1
|
Jochum K, Miccoli A, Sommersdorf C, Poetz O, Braeuning A, Tralau T, Marx-Stoelting P. Comparative case study on NAMs: towards enhancing specific target organ toxicity analysis. Arch Toxicol 2024; 98:3641-3658. [PMID: 39207506 PMCID: PMC11489238 DOI: 10.1007/s00204-024-03839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Traditional risk assessment methodologies in toxicology have relied upon animal testing, despite concerns regarding interspecies consistency, reproducibility, costs, and ethics. New Approach Methodologies (NAMs), including cell culture and multi-level omics analyses, hold promise by providing mechanistic information rather than assessing organ pathology. However, NAMs face limitations, like lacking a whole organism and restricted toxicokinetic interactions. This is an inherent challenge when it comes to the use of omics data from in vitro studies for the prediction of organ toxicity in vivo. One solution in this context are comparative in vitro-in vivo studies as they allow for a more detailed assessment of the transferability of the respective NAM data. Hence, hepatotoxic and nephrotoxic pesticide active substances were tested in human cell lines and the results subsequently related to the biology underlying established effects in vivo. To this end, substances were tested in HepaRG and RPTEC/tERT1 cells at non-cytotoxic concentrations and analyzed for effects on the transcriptome and parts of the proteome using quantitative real-time PCR arrays and multiplexed microsphere-based sandwich immunoassays, respectively. Transcriptomics data were analyzed using three bioinformatics tools. Where possible, in vitro endpoints were connected to in vivo observations. Targeted protein analysis revealed various affected pathways, with generally fewer effects present in RPTEC/tERT1. The strongest transcriptional impact was observed for Chlorotoluron in HepaRG cells (increased CYP1A1 and CYP1A2 expression). A comprehensive comparison of early cellular responses with data from in vivo studies revealed that transcriptomics outperformed targeted protein analysis, correctly predicting up to 50% of in vivo effects.
Collapse
Affiliation(s)
- Kristina Jochum
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andrea Miccoli
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council, Ancona, Italy
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Oliver Poetz
- Signatope GmbH, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
2
|
Heusinkveld HJ, Zwart EP, de Haan A, Braeuning A, Alarcan J, van der Ven LTM. The zebrafish embryo as a model for chemically-induced steatosis: A case study with three pesticides. Toxicology 2024; 508:153927. [PMID: 39151607 DOI: 10.1016/j.tox.2024.153927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
There is an increasing incidence and prevalence of fatty liver disease in the western world, with steatosis as the most prevalent variant. Known causes of steatosis include exposure to food-borne chemicals, and overconsumption of alcohol, carbohydrates and fat, and it is a well-known side effect of certain pharmaceuticals such as tetracycline, amiodarone and tamoxifen (drug-induced hepatic steatosis). Mechanistic knowledge on chemical-induced steatosis has greatly evolved and has been organized into adverse outcome pathways (AOPs) describing the chain of events from first molecular interaction of a substance with a biological system to the adverse outcome, intrahepatic lipid accumulation. In this study, three known steatosis-inducing pesticides (imazalil, clothianidin, and thiacloprid) were tested for their ability to induce hepatic triglyceride accumulation in the zebrafish (Danio rerio) embryo (ZFE) at 5 days post fertilization, both as single compounds and equipotent binary mixtures. The results indicate that the ZFE is very well applicable as a higher tier testing model to confirm effects in downstream key events in AOPs, that is, chemically-induced triglyceride accumulation in the whole organism and production of visible steatosis. Moreover, dose addition could be concluded for binary mixtures of substances with similar and with dissimilar modes of action.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Angela de Haan
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
3
