1
|
Zhao C, Peng H, Jiang N, Liu Y, Chen Y, Liu J, Guo Q, Wu Z, Wang L. A case of malonyl coenzyme A decarboxylase deficiency with novel mutations and literature review. Front Pediatr 2023; 11:1133134. [PMID: 37144154 PMCID: PMC10152364 DOI: 10.3389/fped.2023.1133134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Malonyl coenzyme A decarboxylase deficiency is caused by an abnormality in the MLYCD gene. The clinical manifestations of the disease involve multisystem and multiorgan. Methods We collected and analyzed a patient's clinical characteristics, genetic chain of evidence and RNA-seq. We use the search term "Malonyl-CoA Decarboxylase Deficiency" on Pubmed to collect cases reported. Results We report a 3-year-old girl who is presented with developmental retardation, myocardial damage and elevated C3DC. High-throughput sequencing identified heterozygous mutation (c.798G>A, p.Q266?) in the patient inherited from her father. The other heterozygous mutation (c.641+5G>C) was found in the patient inherited from her mother. RNA-seq showed that there were 254 differential genes in this child, among which 153 genes were up-regulated and 101 genes were down-regulated. Exon jumping events occurred in exons encoding PRMT2 on the positive chain of chromosome 21, which led to abnormal splicing of PRMT2. (P<0.05, FDR<0.05). The result of SNP showed that there were multiple mutation sites on chromosome 1, which may affect the downstream gene variation at the DNA level. The literature review identified 54 cases described since 1984. Discussion It is the first report about the locus, adding a new item to the MLYCD mutation library. Developmental retardation and cardiomyopathy are the most common clinical manifestations, with commonly elevated malonate and malonyl carnitine levels in children.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Peng
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanchuan Jiang
- Department of Radiology,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Liu
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Liu
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Guo
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zubo Wu
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Pediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
3
|
Ersoy M, Akyol MB, Ceylaner S, Çakır Biçer N. A novel frameshift mutation of malonyl-CoA decarboxylase deficiency: clinical signs and therapy response of a late-diagnosed case. Clin Case Rep 2017; 5:1284-1288. [PMID: 28781843 PMCID: PMC5538191 DOI: 10.1002/ccr3.1013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 01/18/2017] [Accepted: 03/09/2017] [Indexed: 01/20/2023] Open
Abstract
We evaluate the clinical findings and the treatment response of a late‐diagnosed case with a novel homozygous insertion c.13_14insG (p.P6Afs*202) result in a frameshift mutation in MLYCD gene. Both cardiac and neurologic involvements were mild when compared to previously reported cases, and see low‐fat/high‐carbohydrate diet treatment is highly effective.
Collapse
Affiliation(s)
- Melike Ersoy
- Department of Pediatrics Division of Pediatric Metabolism Bakirkoy Dr. Sadi Konuk Research and Training Hospital Istanbul Turkey
| | - Mehmet Bedir Akyol
- Department of Pediatrics Division of Pediatric Cardiology Bakirkoy Dr. Sadi Konuk Research and Training Hospital Istanbul Turkey
| | | | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics Istanbul Arel University Istanbul Turkey
| |
Collapse
|
4
|
Ling B, Liu Y, Li X, Wang Z, Bi S. Identification of the active site of human mitochondrial malonyl-coenzyme a decarboxylase: A combined computational study. Proteins 2016; 84:792-802. [PMID: 26948533 DOI: 10.1002/prot.25029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 11/06/2022]
Abstract
Malonyl-CoA decarboxylase (MCD) can control the level of malonyl-CoA in cell through the decarboxylation of malonyl-CoA to acetyl-CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N-terminal helical domain instead of the adenine ring of CoA. The residues 300 - 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl-CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl-CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792-802. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Xiaoping Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong Province, 273165, China
| |
Collapse
|
5
|
Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol 2015; 14:232-42. [PMID: 24469765 DOI: 10.1007/s12012-014-9247-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study investigated whether cyclophosphamide (CP) and ifosfamide (IFO) therapy alters the expression of the key genes engaged in long-chain fatty acid (LCFA) oxidation outside rat heart mitochondria, and if so, whether these alterations should be viewed as a mechanism during CP- and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of the six treatment groups: Rats in group 1 (control) and group 2 (L-carnitine) were injected intraperitoneal (i.p.) with normal saline and L-carnitine (200 mg/kg/day), respectively, for 10 successive days. Animals in group 3 (CP group) were injected i.p. with normal saline for 5 days before and 5 days after a single dose of CP (200 mg/kg, i.p.). Rats in group 4 (IFO group) received normal saline for 5 successive days followed by IFO (50 mg/kg/day, i.p.) for 5 successive days. Rats in group 5 (CP-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days after a single dose of CP as group 3. Rats in group 6 (IFO-carnitine supplemented) were given the same doses of L-carnitine as group 2 for 5 days before and 5 days concomitant with IFO as group 4. Immediately, after the last dose of the treatment protocol, blood samples were withdrawn and animals were killed for biochemical, histopathological and gene expression studies. Treatment with CP and IFO significantly decreased expression of heart fatty acid binding protein (H-FABP) and carnitine palmitoyltransferase I (CPT I) genes in cardiac tissues. Moreover, CP but not IFO significantly increased acetyl-CoA carboxylase2 mRNA expression. Conversely, IFO but not CP significantly decreased mRNA expression of malonyl-CoA decarboxylase. Both CP and IFO significantly increased serum lactate dehydrogenase, creatine kinase isoenzyme MB and malonyl-CoA content and histopathological lesions in cardiac tissues. Interestingly, carnitine supplementation completely reversed all the biochemical, histopathological and gene expression changes induced by CP and IFO to the control values, except CPT I mRNA, and protein expression remained inhibited by IFO. Data from the current study suggest, for the first time, that (1) CP and IFO therapy is associated with the inhibition of the expression of H-FABP and CPT I genes in cardiac tissues with the consequent inhibition of mitochondrial transport and oxidation of LCFA. (2) The progressive increase in cardiotoxicity enzymatic indices and the decrease in H-FABP and CPT I expression may point to the possible contribution of these genes to CP- and IFO-induced cardiotoxicity.
Collapse
|
6
|
Polinati PP, Valanne L, Tyni T. Malonyl-CoA decarboxylase deficiency: long-term follow-up of a patient new clinical features and novel mutations. Brain Dev 2015; 37:107-13. [PMID: 24613099 DOI: 10.1016/j.braindev.2014.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Malonyl-CoA decarboxylase (MLYCD, EC 4.1.1.9) deficiency is a rare autosomal recessive disorder that is widely diagnosed by neonatal screening. METHODS We report long term follow up of a patient with MLYCD deficiency showing signs of neonatal hypoglycemia, mental retardation, developmental delay and rheumatoid arthritis. Brain MRI revealed patchy, symmetrical hyperintensity of the deep white matter with periventricular white matter and subcortical arcuate fibers being spared. MLCYD gene sequence analysis was done to identify possible mutations. Expression analyses at mRNA and protein levels were also performed. Further, immunocytochemical studies were implemented to check for its subcellular localization. RESULTS MLYCD gene sequencing identified a novel compound heterozygous mutation (c.22 T>A, p.M1K, c.454 C>A; pH152N) in our patient and a heterozygous mutation in the healthy mother c.22 T>A; pM1K. Reduced expression of RNA and protein levels was observed. Immunocytochemical analysis showed diffused staining across the cytoplasm with apparent signs of intracellular mislocalization to the nucleus. RESULTS also indicated subcellular colocalization of MLCYD with mitochondria was scant compared to control. CONCLUSION Our patient was identified with a novel compound heterozygous MLYCD mutation at the N-terminal helical domain. This study indicates that protein mislocalization is a characteristic feature of MLYCD deficiency in our patient.
Collapse
Affiliation(s)
- Padmini P Polinati
- Research Program of Molecular Neurology, Biomedicum 1, University of Helsinki, Helsinki, Finland.
