1
|
Yue Z, Zhao F, Guo Y, Zhang Y, Chen Y, He L, Li L. Lactobacillus reuteri JCM 1112 ameliorates chronic acrylamide-induced glucose metabolism disorder via the bile acid-TGR5-GLP-1 axis and modulates intestinal oxidative stress in mice. Food Funct 2024; 15:6450-6458. [PMID: 38804210 DOI: 10.1039/d4fo01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acrylamide (AA) is a toxic food contaminant that has been reported to cause glucose metabolism disorders (GMD) at high doses. However, it is unclear whether chronic low-dose AA can induce GMD and whether probiotics can alleviate AA-induced GMD. Here, C57BL/6N mice were orally administered with 5 mg per kg bw AA for 10 weeks, followed by another 3 weeks of glucagon-like peptide-1 (GLP-1) analogue (dulaglutide) treatment. Chronic low-dose AA exposure increased the blood glucose level and decreased serum insulin and GLP-1 levels, whereas dulaglutide treatment decreased the blood glucose level and increased the serum insulin level in AA-exposed mice. Then, mice were administered with AA or AA + INT-777 (Takeda G-protein-coupled receptor 5 (TGR5) agonist) for 10 weeks. INT-777 treatment reversed AA-induced downregulation of ileal TGR5 and proglucagon (PG) gene expression and decreased the serum GLP-1 level. These findings indicated that chronic low-dose AA induced GMD via inhibiting the TGR5-GLP-1 axis. Finally, mice were administered with AA for 10 weeks, followed by another 3 weeks of Lactobacillus reuteri JCM 1112 supplementation. L. reuteri supplementation significantly increased serum glucose, insulin and GLP-1 levels, upregulated ileal TGR5 and PG gene expression, and effectively restored the imbalance of bile acid (BA) metabolism in AA-exposed mice, demonstrating that L. reuteri ameliorates chronic AA-induced GMD via the BA-TGR5-GLP-1 axis. In addition, L. reuteri significantly enhanced ileal superoxide dismutase and catalase activities and total antioxidant capacity, thereby preventing chronic AA-induced oxidative stress. Our research provides new insights into the GMD toxicity of chronic low-dose AA and confirms the role of probiotics in alleviating AA-induced GMD.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Feiyue Zhao
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yuqi Guo
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yidan Zhang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Le He
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Lili Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
2
|
Guo Y, Zhao T, Yao X, Ji H, Luo Y, Okeke ES, Mao G, Feng W, Chen Y, Ding Y, Wu X, Yang L. Acrylamide-Aggravated Liver Injury by Activating Endoplasmic Reticulum Stress in Female Mice with Diabetes. Chem Res Toxicol 2024; 37:731-743. [PMID: 38634348 DOI: 10.1021/acs.chemrestox.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xiongyi Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yingbiao Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Yangyang Ding
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| |
Collapse
|
3
|
Guo Y, Mao H, Gong D, Zhang N, Gu D, Okeke ES, Feng W, Chen Y, Mao G, Zhao T, Yang L. Differential susceptibility of BRL cells with/without insulin resistance and the role of endoplasmic reticulum stress signaling pathway in response to acrylamide-exposure toxicity effects in vitro. Toxicology 2024; 504:153800. [PMID: 38604440 DOI: 10.1016/j.tox.2024.153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Acrylamide (ACR) is an endogenous food contaminant, high levels of ACR have been detected in a large number of foods, causing widespread concern. Since different organism states respond differently to the toxic effects of pollutants, this study establishes an insulin-resistant BRL cell model to explore the differential susceptibility of BRL cells with/without insulin resistance in response to acrylamide-exposure (0.0002, 0.02, or 1 mM) toxicity effects and its mechanism. The results showed that ACR exposure decreased glucose uptake and increased intracellular lipid levels by promoting the expression of fatty acid synthesis, transport, and gluconeogenesis genes and inhibiting the expression of fatty acid metabolism genes, thereby further exacerbating disorders of gluconeogenesis and lipid metabolism in insulin-resistant BRL cells. Simultaneously, its exposure also exacerbated BRL cells with/without insulin-resistant damage. Meanwhile, insulin resistance significantly raised susceptibility to BRL cell response to ACR-induced toxicity. Furthermore, ACR exposure further activated the endoplasmic reticulum stress (ERS) signaling pathway (promoting phosphorylation of PERK, eIF-2α, and IRE-1α) and the apoptosis signaling pathway (activating Caspase-3 and increasing the Bax/Bcl-2 ratio) in BRL cells with insulin-resistant, which were also attenuated after ROS scavenging or ERS signaling pathway blockade. Overall results suggested that ACR evokes a severer toxicity effect on BRL cells with insulin resistance through the overactivation of the ERS signaling pathway.