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sadrabadi F, Alarcan J, Sprenger H, Braeuning A, Buhrke T. Impact of perfluoroalkyl substances (PFAS) and PFAS mixtures on lipid metabolism in differentiated HepaRG cells as a model for human hepatocytes. Arch Toxicol 2024; 98:507-524. [PMID: 38117326 PMCID: PMC10794458 DOI: 10.1007/s00204-023-03649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants with various adverse health effects in humans including disruption of lipid metabolism. Aim of the present study was to elucidate the molecular mechanisms of PFAS-mediated effects on lipid metabolism in human cells. Here, we examined the impact of a number of PFAS (PFOS, PFOA, PFNA, PFDA, PFHxA, PFBA, PFHxS, PFBS, HFPO-DA, and PMPP) and of some exposure-relevant PFAS mixtures being composed of PFOS, PFOA, PFNA and PFHxS on lipid metabolism in human HepaRG cells, an in vitro model for human hepatocytes. At near cytotoxic concentrations, the selected PFAS and PFAS mixtures induced triglyceride accumulation in HepaRG cells and consistently affected the expression of marker genes for steatosis, as well as PPARα target genes and genes related to lipid and cholesterol metabolism, pointing to common molecular mechanisms of PFAS in disrupting cellular lipid and cholesterol homeostasis. PPARα activation was examined by a transactivation assay in HEK293T cells, and synergistic effects were observed for the selected PFAS mixtures at sum concentrations higher than 25 µM, whereas additivity was observed at sum concentrations lower than 25 µM. Of note, any effect observed in the in vitro assays occurred at PFAS concentrations that were at least four to five magnitudes above real-life internal exposure levels of the general population.
Collapse
Affiliation(s)
- Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
5
|
Peslalz P, Grieshober M, Kraus F, Bleisch A, Izzo F, Lichtenstein D, Hammer H, Vorbach A, Momoi K, Zanger UM, Brötz-Oesterhelt H, Braeuning A, Plietker B, Stenger S. Unnatural Endotype B PPAPs as Novel Compounds with Activity against Mycobacterium tuberculosis. J Med Chem 2023; 66:15073-15083. [PMID: 37822271 DOI: 10.1021/acs.jmedchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Pre-SARS-CoV-2, tuberculosis was the leading cause of death by a single pathogen. Repetitive exposure of Mycobacterium tuberculosis(Mtb) supported the development of multidrug- and extensively drug-resistant strains, demanding novel drugs. Hyperforin, a natural type A polyprenylated polycyclic acylphloroglucinol from St. John's wort, exhibits antidepressant and antibacterial effects also against Mtb. Yet, Hyperforin's instability limits the utility in clinical practice. Here, we present photo- and bench-stable type B PPAPs with enhanced antimycobacterial efficacy. PPAP22 emerged as a lead compound, further improved as the sodium salt PPAP53, drastically enhancing solubility. PPAP53 inhibits the growth of virulent extracellular and intracellular Mtb without harming primary human macrophages. Importantly, PPAP53 is active against drug-resistant strains of Mtb. Furthermore, we analyzed the in vitro properties of PPAP53 in terms of CYP induction and the PXR interaction. Taken together, we introduce type PPAPs as a new class of antimycobacterial compounds, with remarkable antibacterial activity and favorable biophysical properties.
Collapse
Affiliation(s)
- Philipp Peslalz
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
| | - Mark Grieshober
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Frank Kraus
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Anton Bleisch
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
| | - Flavia Izzo
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Helen Hammer
- SIGNATOPE GmbH, Markwiesenstr. 55, Reutlingen 72770, Germany
| | - Andreas Vorbach
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen 72076, Germany
| | - Kyoko Momoi
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Auerbachstr. 112, University of Tübingen, 70376 Stuttgart, Tübingen 72076, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Auerbachstr. 112, University of Tübingen, 70376 Stuttgart, Tübingen 72076, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen 72076, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Bernd Plietker
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| |
Collapse
|
6
|
Karaca M, Fritsche K, Lichtenstein D, Vural Ö, Kreuzer K, Alarcan J, Braeuning A, Marx-Stoelting P, Tralau T. Adverse outcome pathway-based analysis of liver steatosis in vitro using human liver cell lines. STAR Protoc 2023; 4:102500. [PMID: 37616165 PMCID: PMC10463250 DOI: 10.1016/j.xpro.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Here, we present an in vitro test battery to analyze chemicals for their potential to induce liver triglyceride accumulation, a hallmark of liver steatosis. We describe steps for using HepG2 and HepaRG human hepatoma cells in conjunction with a combination of several in vitro assays covering the different molecular initiating events and key events of the respective adverse outcome pathway. This protocol is suitable for assessing single substance effects as well as mixtures allowing their classification as steatotic or non-steatotic. For complete details on the use and execution of this protocol, please refer to Luckert et al. (2018),1 Lichtenstein et al. (2020),2 and Knebel et al. (2019).3.
