1
|
Ling P, Ju J, Zhang X, Wei W, Luo J, Li Y, Hai H, Shang B, Cheng H, Wang C, Zhang X, Su J. The Silencing of GhPIP5K2 and GhPIP5K22 Weakens Abiotic Stress Tolerance in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:1511. [PMID: 38338791 PMCID: PMC10855785 DOI: 10.3390/ijms25031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks), essential enzymes in the phosphatidylinositol signaling pathway, are crucial for the abiotic stress responses and the overall growth and development of plants. However, the GhPIP5Ks had not been systematically studied, and their function in upland cotton was unknown. This study identified a total of 28 GhPIP5Ks, and determined their chromosomal locations, gene structures, protein motifs and cis-acting elements via bioinformatics analysis. A quantitative real-time PCR (qRT‒PCR) analysis showed that most GhPIP5Ks were upregulated under different stresses. A virus-induced gene silencing (VIGS) assay indicated that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were significantly decreased, while malondialdehyde (MDA) content were significantly increased in GhPIP5K2- and GhPIP5K22-silenced upland cotton plants under abiotic stress. Furthermore, the expression of the stress marker genes GhHSFB2A, GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhCBF1, GhSnRK2.6 and GhCIPK6 was significantly decreased in the silenced plants after exposure to stress. These results revealed that the silencing of GhPIP5K2 and GhPIP5K22 weakened the tolerance to abiotic stresses. These discoveries provide a foundation for further inquiry into the actions of the GhPIP5K gene family in regulating the response and resistance mechanisms of cotton to abiotic stresses.
Collapse
Affiliation(s)
- Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xueli Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Han Hai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Bowen Shang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Hongbo Cheng
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| |
Collapse
|
2
|
Kato M, Watari M, Tsuge T, Zhong S, Gu H, Qu LJ, Fujiwara T, Aoyama T. Redundant function of the Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K4-6 is essential for pollen germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:212-225. [PMID: 37828913 DOI: 10.1111/tpj.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.
Collapse
Affiliation(s)
- Mariko Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Machiko Watari
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sheng Zhong
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Hongya Gu
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Li-Jia Qu
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Takashi Fujiwara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Bura A, de Matteis MA, Bender M, Swinkels M, Versluis J, Jansen AJG, Jurak Begonja A. Oculocerebrorenal syndrome of Lowe protein controls cytoskeletal reorganisation during human platelet spreading. Br J Haematol 2023; 200:87-99. [PMID: 36176266 DOI: 10.1111/bjh.18478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Lowe syndrome (LS) is a rare, X-linked disorder characterised by numerous symptoms affecting the brain, the eyes, and the kidneys. It is caused by mutations in the oculocerebrorenal syndrome of Lowe (OCRL) protein, a 5-phosphatase localised in different cellular compartments that dephosphorylates phosphatidylinositol-4,5-bisphosphate into phosphatidylinositol-4-monophosphate. Some patients with LS also have bleeding disorders, with normal to low platelet (PLT) count and impaired PLT function. However, the mechanism of PLT dysfunction in patients with LS is not completely understood. The main function of PLTs is to activate upon vessel wall injury and stop the bleeding by clot formation. PLT activation is accompanied by a shape change that is a result of massive cytoskeletal rearrangements. Here, we show that OCRL-inhibited human PLTs do not fully spread, form mostly filopodia, and accumulate actin nodules. These nodules co-localise with ARP2/3 subunit p34, vinculin, and sorting nexin 9. Furthermore, OCRL-inhibited PLTs have a retained microtubular coil with high levels of acetylated tubulin. Also, myosin light chain phosphorylation is decreased upon OCRL inhibition, without impaired degranulation or integrin activation. Taken together, these results suggest that OCRL contributes to cytoskeletal rearrangements during PLT activation that could explain mild bleeding problems in patients with LS.
Collapse
Affiliation(s)
- Ana Bura
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Maria Antonietta de Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, Rudolf Virchow Center, Wuerzburg, Germany
| | - Maurice Swinkels
- Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jurjen Versluis
- Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | | |
Collapse
|
4
|
Watari M, Kato M, Blanc-Mathieu R, Tsuge T, Ogata H, Aoyama T. Functional Differentiation among the Arabidopsis Phosphatidylinositol 4-Phosphate 5-Kinase Genes PIP5K1, PIP5K2 and PIP5K3. PLANT & CELL PHYSIOLOGY 2022; 63:635-648. [PMID: 35348769 DOI: 10.1093/pcp/pcac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is involved in regulating various cellular processes through the signaling function of its product, phosphatidylinositol (4,5)-bisphosphate. Higher plants encode a large number of PIP5Ks forming distinct clades in their molecular phylogenetic tree. Although biological functions of PIP5K genes have been analyzed intensively in Arabidopsis thaliana, it remains unclear how those functions differ across clades of paralogs. We performed comparative functional analysis of the Arabidopsis genes encoding PIP5K1, PIP5K2 and PIP5K3, of which the first two and the last belong to closely related but distinct clades, to clarify their conserved and/or differentiated functions. Genetic analysis with their single and multiple mutants revealed that PIP5K1 and PIP5K3 have non-overlapping functions, with the former in total plant growth and the latter in root hair elongation, whereas PIP5K2 redundantly functions in both phenomena. This pattern of functional redundancy is explainable in terms of the overlapping pattern of their promoter activities. In transformation rescue experiments, PIP5K3 promoter-directed PIP5K1-YFP completely rescued the short-root-hair phenotype of pip5k3. However, PIP5K3-YFP could substitute for PIP5K1-YFP only partially in rescuing the severe dwarfism of pip5k1pip5k2 when directed by the PIP5K1 promoter. Phylogenetic analysis of angiosperm PIP5Ks revealed that PIP5K3 orthologs have a faster rate of diversification in their amino-acid sequences compared with PIP5K1/2 orthologs after they arose through a eudicot-specific duplication event. These findings suggest that PIP5K3 specialized to promote root hair elongation and lost some of the protein-encoded functions retained by PIP5K1 and PIP5K2, whereas PIP5K1 differentiated from PIP5K2 only in its promoter-directed expression pattern.