| | - Leena Valanne
- Children Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Tiina Tyni
- Research Program of Molecular Neurology, Biomedicum 1, University of Helsinki, Helsinki, Finland; Children Hospital, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
7
|
O'Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, Smith BK, Pulinilkunnil T, Chen Z, Samaan MC, Jorgensen SB, Dyck JRB, Holloway GP, Hawke TJ, van Denderen BJ, Kemp BE, Steinberg GR. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia 2014; 57:1693-702. [PMID: 24913514 DOI: 10.1007/s00125-014-3273-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Obesity is characterised by lipid accumulation in skeletal muscle, which increases the risk of developing insulin resistance and type 2 diabetes. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status and is activated in skeletal muscle by exercise, hormones (leptin, adiponectin, IL-6) and pharmacological agents (5-amino-4-imidazolecarboxamide ribonucleoside [AICAR] and metformin). Phosphorylation of acetyl-CoA carboxylase 2 (ACC2) at S221 (S212 in mice) by AMPK reduces ACC activity and malonyl-CoA content but the importance of the AMPK-ACC2-malonyl-CoA pathway in controlling fatty acid metabolism and insulin sensitivity is not understood; therefore, we characterised Acc2 S212A knock-in (ACC2 KI) mice. METHODS Whole-body and skeletal muscle fatty acid oxidation and insulin sensitivity were assessed in ACC2 KI mice and wild-type littermates. RESULTS ACC2 KI mice were resistant to increases in skeletal muscle fatty acid oxidation elicited by AICAR. These mice had normal adiposity and liver lipids but elevated contents of triacylglycerol and ceramide in skeletal muscle, which were associated with hyperinsulinaemia, glucose intolerance and skeletal muscle insulin resistance. CONCLUSIONS/INTERPRETATION These findings indicate that the phosphorylation of ACC2 S212 is required for the maintenance of skeletal muscle lipid and glucose homeostasis.
Collapse
Affiliation(s)
- Hayley M O'Neill
- Division of Endocrinology and Metabolism, Department of Medicine, HSC 4N63, McMaster University, 1280 Main St West, Hamilton, ON, Canada, L8N 3Z5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Froese DS, Forouhar F, Tran TH, Vollmar M, Kim YS, Lew S, Neely H, Seetharaman J, Shen Y, Xiao R, Acton TB, Everett JK, Cannone G, Puranik S, Savitsky P, Krojer T, Pilka ES, Kiyani W, Lee WH, Marsden BD, von Delft F, Allerston CK, Spagnolo L, Gileadi O, Montelione GT, Oppermann U, Yue WW, Tong L. Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations. Structure 2013; 21:1182-92. [PMID: 23791943 PMCID: PMC3701320 DOI: 10.1016/j.str.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 01/17/2023]
Abstract
Malonyl-coenzyme A decarboxylase (MCD) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and is an attractive target for drug discovery. We report here four crystal structures of MCD from human, Rhodopseudomonas palustris, Agrobacterium vitis, and Cupriavidus metallidurans at up to 2.3 Å resolution. The MCD monomer contains an N-terminal helical domain involved in oligomerization and a C-terminal catalytic domain. The four structures exhibit substantial differences in the organization of the helical domains and, consequently, the oligomeric states and intersubunit interfaces. Unexpectedly, the MCD catalytic domain is structurally homologous to those of the GCN5-related N-acetyltransferase superfamily, especially the curacin A polyketide synthase catalytic module, with a conserved His-Ser/Thr dyad important for catalysis. Our structures, along with mutagenesis and kinetic studies, provide a molecular basis for understanding pathogenic mutations and catalysis, as well as a template for structure-based drug design. Structures of human and bacterial MCDs were determined at up to 2.3 Å resolution Distinct tetrameric and dimeric MCD oligomerizations were observed Unexpected homology to the GNAT superfamily gives insights into catalytic mechanism The structures provide the molecular basis for the disease-causing mutations in MCD
Collapse
Affiliation(s)
- D Sean Froese
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aparicio D, Pérez-Luque R, Carpena X, Díaz M, Ferrer JC, Loewen PC, Fita I. Structural asymmetry and disulfide bridges among subunits modulate the activity of human malonyl-CoA decarboxylase. J Biol Chem 2013; 288:11907-19. [PMID: 23482565 DOI: 10.1074/jbc.m112.443846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is an essential facet in the regulation of fatty acid metabolism. The structure of human peroxisomal MCD reveals a molecular tetramer that is best described as a dimer of structural heterodimers, in which the two subunits present markedly different conformations. This molecular organization is consistent with half-of-the-sites reactivity. Each subunit has an all-helix N-terminal domain and a catalytic C-terminal domain with an acetyltransferase fold (GNAT superfamily). Intersubunit disulfide bridges, Cys-206-Cys-206 and Cys-243-Cys-243, can link the four subunits of the tetramer, imparting positive cooperativity to the catalytic process. The combination of a half-of-the-sites mechanism within each structural heterodimer and positive cooperativity in the tetramer produces a complex regulatory picture that is further complicated by the multiple intracellular locations of the enzyme. Transport into the peroxisome has been investigated by docking human MCD onto the peroxisomal import protein peroxin 5, which revealed interactions that extend beyond the C-terminal targeting motif.