Collapse
Affiliation(s)
- Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Houlin Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Danni Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Dandan Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu 410001, Nigeria
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Wang TB, He Y, Li RC, Yu YX, Liu Y, Qi ZQ. Rosmarinic acid mitigates acrylamide induced neurotoxicity via suppressing endoplasmic reticulum stress and inflammation in mouse hippocampus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155448. [PMID: 38394736 DOI: 10.1016/j.phymed.2024.155448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Acrylamide (ACR) is a widely used compound that is known to be neurotoxic to both experimental animals and humans, causing nerve damage. The widespread presence of ACR in the environment and food means that the toxic risk to human health can no longer be ignored. Rosmarinic acid (RA), a natural polyphenolic compound extracted from the perilla plant, exhibits anti-inflammatory, antioxidant, and other properties. It has also been demon strated to possess promising potential in neuroprotection. However, its role and potential mechanism in treating ACR induced neurotoxicity are still elusive. PURPOSE This study explores whether RA can improve ACR induced neurotoxicity and its possible mechanism. METHODS The behavioral method was used to study RA effect on ACR exposed mice's neurological function. We studied its potential mechanism through metabolomics, Nissl staining, HE staining, immunohistochemical analysis, and Western blot. RESULTS RA pretreatment reversed the increase in mouse landing foot splay and decrease in spontaneous activity caused by 3 weeks of exposure to 50 mg/kg/d ACR. Further experiments demonstrated that RA could prevent ACR induced neuronal apoptosis, significantly downregulate nuclear factor-κB and tumor necrosis factor-α expression, and inhibit NOD-like receptor protein 3 inflammasome activation, thereby reducing inflammation as confirmed by metabolomics results. Additionally, RA treatment prevented endoplasmic reticulum stress (ERS) caused by ACR exposure, as evidenced by the reversal of significant P-IRE1α,TRAF2,CHOP expression increase. CONCLUSION RA alleviates ACR induced neurotoxicity by inhibiting ERS and inflammation. These results provide a deeper understanding of the mechanism of ACR induced neurotoxicity and propose a potential new treatment method.
Collapse
Affiliation(s)
- Tian-Bao Wang
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Ying He
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Rui-Cheng Li
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu-Xi Yu
- Guangxi University Medical College, Nanning, Guangxi 530004, China
| | - Yu Liu
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| | - Zhong-Quan Qi
- Guangxi University Medical College, Nanning, Guangxi 530004, China.
| |
Collapse
|
5
|
Lu J, Su D, Yang Y, Shu M, Wang Y, Zhou X, Yu Q, Li C, Xie J, Chen Y. Disruption of intestinal epithelial permeability in the Co-culture system of Caco-2/HT29-MTX cells exposed individually or simultaneously to acrylamide and ochratoxin A. Food Chem Toxicol 2024; 186:114582. [PMID: 38460668 DOI: 10.1016/j.fct.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1β, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.
Collapse
Affiliation(s)
- Jiawen Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Dan Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ying Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Mengni Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
6
|
Chen C, Liu Y, Shen Y, Zhu L, Yao L, Wang X, Zhang A, Li J, Wu J, Qin L. Rosmarinic acid, the active component of Rubi Fructus, induces apoptosis of SGC-7901 and HepG2 cells through mitochondrial pathway and exerts anti-tumor effect. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3743-3755. [PMID: 37338574 PMCID: PMC10643355 DOI: 10.1007/s00210-023-02552-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Rosmarinic acid (RA) is a well-known phenolic acid widely present in over 160 species of herbal plants and known to exhibit anti-tumor effects on breast, prostate, and colon cancers in vitro. However, its effect and mechanism in gastric cancer and liver cancer are unclear. Moreover, there is no RA report yet in the chemical constituents of Rubi Fructus (RF). In this study, RA was isolated from RF for the first time, and the effect and mechanism of RA on gastric and liver cancers were evaluated using SGC-7901 and HepG2 cells models. The cells were treated with different concentrations of RA (50, 75, and 100 μg/mL) for 48 h, and the effect of RA on cell proliferation was evaluated by the CCK-8 assay. The effect of RA on cell morphology and mobility was observed by inverted fluorescence microscopy, cell apoptosis and cell cycle were determined by flow cytometry, and the expression of apoptosis-related proteins cytochrome C, cleaved caspase-3, Bax, and Bcl-2 was detected by western blotting. The results revealed that, with an increase in the RA concentration, the cell viability, mobility, and Bcl-2 expression decreased, while the apoptosis rate, Bax, cytochrome C, and cleaved caspase-3 expression increased, and SGC-7901 and HepG2 cells could be induced to arrest their cell cycle in the G0/G1 and S phases, respectively. These results together indicate that RA can induce apoptosis of SGC-7901 and HepG2 cells through the mitochondrial pathway. Thus, this study supplements the material basis of the anti-tumor activity of RF and provides an insight into the potential mechanism of RA-inducing apoptosis of gastric cancer SGC-7901 cells and liver cancer HepG2 cells, thereby facilitating further developmental studies on and the utilization of the anti-tumor activity of RF.
Collapse
Affiliation(s)
- Changlun Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yilin Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Yi Shen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Lili Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Lumeng Yao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Xingxing Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Anna Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jiao Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jianjun Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Luping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| |
Collapse
|
7
|
Ding L, Zhu H, Wang K, Huang R, Yu W, Yan B, Zhou B, Wang H, Yang Z, Liu Z, Wang J. Quercetin alleviates cadmium-induced BRL-3A cell apoptosis by inhibiting oxidative stress and the PERK/IRE1α/ATF6 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125790-125805. [PMID: 38001299 DOI: 10.1007/s11356-023-31189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant. The liver is an important metabolic organ in the body and is susceptible to Cd toxicity attacks. Quercetin (Que) is a flavonoid compound with pharmacological activities of scavenging free radicals and antioxidant activity. Previous studies have shown that Que can alleviate Cd caused hepatocyte apoptosis in rats, but the specific mechanism remains unclear. To explore the specific mechanism, we established a model of Cd toxicity and Que rescue in BRL-3A cells and used 4-phenylbutyrate (4-PBA), an endoplasmic reticulum stress (ERS) inhibitor, as positive control. Set up a control group, Cd treatment group, Cd and Que co treatment group, Que treatment group, Cd and 4-PBA co treatment group, and 4-PBA treatment group. Cell Counting Kit-8 (CCK-8) method was employed to measure cell viability. Fluorescence staining was applied to observe cell apoptosis. Flow cytometry was performed to detect reactive oxygen species levels. Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot method was adopted to detect the mRNA and protein expression levels of ERS and apoptosis-related genes. The results showed that compared with the control group, the Cd treated group showed a significant decrease in cell viability (P < 0.01), an increase in intracellular ROS levels, and apoptosis. The mRNA and protein expression levels of ERS and apoptosis related factors such as GRP78, IRE1α, XBP1, ATF6, Caspase-12, Caspase-3 and Bax in the cells were significantly increased (P < 0.01), while the mRNA and protein expression levels of Bcl-2 were significantly reduced (P < 0.01). Compared with the Cd treatment group, the Cd and Que co treatment group and the Cd and 4-PBA co treatment group showed a significant increase in cell viability (P < 0.01), a decrease in intracellular ROS levels, a decrease in cell apoptosis, and a significant decrease in the expression levels of ERS and apoptosis related factors mRNA and protein (P < 0.01), as well as a significant increase in Bcl-2 mRNA and protein expression (P < 0.01). We confirmed that Que could alleviate the apoptosis caused by Cd in BRL-3A cells, and the effects of Que were similar to those of ERS inhibitor.
