1
|
Olasehinde TA, Olaniran AO. Assessment of Neurotoxic Mechanisms of Individual and Binary Mixtures of Cobalt, Nickel and Lead in Hippocampal Neuronal Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:128-139. [PMID: 39365032 PMCID: PMC11628647 DOI: 10.1002/tox.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024]
Abstract
Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO2, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology DepartmentFederal Institute of Industrial ResearchLagosNigeria
- Discipline of Microbiology, School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
| |
Collapse
|
2
|
Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, Zahed MA. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. CHEMOSPHERE 2024; 364:143180. [PMID: 39187026 DOI: 10.1016/j.chemosphere.2024.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated. There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
Collapse
Affiliation(s)
- Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ghazaleh Mastali
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center (MSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX, USA.
| | | |
Collapse
|
3
|
Zhang Y, Pei X, Jing L, Zhang Q, Zhao H. Lead induced cerebellar toxicology of developmental Japanese quail (Coturnix japonica) via oxidative stress-based Nrf2/Keap1 pathway inhibition and glutathione-mediated apoptosis signaling activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124114. [PMID: 38718965 DOI: 10.1016/j.envpol.2024.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Lead (Pb) is a heavy metal that has been recognized as a neurotoxin, meaning it can cause harmful effects on the nervous system. However, the neurotoxicology of Pb to birds still needs further study. In this study, we examined the neurotoxic effects of Pb exposure on avian cerebellum by using an animal model-Japanese quail (Coturnix japonica). The one-week old male chicks were exposed to 50, 200 and 500 mg/kg Pb of environmental relevance in the feed for five weeks. The results showed Pb caused cerebellar microstructural damages charactered by deformation of neuroglia cells, granule cells and Purkinje cells with Nissl body changes. Moreover, cerebellar neurotransmission was disturbed by Pb with increasing acetylcholine (ACh) and decreasing acetylcholinesterase (AChE), dopamine (DA), γ-Aminobutyric Acid (GABA) and Na+/K+ ATPase. Meanwhile, cerebellar oxidative stress was caused by Pb exposure represented by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) as well as decreasing catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH) and superoxide dismutase (SOD). Moreover, RNA-Seq analysis showed that molecular signaling pathways in the cerebellum were disrupted by Pb exposure. In particular, the disruption of nuclear factor erythroid-2-related factor 2 (Nfr2)/kelch-like ECH-associated protein 1 (Keap1) pathway and glutathione metabolism pathway indicated increasing cell apoptosis and functional disorder in the cerebellum. The present study revealed that Pb induced cerebellar toxicology through structural injury, oxidative stress, neurotransmission interference and abnormal apoptosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoqing Pei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
4
|
Liu JY, Sayes CM. Modeling mixtures interactions in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104380. [PMID: 38309542 DOI: 10.1016/j.etap.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Cristaldi A, Oliveri Conti G, Pellitteri R, La Cognata V, Copat C, Pulvirenti E, Grasso A, Fiore M, Cavallaro S, Dell'Albani P, Ferrante M. In vitro exposure to PM 2.5 of olfactory Ensheathing cells and SH-SY5Y cells and possible association with neurodegenerative processes. ENVIRONMENTAL RESEARCH 2024; 241:117575. [PMID: 37925127 DOI: 10.1016/j.envres.2023.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
PM2.5 exposure represents a risk factor for the public health. PM2.5 is able to cross the blood-alveolar and blood-brain barriers and reach the brain through three routes: nasal olfactory pathway, nose-brain pathway, blood-brain barrier pathway. We evaluated the effect of PM2.5 to induce cytotoxicity and reduced viability on in vitro cultures of OECs (Olfactory Ensheathing Cells) and SH-SY5Y cells. PM2.5 samples were collected in the metropolitan area of Catania, and the gravimetric determination of PM2.5, characterization of 10 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs) were carried out for each sample. PM2.5 extracts were exposed to cultures of OECs and SH-SY5Y cells for 24-48-72 h, and the cell viability assay (MTT) was evaluated. Assessment of mitochondrial and cytoskeleton damage, and the assessment of apoptotic process were performed in the samples that showed lower cell viability. We have found an annual average value of PM2.5 = 16.9 μg/m3 and a maximum value of PM2.5 = 27.6 μg/m3 during the winter season. PM2.5 samples collected during the winter season also showed higher concentrations of PAHs and trace elements. The MTT assay showed a reduction in cell viability for both OECs (44%, 62%, 64%) and SH-SY5Y cells (16%, 17%, 28%) after 24-48-72 h of PM2.5 exposure. Furthermore, samples with lower cell viability showed a decrease in mitochondrial membrane potential, increased cytotoxicity, and also impaired cellular integrity and induction of the apoptotic process after increased expression of vimentin and caspase-3 activity, respectively. These events are involved in neurodegenerative processes and could be triggered not only by the concentration and time of exposure to PM2.5, but also by the presence of trace elements and PAHs on the PM2.5 substrate. The identification of more sensitive cell lines could be the key to understanding how exposure to PM2.5 can contribute to the onset of neurodegenerative processes.
