1
|
Zhao A, Maple L, Jiang J, Myers KN, Jones CG, Gagg H, McGarrity-Cottrell C, Rominiyi O, Collis SJ, Wells G, Rahman M, Danson SJ, Robinson D, Smythe C, Guo C. SENP3-FIS1 axis promotes mitophagy and cell survival under hypoxia. Cell Death Dis 2024; 15:881. [PMID: 39638786 PMCID: PMC11621581 DOI: 10.1038/s41419-024-07271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, and its reversal, deSUMOylation by SUMO proteases like Sentrin-specific proteases (SENPs), are crucial for initiating cellular responses to hypoxia. However, their roles in subsequent adaptation processes to hypoxia such as mitochondrial autophagy (mitophagy) remain unexplored. Here, we show that general SUMOylation, particularly SUMO2/3 modification, suppresses mitophagy under both normoxia and hypoxia. Furthermore, we identify deSUMO2/3-ylation enzyme SENP3 and mitochondrial Fission protein 1 (FIS1) as key players in hypoxia-induced mitophagy (HIM), with SUMOylatable FIS1 acting as a crucial regulator for SENP3-mediated HIM regulation. Interestingly, we find that hypoxia promotes FIS1 SUMO2/3-ylation and triggers an interaction between SUMOylatable FIS1 and Rab GTPase-activating protein Tre-2/Bub2/Cdc16 domain 1 family member 17 (TBC1D17), which in turn suppresses HIM. Therefore, we propose a novel SUMOylation-dependent pathway where the SENP3-FIS1 axis promotes HIM, with TBC1D17 acting as a fine-tuning regulator. Importantly, the SENP3-FIS1 axis plays a protective role against hypoxia-induced cell death, highlighting its physiological significance, and hypoxia-inducible FIS1-TBC1D17 interaction is detectable in primary glioma stem cell-like (GSC) cultures derived from glioblastoma patients, suggesting its disease relevance. Our findings not only provide new insights into SUMOylation/deSUMOylation regulation of HIM but also suggest the potential of targeting this pathway to enhance cellular resilience under hypoxic stress.
Collapse
Affiliation(s)
- Alice Zhao
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Laura Maple
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Juwei Jiang
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katie N Myers
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Hannah Gagg
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | | | - Ola Rominiyi
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
- Division of Neuroscience, University of Sheffield Medical School, Sheffield, S10 2HQ, UK
- Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK
| | - Spencer J Collis
- Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Greg Wells
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Marufur Rahman
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Sarah J Danson
- Ex vivo Project Team, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Darren Robinson
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Carl Smythe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Cordeiro AR, de Lacerda Bezerra I, Santana-Filho AP, Benedetti PR, Ingberman M, Sassaki GL. Wine fermentation process evaluation through NMR analysis: Polysaccharides, ethanol quantification and biological activity. Food Chem 2024; 451:139531. [PMID: 38704992 DOI: 10.1016/j.foodchem.2024.139531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Winemaking production is old knowledge of the combination of saccharification and fermentation processes. During the fermentation process, ethanol concentration is one of the main key parameters that provides the quality of wine and is linked to the consumption of carbohydrates present in wine. In this work was determined the better fermentation time, where the wine retains its highest concentration of ethanol and a higher concentration of the polysaccharides of Bordo wine of Vitis labrusca by 1D and 2D NMR measurements. The study provides information on the polysaccharide content for improving features and quality control of winemaking. Moreover, following previous studies by our group (de Lacerda Bezerra et al., 2018, de Lacerda Bezerra, Caillot, de Oliveira, Santana-Filho, & Sassaki, 2019; Stipp et al., 2023) showed that the soluble polysaccharides also inhibited the production of inflammatory cytokines (TNF-α and IL-1β) and mediator (NO) in macrophage cells stimulated with LPS, bringing some important health benefits of wine.
Collapse
Affiliation(s)
- Adriana Rute Cordeiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná 81.531-980, Brazil
| | - Iglesias de Lacerda Bezerra
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná 81.531-980, Brazil
| | | | - Philippe Rodrigues Benedetti
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná 81.531-980, Brazil
| | - Max Ingberman
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 80050-540, Brazil
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Paraná 81.531-980, Brazil.
| |
Collapse
|
3
|
Zheng Z, Sun N, Mao C, Tang Y, Lin S. Val-Leu-Leu-Tyr (VLLY) Alleviates Ethanol-Induced Gastric Mucosal Cell Impairment by Improving Mitochondrial Fission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18722-18734. [PMID: 37980612 DOI: 10.1021/acs.jafc.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ethanolic gastric mucosal impairment is one of the most common disorders in the gastrointestinal system. In this study, we investigated the potential alleviating effects of sea cucumber peptides on Ges-1 impairment caused by ethanol and the associated mechanisms. The sea cucumber peptide VLLY could promote the proliferation and migration of healthy Ges-1 cells. After ethanol injury, VLLY peptide treatment could greatly promote the migration of Ges-1 cells, scavenge intracellular and mitochondrial ROS, reverse mitochondrial fission and F-actin depolymerization, and improve mitochondrial respiration. VLLY peptide restored mitochondrial dynamics by downregulating Drp1 and Fis1 and upregulating Mfn2 against excessive mitochondrial fission. In addition, the VLLY peptide maintained the mitochondrial membrane potential, ablated the leakage of cytochrome c to the cytoplasm, upregulated the expression of the antiapoptotic factor Bcl-XL, decreased the expression of the proapoptotic factors of Bax, BAD, and cleaved caspase-3, and finally blocked the mitochondria-related apoptotic pathway. These findings strongly suggested that sea cucumber peptides could promote proliferation and migration of healthy Ges-1 cells and reverse ethanol-induced excess mitochondrial fission and maintain mitochondrial homeostasis through the Fis1/Bax pathway, thereby improving ethanol-induced apoptosis. VLLY offers a new perspective for improving the ethanolic gastric mucosal epithelial cell injury.