Collapse
Affiliation(s)
- Machiko Watari
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire & Vegetale, University of Grenoble Alpes, IRIG, INRA, CNRS, CEA, F-38054, Grenoble 9, France
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| |
Collapse
|
5
|
Wu N, Zhang J, Ou W, Chen Y, Wang R, Li K, Sun XM, Li Y, Xu Q, Huang H. Transcriptome analysis of Rhizopus oryzae seed pellet formation using triethanolamine. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:230. [PMID: 34863259 PMCID: PMC8645130 DOI: 10.1186/s13068-021-02081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Rhizopus oryzae (R. oryzae) can effectively produce organic acids, and its pellet formation in seed cultures has been shown to significantly enhance subsequent fermentation processes. Despite advances in strain development, simple and effective methods for inducing pellet morphology and a basic understanding of the mechanisms controlling this process could facilitate substantial increases in efficiency and product output. Here, we report that 1.5% triethanolamine (TEOA) in seed culture medium can activate the growth of R. oryzae spores in compact and uniform pellets which is optimal for fermentation conditions. Analysis of fermentation kinetics showed that the production of fumaric and L-malic acid increases 293% and 177%, respectively. Transcriptomic analysis revealed that exposure of R. oryzae to 1.5% TEOA during the seed culture activated the phosphatidylinositol and mitogen-activated protein kinase signaling pathways. Theses pathways subsequently stimulated the downstream carbohydrate-active synthases and hydrolases that required for cell wall component synthesis and reconstruction. Our results thus provide insight into the regulatory pathways controlling pellet morphology germane to the viability of seed cultures, and provide valuable reference data for subsequent optimization of organic acid fermentation by R. oryzae.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wen Ou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
6
|
Bura A, Jurak Begonja A. Imaging of Intracellular and Plasma Membrane Pools of PI(4,5)P 2 and PI4P in Human Platelets. Life (Basel) 2021; 11:1331. [PMID: 34947862 PMCID: PMC8705196 DOI: 10.3390/life11121331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/25/2022] Open
Abstract
Phosphoinositides (PIs) are phosphorylated membrane lipids that have a plethora of roles in the cell, including vesicle trafficking, signaling, and actin reorganization. The most abundant PIs in the cell are phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-4-monophosphate (PI4P). The localization and roles of both PI(4,5)P2 and PI4P are well established, is the broadly accepted methodological approach for their immunocytochemical visualization in different cell compartments in several cell lines. However, not much is known about these PIs in platelets (PLTs), the smallest blood cells that detect vessel wall injury, activate, and stop the bleeding. Therefore, we sought to investigate the localization of PI(4,5)P2 and PI4P in resting and activated PLTs by antibody staining. Here, we show that the intracellular pools of PI(4,5)P2 and PI4P can be detected by the established staining protocol, and these pools can be modulated by inhibitors of OCRL phosphatase and PI4KIIIα kinase. However, although resting PLTs readily stain for the plasma membrane (PM) pools of PI(4,5)P2 and PI4P, just a few activated cells were stained with the established protocol. We show that optimized protocol allows for the visualization of PI(4,5)P2 and PI4P at PM in activated PLTs, which could also be modulated by OCRL and PI4KIIIα inhibitors. We conclude that PI(4,5)P2 and PI4P are more sensitive to lipid extraction by permeabilizing agents in activated than in resting human PLTs, which suggests their different roles during PLT activation.
Collapse
|
7
|
Russo G, Krauss M. Septin Remodeling During Mammalian Cytokinesis. Front Cell Dev Biol 2021; 9:768309. [PMID: 34805175 PMCID: PMC8600141 DOI: 10.3389/fcell.2021.768309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis mediates the final separation of a mother cell into two daughter cells. Septins are recruited to the cleavage furrow at an early stage. During cytokinetic progression the septin cytoskeleton is constantly rearranged, ultimately leading to a concentration of septins within the intercellular bridge (ICB), and to the formation of two rings adjacent to the midbody that aid ESCRT-dependent abscission. The molecular mechanisms underlying this behavior are poorly understood. Based on observations that septins can associate with actin, microtubules and associated motors, we review here established roles of septins in mammalian cytokinesis, and discuss, how septins may support cytokinetic progression by exerting their functions at particular sites. Finally, we discuss how this might be assisted by phosphoinositide-metabolizing enzymes.
Collapse
Affiliation(s)
- Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
8
|
Lysine acetylation regulates the interaction between proteins and membranes. Nat Commun 2021; 12:6466. [PMID: 34753925 PMCID: PMC8578602 DOI: 10.1038/s41467-021-26657-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes. Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates the function of membrane proteins. Here, the authors map lysine acetylation predominantly in membrane-interaction regions in peripheral membrane proteins and show with three candidate proteins how lysine acetylation is a regulator of membrane protein function.
Collapse
|
9
|
Liu H, Sun Z, Hu L, Li C, Wang X, Yue Z, Han Y, Yang G, Ma K, Yin G. Comparative Transcriptome Analysis of Male Sterile Anthers Induced by High Temperature in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:727966. [PMID: 34759937 PMCID: PMC8573241 DOI: 10.3389/fpls.2021.727966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 05/28/2023]
Abstract
Global warming will have a negative effect on agricultural production as high temperature (HT) stress can seriously threaten plant growth and reproduction. Male sterility caused by HT may be exploited by the creation of a male-sterile line, which has great potential for application in crop heterosis. Therefore, it is important to understand the molecular mechanisms of anther abortion induced by HT in wheat, which remain unclear at present. In this study, we performed phenotype improve language in the abstract and comparative transcriptome analysis of the male sterile anthers induced by HT in wheat. Compared with Normal anthers, the cytological analysis indicated that HT-induced male sterile anthers were smaller and had no starch accumulation in pollen grains, which is consistent with the results observed by scanning electron microscopy (SEM). The 9601 differentially expressed genes (DEGs) identified by transcriptome sequencing compared with the Normal anthers were noticeably involved in the following pathways: starch and sucrose metabolism, phosphatidylinositol (PI) signaling system, peroxidase activity and response to oxidative stress, and heme binding. In addition, TUNEL assays were performed and the results further confirmed the excessive accumulation of reactive oxygen species (ROS) in sterile anthers. Moreover, a total of 38 hub genes were obtained from the protein-protein interaction network analysis of these pathways, including genes, for example, heat shock protein 90 (HSP90), thioredoxin-like protein 1, peroxidase (POD), calreticulin, UDP glucose pyrophosphorylase (UGPase), sucrose synthase, phosphatidylinositol-4-phosphate 5-Kinase (PIP5K), cytochrome c, and Cystathionine beta-synthase X6-like (CBSX6-like). These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results is helpful for studying the abortive interaction mechanism induced by HT in wheat.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Zhongke Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xueqin Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zonghao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yulin Han
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Guangyu Yang
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guihong Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Rathod J, Yen HC, Liang B, Tseng YY, Chen CS, Wu WS. YPIBP: A repository for phosphoinositide-binding proteins in yeast. Comput Struct Biotechnol J 2021; 19:3692-3707. [PMID: 34285772 PMCID: PMC8261538 DOI: 10.1016/j.csbj.2021.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Phosphoinositides (PIs) are a family of eight lipids consisting of phosphatidylinositol (PtdIns) and its seven phosphorylated forms. PIs have important regulatory functions in the cell including lipid signaling, protein transport, and membrane trafficking. Yeast has been recognized as a eukaryotic model system to study lipid-protein interactions. Hundreds of yeast PI-binding proteins have been identified, but this research knowledge remains scattered. Besides, the complete PI-binding spectrum and potential PI-binding domains have not been interlinked. No comprehensive databases are available to support the lipid-protein interaction research on phosphoinositides. Here we constructed the first knowledgebase of Yeast Phosphoinositide-Binding Proteins (YPIBP), a repository consisting of 679 PI-binding proteins collected from high-throughput proteome-array and lipid-array studies, QuickGO, and a rigorous literature mining. The YPIBP also contains protein domain information in categories of lipid-binding domains, lipid-related domains and other domains. The YPIBP provides search and browse modes along with two enrichment analyses (PI-binding enrichment analysis and domain enrichment analysis). An interactive visualization is given to summarize the PI-domain-protein interactome. Finally, three case studies were given to demonstrate the utility of YPIBP. The YPIBP knowledgebase consolidates the present knowledge and provides new insights of the PI-binding proteins by bringing comprehensive and in-depth interaction network of the PI-binding proteins. YPIBP is available at http://cosbi7.ee.ncku.edu.tw/YPIBP/.