Collapse
Affiliation(s)
- Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, People's Republic of China
| | - Huali Zhu
- Law Hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Bianhua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, 225009, Yangzhou, People's Republic of China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023, Luoyang, People's Republic of China.
| |
Collapse
|
8
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
9
|
Farag MR, Zizzadoro C, Alagawany M, Abou-Zeid SM, Mawed SA, El Kholy MS, Di Cerbo A, Azzam MM, Mahdy EAA, Khedr MHE, Elhady WM. In ovo protective effects of chicoric and rosmarinic acids against Thiacloprid-induced cytotoxicity, oxidative stress, and growth retardation on newly hatched chicks. Poult Sci 2023; 102:102487. [PMID: 36739798 PMCID: PMC9932119 DOI: 10.1016/j.psj.2023.102487] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Thiacloprid (TH) is a neonicotinoid insecticide employed in agriculture to protect fruits and vegetables against different insects. It showed different deleterious effects on the general health of non-target organisms including birds and animals, however, its developmental toxicity has yet to be fully elucidated. Chicoric (CA) and rosmarinic (RA) acids are polyphenolic compounds with a wide range of beneficial biological activities. In this study, the possible protective effects of CA and RA were investigated in chick embryos exposed in ovo to TH (1µg/egg) with or without CA (100 µg/egg) or RA (100 µg/egg) co-exposure. TH reduced the hatchling body weight, body weight/egg weight, and relative weight of bursa of Fabricius in the one-day-old hatchlings. Examination of the 7-day-old chicks revealed a decline in feed intake, daily weight gain, feed conversion ratio (FCR), and plasma levels of T3, T4, and growth hormone. Serum ALT, AST activities, and total cholesterol levels showed significant elevations. Hepatic MDA was increased with a reduction in SOD activity and GSH level and downregulation of the liver SOD and GST gene expression pattern. Serum IgG and IgM levels were reduced, and various histopathological alterations were noticed in the liver. Co-administration of CA or RA with TH mitigated the toxic effects on hatchlings. When both CA and RA are combined, they present a synergistic protective effect. CA and RA can be used as protective agents against TH toxicity as they improve growth performance and have hepatoprotective and immunostimulant effects in newly hatched chicks.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Claudia Zizzadoro
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Italy
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Shimaa M Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 6012201, Egypt
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S El Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Eman A A Mahdy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Mariam H E Khedr
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Walaa M Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
10
|
Ozturk I, Elbe H, Bicer Y, Karayakali M, Onal MO, Altinoz E. Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food Chem Toxicol 2023; 174:113658. [PMID: 36780936 DOI: 10.1016/j.fct.2023.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Acrylamide (AA) is formed in some foods by the cooking process at high temperatures, and it could be a carcinogen in humans and rodents. The purpose of the current study was to reveal the possible protective effects of melatonin against AA-induced hepatic oxidative stress, hepatic inflammation, and hepatocellular proliferation in pinealectomized rats. Hence, the sham and pinealectomized rats were consecutively given AA alone (25 mg/kg) or with melatonin (10 mg/kg) for 21 days. Melatonin acts as an antioxidant, anti-inflammatory, and antiapoptotic agent and introduces as a therapeutic strategy for AA-induced hepatotoxicity. Melatonin supplementation reduced AA-caused liver damage by decreasing the serum AST, ALT, and ALP levels. Melatonin raised the activities of SOD and CAT and levels of GSH and suppressed hepatic inflammation (TNF-α) and hepatic oxidative stress in liver tissues. Moreover, histopathological alterations and the disturbances in immunohistochemical expression of NF-κB and Ki67 were improved after melatonin treatment in AA-induced hepatotoxicity. Overall, our results demonstrate that melatonin supplementation exhibits adequate hepatoprotective effects against hepatotoxicity of AA on pinealectomized rat liver architecture and the tissue function through the equilibration of oxidant/antioxidant status, the regulation of cell proliferation and the suppression of the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ipek Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
11
|
Research Progress of Programmed Cell Death Induced by Acrylamide. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Acrylamide exposure through environment pollution and diet is very common in daily life. With the deepening of the study on the toxicity of acrylamide, it has attracted widespread attention for the effects of acrylamide on multiple organs through affecting a variety of programmed cell death. Multiple studies have shown that acrylamide could exert its toxic effect by inducing programmed cell death, but its specific molecular mechanism is still unclear. In this review, the research on the main forms of programmed cell death (apoptosis, autophagy, and programmed necrosis) induced by acrylamide and their possible mechanisms are reviewed. This review may provide basic data for further research of acrylamide and prevention of its toxicity.