Collapse
Affiliation(s)
- Zhihong Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chuwen Mao
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Tang
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- State Key Laboratory of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
4
|
Ghasempouri SK, Askari Z, Mohammadi H. Ameliorative effect of diazepam against ethanol-induced mitochondrial disruption in brains of the mice. Toxicol Rep 2023; 11:405-412. [PMID: 37955036 PMCID: PMC10632119 DOI: 10.1016/j.toxrep.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Brain oxidative damage and neurodegeneration by ethanol (ETH) are considered as important factors that triggered by oxidative stress. Recently, the abuse of diazepam (DZM) has increased by alcoholism-addicted patients. The present study evaluated the effects of combination treatment of ETH with DZM on oxidative damage induced in brain mitochondria of the mice. Only ETH (0.3, 0.6, and 2.5 g / kg) and ETH+ DZM (2.5 mg / kg) were administered intraperitoneally (ip) to the mice. Pathological changes and oxidative stress biomarkers including ROS, lipid peroxidation, carbonyl protein, mitochondrial function, and glutathione content were evaluated in brain mitochondria after 42 days. Results indicated that co-treatment of DZM and ETH significantly reduced mitochondrial toxicity, oxidative damage, pathological changes and increased level of glutathione. Subchronic ETH administration induced brain oxidative damage, mitochondrial disruption, and serious damage to the brain cells. Whereas, combination treatment improved oxidative damage, mitochondrial function, and pathological changes in brain cells after intoxication by ETH. These findings suggest antioxidant effect of DZM in combination with ETH and can be considered in reducing oxidative stress and mitochondrial damage attenuation in the brain. Combination therapy may be a better therapeutic candidate for prevention of brain oxidative damage induced by ETH.
Collapse
Affiliation(s)
- Seyed Khosro Ghasempouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Askari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Diep E, Schiffman JD. Ethanol-free Cross-Linking of Alginate Nanofibers Enables Controlled Release into a Simulated Gastrointestinal Tract Model. Biomacromolecules 2023. [PMID: 37183416 DOI: 10.1021/acs.biomac.3c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The use of alginate nanofibers in certain biomedical applications, including targeted delivery to the gut, is limited because an ethanol-free, biocompatible cross-linking method has not been demonstrated. Here, we developed water-stable, alginate-based nanofibers by systematically exploring post-electrospinning cross-linking approaches that used calcium ions dissolved in (1) a glycerol/water cosolvent system and (2) acidic, neutral, or basic aqueous solutions. Scanning electron microscopy proved that the fibers cross-linked in a glycerol cosolvent or pH-optimized solutions had maintained the same morphology as the ethanol-based literature control. Notably, cross-linked fibers were generally smaller in diameter than the as-spun fibers due to both chemical interactions and mass loss during cross-linking, which was supported by mass measurements, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. During stability tests wherein the cross-linked fibers were exposed to three aqueous solutions, the cross-linked fibers were stable in water and acid buffer yet swelled in phosphate buffer saline, making them useful scaffolds for pH-controlled release applications. Proof-of-concept release experiments were conducted using a simulated gastrointestinal tract model. As desired, the cargo remained encapsulated within the cross-linked nanofibers when exposed to an acidic solution that modeled the stomach. Upon exposure to a solution that mimicked the intestines, the cargo was released. We suggest that these cross-linked, alginate-based nanofiber mats hold the potential to be broadly used in biomedical and environmental applications.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
6
|
Kim YS, Ko B, Kim DJ, Tak J, Han CY, Cho JY, Kim W, Kim SG. Induction of the hepatic aryl hydrocarbon receptor by alcohol dysregulates autophagy and phospholipid metabolism via PPP2R2D. Nat Commun 2022; 13:6080. [PMID: 36241614 PMCID: PMC9568535 DOI: 10.1038/s41467-022-33749-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Disturbed lipid metabolism precedes alcoholic liver injury. Whether and how AhR alters degradation of lipids, particularly phospho-/sphingo-lipids during alcohol exposure, was not explored. Here, we show that alcohol consumption in mice results in induction and activation of aryl hydrocarbon receptor (AhR) in the liver, and changes the hepatic phospho-/sphingo-lipids content. The levels of kynurenine, an endogenous AhR ligand, are elevated with increased hepatic tryptophan metabolic enzymes in alcohol-fed mice. Either alcohol or kynurenine treatment promotes AhR activation with autophagy dysregulation via AMPK. Protein Phosphatase 2 Regulatory Subunit-Bdelta (Ppp2r2d) is identified as a transcriptional target of AhR. Consequently, PPP2R2D-dependent AMPKα dephosphorylation causes autophagy inhibition and mitochondrial dysfunction. Hepatocyte-specific AhR ablation attenuates steatosis, which is associated with recovery of phospho-/sphingo-lipids content. Changes of AhR targets are corroborated using patient specimens. Overall, AhR induction by alcohol inhibits autophagy in hepatocytes through AMPKα, which is mediated by Ppp2r2d gene transactivation, revealing an AhR-dependent metabolism of phospho-/sphingo-lipids.
