinary metabolites also increased, to 127 and 177% of LoBMI values, respectively. Conclusion: BMI impacts absorption and metabolism of glucosinolates from cooked broccoli, and this association must be further elucidated for more efficacious dietary recommendations. Clinical Trial Registration: This trial was registered at clinicaltrials.gov (NCT03013465).
Collapse
Affiliation(s)
- Craig S Charron
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| | - Bryan T Vinyard
- Statistics Group, US Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Elizabeth H Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Sharon A Ross
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, Rockville, MD, United States
| | - Harold E Seifried
- Division of Cancer Protection, National Institutes of Health, National Cancer Institute, Rockville, MD, United States
| | - Janet A Novotny
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, United States
| |
Collapse
|
39
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
40
|
The Potential of Phytochemicals in Oral Cancer Prevention and Therapy: A Review of the Evidence. Biomolecules 2020; 10:biom10081150. [PMID: 32781654 PMCID: PMC7465709 DOI: 10.3390/biom10081150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The etiological factors of oral cancer are complex including drinking alcohol, smoking tobacco, betel quid chewing, human papillomavirus infection, and nutritional deficiencies. Understanding the molecular mechanism of oral cancer is vital. The traditional treatment for patients with oral squamous cell carcinoma (e.g., surgery, radiotherapy, and chemotherapy) and targeted molecular therapy still have numerous shortcomings. In recent years, the use of phytochemical factors to prevent or treat cancer has received increasing attention. These phytochemicals have little or no toxicity against healthy tissues and are thus ideal chemopreventive agents. However, phytochemicals usually have low water solubility, low bioavailability, and insufficient targeting which limit therapeutic use. Numerous studies have investigated the development of phytochemical delivery systems to address these problems. The present article provides an overview of oral cancer including the etiological factors, diagnosis, and traditional therapy. Furthermore, the classification, dietary sources, anticancer bioactivity, delivery system improvements, and molecular mechanisms against oral cancer of phytochemicals are also discussed in this review.
Collapse
|
41
|
Santos PW, Machado ART, De Grandis R, Ribeiro DL, Tuttis K, Morselli M, Aissa AF, Pellegrini M, Antunes LMG. Effects of sulforaphane on the oxidative response, apoptosis, and the transcriptional profile of human stomach mucosa cells in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503201. [PMID: 32660825 DOI: 10.1016/j.mrgentox.2020.503201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Oxidative stress is a critical factor in the pathogenesis of several gastrointestinal diseases. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, activates the redox-sensitive nuclear erythroid 2-related factor 2 (NRF2). In addition to its protective role, SFN exerts cytotoxic effects on cancer cells. However, there is a lack of information concerning the toxicity of SFN in normal cells. We investigated the effects of SFN on cell viability, antioxidant defenses, and gene expression in human stomach mucosa cells (MNP01). SFN reduced ROS formation and protected the cells against induced oxidative stress but high concentrations increased apoptosis. An intermediate SFN concentration (8 μM) was chosen for RNA sequencing studies. We observed upregulation of genes of the NRF2 (antioxidant) pathway, the DNA damage response, and apoptosis signaling; whereas SFN downregulated cell cycle and DNA repair pathway genes. SFN may be cytoprotective at low concentrations and cytotoxic at high concentrations.
Collapse
Affiliation(s)
- Patrick Wellington Santos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Rone De Grandis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Alexandre Ferro Aissa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.
| |
Collapse
|
42
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
43
|
Rai R, Gong Essel K, Mangiaracina Benbrook D, Garland J, Daniel Zhao Y, Chandra V. Preclinical Efficacy and Involvement of AKT, mTOR, and ERK Kinases in the Mechanism of Sulforaphane against Endometrial Cancer. Cancers (Basel) 2020; 12:E1273. [PMID: 32443471 PMCID: PMC7281543 DOI: 10.3390/cancers12051273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sulforaphane exerts anti-cancer activity against multiple cancer types. Our objective was to evaluate utility of sulforaphane for endometrial cancer therapy. Sulforaphane reduced viability of endometrial cancer cell lines in association with the G2/M cell cycle arrest and cell division cycle protein 2 (Cdc2) phosphorylation, and intrinsic apoptosis. Inhibition of anchorage-independent growth, invasion, and migration of the cell lines was associated with sulforaphane-induced alterations in epithelial-to-mesenchymal transition (EMT) markers of increased E-cadherin and decreased N-cadherin and vimentin expression. Proteomic analysis identified alterations in AKT, mTOR, and ERK kinases in the networks of sulforaphane effects in the Ishikawa endometrial cancer cell line. Western blots confirmed sulforaphane inhibition of AKT, mTOR, and induction of ERK with alterations in downstream signaling. AKT and mTOR inhibitors reduced endometrial cancer cell line viability and prevented further reduction by sulforaphane. Accumulation of nuclear phosphorylated ERK was associated with reduced sensitivity to the ERK inhibitor and its interference with sulforaphane activity. Sulforaphane induced apoptosis-associated growth inhibition of Ishikawa xenograft tumors to a greater extent than paclitaxel, with no evidence of toxicity. These results verify sulforaphane's potential as a non-toxic treatment candidate for endometrial cancer and identify AKT, mTOR, and ERK kinases in the mechanism of action with interference in the mechanism by nuclear phosphorylated ERK.
Collapse
Affiliation(s)
- Rajani Rai
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Kathleen Gong Essel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Justin Garland
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Yan Daniel Zhao
- Biostatistics & Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Vishal Chandra
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|