Collapse
|
12
|
Zhang T, Zhang C, Luo Y, Liu S, Li S, Li L, Ma Y, Liu J. Protective effect of rutin on spinal motor neuron in rats exposed to acrylamide and the underlying mechanism. Neurotoxicology 2023; 95:127-135. [PMID: 36657526 DOI: 10.1016/j.neuro.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/28/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The present study aimed to investigate the protective effect of rutin on the injury of spinal motor neuron in rats exposed to acrylamide (ACR) the underlying mechanism. Fifty male Sprague-Dawley rats, aged 7-8 weeks, were randomly divided into control group, ACR group (20 mg/kg), low dose(100 mg/kg), medium dose (200 mg/kg) and high dose(400 mg/kg) rutin groups, ten rats in each group. The rats were given intragastric administration for 21 days. Every week, a neurobehavioral test was conducted. Nissl staining was used to observe the morphological changes in motor neurons in the L4-L6 segment of the spinal cord. Immunohistochemistry was used to identify AChE and ChAT in the rat spinal cord. Western blot was used to identify the expression of AChE, ChAT, P-ERK, ERK, and Nrf2 proteins in the rat spinal cord. The commercial kits were used to detect the presence of SOD, GSH, and LDH in the rat spinal cord. At the start of the second week, the medium and high dosage rutin group's rats' gait scores significantly decreased as compared to those of the ACR group. When rutin dosage was increased, the Nissl staining revealed that Nissl bodies was staining intensified compared to the ACR group. Immunohistochemistry and Western blot analysis revealed that AChE and ChAT expression changed when rutin dose was raised, but P-ERK and Nrf2 expression steadily increased in the spinal cord of rats in the medium and high dose groups compared to the ACR group. In the spinal cord of rats in each dosage group compared to the ACR group, the findings of the oxidative stress indices demonstrated that the expression levels of SOD and GSH rose with the increase of rutin dose, while the expression of LDH reduced with the rise of rutin dose. Rutin has an anti-oxidative impact through up-regulating the expression of P-ERK and Nrf2 proteins in the ERK/Nrf2 pathway, which may be connected to its protective action on motor neurons in the spinal cord of rats exposed to ACR.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunmei Zhang
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuyou Luo
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuping Liu
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siyuan Li
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuxin Ma
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Liu
- Department of Basic Medicine, School of life sciences and biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Navrátilová A, Kovár M, Kopčeková J, Mrázová J, Trakovická A, Požgajová M. Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:139-149. [PMID: 36734814 DOI: 10.1080/03601234.2023.2172287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acrylamide (AA) a widely used industrial chemical is also formed during food processing by the Maillard reaction, which makes its exposure to humans almost unavoidable. In this study, we used Schizosaccharomyces pombe as a model organism to investigate AA toxicity (10 or 20 mM concentration) in eukaryotes. In S. pombe, AA delays cell growth causes oxidative stress by enhancement of ROS production and triggers excitement of the antioxidant defence system resulting in the division arrest. Aronia fruit contains a variety of health-promoting substances with considerable antioxidant potential. Therefore, Aronia juice supplementation was tested to evaluate its protective effect against AA-derived perturbations of the organism. Cell treatment with several Aronia juice concentrations ranging from 0 to 2% revealed the best protective effect of 1 or 2% Aronia juice solutions. Both chosen Aronia juice concentrations alleviated AA toxicity through the improvement of the antioxidant cell capacity and metabolic activity by their strong ROS scavenging property. Efficiency of Aronia juice cell protection is dose dependent as the 2% solution led to significantly higher cellular defence compared with 1%. Due to the high similarity of biological processes of S. pombe with higher eukaryotes, the protective effect of Aronia juice against AA toxicity might also apply to higher organisms.
Collapse
Affiliation(s)
- Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
14
|
Zhang J, Zhu X, Xu W, Hu J, Shen Q, Zhu D, Xu X, Wei Z, Zhou P, Cao Y. Exposure to acrylamide inhibits testosterone production in mice testes and Leydig cells by activating ERK1/2 phosphorylation. Food Chem Toxicol 2023; 172:113576. [PMID: 36565847 DOI: 10.1016/j.fct.2022.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Acrylamide (ACR) is formed during the cooking of starchy foods at high temperatures. Accumulating evidence has shown that ACR has toxic effects, but the mechanism of its potential reproductive toxicity remains unclear. In this study, we observed that ACR caused weight loss in mice. There was no significant difference in the weight of testis and epididymis between the low/medium-dose ACR group and the control group. And the number of epididymal sperms, testicular Leydig cells, serum testosterone level, testicular steroidogenic genes and enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were decreased in the medium/high-dose ACR group. Additional cell experiments showed that the apoptosis rate and the level of reactive oxygen species (ROS) were increased, and testosterone levels and CYP17A1 protein expression were reduced in Leydig cells with treated ACR. Furthermore, the phosphorylation levels of extracellular signal-regulated kinases (ERK1/2) increased significantly; however, there was no significant difference in the levels of serine-threonine protein kinase (AKT) phosphorylation in the testis of mice and Leydig cells treated with ACR. These results suggest that ACR exposure leads to the damage of testicular structure and function and a decline in testosterone synthesis in Leydig cells and mouse testis, which may be related to the activated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wenjuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, 230032, China
| | - Damin Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
15
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
16
|
Cerrah S, Ozcicek F, Gundogdu B, Cicek B, Coban TA, Suleyman B, Altuner D, Bulut S, Suleyman H. Carvacrol prevents acrylamide-induced oxidative and inflammatory liver damage and dysfunction in rats. Front Pharmacol 2023; 14:1161448. [PMID: 37089925 PMCID: PMC10113504 DOI: 10.3389/fphar.2023.1161448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Background: Acrylamide causes hepatotoxicity with the effect of oxidative stress and inflammatory processes. Carvacrol is a monoterpenic phenol with antioxidant and anti-inflammatory properties. Aims: To determine the effects of carvacrol on oxidative liver injury induced by acrylamide administration in rats. Methods: Rats were divided into three groups of six animals each: healthy group acrylamide group (ACR), and acrylamide + carvacrol group (TACR). First, carvacrol (50 mg/kg) was administered intraperitoneally to the CACR group. One hour later, acrylamide (20 mg/kg) was given orally to the ACR and CACR groups. This procedure was performed for 30 days, after which the animals were sacrificed. The malondialdehyde (MDA) and total glutathione (tGSH) levels, total oxidant (TOS) and total antioxidant status (TAS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and nuclear factor kappa b (NF-κB) were measured in the excised liver tissues. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined in blood serum samples. Liver tissues were also examined histopathologically. Results: In the ACR group, malondialdehyde, TOS, ALT, AST levels, and NF-κB, IL-1β, and TNF-α levels were found to be high, and tGSH and total antioxidant status levels were low. In addition, diffuse degenerative changes and necrosis in hepatocytes, and moderate inflammation in the portal region were detected in the liver tissues of the ACR group. While carvacrol prevented the biochemical changes induced by acrylamide, it also alleviated the damage in the histological structure. Conclusion: Carvacrol may be used for liver damage caused by acrylamide.