Collapse
Affiliation(s)
- Yun Seok Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bongsub Ko
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Da Jung Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.412484.f0000 0001 0302 820XMetabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082 Korea
| | - Jihoon Tak
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Chang Yeob Han
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.411545.00000 0004 0470 4320School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Korea
| | - Joo-Youn Cho
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Won Kim
- grid.31501.360000 0004 0470 5905Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Geon Kim
- grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
7
|
Sang W, Chen S, Lin L, Wang N, Kong X, Ye J. Antioxidant mitoquinone ameliorates EtOH-LPS induced lung injury by inhibiting mitophagy and NLRP3 inflammasome activation. Front Immunol 2022; 13:973108. [PMID: 36059543 PMCID: PMC9436256 DOI: 10.3389/fimmu.2022.973108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic ethanol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). However, the mechanisms involved are unknown. One explanation is that ethanol produces damaging reactive oxygen species (ROS) and disturbs the balance of mitochondria within the lungs to promote a pro-injury environment. We hypothesized that targeting an antioxidant to the mitochondria would prevent oxidative damage and attenuate EtOH-LPS-induced lung injury. To test this, we investigated the effects of mitochondria-targeted ubiquinone, Mitoquinone (MitoQ) on ethanol-sensitized lung injury induced by LPS. Lung inflammation, ROS, mitochondria function, and mitophagy were assessed. We demonstrated that chronic ethanol feeding sensitized the lung to LPS-induced lung injury with significantly increased reactive oxygen species ROS level and mitochondrial injury as well as lung cellular NLRP3 inflammasome activation. These deleterious effects were attenuated by MitoQ administration in mice. The protective effects of MitoQ are associated with decreased cellular mitophagy and NLRP3 inflammasome activation in vivo and in vitro. Taken together, our results demonstrated that ethanol aggravated LPS-induced lung injury, and antioxidant MitoQ protects from EtOH-LPS-induced lung injury, probably through reducing mitophagy and protecting mitochondria, followed by NLRP3 inflammasome activation. These results will provide the prevention and treatment of ethanol intake effects with new ideas.
Collapse
Affiliation(s)
- Wenhua Sang
- School of Basic Medical Sciences, Institute of Hypoxia Research, Cixi Biomedical Institute, Wenzhou Medical University, Wenzhou, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Sha Chen
- School of Basic Medical Sciences, Institute of Hypoxia Research, Cixi Biomedical Institute, Wenzhou Medical University, Wenzhou, China
| | - Lidan Lin
- School of Basic Medical Sciences, Institute of Hypoxia Research, Cixi Biomedical Institute, Wenzhou Medical University, Wenzhou, China
| | - Nan Wang
- School of Basic Medical Sciences, Institute of Hypoxia Research, Cixi Biomedical Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Institute of Hypoxia Research, Cixi Biomedical Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaoxia Kong, ; Jinyan Ye,
| | - Jinyan Ye
- Department of Respiratory Medicine and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaoxia Kong, ; Jinyan Ye,
| |
Collapse
|
8
|
Manousaki A, Bagnall J, Spiller D, Balarezo-Cisneros LN, White M, Delneri D. Quantitative Characterisation of Low Abundant Yeast Mitochondrial Proteins Reveals Compensation for Haplo-Insufficiency in Different Environments. Int J Mol Sci 2022; 23:8532. [PMID: 35955668 PMCID: PMC9369417 DOI: 10.3390/ijms23158532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
The quantification of low abundant membrane-binding proteins such as transcriptional factors and chaperones has proven difficult, even with the most sophisticated analytical technologies. Here, we exploit and optimise the non-invasive Fluorescence Correlation Spectroscopy (FCS) for the quantitation of low abundance proteins, and as proof of principle, we choose two interacting proteins involved in the fission of mitochondria in yeast, Fis1p and Mdv1p. In Saccharomyces cerevisiae, the recruitment of Fis1p and Mdv1p to mitochondria is essential for the scission of the organelles and the retention of functional mitochondrial structures in the cell. We use FCS in single GFP-labelled live yeast cells to quantify the protein abundance in homozygote and heterozygote cells and to investigate the impact of the environments on protein copy number, bound/unbound protein state and mobility kinetics. Both proteins were observed to localise predominantly at mitochondrial structures, with the Mdv1p bound state increasing significantly in a strictly respiratory environment. Moreover, a compensatory mechanism that controls Fis1p abundance upon deletion of one allele was observed in Fis1p but not in Mdv1p, suggesting differential regulation of Fis1p and Mdv1p protein expression.
Collapse
Affiliation(s)
- Alkisti Manousaki
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (A.M.); (L.N.B.-C.)
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Bagnall
- Division of Diabetes, Endocrinology and Gastroenterology Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - David Spiller
- Platform Sciences, Enabling Technologies & Infrastructure, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Laura Natalia Balarezo-Cisneros
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (A.M.); (L.N.B.-C.)
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Michael White
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (A.M.); (L.N.B.-C.)
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Olmos-Orizaba BE, Arroyo-Peñaloza JS, Martínez-Alcántar L, Montoya-Pérez R, Flores-García A, Rodríguez-Orozco AR, Calderón-Cortés E, Saavedra-Molina A, Campos-García J, Cortés-Rojo C. Linolenic Acid Plus Ethanol Exacerbates Cell Death in Saccharomyces cerevisiae by Promoting Lipid Peroxidation, Cardiolipin Loss, and Necrosis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071052. [PMID: 35888140 PMCID: PMC9320082 DOI: 10.3390/life12071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Polyunsaturated fatty acids (PUFA) hypersensitize yeast to oxidative stress. Ethanol accumulation during fermentation is another factor that induces oxidative stress via mitochondrial dysfunction and ROS overproduction. Since this microorganism has raised growing interest as a PUFA factory, we have studied if the combination of PUFA plus ethanol enhances yeast death. Respiration, ROS generation, lipid peroxidation, mitochondrial cardiolipin content, and cell death were assessed in yeast grown in the presence of 10% ethanol (ETOH) or linolenic acid (C18:3), or ethanol plus C18:3 (ETOH+C18:3). Lipid peroxidation and cardiolipin loss were several-fold higher in cells with ETOH+C18:3 than with C18:3. On the contrary, ETOH tended to increase cardiolipin content without inducing changes in lipid peroxidation. This was consistent with a remarkable diminution of cell growth and an exacerbated propidium iodide staining in cells with only ETOH+C18:3. The respiration rate decreased with all the treatments to a similar degree, and this was paralleled with similar increments in ROS between all the treatments. These results indicate that PUFA plus ethanol hypersensitize yeast to necrotic cell death by exacerbating membrane damage and mitochondrial cardiolipin loss, independent of mitochondrial dysfunction and ROS generation. The implications of these observations for some biotechnological applications in yeast and its physiology are discussed.