Collapse
Key Words
- ANTH, AP180 N-terminal Homology
- BAR, Bin-Amphiphysin-Rvs
- CAFA, Critical Assessment of Functional Annotation
- CRAL-TRIO, cellular retinaldehyde-binding protein (CRALBP) and TRIO guanine exchange factor
- Cvt, Cytoplasm-to-vacuole targeting
- ENTH, Epsin N-terminal Homology
- FDR, False Discovery Rate
- FYVE, Fab 1 (yeast orthologue of PIKfyve), YOTB, Vac 1 (vesicle transport protein), and EEA1
- GO, Gene Ontology
- ITC, Isothermal Titration Calorimetry
- LBD, Lipid-Binding Domain
- LMPD, LIPID MAPS Proteome Database
- LMSD, LIPID MAPS Structure Database
- LRD, Lipid-Related Domain
- Lipid-binding domain
- OMIM, Online Mendelian Inheritance in Man
- OSBP, Oxysterol-Binding Protein
- PH, Pleckstrin Homology
- PI(3,4)P2, phosphatidylinositol-3,4-bisphosphate
- PI(3,4,5)P3, phosphatidylinositol-3,4,5-trisphosphate
- PI(3,5)P2, phosphatidylinositol-3,5-bisphosphate
- PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate
- PI-binding protein
- PI3P, phosphatidylinositol-3-phosphate
- PI4P, phosphatidylinositol-4-phosphate
- PI5P, phosphatidylinositol-5-phosphate
- PIs, Phosphoinositides
- PMID, PubMed ID
- PX, Phox Homology
- Phosphatidylinositol (PtdIns)
- Phosphoinositides (PIs)
- PtdIns, Phosphatidylinositol
- QCM, Quartz Crystal Microbalance
- S. cerevisiae
- SNX, Sorting Nexin
- SPR, Surface Plasmon Resonance
- YPIBP, Yeast Phosphoinositide-Binding Proteins
- Yeast
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Chen Yen
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
11
|
Kuroda R, Kato M, Tsuge T, Aoyama T. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K7, PIP5K8, and PIP5K9 are redundantly involved in root growth adaptation to osmotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:913-927. [PMID: 33606325 DOI: 10.1111/tpj.15207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2 ), a signaling phospholipid critical for various cellular processes in eukaryotes. The Arabidopsis thaliana genome encodes 11 PIP5K genes. Of these, three type B PIP5K genes, PIP5K7, PIP5K8, and PIP5K9, constitute a subgroup highly conserved in land plants, suggesting that they retain a critical function shared by land plants. In this study, we comprehensively investigated the biological functions of the PIP5K7-9 subgroup genes. Reporter gene analyses revealed their preferential expression in meristematic and vascular tissues. Their YFP-fusion proteins localized primarily to the plasma membrane in root meristem epidermal cells. We selected a mutant line that was considered to be null for each gene. Under normal growth conditions, neither single mutants nor multiple mutants of any combination exhibited noticeable phenotypic changes. However, stress conditions with mannitol or NaCl suppressed main root growth and reduced proximal root meristem size to a greater extent in the pip5k7pip5k8pip5k9 triple mutant than in the wild type. In root meristem epidermal cells of the triple mutant, where plasma membrane localization of the PtdIns(4,5)P2 marker P24Y is impaired to a large extent, brefeldin A body formation is retarded compared with the wild type under hyperosmotic stress. These results indicate that PIP5K7, PIP5K8, and PIP5K9 are not required under normal growth conditions, but are redundantly involved in root growth adaptation to hyperosmotic conditions, possibly through the PtdIns(4,5)P2 function promoting plasma membrane recycling in root meristem cells.
Collapse
Affiliation(s)
- Ryo Kuroda
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| |
Collapse
|
12
|
Dudley LJ, Makar AN, Gammoh N. Membrane targeting of core autophagy players during autophagosome biogenesis. FEBS J 2020; 287:4806-4821. [PMID: 32301577 DOI: 10.1111/febs.15334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Autophagosomes are vital organelles required to facilitate the lysosomal degradation of cytoplasmic cargo, thereby playing an important role in maintaining cellular homeostasis. A number of autophagy-related (ATG) protein complexes are recruited to the site of autophagosome biogenesis where they act to facilitate membrane growth and maturation. Regulated recruitment of ATG complexes to autophagosomal membranes is essential for their autophagic activities and is required to ensure the efficient engulfment of cargo destined for lysosomal degradation. In this review, we discuss our current understanding of the spatiotemporal hierarchy between ATG proteins, examining the mechanisms underlying their recruitment to membranes. A particular focus is placed on the relevance of phosphatidylinositol 3-phosphate and the extent to which the core autophagy players are reliant on this lipid for their localisation to autophagic membranes. In addition, open questions and potential future research directions regarding the membrane recruitment and displacement of ATG proteins are discussed here.
Collapse
Affiliation(s)
- Leo J Dudley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Agata N Makar
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| |
Collapse
|
13
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
14
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
15
|
Liu Z, Li S, Li W, Liu Q, Zhang L, Song X. Comparative transcriptome analysis indicates that a core transcriptional network mediates isonuclear alloplasmic male sterility in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2020; 20:10. [PMID: 31910796 PMCID: PMC6947873 DOI: 10.1186/s12870-019-2196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis and various types of CMS often have different abortion mechanisms. Therefore, it is important to understand the molecular mechanisms related to anther abortion in wheat, which remain unclear at present. RESULTS In this study, five isonuclear alloplasmic male sterile lines (IAMSLs) and their maintainer were investigated. Cytological analysis indicated that the abortion type was identical in IAMSLs, typical and stainable abortion, and the key abortive period was in the binucleate stage. Most of the 1,281 core shared differentially expressed genes identified by transcriptome sequencing compared with the maintainer in the vital abortive stage were involved in the metabolism of sugars, oxidative phosphorylation, phenylpropane biosynthesis, and phosphatidylinositol signaling, and they were downregulated in the IAMSLs. Key candidate genes encoding chalcone--flavonone isomerase, pectinesterase, and UDP-glucose pyrophosphorylase were screened and identified. Moreover, further verification elucidated that due to the impact of downregulated genes in these pathways, the male sterile anthers were deficient in sugar and energy, with excessive accumulations of ROS, blocked sporopollenin synthesis, and abnormal tapetum degradation. CONCLUSIONS Through comparative transcriptome analysis, an intriguing core transcriptome-mediated male-sterility network was proposed and constructed for wheat and inferred that the downregulation of genes in important pathways may ultimately stunt the formation of the pollen outer wall in IAMSLs. These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results was helpful for studying the abortive interaction mechanism in CMS wheat.