Collapse
Affiliation(s)
- David Aparicio
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Prada CE, Jefferies JL, Grenier MA, Huth CM, Page KI, Spicer RL, Towbin JA, Leslie ND. Malonyl coenzyme A decarboxylase deficiency: early dietary restriction and time course of cardiomyopathy. Pediatrics 2012; 130:e456-60. [PMID: 22778304 DOI: 10.1542/peds.2011-2927] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Malonyl coenzyme A (CoA) decarboxylase (MCD) deficiency is a rare autosomal recessive organic acidemia characterized by varying degrees of organ involvement and severity. MCD regulates fatty acid biosynthesis and converts malonyl-CoA to acetyl-CoA. Cardiomyopathy is 1 of the leading causes of morbidity and mortality in this disorder. It is unknown if diet alone prevents cardiomyopathy development based in published literature. We report a 10-month-old infant girl identified by newborn screening and confirmed MCD deficiency with a novel homozygous MLYCD mutation. She had normal echocardiogram measurements before transition to high medium-chain triglycerides and low long-chain triglycerides diet. Left ventricular noncompaction development was not prevented by dietary interventions. Further restriction of long-chain triglycerides and medium-chain triglycerides supplementation in combination with angiotensin-converting enzyme inhibitors helped to improve echocardiogram findings. Patient remained asymptomatic, with normal development and growth. Our case emphasizes the need for ongoing cardiac disease screening in patients with MCD deficiency and the benefits and limitations of current dietary interventions.
Collapse
Affiliation(s)
- Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 4006, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Antonenkov VD, Hiltunen JK. Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta Mol Basis Dis 2011; 1822:1374-86. [PMID: 22206997 DOI: 10.1016/j.bbadis.2011.12.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/08/2023]
Abstract
Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases.
Collapse
Affiliation(s)
- Vasily D Antonenkov
- Department of Biochemistry and Biocenter, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
12
|
Coletta DK, Sriwijitkamol A, Wajcberg E, Tantiwong P, Li M, Prentki M, Madiraju M, Jenkinson CP, Cersosimo E, Musi N, Defronzo RA. Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. Diabetologia 2009; 52:723-32. [PMID: 19169664 PMCID: PMC4894502 DOI: 10.1007/s00125-008-1256-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/05/2008] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS The molecular mechanisms by which thiazolidinediones improve insulin sensitivity in type 2 diabetes are not fully understood. We hypothesised that pioglitazone would activate the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway and increase the expression of genes involved in adiponectin signalling, NEFA oxidation and mitochondrial function in human skeletal muscle. METHODS A randomised, double-blind, parallel study was performed in 26 drug-naive type 2 diabetes patients treated with: (1) pioglitazone (n = 14) or (2) aggressive nutritional therapy (n = 12) to reduce HbA(1c) to levels observed in the pioglitazone-treated group. Participants were assigned randomly to treatment using a table of random numbers. Before and after 6 months, patients reported to the Clinical Research Center of the Texas Diabetes Institute for a vastus lateralis muscle biopsy followed by a 180 min euglycaemic-hyperinsulinaemic (80 mU m(-2) min(-1)) clamp. RESULTS All patients in the pioglitazone (n = 14) or nutritional therapy (n = 12) group were included in the analysis. Pioglitazone significantly increased plasma adiponectin concentration by 79% and reduced fasting plasma NEFA by 35% (both p < 0.01). Following pioglitazone, insulin-stimulated glucose disposal increased by 30% (p < 0.01), and muscle AMPK and acetyl-CoA carboxylase (ACC) phosphorylation increased by 38% and 53%, respectively (p < 0.05). Pioglitazone increased mRNA levels for adiponectin receptor 1 and 2 genes (ADIPOR1, ADIPOR2), peroxisome proliferator-activated receptor gamma, coactivator 1 gene (PPARGC1) and multiple genes involved in mitochondrial function and fat oxidation. Despite a similar reduction in HbA(1c) and similar improvement in insulin sensitivity with nutritional therapy, there were no significant changes in muscle AMPK and ACC phosphorylation, or the expression of ADIPOR1, ADIPOR2, PPARGC1 and genes involved in mitochondrial function and fat oxidation. No adverse (or unexpected) effects or side effects were reported from the study. CONCLUSIONS/INTERPRETATIONS Pioglitazone increases plasma adiponectin levels, stimulates muscle AMPK signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation. These changes may represent an important cellular mechanism by which thiazolidinediones improve skeletal muscle insulin sensitivity. TRIAL REGISTRATION NCT 00816218 FUNDING: This trial was funded by National Institutes of Health Grant DK24092, VA Merit Award, GCRC Grant RR01346, Executive Research Committee Research Award from the University of Texas Health Science Center at San Antonio, American Diabetes Association Junior Faculty Award, American Heart Association National Scientist Development Grant, Takeda Pharmaceuticals North America Grant and Canadian Institute of Health Research Grant.