Collapse
Affiliation(s)
- Berenice Eridani Olmos-Orizaba
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - José Santos Arroyo-Peñaloza
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Lorena Martínez-Alcántar
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Alberto Flores-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Mexico;
| | | | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (B.E.O.-O.); (J.S.A.-P.); (L.M.-A.); (R.M.-P.); (A.F.-G.); (A.S.-M.); (J.C.-G.)
- Correspondence: ; Tel.: +52-44-3326-5790
| |
Collapse
|
10
|
Ishikawa Y, Nishino S, Fukuda S, Nguyet VTA, Izawa S. Severe ethanol stress induces the preferential synthesis of mitochondrial disaggregase Hsp78 and formation of DUMPs in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130147. [DOI: 10.1016/j.bbagen.2022.130147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
11
|
Hsiung RT, Chiu MC, Chou JY. Exogenous Indole-3-Acetic Acid Induced Ethanol Tolerance in Phylogenetically Diverse Saccharomycetales Yeasts. Microbes Environ 2022; 37. [PMID: 35082178 PMCID: PMC8958292 DOI: 10.1264/jsme2.me21053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indole-3-acetic acid (IAA) is an exogenous growth regulatory signal that is produced by plants and various microorganisms. Microorganisms have been suggested to cross-communicate with each other through IAA-mediated signaling mechanisms. The IAA-induced tolerance response has been reported in several microorganisms, but has not yet been described in Saccharomycetales yeasts. In the present study, three common stressors (heat, osmotic pressure, and ethanol) were examined in relation to the influence of a pretreatment with IAA on stress tolerance in 12 different lineages of Saccharomyces cerevisiae. The pretreatment with IAA had a significant effect on the induction of ethanol tolerance by reducing the doubling time of S. cerevisiae growth without the pretreatment. However, the pretreatment did not significantly affect the induction of thermo- or osmotolerance. The IAA pretreatment decreased the lethal effects of ethanol on S. cerevisiae cells. Although yeasts produce ethanol to outcompete sympatric microorganisms, IAA is not a byproduct of this process. Nevertheless, the accumulation of IAA indicates an increasing number of microorganisms, and, thus, greater competition for resources. Since the “wine trait” is shared by both phylogenetically related and distinct lineages in Saccharomycetales, we conclude that IAA-induced ethanol tolerance is not specific to S. cerevisiae; it may be widely detected in both pre-whole genome duplication (WGD) and post-WGD yeasts belonging to several genera of Saccharomycetales.
Collapse
Affiliation(s)
- Ruo-Ting Hsiung
- Department of Biology, National Changhua University of Education
| | - Ming-Chung Chiu
- Department of Biology, National Changhua University of Education
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education
| |
Collapse
|
12
|
Murata Y, Nwuche CO, Nweze JE, Ndubuisi IA, Ogbonna JC. Potentials of multi-stress tolerant yeasts, Saccharomyces cerevisiae and Pichia kudriavzevii for fuel ethanol production from industrial cassava wastes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
15
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
16
|
Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Impact of CO 2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 2021; 348:109226. [PMID: 33964807 DOI: 10.1016/j.ijfoodmicro.2021.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| |
Collapse
|
17
|
A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22094607. [PMID: 33925688 PMCID: PMC8124315 DOI: 10.3390/ijms22094607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.
Collapse
|
18
|
Ihenacho UK, Meacham KA, Harwig MC, Widlansky ME, Hill RB. Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and Disease. Front Endocrinol (Lausanne) 2021; 12:660095. [PMID: 33841340 PMCID: PMC8027123 DOI: 10.3389/fendo.2021.660095] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1's role in both endocrine and neurological disorders.
Collapse
Affiliation(s)
| | - Kelsey A. Meacham
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E. Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Parcha PK, Sarvagalla S, Ashok C, Sudharshan SJ, Dyavaiah M, Coumar MS, Rajasekaran B. Repositioning antispasmodic drug Papaverine for the treatment of chronic myeloid leukemia. Pharmacol Rep 2021; 73:615-628. [PMID: 33389727 DOI: 10.1007/s43440-020-00196-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Papaverine is a benzylisoquinoline alkaloid from the plant Papaver somniferum (Opium poppy). It is approved as an antispasmodic drug by the US FDA and is also reported to have anti-cancer properties. Here, Papaverine's activity in chronic myeloid leukemia (CML) is explored using Saccharomyces cerevisiae, mammalian cancer cell lines, and in silico studies. METHODS The sensitivity of wild-type and mutant (anti-oxidant defense, apoptosis) strains of S. cerevisiae to the drug Papaverine was tested by colony formation, spot assays, and AO/EB staining. In vitro cytotoxic effect was investigated on HCT15 (colon), A549 (lung), HeLa (cervical), and K562 (Bcr-Abl positive CML), and RAW 264.7 cell lines; cell cycle, mitochondrial membrane potential, ROS detection analyzed in K562 cells using flow cytometry and apoptotic markers, Bcr-Abl signaling pathways examined by western blotting. Molecular docking and molecular dynamics simulation of Papaverine against the target Bcr-Abl were also carried out. RESULTS Investigation in S. cerevisiae evidenced Papaverine induces ROS-mediated apoptosis. Subsequent in vitro examination showed that CML cell line K562 was more sensitive to the drug Papaverine. Papaverine induces ROS generation, promotes apoptosis, and inhibits Bcr-Abl downstream signaling. Papaverine acts synergistically with the drug Imatinib. Furthermore, the docking and molecular dynamic simulation studies supported that Papaverine binds to the allosteric site of Bcr-Abl. CONCLUSION The data presented here have added support to the concept of polypharmacology of existing drugs and natural compounds to interact with more than one target. This study provides a proof-of-concept for repositioning Papaverine as an anti-CML drug.