Collapse
Affiliation(s)
- Serkan Cerrah
- Division of Gastroenterology, Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| | - Fatih Ozcicek
- Department of Internal Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Taha Abdulkadir Coban
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Bahadir Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Türkiye
- *Correspondence: Halis Suleyman,
| |
Collapse
|
17
|
GRP75 Modulates Endoplasmic Reticulum-Mitochondria Coupling and Accelerates Ca 2+-Dependent Endothelial Cell Apoptosis in Diabetic Retinopathy. Biomolecules 2022; 12:biom12121778. [PMID: 36551205 PMCID: PMC9776029 DOI: 10.3390/biom12121778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrial dysfunction play fundamental roles in the pathogenesis of diabetic retinopathy (DR). However, the interrelationship between the ER and mitochondria are poorly understood in DR. Here, we established high glucose (HG) or advanced glycosylation end products (AGE)-induced human retinal vascular endothelial cell (RMEC) models in vitro, as well as a streptozotocin (STZ)-induced DR rat model in vivo. Our data demonstrated that there was increased ER-mitochondria coupling in the RMECs, which was accompanied by elevated mitochondrial calcium ions (Ca2+) and mitochondrial dysfunction under HG or AGE incubation. Mechanistically, ER-mitochondria coupling was increased through activation of the IP3R1-GRP75-VDAC1 axis, which transferred Ca2+ from the ER to the mitochondria. Elevated mitochondrial Ca2+ led to an increase in mitochondrial ROS and a decline in mitochondrial membrane potential. These events resulted in the elevation of mitochondrial permeability and induced the release of cytochrome c from the mitochondria into the cytoplasm, which further activated caspase-3 and promoted apoptosis. The above phenomenon was also observed in tunicamycin (TUN, ER stress inducer)-treated cells. Meanwhile, BAPTA-AM (calcium chelator) rescued mitochondrial dysfunction and apoptosis in DR, which further confirmed of our suspicions. In addition, 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was shown to reverse retinal dysfunction in STZ-induced DR rats in vivo. Taken together, our findings demonstrated that DR fueled the formation of ER-mitochondria coupling via the IP3R1-GRP75-VDAC1 axis and accelerated Ca2+-dependent cell apoptosis. Our results demonstrated that inhibition of ER-mitochondrial coupling, including inhibition of GRP75 or Ca2+ overload, may be a potential therapeutic target in DR.
Collapse
|
18
|
Mitochondrial dysfunction promotes the necroptosis of Purkinje cells in the cerebellum of acrylamide-exposed rats. Food Chem Toxicol 2022; 171:113522. [PMID: 36417989 DOI: 10.1016/j.fct.2022.113522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Acrylamide (ACR) is a common neurotoxicant that can induce central-peripheral neuropathy in human beings. ACR from occupational setting and foods poses a potential threat to people's health. Purkinje cells are the only efferent source of cerebellum, and their output is responsible for coordinating motor activity. Recent studies have reported that Purkinje cell injury is one of the earliest neurotoxicity at any dose rate of ACR. However, the mechanism underlying ACR-mediated damage to Purkinje cells remains unclear. This research aimed to investigate whether necroptosis is involved in ACR-induced Purkinje cell death and its regulatory mechanism. In this study, rats were treated with ACR (40 mg/kg/every other day) for 6 weeks to establish an animal model of ACR neuropathy. Furthermore, an intervention experiment was achieved by rapamycin (RAPA), which is commonly used to activate mitophagy and maintain mitochondrial homeostasis. The results demonstrated ACR exposure caused necroptosis of Purkinje cells, mitochondrial dysfunction, and inflammatory response. By contrast, RAPA alleviated mitochondrial dysfunction and inhibited activation of necroptosis signaling pathway following ACR. In conclusion, our findings suggest that mitochondrial dysfunction and activation of necroptotic signaling are associated with the loss of Purkinje cells in ACR poisoning, which can be a potential therapeutic target for ACR neurotoxicity.