Collapse
Affiliation(s)
- Antonio Cristaldi
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy.
| | - Rosalia Pellitteri
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Valentina La Cognata
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Chiara Copat
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Eloise Pulvirenti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Alfina Grasso
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy
| | - Maria Fiore
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Sebastiano Cavallaro
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy
| | - Paola Dell'Albani
- CNR-IRIB: National Research Council - Institute for Biomedical Research and Innovation, National Research Council, Catania, Italy.
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Italy; ISDE: International Society of Doctors for Environments - ISDE, Catania Section, Italy; NANOMED: Research Center in Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, Italy
| |
Collapse
|
6
|
Vukelić D, Baralić K, Marić Đ, Đukic-Ćosić D, Bulat Z, Panieri E, Saso L, Djordjevic AB. Hepato-renal toxicity of low dose metal(oid)s mixture in real-life risk simulation in rats: Effects on Nrf2/HO-1 signalling and redox status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168352. [PMID: 37952665 DOI: 10.1016/j.scitotenv.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The understanding that humans are exposed to a low level of toxic metals and metalloids in their lifetime has resulted in a shift in scientific and regulatory perspectives from the traditional evaluation of single metal toxicity to complex mixtures, relevant to real-life exposure. Therefore, the aim of this study was to examine the impact of real-life, 90-days exposure to mixture of toxic metal(oid)s, Cd, Pb, Ni, Cr, As and Hg, on the nuclear factor erythroid 2-related factor 2 and hemoxygenase-1 (Nrf2/HO-1) signalling and redox status by assessing total sulfhydryl groups (SH), glutathione (GSH), superoxide dismutase activity (SOD), malondialdehyde (MDA), and ischemia modified albumin (IMA) in the liver and kidney of Wistar rats. Animals (20 males and 20 females) were randomized in 2 control and 6 treated groups that received by oral gavage mixture of metal(oid)s solutions in doses that reflect blood metal(oid) levels determined in previous human biomonitoring study as benchmark dose (F/M _BMD), median (F/M _MED), and 95th percentile (F/M _95). Our results have shown that metal(oid)s mixture impaired the activation of the Nrf2/HO-1 pathway in the kidney and liver of male rats and kidney of female rats, followed by depletion of GSH levels in males. Additionally, in males elevated levels of IMA in the liver were observed, while in both genders increased MDA levels were observed in the kidney. Interestingly, the effects were more pronounced in male than in female rats. This study is among the first that examined hepato-renal toxic mechanisms of real-life metal mixture exposure, while our results might be of immense importance for assessing the risk of exposure to mixtures of toxic substances.
Collapse
Affiliation(s)
- Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia.
| | - Danijela Đukic-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy; Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for the Environmental Protection and Research, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|
7
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
8
|
Zhou F, Ouyang L, Xie J, Liu S, Li Q, Yang S, Li J, Su R, Rao S, Yan L, Wan X, Cheng H, Liu P, Li L, Zhu Y, Du G, Feng C, Fan G. Co-exposure to low-dose lead, cadmium, and mercury promotes memory deficits in rats: Insights from the dynamics of dendritic spine pruning in brain development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115425. [PMID: 37660527 DOI: 10.1016/j.ecoenv.2023.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.