Collapse
Affiliation(s)
- Phani Krishna Parcha
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sailu Sarvagalla
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - S J Sudharshan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Baskaran Rajasekaran
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
20
|
Jia H, Chen T, Qu J, Yao M, Xiao W, Wang Y, Li C, Yuan Y. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Shang P, Lindberg D, Starski P, Peyton L, Hong SI, Choi S, Choi DS. Chronic Alcohol Exposure Induces Aberrant Mitochondrial Morphology and Inhibits Respiratory Capacity in the Medial Prefrontal Cortex of Mice. Front Neurosci 2020; 14:561173. [PMID: 33192248 PMCID: PMC7646256 DOI: 10.3389/fnins.2020.561173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Alcohol use disorder (AUD) is characterized as a chronic, relapsing disease with a pattern of excessive drinking despite negative consequences to an individual's life. Severe chronic alcohol use impairs the function of the medial prefrontal cortex (mPFC), which contributes to alcohol-induced cognitive and executive dysfunction. The mPFC contains more mitochondria compared to other cortical areas, which suggests mitochondrial damage may occur in AUD and trigger subsequent behavior change. Here, we identified morphological and functional changes in mitochondria in the mPFC in C57BL6/J mice after 8 h of withdrawal from chronic intermittent alcohol (CIA) exposure. Three-dimensional serial block-face scanning electron microscopy (SBFSEM) reconstruction revealed that CIA exposure elongated mPFC mitochondria and formed mitochondria-on-a-string (MOAS). Furthermore, alcohol significantly affected mitochondrial bioenergetics, including oxidative phosphorylation and electron transport, with inhibited aerobic respiration in mPFC mitochondria after CIA exposure. We also found decreased expression of fusion (mitofusin 2, Mfn2) and increased fission (mitochondrial fission 1 protein, Fis1) proteins in the mPFC of alcohol-treated mice. In sum, our study suggests that CIA exposure impairs mitochondrial dynamics and function in the mPFC.
Collapse
Affiliation(s)
- Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Daniel Lindberg
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Phillip Starski
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
22
|
Pereira C, Calado AM, Sampaio AC. The effect of benzyl isothiocyanate on Candida albicans growth, cell size, morphogenesis, and ultrastructure. World J Microbiol Biotechnol 2020; 36:153. [PMID: 32939678 DOI: 10.1007/s11274-020-02929-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
Candida albicans is a commensal yeast that may become pathogenic and even lethal to the host. Over the last few decades, antifungal resistance has increased, promoting screening of the antifungal potential of old and new substances. This study investigates the antifungal potential of isothiocyanates (ITCs) against C. albicans oral isolates. A preliminary susceptibility disk diffusion test (DD) was performed using allyl isothiocyanate (AITC), benzyl isothiocynanate (BITC) and phenyl ethyl isothiocyanate (PEITC) at a fixed concentration range (0.001-0.1 M). Because C. albicans isolates were more susceptible to BITC and PEITC, their effect on cell size and on germ tube formation (GTF) were tested. The most promising molecule, BITC, was further tested for effects on cell viability, oxidative stress and for ultrastructure. ITCs, especially the aromatic ones, had a significant type-, dose- and isolate-dependent anti-Candida activity. Although BITC and PEITC had similar activity against the yeast cells, BITC had a more pronounced effect on cell size and GTF. Furthermore, BITC appears to induce oxidative stress and promote changes in the cell ultrastructure, interfering with cell wall structure. Our work showed that aromatic ITCs have the potential to effect C. albicans cells in multiple ways, including size, shape and GTF (BITC and PEITC), oxidative stress, and ultrastructure (BITC). Overall, our results suggest that BITC may be effectively used against C. albicans to modulate its growth, and control or suppress its invasive potential.
Collapse
Affiliation(s)
- Cheila Pereira
- Department of Biology and Environment, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Margarida Calado
- Department of Veterinary Sciences, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Cristina Sampaio
- Department of Biology and Environment, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
23
|
Toth A, Aufschnaiter A, Fedotovskaya O, Dawitz H, Ädelroth P, Büttner S, Ott M. Membrane-tethering of cytochrome c accelerates regulated cell death in yeast. Cell Death Dis 2020; 11:722. [PMID: 32892209 PMCID: PMC7474732 DOI: 10.1038/s41419-020-02920-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Intrinsic apoptosis as a modality of regulated cell death is intimately linked to permeabilization of the outer mitochondrial membrane and subsequent release of the protein cytochrome c into the cytosol, where it can participate in caspase activation via apoptosome formation. Interestingly, cytochrome c release is an ancient feature of regulated cell death even in unicellular eukaryotes that do not contain an apoptosome. Therefore, it was speculated that cytochrome c release might have an additional, more fundamental role for cell death signalling, because its absence from mitochondria disrupts oxidative phosphorylation. Here, we permanently anchored cytochrome c with a transmembrane segment to the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae, thereby inhibiting its release from mitochondria during regulated cell death. This cytochrome c retains respiratory growth and correct assembly of mitochondrial respiratory chain supercomplexes. However, membrane anchoring leads to a sensitisation to acetic acid-induced cell death and increased oxidative stress, a compensatory elevation of cellular oxygen-consumption in aged cells and a decreased chronological lifespan. We therefore conclude that loss of cytochrome c from mitochondria during regulated cell death and the subsequent disruption of oxidative phosphorylation is not required for efficient execution of cell death in yeast, and that mobility of cytochrome c within the mitochondrial intermembrane space confers a fitness advantage that overcomes a potential role in regulated cell death signalling in the absence of an apoptosome.