Collapse
Affiliation(s)
- Mawien Karaca
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Özlem Vural
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Katrin Kreuzer
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623 Berlin, Germany.
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A, Grafström R, Harrill J, Hartung T, Herzler M, Kass GEN, Kleinstreuer N, Leist M, Luijten M, Marx-Stoelting P, Poetz O, van Ravenzwaay B, Roggeband R, Rogiers V, Roth A, Sanders P, Thomas RS, Marie Vinggaard A, Vinken M, van de Water B, Luch A, Tralau T. New approach methodologies in human regulatory toxicology - Not if, but how and when! ENVIRONMENT INTERNATIONAL 2023; 178:108082. [PMID: 37422975 PMCID: PMC10858683 DOI: 10.1016/j.envint.2023.108082] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).
Collapse
Affiliation(s)
| | - Andrea Miccoli
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany; National Research Council, Ancona, Italy
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | | | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian Desaintes
- European Commission (EC), Directorate General for Research and Innovation (RTD), Brussels, Belgium
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development (OECD), Environment Directorate, Paris, France
| | | | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health Baltimore MD USA, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Nicole Kleinstreuer
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), Durham, USA
| | - Marcel Leist
- CAAT‑Europe and Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Oliver Poetz
- NMI Natural and Medical Science Institute at the University of Tuebingen, Reutlingen, Germany; SIGNATOPE GmbH, Reutlingen, Germany
| | | | - Rob Roggeband
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Procter and Gamble Services Company NV/SA, Strombeek-Bever, Belgium
| | - Vera Rogiers
- Scientific Committee on Consumer Safety (SCCS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pascal Sanders
- Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France France
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | | | | | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
8
|
Kubickova B, Jacobs MN. Development of a reference and proficiency chemical list for human steatosis endpoints in vitro. Front Endocrinol (Lausanne) 2023; 14:1126880. [PMID: 37168981 PMCID: PMC10166001 DOI: 10.3389/fendo.2023.1126880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023] Open
Abstract
The most prevalent liver disease in humans is non-alcoholic fatty liver disease, characterised by excessive hepatic fat accumulation, or steatosis. The western diet and a sedentary lifestyle are considered to be major influences, but chemical exposure may also play a role. Suspected environmental chemicals of concern include pesticides, plasticizers, metals, and perfluorinated compounds. Here we present a detailed literature analysis of chemicals that may (or may not) be implicated in lipid accumulation in the liver, to provide a basis for developing and optimizing human steatosis-relevant in vitro test methods. Independently collated and reviewed reference and proficiency chemicals are needed to assist in the test method development where an assay is intended to ultimately be taken forward for OECD Test Guideline development purposes. The selection criteria and considerations required for acceptance of proficiency chemical selection for OECD Test Guideline development. (i.e., structural diversity, range of activity including negatives, relevant chemical sectors, global restrictions, etc.) is described herein. Of 160 chemicals initially screened for inclusion, 36 were prioritized for detailed review. Based on the selection criteria and a weight-of-evidence basis, 18 chemicals (9 steatosis inducers, 9 negatives), including some environmental chemicals of concern, were ranked as high priority chemicals to assist in vitro human steatosis test method optimisation and proficiency testing, and inform potential subsequent test method (pre-)validation.