Collapse
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Sisi Liu
- Jiangxi Academy of Medical Science, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
9
|
Wu Y, Wang R, Liu R, Ba Y, Huang H. The Roles of Histone Modifications in Metal-Induced Neurological Disorders. Biol Trace Elem Res 2023; 201:31-40. [PMID: 35129806 DOI: 10.1007/s12011-022-03134-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Increasing research is illuminating the intricate roles of metal ions in neural development as well as neurological disorders, which may stem from misregulation or dysfunction of epigenetic modifiers. Lead (Pb), cadmium (Cd), aluminum (Al), and arsenic were chosen for critical review because they have become serious public health concerns due to globalization and industrialization. In this review, we will introduce various modes of action of metals and consider the role of two posttranslational modifications: histone acetylation and methylation and how each of them affects gene expression. We then summarize the findings from previous studies on the neurological outcomes and histone alterations in response to the metals on each of the previously described histone modifications mechanisms. Understanding metal-induced histone modifications changes could provide better insight on the mechanism through which neurotoxicity occurs, to propose and validate these modifications as possible biomarkers for early identification of neurological damage, and can help model targeted therapies for the diseases of the brain.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Neuron Protection by EDTA May Explain the Successful Outcomes of Toxic Metal Chelation Therapy in Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10102476. [PMID: 36289738 PMCID: PMC9599085 DOI: 10.3390/biomedicines10102476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Many mechanisms have been related to the etiopathogenesis of neurodegenerative diseases (NDs) such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. In this context, the detrimental role of environmental agents has also been highlighted. Studies focused on the role of toxic metals in the pathogenesis of ND demonstrate the efficacy of treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (EDTA) in eliminating toxic metal burden in all ND patients, improving their symptoms. Lead, cadmium, aluminum, nickel, and mercury were the most important toxic metals detected in these patients. Here, I provide an updated review on the damage to neurons promoted by toxic metals and on the impact of EDTA chelation therapy in ND patients, along with the clinical description of a representative case.
Collapse
|
11
|
Vellingiri B, Suriyanarayanan A, Selvaraj P, Abraham KS, Pasha MY, Winster H, Gopalakrishnan AV, G S, Reddy JK, Ayyadurai N, Kumar N, Giridharan B, P S, Rao KRSS, Nachimuthu SK, Narayanasamy A, Mahalaxmi I, Venkatesan D. Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity. CHEMOSPHERE 2022; 301:134625. [PMID: 35439490 DOI: 10.1016/j.chemosphere.2022.134625] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the dopamine (DA) neuronal loss in the substantia nigra. PD impairs motor controls symptoms such as tremor, rigidity, bradykinesia and postural imbalance gradually along with non-motor problems such as olfactory dysfunction, constipation, sleeping disorder. Though surplus of factors and mechanisms have been recognized, the precise PD etiopathogenesis is not yet implied. Reports suggest that various environmental factors play a crucial role in the causality of the PD cases. Epidemiological studies have reported that heavy metals has a role in causing defects in substantia nigra region of brain in PD. Though the reason is unknown, exposure to heavy metals is reported to be an underlying factor in PD development. Metals are classified as either essential or non-essential, and they have a role in physiological processes such protein modification, electron transport, oxygen transport, redox reactions, and cell adhesion. Excessive metal levels cause oxidative stress, protein misfolding, mitochondrial malfunction, autophagy dysregulation, and apoptosis, among other things. In this review, we check out the link between heavy metals like copper (Cu), arsenic (As), cadmium (Cd), iron (Fe), and lithium (Li) in neurodegeneration, and how it impacts the pathological conditions of PD. In conclusion, increase or decrease in heavy metals involve in regulation of neuronal functions that have an impact on neurodegeneration process. Through this review, we suggest that more research is needed in this stream to bring more novel approaches for either disease modelling or therapeutics.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Atchaya Suriyanarayanan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Priyanka Selvaraj
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kripa Susan Abraham
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Md Younus Pasha
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Harysh Winster
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Singaravelu G
- Department of Education, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | - Niraikulam Ayyadurai
- CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, Tamil Nadu, India
| | - Nandha Kumar
- Department of Zoology, St. Joseph University, 797 115, Dimapur, Nagaland
| | - Bupesh Giridharan
- Department of Forest Science, Nagaland University, Lumami, Zunheboto, Nagaland, India
| | - Sivaprakash P
- Department of Mechanical Engineering, Dr.N.G.P. Institute of Technology, Coimbatore, 641048, Tamil Nadu, India
| | - K R S Sambasiva Rao