Collapse
Affiliation(s)
- Alexandra Toth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Svante Arrheniusväg 16, 106 91, Stockholm, Sweden.
| |
Collapse
|
24
|
Lim JR, Lee HJ, Jung YH, Kim JS, Chae CW, Kim SY, Han HJ. Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 2020; 18:123. [PMID: 32787872 PMCID: PMC7422600 DOI: 10.1186/s12964-020-00572-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neurodegeneration is a representative phenotype of patients with chronic alcoholism. Ethanol-induced calcium overload causes NOD-like receptor protein 3 (NLRP3) inflammasome formation and an imbalance in mitochondrial dynamics, closely associated with the pathogenesis of neurodegeneration. However, how calcium regulates this process in neuronal cells is poorly understood. Therefore, the present study investigated the detailed mechanism of calcium-regulated mitochondrial dynamics and NLRP3 inflammasome formation in neuronal cells by ethanol. Methods In this study, we used the SK-N-MC human neuroblastoma cell line. To confirm the expression level of the mRNA and protein, real time quantitative PCR and western blot were performed. Co-immunoprecipitation and Immunofluorescence staining were conducted to confirm the complex formation or interaction of the proteins. Flow cytometry was used to analyze intracellular calcium, mitochondrial dysfunction and neuronal apoptosis. Results Ethanol increased cleaved caspase-3 levels and mitochondrial reactive oxygen species (ROS) generation associated with neuronal apoptosis. In addition, ethanol increased protein kinase A (PKA) activation and cAMP-response-element-binding protein (CREB) phosphorylation, which increased N-methyl-D-aspartate receptor (NMDAR) expression. Ethanol-increased NMDAR induced intracellular calcium overload and calmodulin-dependent protein kinase II (CaMKII) activation leading to phosphorylation of dynamin-related protein 1 (Drp1) and c-Jun N-terminal protein kinase 1 (JNK1). Drp1 phosphorylation promoted Drp1 translocation to the mitochondria, resulting in excessive mitochondrial fission, mitochondrial ROS accumulation, and loss of mitochondrial membrane potential, which was recovered by Drp1 inhibitor pretreatment. Ethanol-induced JNK1 phosphorylation activated the NLRP3 inflammasome that induced caspase-1 dependent mitophagy inhibition, thereby exacerbating ROS accumulation and causing cell death. Suppressing caspase-1 induced mitophagy and reversed the ethanol-induced apoptosis in neuronal cells. Conclusions Our results demonstrated that ethanol upregulated NMDAR-dependent CaMKII phosphorylation which is essential for Drp1-mediated excessive mitochondrial fission and the JNK1-induced NLRP3 inflammasome activation resulting in neuronal apoptosis. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea.,Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Galkina KV, Okamoto M, Chibana H, Knorre DA, Kajiwara S. Deletion of CDR1 reveals redox regulation of pleiotropic drug resistance in Candida glabrata. Biochimie 2020; 170:49-56. [DOI: 10.1016/j.biochi.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022]
|
26
|
Galkina KV, Zyrina AN, Golyshev SA, Kashko ND, Markova OV, Sokolov SS, Severin FF, Knorre DA. Mitochondrial dynamics in yeast with repressed adenine nucleotide translocator AAC2. Eur J Cell Biol 2020; 99:151071. [PMID: 32057484 DOI: 10.1016/j.ejcb.2020.151071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
The mitochondrial network structure dynamically adapts to cellular metabolic challenges. Mitochondrial depolarisation, particularly, induces fragmentation of the network. This fragmentation may be a result of either a direct regulation of the mitochondrial fusion machinery by transmembrane potential or an indirect effect of metabolic remodelling. Activities of ATP synthase and adenine nucleotide translocator (ANT) link the mitochondrial transmembrane potential with the cytosolic NTP/NDP ratio. Given that mitochondrial fusion requires cytosolic GTP, a decrease in the NTP/NDP ratio might also account for protonophore-induced mitochondrial fragmentation. For evaluating the contributions of direct and indirect mechanisms to mitochondrial remodelling, we assessed the morphology of the mitochondrial network in yeast cells with inhibited ANT. We showed that the repression of AAC2 (PET9), a major ANT gene in yeast, increases mitochondrial transmembrane potential. However, the mitochondrial network in this strain was fragmented. Meanwhile, AAC2 repression did not prevent mitochondrial fusion in zygotes; nor did it inhibit mitochondrial hyperfusion induced by Dnm1p inhibitor mdivi-1. These results suggest that the inhibition of ANT, rather than preventing mitochondrial fusion, facilitates mitochondrial fission. The protonophores were not able to induce additional mitochondrial fragmentation in an AAC2-repressed strain and in yeast cells with inhibited ATP synthase. Importantly, treatment with the ATP synthase inhibitor oligomycin A also induced mitochondrial fragmentation and hyperpolarization. Taken together, our data suggest that ATP/ADP translocation plays a crucial role in shaping of the mitochondrial network and exemplify that an increase in mitochondrial membrane potential does not necessarily oppose mitochondrial fragmentation.