Collapse
Affiliation(s)
- D K Coletta
- Center for Metabolic Biology, College of Liberal Arts and Sciences, Arizona State University, P.O. Box 873704, Tempe, AZ 85287-3704, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pimenta A, Gaidhu M, Habib S, So M, Fediuc S, Mirpourian M, Musheev M, Curi R, Ceddia R. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J Cell Physiol 2008; 217:478-85. [DOI: 10.1002/jcp.21520] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Abstract
Malonyl-CoA can be formed within the mitochondria, peroxisomes, and cytosol of mammalian cells. Besides being an intermediate in the pathways of de novo fatty acid biosynthesis and fatty acid elongation, malonyl-CoA has an important signaling function through its allosteric inhibition of carnitine palmitoyltransferase 1, the enzyme that normally exerts flux control over mitochondrial beta-oxidation. Malonyl-CoA is rapidly turned over in mammalian cells, and the activities of acetyl-CoA carboxylase and malonyl-CoA decarboxylase are important determinants of its cytosolic concentration. It is now recognized that malonyl-CoA participates in a diverse range of physiological or pathological responses and systems. These include the ketogenic response of the liver to fasting and diabetes, carbohydrate versus fat fuel selection in muscle tissues, metabolic changes in muscle during contracture, alterations in fatty acid metabolism during cardiac ischemia and postischemic reperfusion, stimulation of B cell insulin secretion by glucose, and the hypothalamic control of appetite.
Collapse
Affiliation(s)
- David Saggerson
- Institute of Structural & Molecular Biology, Darwin Building, University College London, Gower Street, WC1E 6BT, Great Britain.
| |
Collapse
|
15
|
Affiliation(s)
- Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | |
Collapse
|
16
|
Noland RC, Woodlief TL, Whitfield BR, Manning SM, Evans JR, Dudek RW, Lust RM, Cortright RN. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance. Am J Physiol Endocrinol Metab 2007; 293:E986-E1001. [PMID: 17638705 DOI: 10.1152/ajpendo.00399.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomal oxidation yields metabolites that are more efficiently utilized by mitochondria. This is of potential clinical importance because reduced fatty acid oxidation is suspected to promote excess lipid accumulation in obesity-associated insulin resistance. Our purpose was to assess peroxisomal contributions to mitochondrial oxidation in mixed gastrocnemius (MG), liver, and left ventricle (LV) homogenates from lean and fatty (fa/fa) Zucker rats. Results indicate that complete mitochondrial oxidation (CO(2) production) using various lipid substrates was increased approximately twofold in MG, unaltered in LV, and diminished approximately 50% in liver of fa/fa rats. In isolated mitochondria, malonyl-CoA inhibited CO(2) production from palmitate 78%, whereas adding isolated peroxisomes reduced inhibition to 21%. These data demonstrate that peroxisomal products may enter mitochondria independently of CPT I, thus providing a route to maintain lipid disposal under conditions where malonyl-CoA levels are elevated, such as in insulin-resistant tissues. Peroxisomal metabolism of lignoceric acid in fa/fa rats was elevated in both liver and MG (LV unaltered), but peroxisomal product distribution varied. A threefold elevation in incomplete oxidation was solely responsible for increased hepatic peroxisomal oxidation (CO(2) unaltered). Alternatively, only CO(2) was detected in MG, indicating that peroxisomal products were exclusively partitioned to mitochondria for complete lipid disposal. These data suggest tissue-specific destinations for peroxisome-derived products and emphasize a potential role for peroxisomes in skeletal muscle lipid metabolism in the obese, insulin-resistant state.