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004, Mizoram, India
| | - Senthil Kumar Nachimuthu
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004, Mizoram, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Iyer Mahalaxmi
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
12
|
Fujimura M, Usuki F. Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity. Int J Mol Sci 2022; 23:ijms23137218. [PMID: 35806222 PMCID: PMC9266708 DOI: 10.3390/ijms23137218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Methylmercury (MeHg) is a widely known environmental pollutant that causes severe neurotoxicity. MeHg-induced neurotoxicity depends on various cellular conditions, including differences in the characteristics of tissues and cells, exposure age (fetal, childhood, or adulthood), and exposure levels. Research has highlighted the importance of oxidative stress in the pathogenesis of MeHg-induced toxicity and the site- and cell-specific nature of MeHg-induced neurotoxicity. The cerebellar granule cells and deeper layer cerebrocortical neurons are vulnerable to MeHg. In contrast, the hippocampal neurons are resistant to MeHg, even at high mercury accumulation levels. This review summarizes the mechanisms underlying MeHg-mediated intracellular events that lead to site-specific neurotoxicity. Specifically, we discuss the mechanisms associated with the redox ability, neural outgrowth and synapse formation, cellular signaling pathways, epigenetics, and the inflammatory conditions of microglia.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
- Correspondence: ; Tel.: +81-966-63-3111; Fax: +81-966-61-1145
| | - Fusako Usuki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| |
Collapse
|
13
|
Use of Generalized Weighted Quantile Sum Regressions of Tumor Necrosis Factor Alpha and Kidney Function to Explore Joint Effects of Multiple Metals in Blood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127399. [PMID: 35742647 PMCID: PMC9223707 DOI: 10.3390/ijerph19127399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
Exposure to heavy metals could lead to adverse health effects by oxidative reactions or inflammation. Some essential elements are known as reactors of anti-inflammatory enzymes or coenzymes. The relationship between tumor necrosis factor alpha (TNF-α) and heavy metal exposures was reported. However, the interaction between toxic metals and essential elements in the inflammatory response remains unclear. This study aimed to explore the association between arsenic (As), cadmium (Cd), lead (Pb), cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) in blood and TNF-α as well as kidney function. We enrolled 421 workers and measured the levels of these seven metals/metalloids and TNF-α in blood; kidney function was calculated by CKD-EPI equation. We applied weighted quantile sum (WQS) regression and group WQS regression to assess the effects of metal/metalloid mixtures to TNF-α and kidney function. We also approached the relationship between metals/metalloids and TNF-α by generalized additive models (GAM). The relationship of the exposure−response curve between Pb level and TNF-α in serum was found significantly non-linear after adjusting covariates (p < 0.001). Within the multiple-metal model, Pb, As, and Zn were associated with increased TNF-α levels with effects dedicated to the mixture of 50%, 31%, and 15%, respectively. Grouped WQS revealed that the essential metal group showed a significantly negative association with TNF-α and kidney function. The toxic metal group found significantly positive associations with TNF-α, serum creatinine, and WBC but not for eGFR. These results suggested Pb, As, Zn, Se, and mixtures may act on TNF-α even through interactive mechanisms. Our findings offer insights into what primary components of metal mixtures affect inflammation and kidney function during co-exposure to metals; however, the mechanisms still need further research.
Collapse
|
14
|
Vasseghian Y, Almomani F, Dragoi EN. Health risk assessment induced by trace toxic metals in tap drinking water: Condorcet principle development. CHEMOSPHERE 2022; 286:131821. [PMID: 34388869 DOI: 10.1016/j.chemosphere.2021.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Acute exposure to trace metals (TMs) in water is hazardous to human health. The average concentrations (Cavg.) and carcinogenic (CAR) and non-carcinogenic (non-CAR) risks of eight TMs to World Health Organization's (WHO) guidelines and national standard limits (NSLs)were determined. The Cavg. and (the range) of As, Hg, Cd, Pb, Co, Cr, Ni, and Zn were measured as 4.29 ± 0.57 μg L-1 (1.12-10.27 μg L-1), 0.22 ± 0.10 μg L-1 (ND-1.05 μg L-1), 0.31 ± 0.18 μg L-1 (ND-1.80 μg L-1), 4.66 ± 0.32 μg L-1 (0.10-14.22 μg L-1), 24.61 ± 4.65 μg L-1 (3.11-67.25 μg L-1), 16.86 ± 5.54 μg L-1 (5.12-34.61 μg L-1), 14.07 ± 4.37 μg L-1 (3.79-31.39 μg L-1), and 268.42 ± 75.82 (87.29-561.22 μg L-1), respectively. The Cavg. of Co and Hg exceeded the WHO and NSLs. The non-CAR risk assessment was used to order the TMs according to the total target hazard quotient (TTHQ) As > Pb > Cr > Co > Zn > Hg > Ni > Cd. None of the investigated age groups are at risk As there is a low Cavg of all trace metals (i.e., the THQ is > 1). The age groups were ranked based on THQ and incremental lifetime cancer risk (ILCR) As < 1 year, >1-10 years, > 11-19 years, and > + 20 years. The ILCR of As for all the age groups was >10-4, whereas for Pb it was <10-6. Cumulative carcinogenic risk (CCR) for As and Pb was at a safe threshold risk (>10-4) for all the age groups.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania.