Collapse
Affiliation(s)
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
9
|
Müller FA, Stamou M, Englert FH, Frenzel O, Diedrich S, Suter-Dick L, Wambaugh JF, Sturla SJ. In vitro to in vivo extrapolation and high-content imaging for simultaneous characterization of chemically induced liver steatosis and markers of hepatotoxicity. Arch Toxicol 2023; 97:1701-1721. [PMID: 37046073 PMCID: PMC10182956 DOI: 10.1007/s00204-023-03490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemically induced steatosis is characterized by lipid accumulation associated with mitochondrial dysfunction, oxidative stress and nucleus distortion. New approach methods integrating in vitro and in silico models are needed to identify chemicals that may induce these cellular events as potential risk factors for steatosis and associated hepatotoxicity. In this study we used high-content imaging for the simultaneous quantification of four cellular markers as sentinels for hepatotoxicity and steatosis in chemically exposed human liver cells in vitro. Furthermore, we evaluated the results with a computational model for the extrapolation of human oral equivalent doses (OED). First, we tested 16 reference chemicals with known capacities to induce cellular alterations in nuclear morphology, lipid accumulation, mitochondrial membrane potential and oxidative stress. Then, using physiologically based pharmacokinetic modeling and reverse dosimetry, OEDs were extrapolated from data of any stimulated individual sentinel response. The extrapolated OEDs were confirmed to be within biologically relevant exposure ranges for the reference chemicals. Next, we tested 14 chemicals found in food, selected from thousands of putative chemicals on the basis of structure-based prediction for nuclear receptor activation. Amongst these, orotic acid had an extrapolated OED overlapping with realistic exposure ranges. Thus, we were able to characterize known steatosis-inducing chemicals as well as data-scarce food-related chemicals, amongst which we confirmed orotic acid to induce hepatotoxicity. This strategy addresses needs of next generation risk assessment and can be used as a first chemical prioritization hazard screening step in a tiered approach to identify chemical risk factors for steatosis and hepatotoxicity-associated events.
Collapse
Affiliation(s)
- Fabrice A Müller
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Marianna Stamou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Felix H Englert
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Ole Frenzel
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Sabine Diedrich
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4001, Basel, Switzerland
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland.
| |
Collapse
|
10
|
Fritsche K, Ziková-Kloas A, Marx-Stoelting P, Braeuning A. Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification. Int J Mol Sci 2023; 24:ijms24032686. [PMID: 36769005 PMCID: PMC9916672 DOI: 10.3390/ijms24032686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed.
Collapse
Affiliation(s)
- Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Andrea Ziková-Kloas
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-18412-25100
| |
Collapse
|
11
|
Knebel C, Süssmuth RD, Hammer HS, Braeuning A, Marx-Stoelting P. New Approach Methods for Hazard Identification: A Case Study with Azole Fungicides Affecting Molecular Targets Associated with the Adverse Outcome Pathway for Cholestasis. Cells 2022; 11:cells11203293. [PMID: 36291160 PMCID: PMC9600068 DOI: 10.3390/cells11203293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Triazole fungicides such as propiconazole (Pi) or tebuconazole (Te) show hepatotoxicity in vivo, e.g., hypertrophy and vacuolization of liver cells following interaction with nuclear receptors such as PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor). Accordingly, azoles affect gene expression associated with these adverse outcomes in vivo but also in human liver cells in vitro. Additionally, genes indicative of liver cholestasis are affected in vivo and in vitro. We therefore analyzed the capability of Pi and Te to cause cholestasis in an adverse outcome pathway (AOP)-driven approach in hepatic cells of human origin in vitro, considering also previous in vivo studies. Bile salt export pump (BSEP) activity assays confirmed that both azoles are weak inhibitors of BSEP. They alternate the expression of various cholestasis-associated target genes and proteins as well as the mitochondrial membrane function. Published in vivo data, however, demonstrate that neither Pi nor Te cause cholestasis in rodent bioassays. This discrepancy can be explained by the in vivo concentrations of both azoles being well below their EC50 for BSEP inhibition. From a regulatory perspective, this illustrates that toxicogenomics and human in vitro models are valuable tools to detect the potential of a substance to cause a specific type of toxicity. To come to a sound regulatory conclusion on the in vivo relevance of such a finding, results will have to be considered in a broader context also including toxicokinetics in a weight-of-evidence approach.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Helen S. Hammer