Collapse
Affiliation(s)
- Zihan Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Sha Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Wei Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Qi Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
16
|
Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of Stretch-Regulated TRPV2 and TRPV4 Channels Inferred Through Interactomics. Biomolecules 2019; 9:biom9120791. [PMID: 31783610 PMCID: PMC6995547 DOI: 10.3390/biom9120791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential cation channels are emerging as important physiological and therapeutic targets. Within the vanilloid subfamily, transient receptor potential vanilloid 2 (TRPV2) and 4 (TRPV4) are osmo- and mechanosensors becoming critical determinants in cell structure and activity. However, knowledge is scarce regarding how TRPV2 and TRPV4 are trafficked to the plasma membrane or specific organelles to undergo quality controls through processes such as biosynthesis, anterograde/retrograde trafficking, and recycling. This review lists and reviews a subset of protein–protein interactions from the TRPV2 and TRPV4 interactomes, which is related to trafficking processes such as lipid metabolism, phosphoinositide signaling, vesicle-mediated transport, and synaptic-related exocytosis. Identifying the protein and lipid players involved in trafficking will improve the knowledge on how these stretch-related channels reach specific cellular compartments.
Collapse
Affiliation(s)
- Pau Doñate-Macián
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Catalonia, Spain
| | - Jennifer Enrich-Bengoa
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Irene R. Dégano
- CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- REGICOR Study Group, Cardiovascular Epidemiology and Genetics Group, IMIM (Hospital Del Mar Medical Research Institute), 08003 Barcelona, Catalonia, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - David G. Quintana
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Correspondence: ; Tel.: +34-93-581-4504
| |
Collapse
|
17
|
The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochem Soc Trans 2019; 47:985-995. [DOI: 10.1042/bst20180012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Classical cadherin cell adhesion receptors are integral membrane proteins that mediate cell–cell interactions, tissue integrity and morphogenesis. Cadherins are best understood to function as membrane-spanning molecular composites that couple adhesion to the cytoskeleton. On the other hand, the membrane lipid environment of the cadherins is an under-investigated aspect of their cell biology. In this review, we discuss two lines of research that show how the membrane can directly or indirectly contribute to cadherin function. Firstly, we consider how modification of its local lipid environment can potentially influence cadherin signalling, adhesion and dynamics, focusing on a role for phosphoinositide-4,5-bisphosphate. Secondly, we discuss how caveolae may indirectly regulate cadherins by modifying either the lipid composition and/or mechanical tension of the plasma membrane. Thus, we suggest that the membrane is a frontier of cadherin biology that is ripe for re-exploration.
Collapse
|
18
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Feng J, He L, Li Y, Xiao F, Hu G. Modeling of PH Domains and Phosphoinositides Interactions and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:19-32. [DOI: 10.1007/5584_2018_236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
21
|
Shukla A, Upadhyai P, Shah J, Neethukrishna K, Bielas S, Girisha KM. Autosomal recessive spinocerebellar ataxia 20: Report of a new patient and review of literature. Eur J Med Genet 2016; 60:118-123. [PMID: 27913285 DOI: 10.1016/j.ejmg.2016.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/10/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Inherited ataxias are an extremely heterogeneous group of disorders. Autosomal recessive spinocerebellar ataxia 20 (SCAR20) is a recently described disorder characterized by intellectual disability, ataxia, coarse facial features, progressive loss of Purkinje cells in the cerebellum and often hearing loss and skeletal abnormalities. Mutations in the gene SNX14, which plays an important role in autophagy, have been found to cause SCAR20. The unique clinical findings of progressive coarsening of facial features makes the clinical phenotype recognizable among the various hereditary ataxias. Here we report on a child with a novel missense mutation in the SNX14 gene that appears to be debilitating for protein conformation, function and review the previously reported cases from 15 families.
Collapse
Affiliation(s)
- Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Jhanvi Shah
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - K Neethukrishna
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India.
| |
Collapse
|
22
|
Bone LN, Dayam RM, Lee M, Kono N, Fairn GD, Arai H, Botelho RJ, Antonescu CN. The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Mol Biol Cell 2016; 28:161-172. [PMID: 28035047 PMCID: PMC5221620 DOI: 10.1091/mbc.e16-09-0668] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides (PIPs) control membrane traffic. PIPs have an acyl profile unique among phospholipids. The acyltransferase LYCAT localizes to phosphatidylinositol synthase vesicles, selectively regulates levels and locale of PIPs, and controls related membrane traffic, indicating that dynamic acyl remodeling selectively controls certain PIPs. Phosphoinositides (PIPs) are key regulators of membrane traffic and signaling. The interconversion of PIPs by lipid kinases and phosphatases regulates their functionality. Phosphatidylinositol (PI) and PIPs have a unique enrichment of 1-stearoyl-2-arachidonyl acyl species; however, the regulation and function of this specific acyl profile remains poorly understood. We examined the role of the PI acyltransferase LYCAT in control of PIPs and PIP-dependent membrane traffic. LYCAT silencing selectively perturbed the levels and localization of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-3-phosphate and the membrane traffic dependent on these specific PIPs but was without effect on phosphatidylinositol-4-phosphate or biosynthetic membrane traffic. The acyl profile of PI(4,5)P2 was selectively altered in LYCAT-deficient cells, whereas LYCAT localized with phosphatidylinositol synthase. We propose that LYCAT remodels the acyl chains of PI, which is then channeled into PI(4,5)P2. Our observations suggest that the PIP acyl chain profile may exert broad control of cell physiology.
Collapse
Affiliation(s)
- Leslie N Bone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Minhyoung Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Science and Technology, Tokyo 113-0033, Japan
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada .,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada .,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
23
|
Song K, Russo G, Krauss M. Septins As Modulators of Endo-Lysosomal Membrane Traffic. Front Cell Dev Biol 2016; 4:124. [PMID: 27857942 PMCID: PMC5093113 DOI: 10.3389/fcell.2016.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 11/13/2022] Open
Abstract
Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.