Collapse
|
19
|
Kakanezhadi A, Rezaei M, Raisi A, Dezfoulian O, Davoodi F, Ahmadvand H. Rosmarinic acid prevents post-operative abdominal adhesions in a rat model. Sci Rep 2022; 12:18593. [PMID: 36329196 PMCID: PMC9633689 DOI: 10.1038/s41598-022-22000-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
This study aims to determine the effects of rosmarinic acid which involved the mechanisms to decrease the postoperative peritoneal adhesion formation in rats. Various incisions and removing a 1 × 1 cm piece of peritoneum was used to induce the peritoneal adhesions. Experimental groups were as follows: 1-Sham group. 2-Control group: Peritoneal adhesions were induced and no treatments were performed. 3-Treatment groups: Following inducing peritoneal adhesions, animals received rosmarinic acid with 50 and 70 mg/kg dosage, respectively. Macroscopic examination of adhesions indicated that adhesion bands were reduced in both treatment groups compared to the control group. Moreover, the adhesion score was decreased in both treatment groups on day 14. Inflammation and fibroblast proliferation were both reduced in the treatment groups on day 14. TGF-β1, TNF-α, and VEGF were all evaluated by western blot and immunohistochemistry on days 3 and 14. Treatment groups reduced inflammatory cytokines on days 3 and 14. The treatment group with a 70 mg/kg dosage decreased TGF-β1 and TNF-α levels more than the other treatment group. The administration of rosmarinic acid significantly reduced MDA and increased CAT levels. In conclusion, the rosmarinic acid was effective to reduce the adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Kakanezhadi
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Mehrdad Rezaei
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- grid.411406.60000 0004 1757 0173Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Omid Dezfoulian
- grid.411406.60000 0004 1757 0173Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Farshid Davoodi
- grid.412763.50000 0004 0442 8645Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Ahmadvand
- grid.411950.80000 0004 0611 9280Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
21
|
Jheng JR, Hsieh CF, Chang YH, Ho JY, Tang WF, Chen ZY, Liu CJ, Lin TJ, Huang LY, Chern JH, Horng JT. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:598-610. [PMID: 35650006 DOI: 10.1016/j.jmii.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The purpose of this study was to examine the in vivo activity of rosmarinic acid (RA) - a phytochemical with antioxidant, anti-inflammatory, and antiviral properties - against influenza virus (IAV). An antibody-based kinase array and different in vitro functional assays were also applied to identify the mechanistic underpinnings by which RA may exert its anti-IAV activity. METHODS We initially examined the potential efficacy of RA using an in vivo mouse model. A time-of-addition assay and an antibody-based kinase array were subsequently applied to investigate mechanism-of-action targets for RA. The hemagglutination inhibition assay, neuraminidase inhibition assay, and cellular entry assay were also performed. RESULTS RA increased survival and prevented body weight loss in IAV-infected mice. In vitro experiments revealed that RA inhibited different IAV viruses - including oseltamivir-resistant strains. From a mechanistic point of view, RA downregulated the GSK3β and Akt signaling pathways - which are known to facilitate IAV entry and replication into host cells. CONCLUSIONS RA has promising preclinical efficacy against IAV, primarily by interfering with the GSK3β and Akt signaling pathways.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Hsiu Chang
- National Defense Medical Center, Institute of Preventive Medicine, Taipei 104, Taiwan
| | - Jin-Yuan Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Wen-Fang Tang
- Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Zi-Yi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Chien-Jou Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Ta-Jen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Li-Yu Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Jyh-Haur Chern
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Research Center for Emerging Viral Infections, Chang Gung University, Kweishan, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
22
|
Wang Y, Zhang Y, Sun X, Shi X, Xu S. Microplastics and di (2-ethylhexyl) phthalate synergistically induce apoptosis in mouse pancreas through the GRP78/CHOP/Bcl-2 pathway activated by oxidative stress. Food Chem Toxicol 2022; 167:113315. [PMID: 35863481 DOI: 10.1016/j.fct.2022.113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/11/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
With the widespread use of plastics, microplastics (MPs) and di(2-ethylhexyl) phthalate (DEHP) have become emerging environmental pollutants. The combined toxicity of MPs and DEHP on the mouse pancreas and the specific mechanism of toxicity remain unclear. To establish in vitro and in vivo models to address these questions, mice were continuously exposed to 200 mg/kg/d DEHP and 10 mg/L MPs for 4 weeks. In vitro, MIN-6 cells were treated with 200 μg/mL MPs and 200 μM DEHP for 24 h. Based on toxicity assessed using CCK8 of the equivalent TU binary mixture, the IC50 of the TU-mix of DEHP and MPs 0.692 < 0.8, indicating a synergistic effect of the two toxicants. Meanwhile, our data revealed that compared to the control group, MPs and DEHP combined treatment increased ROS levels, inhibited the activity, and enhanced the expression of GRP78, and CHOP. Simultaneously, activated CHOP decreased the expression of Bcl-2, and increased the expression of Bax. In conclusion, DEHP and MPs synergistically induce oxidative stress, and activate the GRP78/CHOP/Bcl-2 pathway to induce pancreatic apoptosis in mice. Our finding provides a new direction for the research on the specific mechanism of MPs and DEHP combined toxicity.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
23
|
Kovár M, Navrátilová A, Kolláthová R, Trakovická A, Požgajová M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022; 27:molecules27134307. [PMID: 35807551 PMCID: PMC9268660 DOI: 10.3390/molecules27134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Acrylamide (AA), is a chemical with multiple industrial applications, however, it can be found in foods that are rich in carbohydrates. Due to its genotoxic and cytotoxic effects, AA has been classified as a potential carcinogen. With the use of spectrophotometry, ICP-OES, fluorescence spectroscopy, and microscopy cell growth, metabolic activity, apoptosis, ROS production, MDA formation, CAT and SOD activity, ionome balance, and chromosome segregation were determined in Schizosaccharomyces pombe. AA caused growth and metabolic activity retardation, enhanced ROS and MDA production, and modulated antioxidant enzyme activity. This led to damage to the cell homeostasis due to ionome balance disruption. Moreover, AA-induced oxidative stress caused alterations in the cell cycle regulation resulting in chromosome segregation errors, as 4.07% of cells displayed sister chromatid non-disjunction during mitosis. Ascorbic acid (AsA, Vitamin C), a strong natural antioxidant, was used to alleviate the negative impact of AA. Cell pre-treatment with AsA significantly improved AA impaired growth, and antioxidant capacity, and supported ionome balance maintenance mainly due to the promotion of calcium uptake. Chromosome missegregation was reduced to 1.79% (44% improvement) by AsA pre-incubation. Results of our multiapproach analyses suggest that AA-induced oxidative stress is the major cause of alteration to cell homeostasis and cell cycle regulation.