- Signatope GmbH, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| |
Collapse
|
12
|
El Hamdaoui Y, Zheng F, Fritz N, Ye L, Tran MA, Schwickert K, Schirmeister T, Braeuning A, Lichtenstein D, Hellmich UA, Weikert D, Heinrich M, Treccani G, Schäfer MKE, Nowak G, Nürnberg B, Alzheimer C, Müller CP, Friedland K. Analysis of hyperforin (St. John's wort) action at TRPC6 channel leads to the development of a new class of antidepressant drugs. Mol Psychiatry 2022; 27:5070-5085. [PMID: 36224261 PMCID: PMC9763113 DOI: 10.1038/s41380-022-01804-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023]
Abstract
St. John's wort is an herb, long used in folk medicine for the treatment of mild depression. Its antidepressant constituent, hyperforin, has properties such as chemical instability and induction of drug-drug interactions that preclude its use for individual pharmacotherapies. Here we identify the transient receptor potential canonical 6 channel (TRPC6) as a druggable target to control anxious and depressive behavior and as a requirement for hyperforin antidepressant action. We demonstrate that TRPC6 deficiency in mice not only results in anxious and depressive behavior, but also reduces excitability of hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Using electrophysiology and targeted mutagenesis, we show that hyperforin activates the channel via a specific binding motif at TRPC6. We performed an analysis of hyperforin action to develop a new antidepressant drug that uses the same TRPC6 target mechanism for its antidepressant action. We synthesized the hyperforin analog Hyp13, which shows similar binding to TRPC6 and recapitulates TRPC6-dependent anxiolytic and antidepressant effects in mice. Hyp13 does not activate pregnan-X-receptor (PXR) and thereby loses the potential to induce drug-drug interactions. This may provide a new approach to develop better treatments for depression, since depression remains one of the most treatment-resistant mental disorders, warranting the development of effective drugs based on naturally occurring compounds.
Collapse
Affiliation(s)
- Yamina El Hamdaoui
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Fang Zheng
- grid.5330.50000 0001 2107 3311Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nikolas Fritz
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Lian Ye
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Mai Anh Tran
- grid.9613.d0000 0001 1939 2794Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Chemistry and Earth Science, Friedrich Schiller University Jena, Jena, Germany ,grid.5802.f0000 0001 1941 7111Biochemistry, Department of Chemistry, Johannes-Gutenberg Universität Mainz, Mainz, Germany
| | - Kevin Schwickert
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Tanja Schirmeister
- grid.5802.f0000 0001 1941 7111Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany
| | - Albert Braeuning
- grid.417830.90000 0000 8852 3623Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- grid.417830.90000 0000 8852 3623Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Ute A. Hellmich
- grid.9613.d0000 0001 1939 2794Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Chemistry and Earth Science, Friedrich Schiller University Jena, Jena, Germany ,grid.5802.f0000 0001 1941 7111Biochemistry, Department of Chemistry, Johannes-Gutenberg Universität Mainz, Mainz, Germany ,grid.517250.4Cluster of Excellence “Balance of the Microverse”, Friedrich-Schiller-Uniersität Jena, Jena, Germany ,grid.7839.50000 0004 1936 9721Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, Germany
| | - Dorothee Weikert
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Heinrich
- grid.5330.50000 0001 2107 3311Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Giulia Treccani
- grid.410607.4Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany ,grid.410607.4Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K. E. Schäfer
- grid.410607.4Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131 Mainz, Germany
| | - Gabriel Nowak
- grid.5522.00000 0001 2162 9631Department of Pharmacobiology, Jagiellonian University Medical College, Krakow, Poland
| | - Bernd Nürnberg
- grid.10392.390000 0001 2190 1447Department of Pharmacology, Experimental Therapy & Toxicology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Christian Alzheimer
- grid.5330.50000 0001 2107 3311Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian P. Müller
- grid.5330.50000 0001 2107 3311Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.11875.3a0000 0001 2294 3534Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Kristina Friedland
- Pharmacology & Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes-Gutenberg Universität Mainz (JGU), Mainz, Germany.