Collapse
Affiliation(s)
- Kyungyeun Song
- Leibniz-Institut für Molekulare Pharmakologie Berlin, Germany
| | - Giulia Russo
- Leibniz-Institut für Molekulare Pharmakologie Berlin, Germany
| | - Michael Krauss
- Leibniz-Institut für Molekulare Pharmakologie Berlin, Germany
| |
Collapse
|
24
|
Boesze-Battaglia K, Alexander D, Dlakić M, Shenker BJ. A Journey of Cytolethal Distending Toxins through Cell Membranes. Front Cell Infect Microbiol 2016; 6:81. [PMID: 27559534 PMCID: PMC4978709 DOI: 10.3389/fcimb.2016.00081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
The multifunctional role of lipids as structural components of membranes, signaling molecules, and metabolic substrates makes them an ideal partner for pathogens to hijack host cell processes for their own survival. The properties and composition of unique membrane micro-domains such as membrane rafts make these regions a natural target for pathogens as it affords them an opportunity to hijack cell signaling and intracellular trafficking pathways. Cytolethal distending toxins (Cdts), members of the AB2 family of toxins are comprised of three subunits, the active, CdtB unit, and the binding, CdtA-CdtC unit. Cdts are cyclomodulins leading to cell cycle arrest and apoptosis in a wide variety of cell types. Cdts from several species share a requirement for membrane rafts, and often cholesterol specifically for cell binding and CdtB mediated cytotoxicity. In this review we focus on how host–cell membrane bilayer organization contributes to the cell surface association, internalization, and action of bacteria derived cytolethal distending toxins (Cdts), with an emphasis on Aggregatibacter actinomycetemcomitans Cdt.
Collapse
Affiliation(s)
| | - Desiree Alexander
- Department of Biochemistry, SDM, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, SDM, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
25
|
Shenker BJ, Walker LP, Zekavat A, Boesze-Battaglia K. Lymphoid susceptibility to the Aggregatibacter actinomycetemcomitans cytolethal distending toxin is dependent upon baseline levels of the signaling lipid, phosphatidylinositol-3,4,5-triphosphate. Mol Oral Microbiol 2015; 31:33-42. [PMID: 26299277 DOI: 10.1111/omi.12127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/31/2023]
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity and depletes lymphoid cells of PIP3. Hence we propose that Cdt toxicity results from depletion of this signaling lipid and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signaling. We have now focused on the relationship between cell susceptibility to CdtB and differences in the status of baseline PIP3 levels. Our studies demonstrate that the baseline level of PIP3, and likely the dependence of cells on steady-state activity of the PI-3K signaling pathway for growth and survival, influence cell susceptibility to the toxic effects of Cdt. Jurkat cells with known defects in both PIP3 degradative enzymes, PTEN and SHIP1, not only contain high baseline levels of PIP3, pAkt, and pGSK3β, but also exhibit high sensitivity to Cdt. In contrast, HUT78 cells, with no known defects in this pathway, contain low levels of PIP3, pAkt, and pGSK3β and likely minimal dependence on the PI-3K signaling pathway for growth and survival, and exhibit reduced susceptibility to Cdt. These differences in susceptibility to Cdt cannot be explained by differential toxin binding or internalization of the active subunit. Indeed, we now demonstrate that Jurkat and HUT78 cells bind toxin at comparable levels and internalize relatively equal amounts of CdtB. The relevance of these observations to the mode of action of Cdt and its potential role as a virulence factor is discussed.
Collapse
Affiliation(s)
- B J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - L P Walker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A Zekavat
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - K Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Shenker BJ, Boesze-Battaglia K, Scuron MD, Walker LP, Zekavat A, Dlakić M. The toxicity of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity. Cell Microbiol 2015; 18:223-43. [PMID: 26247396 DOI: 10.1111/cmi.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022]
Abstract
The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity, leading us to propose that Cdt toxicity is the result of PIP3 depletion and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signalling. To further explore this relationship, we have focused our analysis on identifying residues that comprise the catalytic pocket and are critical to substrate binding rather than catalysis. In this context, we have generated several CdtB mutants and demonstrate that, in each instance, the ability of the toxin to induce cell cycle arrest correlates with retention of phosphatase activity. We have also assessed the effect of Cdt on downstream components of the PI-3K signalling pathway. In addition to depletion of intracellular concentrations of PIP3, toxin-treated lymphocytes exhibit decreases in pAkt and pGSK3β. Further analysis indicates that toxin-treated cells exhibit a concomitant loss in Akt activity and increase in GSK3β kinase activity consistent with observed changes in their phosphorylation status. We demonstrate that cell susceptibility to Cdt is dependent upon dephosphorylation and concomitant activation of GSK3β. Finally, we demonstrate that, in addition to lymphocytes, HeLa cells exposed to a CdtB mutant that retains phosphatase activity and not DNase activity undergo G2 arrest in the absence of H2AX phosphorylation. Our results provide further insight into the mode of action by which Cdt may function as an immunotoxin and induce cell cycle arrest in target cells such as lymphocytes.
Collapse
Affiliation(s)
- Bruce J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Monika Damek Scuron
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Lisa P Walker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Ali Zekavat
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
27
|
Le OTT, Nguyen TTN, Lee SY. Phosphoinositide turnover in Toll-like receptor signaling and trafficking. BMB Rep 2015; 47:361-8. [PMID: 24856829 PMCID: PMC4163850 DOI: 10.5483/bmbrep.2014.47.7.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/29/2022] Open
Abstract
Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368]
Collapse
Affiliation(s)
- Oanh Thi Tu Le
- Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 443-721, Korea
| | - Tu Thi Ngoc Nguyen
- Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 443-721, Korea
| | - Sang Yoon Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 443-721, Korea
| |
Collapse
|
28
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
29
|
Crosstalk between PI(4,5)P₂and CK2 modulates actin polymerization during endocytic uptake. Dev Cell 2014; 30:746-58. [PMID: 25268174 DOI: 10.1016/j.devcel.2014.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/13/2014] [Accepted: 07/28/2014] [Indexed: 01/02/2023]
Abstract
A transient burst of actin polymerization assists endocytic budding. How actin polymerization is controlled in this context is not understood. Here, we show that crosstalk between PI(4,5)P₂and the CK2 catalytic subunit Cka2 controls actin polymerization at endocytic sites. We find that phosphorylation of the myosin-I Myo5 by Cka2 downregulates Myo5-induced Arp2/3-dependent actin polymerization, whereas PI(4,5)P₂cooperatively relieves Myo5 autoinhibition and inhibits the catalytic activity of Cka2. Cka2 and the PI(4,5)P₂-5-phosphatases Sjl1 and Sjl2, the yeast synaptojanins, exhibit genetic interactions indicating functional redundancy. The ultrastructural analysis of plasma membrane invaginations in CK2 and synaptojanin mutants demonstrates that both cooperate to initiate constriction of the invagination neck, a process coupled to the remodeling of the endocytic actin network. Our data demonstrate a holoenzyme-independent function of CK2 in endocytic budding and establish a robust genetic, functional, and molecular link between PI(4,5)P₂and CK2, two masters of intracellular signaling.
Collapse
|
30
|
Mas C, Norwood SJ, Bugarcic A, Kinna G, Leneva N, Kovtun O, Ghai R, Ona Yanez LE, Davis JL, Teasdale RD, Collins BM. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. J Biol Chem 2014; 289:28554-68. [PMID: 25148684 DOI: 10.1074/jbc.m114.595959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.