Collapse
Affiliation(s)
- Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Renata Kolláthová
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (A.N.); (A.T.)
| | - Miroslava Požgajová
- AgroBioTech Research Center, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| |
Collapse
|
24
|
Antioxidant Effects of Irisin in Liver Diseases: Mechanistic Insights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3563518. [PMID: 35035659 PMCID: PMC8759828 DOI: 10.1155/2022/3563518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Oxidative stress is a crucial factor in the development of various liver diseases. Irisin, a metabolic hormone discovered in 2012, is mainly produced by proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) in skeletal muscles. Irisin is induced by physical exercise, and a rapidly growing body of literature suggests that irisin is, at least partially, responsible for the beneficial effects of regular exercise. The major biological function of irisin is believed to be involved in the maintenance of metabolic homeostasis. However, recent studies have suggested the therapeutic potential of irisin against a variety of liver diseases involving its antioxidative function. In this review, we aim to summarize the accumulating evidence demonstrating the antioxidative effects of irisin in liver diseases, with an emphasis on the current understanding of the potential molecular mechanisms.
Collapse
|
25
|
Soliman MM, Alotaibi SS, Sayed S, Hassan MM, Althobaiti F, Aldhahrani A, Youssef GBA, El-Shehawi AM. The Protective Impact of Salsola imbricata Leaf Extract From Taif Against Acrylamide-Induced Hepatic Inflammation and Oxidative Damage: The Role of Antioxidants, Cytokines, and Apoptosis-Associated Genes. Front Vet Sci 2022; 8:817183. [PMID: 35155650 PMCID: PMC8835116 DOI: 10.3389/fvets.2021.817183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Salsola imbricata is a herbal plant native to Saudi Arabia, known for its antioxidative and anti-inflammatory properties. This study explored the protective effects of an ethanolic leaf extract of Salsola imbricata against the oxidative stress and hepatic injury caused by acrylamide. Rats received intragastric administrations of 20 mg/kg of body weight of acrylamide to induce hepatic injury, or 300 mg/kg of body weight of Salsola ethanolic extract orally for 7 days before acrylamide administration. The treatments were continued for 3 weeks. Blood and liver samples were collected from all the groups, and the following biochemical parameters were tested: serum ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma glutaryl transferase), urea, albumin, total proteins, catalase, SOD (superoxide dismutase), reduced glutathione (GSH), nitric oxide (NO), and MDA (malondialdehyde). Quantitative real-time PCR (qRT-PCR) was used to examine the expression of Nrf2 (Nuclear factor-erythroid factor 2-related factor 2), HO-1 (Hemoxygenase-1), COX-2 (Cyclooxgenase-2), TGF-β1 (transforming growth factor-beta1), Bax, and Bcl2 (B-cell lymphoma 2), which are associated with oxidative stress, fibrosis, apoptosis, and anti-apoptotic effects. The annexin and survivin immunoreactivity were examined at the immunohistochemical level. Pretreatment with the Salsola ethanolic extract reduced the negative impact of acrylamide on ALT, AST, GGT, urea, albumin, and total proteins. The Salsola ethanolic extract reversed acrylamide's effects on serum and tissue antioxidants. Nrf2/HO-1 expression was downregulated, while COX-2 and TGF-β1 were upregulated in the acrylamide-administered group and normalized by the pre-administration of Salsola ethanolic extract to the acrylamide experimental group. The immunoreactivity of annexin and survivin was restored in the experimental group administered Salsola ethanolic extract plus acrylamide. In conclusion, Salsola ethanolic extract inhibits and regulates the side effects induced in the liver by acrylamide. Salsola induced its impacts by regulating inflammation, oxidative stress, and apoptosis-/anti-apoptosis-associated genes at the biochemical, molecular, and cellular levels. Salsola is recommended as oxidative stress relievers against environmental toixicity at high altitude areas.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed Mohamed Soliman
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Gehan B. A. Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
26
|
Yu D, Jiang X, Ge W, Qiao B, Zhang D, Liu H, Kuang H. Gestational exposure to acrylamide suppresses luteal endocrine function through dysregulation of ovarian angiogenesis, oxidative stress and apoptosis in mice. Food Chem Toxicol 2021; 159:112766. [PMID: 34906654 DOI: 10.1016/j.fct.2021.112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
The discovery of acrylamide in various carbohydrate-rich foods cooked at high temperatures has attracted public health concerns. This study aimed to elucidate the effects and mechanisms additional with acrylamide exposure on the luteal function in vivo during early- and mid-pregnancy. Mice were fed with different dosages of acrylamide (0, 10 and 50 mg/kg/day) by gavage from gestational days (GD) 3 to GD 8 or GD 13. The results indicated that acrylamide exposure significantly decreased levels of serum progesterone and estradiol, and the numbers and relative areas of ovarian corpora lutea. The expression levels of Hsd3b1, Cyp11a1 and Star mRNA markedly reduced in acrylamide-treated ovaries. Furthermore, acrylamide exposure obviously suppressed the activities of catalase and superoxide dismutase, but increased the levels of H2O2 and malondialdehyde. Additionally, acrylamide treatment significantly inhibited luteal angiogenesis and induced the apoptosis of ovarian cells by up-regulation of P53 and Bax protein and down-regulation of Bcl-2 protein. Thus, our results showed that gestational exposure to acrylamide significantly inhibited luteal endocrine function via dysregulation of ovarian angiogenesis, oxidative stress and apoptosis in vivo.