| |
Collapse
|
13
|
Lichtenstein D, Mentz A, Sprenger H, Schmidt FF, Albaum SP, Kalinowski J, Planatscher H, Joos TO, Poetz O, Braeuning A. A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology 2021; 460:152892. [PMID: 34371104 DOI: 10.1016/j.tox.2021.152892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
While real-life exposure occurs to complex chemical mixtures, toxicological risk assessment mostly focuses on individual compounds. There is an increasing demand for in vitro tools and strategies for mixture toxicity analysis. Based on a previously established set of hepatotoxicity marker genes, we analyzed mixture effects of non-cytotoxic concentrations of different pesticides in exposure-relevant binary mixtures in human HepaRG hepatocarcinoma cells using targeted transcriptomics. An approach for mixture analysis at the level of a complex endpoint such as a transcript pattern is presented, including mixture design based on relative transcriptomic potencies and similarities. From a mechanistic point of view, goal of the study was to evaluate combinations of chemicals with varying degrees of similarity in order to determine whether differences in mechanisms of action lead to different mixtures effects. Using a model deviation ratio-based approach for assessing mixture effects, it was revealed that most data points are consistent with the assumption of dose addition. A tendency for synergistic effects was only observed at high concentrations of some combinations of the test compounds azoxystrobin, cyproconazole, difenoconazole, propiconazole and thiacloprid, which may not be representative of human real-life exposure. In summary, the findings of our study suggest that, for the pesticide mixtures investigated, risk assessment based on the general assumption of dose addition can be considered sufficiently protective for consumers. The way of data analysis presented in this paper can pave the way for a more comprehensive use of multi-gene expression data in experimental studies related to mixture toxicity.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Bielefeld, Germany
| | - Heike Sprenger
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | | | | | | | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany.
| |
Collapse
|
14
|
Lichtenstein D, Lasch A, Alarcan J, Mentz A, Kalinowski J, Schmidt FF, Pötz O, Marx-Stoelting P, Braeuning A. An eight-compound mixture but not corresponding concentrations of individual chemicals induces triglyceride accumulation in human liver cells. Toxicology 2021; 459:152857. [PMID: 34273450 DOI: 10.1016/j.tox.2021.152857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
In real life, organisms are exposed to complex mixtures of chemicals at low concentration levels, whereas research on toxicological effects is mostly focused on single compounds at comparably high doses. Mixture effects deviating from the assumption of additivity, especially synergistic effects, are of concern. In an adverse outcome pathway (AOP)-guided manner, we analyzed the accumulation of triglycerides in human HepaRG liver cells by a mixture of eight steatotic chemicals (amiodarone, benzoic acid, cyproconazole, flusilazole, imazalil, prochloraz, propiconazole and tebuconazole), each present below its individual effect concentration at 1-3 μM. Pronounced and significantly enhanced triglyceride accumulation was observed with the mixture, and similar effects were seen at the level of pregnane-X-receptor activation, a molecular initiating event leading to hepatic steatosis. Transcript pattern analysis indicated subtle pro-steatotic changes at low compound concentrations, which did not exert measurable effects on cellular triglycerides. Mathematical modeling of mixture effects indicated potentially more than additive behavior using a model for compounds with similar modes of action. The present data underline the usefulness of AOP-guided in vitro testing for the identification of mixture effects and highlight the need for further research on chemical mixtures and harmonization of data interpretation of mixture effects.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alexandra Lasch
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- University of Bielefeld, CeBiTec, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany; Signatope GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany; Signatope GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