Collapse
Affiliation(s)
- Caroline Mas
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrea Bugarcic
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Genevieve Kinna
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajesh Ghai
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lorena E Ona Yanez
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jasmine L Davis
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
31
|
Lauber MB, Daniliuc CG, Paradies J. Desymmetrization of 4,6-diprotected myo-inositol. Chem Commun (Camb) 2014; 49:7409-11. [PMID: 23860461 DOI: 10.1039/c3cc43663b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric desymmetrization of 4,6-diprotected myo-inositol derivatives was achieved by using a bifunctional, readily available nucleophilic catalyst. The orthogonally protected products were obtained in 80-99% yield with 90-99% ee. Such structures serve as potential enantiopure building blocks for the synthesis of myo-inositol phosphates.
Collapse
Affiliation(s)
- Markus B Lauber
- Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber Weg 6, Germany
| | | | | |
Collapse
|
32
|
O'Boyle N, Boyd A. Manipulation of intestinal epithelial cell function by the cell contact-dependent type III secretion systems of Vibrio parahaemolyticus. Front Cell Infect Microbiol 2014; 3:114. [PMID: 24455490 PMCID: PMC3887276 DOI: 10.3389/fcimb.2013.00114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/23/2022] Open
Abstract
Vibrio parahaemolyticus elicits gastroenteritis by deploying Type III Secretion Systems (TTSS) to deliver effector proteins into epithelial cells of the human intestinal tract. The bacteria must adhere to the human cells to allow colonization and operation of the TTSS translocation apparatus bridging the bacterium and the host cell. This article first reviews recent advances in identifying the molecules responsible for intercellular adherence. V. parahaemolyticus possesses two TTSS, each of which delivers an exclusive set of effectors and mediates unique effects on the host cell. TTSS effectors primarily target and alter the activation status of host cell signaling proteins, thereby bringing about changes in the regulation of cellular behavior. TTSS1 is responsible for the cytotoxicity of V. parahaemolyticus, while TTSS2 is necessary for the enterotoxicity of the pathogen. Recent publications have elucidated the function of several TTSS effectors and their importance in the virulence of the bacterium. This review will explore the ability of the TTSS to manipulate activities of human intestinal cells and how this modification of cell function favors bacterial colonization and persistence of V. parahaemolyticus in the host.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
33
|
Fujimoto M, Tsutsumi N. Dynamin-related proteins in plant post-Golgi traffic. FRONTIERS IN PLANT SCIENCE 2014; 5:408. [PMID: 25237312 PMCID: PMC4154393 DOI: 10.3389/fpls.2014.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 05/21/2023]
Abstract
Membrane traffic between two organelles begins with the formation of transport vesicles from the donor organelle. Dynamin-related proteins (DRPs), which are large multidomain GTPases, play crucial roles in vesicle formation in post-Golgi traffic. Numerous in vivo and in vitro studies indicate that animal dynamins, which are members of DRP family, assemble into ring- or helix-shaped structures at the neck of a bud site on the donor membrane, where they constrict and sever the neck membrane in a GTP hydrolysis-dependent manner. While much is known about DRP-mediated trafficking in animal cells, little is known about it in plant cells. So far, two structurally distinct subfamilies of plant DRPs (DRP1 and DRP2) have been found to participate in various pathways of post-Golgi traffic. This review summarizes the structural and functional differences between these two DRP subfamilies, focusing on their molecular, cellular and developmental properties. We also discuss the molecular networks underlying the functional machinery centering on these two DRP subfamilies. Furthermore, we hope that this review will provide direction for future studies on the mechanisms of vesicle formation that are not only unique to plants but also common to eukaryotes.
Collapse
Affiliation(s)
- Masaru Fujimoto
- *Correspondence: Masaru Fujimoto, Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| | | |
Collapse
|
34
|
Abstract
Transport carriers regulate the bidirectional flow of membrane between the compartments of the secretory and endocytic pathways. Their biogenesis relies on the recruitment of a number of cytosolic proteins and protein complexes on specific membrane microdomains with defined protein and lipid compositions. The timely assembly of these cellular machines onto membranes involves multiple protein-protein and protein-lipid interactions and is necessary to select membrane proteins and lipids into nascent carriers, to bend the flat membrane of the donor compartment, to change the shape of this nascent carrier into a tubular-vesicular structure, and to operate its scission from the donor compartment. A challenge in this field of membrane cell biology has been to identify these machineries and to understand their precise function, in particular by studying their spatial and temporal dynamics during carrier biogenesis. During the past years, liposome-based synthetic biology fully recapitulating the fidelity of carrier biogenesis as seen in vivo has proved to be instrumental to identify these key cytosolic components using mass spectrometry and their dynamics using fluorescence microscopy. We describe here the methods to isolate on synthetic membranes the protein networks needed for carrier biogenesis, to identify them using label-free quantitative proteomics, and to visualize their dynamics on giant unilamellar vesicles.
Collapse
|
35
|
Hsu F, Mao Y. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease. ACTA ACUST UNITED AC 2013; 8:395-407. [PMID: 24860601 DOI: 10.1007/s11515-013-1258-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down's syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Ivanov SS, Roy C. Host lipidation: a mechanism for spatial regulation of Legionella effectors. Curr Top Microbiol Immunol 2013; 376:135-54. [PMID: 23918175 DOI: 10.1007/82_2013_344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Bacterial pathogens have evolved the capacity to translocate proteins into the cytosol of infected cells to manipulate host processes. How do pathogens regulate spatially these bacterial effector proteins once they are released into the host cell? One mechanism, which is used by Legionella and other bacterial pathogens, is to encode effectors that mimic the substrates of eukaryotic lipid transferases. In this review we discuss three membrane-targeting pathways in eukaryotes that are exploited by Legionella and other pathogens-prenylation, palmitoylation, and myristoylation. Lipidation of bacterial substrates primes the effectors for coincidence detection-mediated targeting onto membrane-bound organelles by increasing membrane affinity. Intracellular membrane-targeting strategies that exploit protein fatty acylation and prenylation direct bacterial effectors to compartments where their target substrates reside and thus are critical for effector function.