Collapse
Affiliation(s)
- Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Anna N Zyrina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Sergey A Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Nataliia D Kashko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Olga V Markova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| |
Collapse
|
27
|
Telini BDP, Menoncin M, Bonatto D. Does Inter-Organellar Proteostasis Impact Yeast Quality and Performance During Beer Fermentation? Front Genet 2020; 11:2. [PMID: 32076433 PMCID: PMC7006503 DOI: 10.3389/fgene.2020.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/06/2020] [Indexed: 02/02/2023] Open
Abstract
During beer production, yeast generate ethanol that is exported to the extracellular environment where it accumulates. Depending on the initial carbohydrate concentration in the wort, the amount of yeast biomass inoculated, the fermentation temperature, and the yeast attenuation capacity, a high concentration of ethanol can be achieved in beer. The increase in ethanol concentration as a consequence of the fermentation of high gravity (HG) or very high gravity (VHG) worts promotes deleterious pleiotropic effects on the yeast cells. Moderate concentrations of ethanol (5% v/v) change the enzymatic kinetics of proteins and affect biological processes, such as the cell cycle and metabolism, impacting the reuse of yeast for subsequent fermentation. However, high concentrations of ethanol (> 5% v/v) dramatically alter protein structure, leading to unfolded proteins as well as amorphous protein aggregates. It is noteworthy that the effects of elevated ethanol concentrations generated during beer fermentation resemble those of heat shock stress, with similar responses observed in both situations, such as the activation of proteostasis and protein quality control mechanisms in different cell compartments, including endoplasmic reticulum (ER), mitochondria, and cytosol. Despite the extensive published molecular and biochemical data regarding the roles of proteostasis in different organelles of yeast cells, little is known about how this mechanism impacts beer fermentation and how different proteostasis mechanisms found in ER, mitochondria, and cytosol communicate with each other during ethanol/fermentative stress. Supporting this integrative view, transcriptome data analysis was applied using publicly available information for a lager yeast strain grown under beer production conditions. The transcriptome data indicated upregulation of genes that encode chaperones, co-chaperones, unfolded protein response elements in ER and mitochondria, ubiquitin ligases, proteasome components, N-glycosylation quality control pathway proteins, and components of processing bodies (p-bodies) and stress granules (SGs) during lager beer fermentation. Thus, the main purpose of this hypothesis and theory manuscript is to provide a concise picture of how inter-organellar proteostasis mechanisms are connected with one another and with biological processes that may modulate the viability and/or vitality of yeast populations during HG/VHG beer fermentation and serial repitching.
Collapse
Affiliation(s)
- Bianca de Paula Telini
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Menoncin
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diego Bonatto
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Zimmermann A, Tadic J, Kainz K, Hofer SJ, Bauer MA, Carmona-Gutierrez D, Madeo F. Transcriptional and epigenetic control of regulated cell death in yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:55-82. [PMID: 32334817 DOI: 10.1016/bs.ircmb.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
29
|
Ramos A, Dos Santos MM, de Macedo GT, Wildner G, Prestes AS, Masuda CA, Dalla Corte CL, Teixeira da Rocha JB, Barbosa NV. Methyl and Ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae. Chem Biol Interact 2020; 315:108867. [PMID: 31672467 DOI: 10.1016/j.cbi.2019.108867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
Methylmercury (MeHg) and Ethylmercury (EtHg) are toxic to the central nervous system. Human exposure to MeHg and EtHg results mainly from the consumption of contaminated fish and thimerosal-containing vaccines, respectively. The mechanisms underlying the toxicity of MeHg and EtHg are still elusive. Here, we compared the toxic effects of MeHg and EtHg in Saccharomyces cerevisiae (S. cerevisiae) emphasizing the involvement of oxidative stress and the identification of molecular targets from antioxidant pathways. Wild type and mutant strains with deleted genes for antioxidant defenses, namely: γ-glutamylcysteine synthetase, glutathione peroxidase, catalase, superoxide dismutase, mitochondrial peroxiredoxin, cytoplasmic thioredoxin, and redox transcription factor Yap1 were used to identify potential pathways and proteins from cell redox system targeted by MeHg and EtHg. MeHg and EtHg inhibited cell growth, decreased membrane integrity, and increased the granularity and production of reactive species (RS) in wild type yeast. The mutants were predominantly less tolerant of mercurial than wild type yeast. But, as the wild strain, mutants exhibited higher tolerance to MeHg than EtHg. Our results indicate the involvement of oxidative stress in the cytotoxicity of MeHg and EtHg and reinforce S. cerevisiae as a suitable model to explore the mechanisms of action of electrophilic toxicants.
Collapse
Affiliation(s)
- Angelica Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Matheus M Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel T de Macedo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Wildner
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandro S Prestes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
30
|
The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain. World J Microbiol Biotechnol 2019; 35:189. [PMID: 31748890 DOI: 10.1007/s11274-019-2769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
Fossil fuels consumption impacts the greenhouse gas emissions. Biofuels are considered as alternative renewable energy sources to reduce the fossil fuels dependency. Bioethanol produced by recombinant microorganisms is a widely suggested alternative to increase the yield in fermentation processes. However, ethanol and acetate accumulation under the fermentation process had been described as important stressors for the metabolic capabilities of the microorganisms, stopping the fermentation process and affecting the ethanol yield. Ethanol tolerance is a determining factor in the improvement of fermentative properties of microorganisms; however understanding of ethanol tolerance is limited. The engineered Escherichia coli KO11 strain has been studied in detail and used as an ethanologenic bacteria model. The strain is capable of using glucose and xylose for an efficient ethanol yield. In the current work, the effect of the iron-sulfur cluster (ISC) over-expression in the KO11 strain, on its tolerance and ethanol yield, was evaluated. Fatty acids profiles of membrane phospholipids in the E. coli KO11 were modified under ethanol addition, but not due to the hscA mutation. The hscA mutation provoked a decrease in ethanol tolerance in the Kmp strain when was grown with 2% ethanol, in comparison to KO11 parent strain. Ethanol tolerance was improved in the mutant Kmp complemented with the recombinant isc gene cluster (pJC10 plasmid) from LD50 2.16% to LD50 3.8% ethanol. In batch fermentation on 1 L bioreactor using mineral medium with glucose (120 g/L), the KO11 strain showed ethanol production efficiencies of ~ 76.9%, while the hscA mutant (Kmp) ~ 75.4% and the transformed strain Kmp(pJC10) showed ~ 92.4% efficiency. Ethanol amount increase in the engineered Kmp(pJC10) strain was correlated with less organic acids (such as acetate and lactate) production in the fermentation medium (2.3 g/L), compared to that in the KO11 (17.05 g/L) and the Kmp (16.62 g/L). Alcohol dehydrogenase (ADH) activity was increased ~ 350% in the transformed Kmp(pJC10) strain, whereas in the Kmp mutant, the phosphoglycerate kinase (PGK), pyruvate kinase (PYK), and ADH activities were diminished, comparing to KO11. The results suggest that the isc system over-expression in the ethanologenic E. coli KO11 strain, increases ethanol yield mainly by improving ethanol tolerance and ADH activity, and by redirecting the metabolic flux from acetate synthesis to ethanol.