15
|
Schmidt FF, Lichtenstein D, Planatscher H, Mentz A, Kalinowski J, Steinhilber AE, Joos TO, Braeuning A, Pötz O. Pesticide mixture effects on liver protein abundance in HepaRG cells. Toxicology 2021; 458:152839. [PMID: 34153374 DOI: 10.1016/j.tox.2021.152839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Toxicological effects of chemicals are mostly tested individually. However, consumers encounter exposure to complex mixtures, for example multiple pesticide residues, by consuming food such as crops, fruits or vegetables. Currently, more than 450 active substances are approved in the European Union, and there is little data on effects after combined exposure to several pesticides. Toxicological animal studies would increase enormously, if pesticide combinations had to be analyzed in vivo. Therefore, in vitro methods addressing this issue are needed. We have developed 32 immunoaffinity-based mass spectrometry assays to investigate the impact of hepatotoxic active substances on liver proteins in human HepaRG cells. Five compounds were selected based on their (dis)similar capability to modulate protein levels, and on their combined use in commercially available formulations. Four binary mixtures were prepared from these five substances and tested in different concentrations over three time points. We applied a novel statistical method to describe deviations from additivity and to detect antagonistic and synergistic effects. The results regarding the abundance of hepatotoxicity-related proteins showed additive behavior for 1323 out of 1427 endpoints tested, while 104 combinatorial effects deviating from additivity, such as antagonism or synergism were observed.
Collapse
Affiliation(s)
- Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Hannes Planatscher
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Bielefeld, Germany
| | | | - Andreas E Steinhilber
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; SIGNATOPE GmbH, 72770 Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; SIGNATOPE GmbH, 72770 Reutlingen, Germany.
| |
Collapse
|
16
|
Saquib Q, Siddiqui MA, Ansari SM, Alwathnani HA, Musarrat J, Al-Khedhairy AA. Cytotoxicity and genotoxicity of methomyl, carbaryl, metalaxyl, and pendimethalin in human umbilical vein endothelial cells. J Appl Toxicol 2021; 41:832-846. [PMID: 33427323 DOI: 10.1002/jat.4139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Pesticides have adverse effects on the cellular functionality, which may trigger myriad of health consequences. However, pesticides-mediated toxicity in the endothelial cells (ECs) is still elusive. Hence, in this study, we have used human umbilical vein endothelial cells (HUVECs) as a model to quantify the cytotoxicity and genotoxicity of four pesticides (methomyl, carbaryl, metalaxyl, and pendimethalin). In the MTT assay, HUVECs exposed to methomyl, carbaryl, metalaxyl, and pendimethalin demonstrated significant proliferation inhibition only at higher concentrations (500 and 1000 μM). Likewise, neutral red uptake (NRU) assay also showed proliferation inhibition of HUVECs at 500 and 1000 μM by the four pesticides, confirming lysosomal fragility. HUVECs exposed to the four pesticides significantly increased the level of intracellular reactive oxygen species (ROS). Comet assay and flow cytometric data exhibited DNA damage and apoptotic cell death in HUVECs after 24 h of exposure with methomyl, metalaxyl, carbaryl, and pendimethalin. This is a first study on HUVECs signifying the cytotoxic-genotoxic and apoptotic potential of carbamate insecticides (methomyl and carbaryl), fungicide (metalaxyl), and herbicide (pendimethalin). Overall, these pesticides may affect ECs functions and angiogenesis; nonetheless, mechanistic studies are warranted from the perspective of vascular biology using in vivo test models.
Collapse
Affiliation(s)
- Quaiser Saquib
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood A Siddiqui
- DNA Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha M Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hend A Alwathnani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Musarrat
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | |
Collapse
|