Collapse
Affiliation(s)
- Stanimir S Ivanov
- Department of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT, 06519, USA,
| | | |
Collapse
|
37
|
Wang J, Richards DA. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open 2012; 1:857-62. [PMID: 23213479 PMCID: PMC3507238 DOI: 10.1242/bio.20122071] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/18/2012] [Indexed: 12/30/2022] Open
Abstract
PIP2 and PIP3 are implicated in a wide variety of cellular signaling pathways at the plasma membrane. We have used STORM imaging to localize clusters of PIP2 and PIP3 to distinct nanoscale regions within the plasma membrane of PC12 cells. With anti-phospholipid antibodies directly conjugated with AlexaFluor 647, we found that PIP2 clusters in membrane domains of 64.5±27.558 nm, while PIP3 clusters had a size of 125.6±22.408 nm. With two color direct STORM imaging we show that >99% of phospholipid clusters have only one or other phospholipid present. These results indicate that lipid nano-domains can be readily identified using super-resolution imaging techniques, and that the lipid composition and size of clusters is tightly regulated.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center , MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229 , USA
| | | |
Collapse
|
38
|
Welliver TP, Swanson JA. A growth factor signaling cascade confined to circular ruffles in macrophages. Biol Open 2012; 1:754-60. [PMID: 23213469 PMCID: PMC3507227 DOI: 10.1242/bio.20121784] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/23/2012] [Indexed: 12/26/2022] Open
Abstract
The formation of macropinosomes requires large-scale movements of membranes and the actin cytoskeleton. Over several minutes, actin-rich surface ruffles transform into 1-5 µm diameter circular ruffles, which close at their distal margins, creating endocytic vesicles. Previous studies using fluorescent reporters of phosphoinositides and Rho-family GTPases showed that signals generated by macrophages in response to the growth factor Macrophage Colony-Stimulating Factor (M-CSF) appeared transiently in domains of plasma membrane circumscribed by circular ruffles. To address the question of how signaling molecules are coordinated in such large domains of plasma membrane, this study analyzed the relative timing of growth factor-dependent signals as ruffles transformed into macropinosomes. Fluorescent protein chimeras expressed in macrophages were imaged by microscopy and quantified relative to circular ruffle formation and cup closure. The large size of macropinocytic cups allowed temporal resolution of the transitions in phosphoinositides and associated enzyme activities that organize cup closure. Circular ruffles contained transient and sequential spikes of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)), phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), diacylglycerol, PI(3,4)P(2), PI(3)P and the activities of protein kinase C-α, Rac1, Ras and Rab5. The confinement of this signal cascade to circular ruffles indicated that diffusion barriers present in these transient structures focus feedback activation and deactivation of essential enzyme activities into restricted domains of plasma membrane.
Collapse
Affiliation(s)
- Timothy P Welliver
- Program in Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| | | |
Collapse
|
39
|
Rogasevskaia TP, Churchward MA, Coorssen JR. Anionic lipids in Ca(2+)-triggered fusion. Cell Calcium 2012; 52:259-69. [PMID: 22516687 DOI: 10.1016/j.ceca.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 01/30/2023]
Abstract
Anionic lipids are native membrane components that have a profound impact on many cellular processes, including regulated exocytosis. Nonetheless, the full nature of their contribution to the fast, Ca(2+)-triggered fusion pathway remains poorly defined. Here we utilize the tightly coupled quantitative molecular and functional analyses enabled by the cortical vesicle model system to elucidate the roles of specific anionic lipids in the docking, priming and fusion steps of regulated release. Studies with cholesterol sulfate established that effectively localized anionic lipids could contribute to Ca(2+)-sensing and even bind Ca(2+) directly as effectors of necessary membrane rearrangements. The data thus support a role for phosphatidylserine in Ca(2+) sensing. In contrast, phosphatidylinositol would appear to serve regulatory functions in the physiological fusion machine, contributing to priming and thus the modulation and tuning of the fusion process. We note the complexities associated with establishing the specific roles of (anionic) lipids in the native fusion mechanism, including their localization and interactions with other critical components that also remain to be more clearly and quantitatively defined.
Collapse
Affiliation(s)
- Tatiana P Rogasevskaia
- Department of Chemical & Biological Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6 Canada
| | | | | |
Collapse
|
40
|
Tóth DJ, Tóth JT, Gulyás G, Balla A, Balla T, Hunyady L, Várnai P. Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. J Cell Sci 2012; 125:2185-97. [PMID: 22357943 DOI: 10.1242/jcs.097279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Receptor endocytosis plays an important role in regulating the responsiveness of cells to specific ligands. Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] has been shown to be crucial for endocytosis of some cell surface receptors, such as EGF and transferrin receptors, but its role in G-protein-coupled receptor internalization has not been investigated. By using luciferase-labeled type 1 angiotensin II (AT1R), type 2C serotonin (5HT2CR) or β(2) adrenergic (β2AR) receptors and fluorescently tagged proteins (β-arrestin-2, plasma-membrane-targeted Venus, Rab5) we were able to follow the sequence of molecular interactions along the endocytic route of the receptors in HEK293 cells using the highly sensitive method of bioluminescence resonance energy transfer and confocal microscopy. To study the role of plasma membrane PtdIns(4,5)P(2) in receptor endocytosis, we used our previously developed rapamycin-inducible heterodimerization system, in which the recruitment of a 5-phosphatase domain to the plasma membrane degrades PtdIns(4,5)P(2). Here we show that ligand-induced interaction of AT1, 5HT2C and β(2)A receptors with β-arrestin-2 was unaffected by PtdIns(4,5)P(2) depletion. However, trafficking of the receptors to Rab5-positive early endosomes was completely abolished in the absence of PtdIns(4,5)P(2). Remarkably, removal of the receptors from the plasma membrane was reduced but not eliminated after PtdIns(4,5)P(2) depletion. Under these conditions, stimulated AT1 receptors clustered along the plasma membrane, but did not enter the cells. Our data suggest that in the absence of PtdIns(4,5)P(2), these receptors move into clathrin-coated membrane structures, but these are not cleaved efficiently and hence cannot reach the early endosomal compartment.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang L, Hong Z, Lin W, Shao RX, Goto K, Hsu VW, Chung RT. ARF1 and GBF1 generate a PI4P-enriched environment supportive of hepatitis C virus replication. PLoS One 2012; 7:e32135. [PMID: 22359663 PMCID: PMC3281116 DOI: 10.1371/journal.pone.0032135] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular levels of phosphatidylinositol 4-phosphate (PI4P) have been shown to be upregulated during RNA replication of several viruses, including the HCV replicon model. However, whether PI4P is required in an infectious HCV model remains unknown. Moreover, it is not established whether the host transport machinery is sequestered by the generation of PI4P during HCV infection. Here we found that PI4P was enriched in HCV replication complexes when Huh7.5.1 cells were infected with JFH1. HCV replication was inhibited upon overexpression of the PI4P phosphatase Sac1. The PI4P kinase PI4KIIIβ was also found to be required for HCV replication. Moreover, the vesicular transport proteins ARF1 and GBF1 colocalized with PI4KIIIβ and were both required for HCV replication. During authentic HCV infection, PI4P plays an integral role in virus replication.