| |
Collapse
|
15
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
16
|
Li B, Qin S, Cai Y, Zheng K, Wang B, Li R, Huang H, Zeng M, Xiao F, Xu X. Proteomic characteristics of PM 2.5 -induced differentially expressed proteins in human renal tubular epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103658. [PMID: 33862201 DOI: 10.1016/j.etap.2021.103658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Human renal epithelial (HK-2) cells were treated with PM2.5 (50 μg/mL) from Shenzhen and Taiyuan, proteomics and bioinformatics were used to screen the differentially expressed proteins (DEPs). A total of 577 DEPs were screened after HK-2 cells exposed to Shenzhen PM2.5, of which 426 were up-regulated and 151 were down-regulated. A total of 1250 DEPs were screened in HK-2 cells after exposure to Taiyuan PM2.5, of which 488 were up-regulated and 185 were down-regulated. The top 10 proteins with the highest number of nodes were screened using the interaction network map of DEPs. HK-2 cells exposed to Shenzhen PM2.5 contained CYR61, CTGF, and THBS1 proteins, while HK-2 cells exposed to Taiyuan PM2.5 contained ALB, FN1, and CYR61 proteins. Additionally, PM2.5 components were detected, PM2.5 samples from Shenzhen and Taiyuan induced obvious changes in DEPs expression, the difference in DEPs between the two cities was probably associated with the different PM2.5 components.
Collapse
Affiliation(s)
- Boru Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Shuangjian Qin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Ying Cai
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China; School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Kai Zheng
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China; School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Bingyu Wang
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China; School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Runbing Li
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China; School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Haiyan Huang
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Xinyun Xu
- Institute of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
17
|
Differential impact of heavy metals on neurotoxicity during development and in aging central nervous system. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
19
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
20
|
Javorac D, Grahovac L, Manić L, Stojilković N, Anđelković M, Bulat Z, Đukić-Ćosić D, Curcic M, Djordjevic AB. An overview of the safety assessment of medicines currently used in the COVID-19 disease treatment. Food Chem Toxicol 2020; 144:111639. [PMID: 32707160 PMCID: PMC7372271 DOI: 10.1016/j.fct.2020.111639] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
On 11th March 2020, the pandemic of the new coronavirus was declared by the World Health Organization. At the moment, there are no new registered medicines that can effectively treat the coronavirus infection. However, a number of ongoing clinical trials are investigating the efficacy and safety of the medicines which have already been registered and used for the treatment of other diseases, in the treatment of the coronavirus infection. The proposed combinations of these medicines could potentially present a safety risk, since most of these medicines have the potential to cause numerous side or toxic effects, even when used in monotherapy. Thus, the aim of this study was to review and evaluate the literature data on the toxicity of the selected individual drugs (ritonavir, lopinavir, remdesivir, chloroquine, and umifenovir) and the available clinical data concerning the possible adverse effects of the selected drug combinations (lopinavir/ritonavir + umifenovir, lopinavir/ritonavir + interferon β, chloroquine + remdesivir, and chloroquine + azithromycin). The most often reported toxic effects of these medicines such as hepatotoxicity, retinal damage, nephrotoxicity, and cardiotoxicity, together with the fact that the health status of the patients with COVID-19 disease is often complicated by co-existing illnesses and therapy implicate that the decision on the therapeutic strategy should be made with caution.
Collapse
Affiliation(s)
- Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Lazar Grahovac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Luka Manić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia
| | - Marijana Curcic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade, 11221, Belgrade, Serbia.
| | | |
Collapse
|
21
|
Kumar V, Boobis AR, Moretto A. Test and Risk Assessment Strategies for combined exposure to multiple chemicals. Food Chem Toxicol 2020; 144:111607. [PMID: 32687857 DOI: 10.1016/j.fct.2020.111607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| | - A R Boobis
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Angelo Moretto
- Dipartimento di Scienze Biochimiche e Cliniche, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
22
|
Deepika D, Sharma RP, Schuhmacher M, Kumar V. An integrative translational framework for chemical induced neurotoxicity – a systematic review. Crit Rev Toxicol 2020; 50:424-438. [DOI: 10.1080/10408444.2020.1763253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deepika Deepika
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Raju Prasad Sharma
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
- IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|