Collapse
Affiliation(s)
- Dainan Yu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Xun Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Clinic Medicine, The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Wenjing Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bo Qiao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
27
|
Zhao T, Guo Y, Ji H, Mao G, Feng W, Chen Y, Wu X, Yang L. Short-term exposure to acrylamide exacerbated metabolic disorders and increased metabolic toxicity susceptibility on adult male mice with diabetes. Toxicol Lett 2021; 356:41-53. [PMID: 34896238 DOI: 10.1016/j.toxlet.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 02/09/2023]
Abstract
Diabetes mellitus is a common endocrine metabolic disorder, and previous studies have shown that diabetics are more sensitive to the toxic environmental contaminants. Acrylamide (ACR) is both an industrially multipurpose compound and a common endogenous food contaminant to which people are frequently exposed and at high risk. However, the toxicity of ACR on diabetes hasn't attracted much attention. In this study, both healthy mice and diabetic mice received ACR administration orally to investigate the ACR-induced metabolic toxicity, mechanism and susceptibility to ACR toxicity in adult diabetic male mice. The results showed that ACR significantly increased FBG level and decreased bodyweight, serum lipid and liver lipid biomarkers (TC, TG, LDL-C, HDL-C) levels as well as expression of lipid and glucose metabolism-related genes in diabetic mice, indicating that ACR can exacerbate metabolic disorders of glucose and lipid in diabetic male mice. Moreover, ACR exposure significantly increased levels of MDA and COX-2), decreased GSH level and antioxidant enzyme activity (SOD, GSH-PX and CAT) by downregulating expression of Nrf2 and Keap1 in diabetic mice. Factorial analysis showed ACR had a more significant disturbance in diabetic mice compared with healthy mice. Our results indicated that ACR exposure can cause oxidative stress and inflammatory damage, which can exacerbate abnormal glucose and lipid metabolism. This work helps to elucidate the effects and underlying mechanisms of ACR-induced metabolic toxicity in adults with diabetes.
Collapse
Affiliation(s)
- Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yuchao Guo
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Hongchen Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
28
|
2-Amino-3-Methylimidazo[4,5-f]quinoline Triggering Liver Damage by Inhibiting Autophagy and Inducing Endoplasmic Reticulum Stress in Zebrafish ( Danio rerio). Toxins (Basel) 2021; 13:toxins13110826. [PMID: 34822609 PMCID: PMC8620671 DOI: 10.3390/toxins13110826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
It is important to note that 2-Amino-3-methylimidazole[4,5-f]quinoline (IQ) is one of the most common heterocyclic amines (HCAs), which is a class of mutagenic/carcinogenic harmful compounds mainly found in high-protein thermal processed foods and contaminated environments. However, the pre-carcinogenic toxicity of IQ to the liver and its mechanism are poorly understood, further research is needed. In light of this, we exposed zebrafish to IQ (0, 8, 80, and 800 ng/mL) for 35 days, followed by comprehensive experimental studies. Histopathological and ultrastructural analysis showed that hepatocytes were damaged. TUNEL results showed that IQ induced apoptosis of liver cells, the expression of apoptosis factor gene was significantly increased, and the expression of Bcl-2 protein was significantly decreased. In addition, upregulated expression of the 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) and endoplasmic reticulum stress (ERS)-related factors transcription levels were elevated obviously, suggesting that IQ induced ERS. Decreased protein expression of autophagy-related 5 (Atg5)-Atg12, Beclin1, and LC3-II, increased protein expression of p62, and autophagy-related factors transcription levels were significantly decreased, suggesting that IQ inhibited autophagy. Overall, our research showed that the potential harm of IQ to the liver before the occurrence of liver cancer was related to ERS and its mediated autophagy and apoptosis pathways.
Collapse
|
29
|
Antitumor Activity of Rosmarinic Acid-Loaded Silk Fibroin Nanoparticles on HeLa and MCF-7 Cells. Polymers (Basel) 2021; 13:polym13183169. [PMID: 34578069 PMCID: PMC8467615 DOI: 10.3390/polym13183169] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Rosmarinic acid (RA), one of the most important polyphenol-based antioxidants, has drawn increasing attention because of its remarkable bioactive properties, including anti-inflammatory, anticancer and antibacterial activities. The aim of this study was to synthesize and characterize RA-loaded silk fibroin nanoparticles (RA-SFNs) in terms of their physical–chemical features and composition, and to investigate their antitumor activity against human cervical carcinoma and breast cancer cell lines (HeLa and MCF-7). Compared with the free form, RA bioavailability was enhanced when the drug was adsorbed onto the surface of the silk fibroin nanoparticles (SFNs). The resulting particle diameter was 255 nm, with a polydispersity index of 0.187, and the Z-potential was −17 mV. The drug loading content of the RA-SFNs was 9.4 wt.%. Evaluation of the in vitro drug release of RA from RA-SFNs pointed to a rapid release in physiological conditions (50% of the total drug content was released in 0.5 h). Unloaded SFNs exhibited good biocompatibility, with no significant cytotoxicity observed during the first 48 h against HeLa and MCF-7 cancer cells. In contrast, cell death increased in a concentration-dependent manner after treatment with RA-SFNs, reaching an IC50 value of 1.568 and 1.377 mg/mL on HeLa and MCF-7, respectively. For both cell lines, the IC50 of free RA was higher. The cellular uptake of the nanoparticles studied was increased when RA was loaded on them. The cell cycle and apoptosis studies revealed that RA-SFNs inhibit cell proliferation and induce apoptosis on HeLa and MCF-7 cell lines. It is concluded, therefore, that the RA delivery platform based on SFNs improves the antitumor potential of RA in the case of the above cancers.
Collapse
|