Collapse
Affiliation(s)
- Leiliang Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhi Hong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Run-Xuan Shao
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaku Goto
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victor W. Hsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bru M, Kotkar SP, Kar N, Köhn M. Development of a solid phase synthesis strategy for soluble phosphoinositide analogues. Chem Sci 2012. [DOI: 10.1039/c2sc01061e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
43
|
Chen X, Zhang X, Jia C, Xu J, Gao H, Zhang G, Du X, Zhang H. Membrane depolarization increases membrane PtdIns(4,5)P2 levels through mechanisms involving PKC βII and PI4 kinase. J Biol Chem 2011; 286:39760-7. [PMID: 21953466 DOI: 10.1074/jbc.m111.289090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In a previous study, we showed that membrane depolarization induced elevation of membrane phosphatidylinositol 4,5-bisphosphates (PtdIns(4,5)P(2), also known as PIP(2)) and subsequently increased the KCNQ2/Q3 currents expressed in Xenopus oocytes through increased PI4 kinase activity. In this study, the underlying mechanism for this depolarization-induced enhancement of PIP(2) synthesis was further investigated. Our results indicate that activation of protein kinase C (PKC) isozyme βII was responsible for the enhanced PIP(2) synthesis. We found that phorbol-12-myristate, 13-acetate (PMA), an activator of PKC, mimicked the effects of the membrane depolarization by increasing KCNQ2/Q3 activity, elevating membrane PIP(2) levels and increasing activity of PI4 kinase β. Furthermore, membrane depolarization enhanced PKC activity. The effects of both depolarization and PMA were blocked by a PKC inhibitor or PI4 kinase β RNA interference. Further results demonstrate that the depolarization selectively activated the PKC βII isoform and enhanced its interaction with PI4 kinase β. These results reveal that the depolarization-induced elevation of membrane PIP(2) is through activation of PKC and the subsequent increased activity of PI4 kinase β.
Collapse
Affiliation(s)
- Xingjuan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.
Collapse
Affiliation(s)
- Cheuk Y Ho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
45
|
Hamard-Peron E, Muriaux D. Retroviral matrix and lipids, the intimate interaction. Retrovirology 2011; 8:15. [PMID: 21385335 PMCID: PMC3059298 DOI: 10.1186/1742-4690-8-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/07/2011] [Indexed: 11/30/2022] Open
Abstract
Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research.
Collapse
Affiliation(s)
- Elise Hamard-Peron
- Human Virology Department, Inserm U758, Ecole Normale Superieure de Lyon, 36 Allee d'Italie, IFR128, Universite de Lyon, Lyon, France
| | | |
Collapse
|
46
|
Rogasevskaia TP, Coorssen JR. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J Chem Biol 2011; 4:117-36. [PMID: 22315653 DOI: 10.1007/s12154-011-0056-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca(2+)-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca(2+)-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.
Collapse
|
47
|
Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2011; 2:504-13. [PMID: 20817957 PMCID: PMC2954041 DOI: 10.18632/aging.100190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.
Collapse
|
48
|
Shenker BJ, Boesze-Battaglia K, Zekavat A, Walker L, Besack D, Ali H. Inhibition of mast cell degranulation by a chimeric toxin containing a novel phosphatidylinositol-3,4,5-triphosphate phosphatase. Mol Immunol 2010; 48:203-10. [PMID: 20863570 DOI: 10.1016/j.molimm.2010.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/21/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
It is well established that many cell functions are controlled by the PI-3K signaling pathway and the signaling lipid, phosphatidylinositol-3,4,5-triphosphate (PIP3). This is particularly true for mast cells which play a key regulatory role in allergy and inflammation through activation via high-affinity IgE receptors (FcɛRI) leading to activation of signaling cascades and subsequent release of histamine and other pro-inflammatory mediators. A pivotal component of this cascade is the activation of PI-3K and a rise in intracellular levels of PIP3. In this study, we developed a novel chimeric toxin that selectively binds to mast cells and which functions as a PIP3 phosphatase. Specifically, the chimeric toxin was composed of the FcɛRI binding region of IgE and the active subunit of the cytolethal distending toxin, CdtB, which we have recently demonstrated to function as a PIP3 phosphatase. We demonstrate that the chimeric toxin retains PIP3 phosphatase activity and selectively binds to mast cells. Moreover, the toxin is capable of altering intracellular levels of PIP3, block antigen-induced Akt phosphorylation and degranulation. These studies provide further evidence for the pivotal role of PIP3 in regulating mast cell activation and for this signaling lipid serving as a novel target for therapeutic intervention of mast cell-mediated disease. Moreover, these studies provide evidence for the utilization of CdtB as a novel therapeutic agent for targeting the PI-3K signaling pathway.
Collapse
Affiliation(s)
- Bruce J Shenker
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104-6030, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4,5)P2/PS and a polybasic region in the matrix. J Virol 2010; 84:503-15. [PMID: 19828619 DOI: 10.1128/jvi.01134-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane targeting of the human immunodeficiency virus Gag proteins is dependent on phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] located in the plasma membrane. In order to determine if evolutionarily distant retroviral Gag proteins are targeted by a similar mechanism, we generated mutants of the matrix (MA) domain of murine leukemia virus (MuLV) Gag, examined their binding to membrane models in vitro, and analyzed their phenotypes in cell culture. In vitro, we showed that MA bound all the phosphatidylinositol phosphates with significant affinity but displayed a strong specificity for PI(4,5)P(2) only if enhanced by phosphatidylserine. Mutations in the polybasic region in MA dramatically reduced this affinity. In cells, virus production was strongly impaired by PI(4,5)P(2) depletion under conditions of 5ptaseIV overexpression, and mutations in the MA polybasic region altered Gag localization, membrane binding, and virion production. Our results suggest that the N-terminal polybasic cluster of MA is essential for Gag targeting to the plasma membrane. The binding of the MA domain to PI(4,5)P(2) appears to be a conserved feature among retroviruses despite the fact that the MuLV-MA domain is structurally different from that of human immunodeficiency virus types 1 and 2 and lacks a readily identifiable PI(4,5)P(2) binding cleft.
Collapse
|
50
|
Botelho RJ. Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis. Bioessays 2009; 31:1127-36. [PMID: 19708025 DOI: 10.1002/bies.200900060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Joining an antagonistic phosphoinositide (PtdInsP) kinase and phosphatase into a single protein complex may regulate rapid and local PtdInsP changes. This may be important for processes such as membrane fission that require a specific PtdInsP and that are innately local and rapid. Such a complex could couple vesicle formation, with erasing of the identity of the donor organelle from the vesicle prior to its fusion with target organelles, thus preventing organelle identity intermixing. Coordinating signals are postulated to switch the relative activities of the kinase and phosphatase in a spatio-temporal manner that matches membrane fission events. The discovery of two such complexes supports this hypothesis. One regulates the interconversion of phosphatidylinositol and PtdIns(3)P by joining the Vps34 PtdIns 3-kinase and the myotubularin 3-phosphatases. The other regulates the interconversion between PtdIns(3)P and PtdIns(3,5)P(2) through the Fab1/PIKfyve kinase and the Fig4/mFig4 phosphatase. These lipids are essential components of the endosomal identity code.
Collapse
Affiliation(s)
- Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, ON, Canada.
| |
Collapse
|