Collapse
Affiliation(s)
- Robert C Noland
- Department of Physiology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Salvi M, Battaglia V, Brunati AM, La Rocca N, Tibaldi E, Pietrangeli P, Marcocci L, Mondovì B, Rossi CA, Toninello A. Catalase takes part in rat liver mitochondria oxidative stress defense. J Biol Chem 2007; 282:24407-15. [PMID: 17576767 DOI: 10.1074/jbc.m701589200] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalytic mechanism with a rate constant of 0.0346 s(-1). The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 +/- 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo 3, 35121 Padova
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Salomons GS, Jakobs C, Pope LL, Errami A, Potter M, Nowaczyk M, Olpin S, Manning N, Raiman JAJ, Slade T, Champion MP, Peck D, Gavrilov D, Hillman R, Hoganson GE, Donaldson K, Shield JPH, Ketteridge D, Wasserstein M, Gibson KM. Clinical, enzymatic and molecular characterization of nine new patients with malonyl-coenzyme A decarboxylase deficiency. J Inherit Metab Dis 2007; 30:23-8. [PMID: 17186413 DOI: 10.1007/s10545-006-0514-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
We report nine new patients with malonic aciduria associated with enzyme-confirmed malonyl-CoA decarboxylase (MCD) deficiency in eight. Clinical details were available on eight, and molecular genetic characterization was obtained for nine. As for 15 previously described patients, cardinal clinical manifestations included developmental delay and cardiomyopathy; metabolic perturbations (e.g. acidosis) and seizures, however, were infrequent or not observed in our patients. For all, detection of elevated malonic acid in urine (+/- increased C3DC acylcarnitine by analysis employing tandem mass spectrometry) led to pursuit of enzyme studies. MCD activities (nmol/h PER mg protein) revealed: control (n = 22), 16.2 +/- 1.8 (SEM; range 5.7-46.2); patients (n = 8, assayed in duplicate), 1.7 +/- 0.3 (10% of parallel control; range 0.6-2.8). Molecular characterization by DNA sequence analysis and multiplex ligation-dependent probe amplification revealed nine novel mutations (c.796C>T; p.Gln266X, c.481delC; p.Leu161CysfsX18, c.1367A>C; p.Tyr456Ser, c.1319G>T; p.Ser440Ile, c.1430C>T; p.Ser477Phe, c.899G>T; p.Gly300Val, c.799-1683_949-1293del3128, and two other large genomic deletions comprising exons 1 or the complete gene) and two known mutations in the MLYCD gene. Our findings increase the number of enzyme-confirmed MCD-deficient patients by >50%, and expand our understanding of the phenotypic and molecular heterogeneity of this rare disorder.
Collapse
Affiliation(s)
- G S Salomons
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wallace DM, Haramura M, Cheng JF, Arrhenius T, Nadzan AM. Novel trifluoroacetophenone derivatives as malonyl-CoA decarboxylase inhibitors. Bioorg Med Chem Lett 2007; 17:1127-30. [PMID: 17234415 DOI: 10.1016/j.bmcl.2006.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 10/23/2022]
Abstract
A series of trifluoroacetophenone derivatives were prepared and evaluated as malonyl-CoA decarboxylase (MCD) inhibitors. Some of the 'reverse amide' analogs were found to be potent inhibitors of MCD enzyme activity. The trifluoroacetyl group may interact with the MCD active site as the hydrate in a similar fashion to the hexafluoroisopropanol analogs reported previously. Adding electron-withdrawing groups to the phenyl ring stabilizes the hydrated species and enhances this interaction.
Collapse
Affiliation(s)
- David M Wallace
- Department of Chemistry, Chugai Pharma USA, LLC., 6275 Nancy Ridge Dr., San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
20
|
Wang X, Stanley WC, Darrow CJ, Brunengraber H, Kasumov T. Assay of the activity of malonyl-coenzyme A decarboxylase by gas chromatography-mass spectrometry. Anal Biochem 2007; 363:169-74. [PMID: 17316539 DOI: 10.1016/j.ab.2007.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 01/08/2007] [Accepted: 01/10/2007] [Indexed: 11/21/2022]
Abstract
We developed a gas chromatography-mass spectrometry (GC-MS) assay to measure the activity of malonyl-coenzyme A (CoA) decarboxylase (MCD) in crude tissue homogenates. Liver extracts are incubated with [U-(13)C(3)]malonyl-CoA to form [U-(13)C(2)]acetyl-CoA by the action of MCD. The reaction mixture contains 2 mM ADP to prevent the hydrolysis of [1,2-(13)C(2)]acetyl-CoA by acetyl-CoA hydrolase present in the extracts. Newly formed [U-(13)C(2)]acetyl-CoA and internal standard of [(2)H(3),1-(13)C]acetyl-CoA are analyzed as thiophenol derivatives by GC-MS. This assay was applied to a study of the kinetics of MCD in rat liver. Using the Lineweaver-Burke plot of MCD kinetics, K(m) of 202microM and V(max) of 3.3micromol min(-1) (g liver)(-1) were calculated. The liver MCD activities (micromol min(-1) g(-1)+/-SD) in three groups of rats with different nutritional statuses-fed, 1-day fasted, and 2-day fasted-were 1.80+/-0.41, 2.59+/-0.37 (P<0.05), and 3.07+/-0.70 (P<0.05), respectively. We report a practical, nonradioactive, sensitive assay of MCD in crude tissue extract.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
21
|
Cheng JF, Mak CC, Huang Y, Penuliar R, Nishimoto M, Zhang L, Chen M, Wallace D, Arrhenius T, Chu D, Yang G, Barbosa M, Barr R, Dyck JRB, Lopaschuk GD, Nadzan AM. Heteroaryl substituted bis-trifluoromethyl carbinols as malonyl-CoA decarboxylase inhibitors. Bioorg Med Chem Lett 2006; 16:3484-8. [PMID: 16644218 DOI: 10.1016/j.bmcl.2006.03.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/30/2006] [Indexed: 01/09/2023]
Abstract
A series of heteroaryl-substituted bis-trifluoromethyl carbinols were prepared and evaluated as malonyl-CoA decarboxylase (MCD) inhibitors. Some thiazole-based derivatives showed potent in vitro MCD inhibitory activities and significantly increased glucose oxidation rates in isolated working rat hearts.
Collapse
Affiliation(s)
- Jie-Fei Cheng
- Department of Chemistry and Discovery Biology, Chugai Pharma LLC., 6275 Nancy Ridge Dr., San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kuhl JE, Ruderman NB, Musi N, Goodyear LJ, Patti ME, Crunkhorn S, Dronamraju D, Thorell A, Nygren J, Ljungkvist O, Degerblad M, Stahle A, Brismar TB, Andersen KL, Saha AK, Efendic S, Bavenholm PN. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol Endocrinol Metab 2006; 290:E1296-303. [PMID: 16434556 DOI: 10.1152/ajpendo.00341.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was designed to evaluate whether changes in malonyl-CoA and the enzymes that govern its concentration occur in human muscle as a result of physical training. Healthy, middle-aged subjects were studied before and after a 12-wk training program that significantly increased VO2 max by 13% and decreased intra-abdominal fat by 17%. Significant decreases (25-30%) in the concentration of malonyl-CoA were observed after training, 24-36 h after the last bout of exercise. They were accompanied by increases in both the activity (88%) and mRNA (51%) of malonyl-CoA decarboxylase (MCD) in muscle but no changes in the phosphorylation of AMP kinase (AMPK, Thr172) or of acetyl-CoA carboxylase. The abundance of peroxisome proliferator-activated receptor (PPAR)gamma coactivator-1alpha (PGC-1alpha), a regulator of transcription that has been linked to the mediation of MCD expression by PPARalpha, was also increased (3-fold). In studies also conducted 24-36 h after the last bout of exercise, no evidence of increased whole body insulin sensitivity or fatty acid oxidation was observed during an euglycemic hyperinsulinemic clamp. In conclusion, the concentration of malonyl-CoA is diminished in muscle after physical training, most likely because of PGC-1alpha-mediated increases in MCD expression and activity. These changes persist after the increases in AMPK activity and whole body insulin sensitivity and fatty acid oxidation, typically caused by an acute bout of exercise in healthy individuals, have dissipated.
Collapse
Affiliation(s)
- Jeanette E Kuhl
- Dept. of Molecular Medicine and Surgery, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|