Collapse
|
31
|
Porras-Agüera JA, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production. Microorganisms 2019; 7:microorganisms7110542. [PMID: 31717411 PMCID: PMC6920952 DOI: 10.3390/microorganisms7110542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
- Correspondence: ; Tel.: +34-957-218640; Fax: +34-957-218650
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain;
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.A.P.-A.); (J.M.-G.); (T.G.-M.)
| |
Collapse
|
32
|
Liu HL, Chang JJ, Thia C, Lin YJ, Lo SC, Huang CC, Li WH. Characterizing an engineered carotenoid-producing yeast as an anti-stress chassis for building cell factories. Microb Cell Fact 2019; 18:155. [PMID: 31506091 PMCID: PMC6737703 DOI: 10.1186/s12934-019-1205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022] Open
Abstract
Background A microorganism engineered for non-native tasks may suffer stresses it never met before. Therefore, we examined whether a Kluyveromyces marxianus strain engineered with a carotenoid biosynthesis pathway can serve as an anti-stress chassis for building cell factories. Results Carotenoids, a family of antioxidants, are valuable natural products with high commercial potential. We showed that the free radical removal ability of carotenoids can confer the engineered host with a higher tolerance to ethanol, so that it can produce more bio-ethanol than the wild type. Moreover, we found that this engineered strain has improved tolerance to other toxic effects including furfurals, heavy metals such as arsenate (biomass contaminant) and isobutanol (end product). Furthermore, the enhanced ethanol tolerance of the host can be applied to bioconversion of a natural medicine that needs to use ethanol as the delivery solvent of hydrophobic precursors. The result suggested that the engineered yeast showed enhanced tolerance to ethanol-dissolved hydrophobic 10-deacetylbaccatin III, which is considered a sustainable precursor for paclitaxel (taxol) bioconversion. Conclusions The stress tolerances of the engineered yeast strain showed tolerance to several toxins, so it may serve as a chassis for cell factories to produce target products, and the co-production of carotenoids may make the biorefinary more cost-effective.
Collapse
Affiliation(s)
- Hsien-Lin Liu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan.,Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, No. 91 Hsueh-Shih Road, Taichung, 402, Taiwan.,Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Caroline Thia
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Chieh-Chen Huang
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Department of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung, 402, Taiwan. .,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd, South Dist, Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 115, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
33
|
Over-expression of Isu1p and Jac1p increases the ethanol tolerance and yield by superoxide and iron homeostasis mechanism in an engineered Saccharomyces cerevisiae yeast. J Ind Microbiol Biotechnol 2019; 46:925-936. [PMID: 30963327 DOI: 10.1007/s10295-019-02175-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The ethanol stress response in ethanologenic yeast during fermentation involves the swishing of several adaptation mechanisms. In Saccharomyces cerevisiae, the Jac1p and Isu1p proteins constitute the scaffold system for the Fe-S cluster assembly. This study was performed using the over-expression of the Jac1p and Isu1p in the industrially utilized S. cerevisiae UMArn3 strain, with the objective of improving the Fe-S assembly/recycling, and thus counteracting the toxic effects of ethanol stress during fermentation. The UMArn3 yeast was transformed with both the JAC1-His and ISU1-His genes-plasmid contained. The Jac1p and Isu1p His-tagged proteins over-expression in the engineered yeasts was confirmed by immunodetection, rendering increases in ethanol tolerance level from a DL50 = ~ 4.5% ethanol (v/v) to DL50 = ~ 8.2% ethanol (v/v), and survival up 90% at 15% ethanol (v/v) comparing to ~ 50% survival in the control strain. Fermentation by the engineered yeasts showed that the ethanol production was increased, producing 15-20% more ethanol than the control yeast. The decrease of ROS and free-iron accumulation was observed in the engineered yeasts under ethanol stress condition. The results indicate that Jac1p and Isu1p over-expression in the S. cerevisiae UMArn3.3 yeast increased its ethanol tolerance level and ethanol production by a mechanism that involves ROS and iron homeostasis related to the biogenesis/recycling of Fe-S clusters dependent proteins.
Collapse
|
34
|
Sousa CA, Soares HMVM, Soares EV. Nickel Oxide Nanoparticles Trigger Caspase- and Mitochondria-Dependent Apoptosis in the Yeast Saccharomyces cerevisiae. Chem Res Toxicol 2019; 32:245-254. [PMID: 30656935 DOI: 10.1021/acs.chemrestox.8b00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expansion of the industrial use of nickel oxide (NiO) nanoparticles (NPs) raises concerns about their potential adverse effects. Our work aimed to investigate the mechanisms of toxicity induced by NiO NPs, using the yeast Saccharomyces cerevisiae as a cell model. Yeast cells exposed to NiO NPs exhibited typical hallmarks of regulated cell death (RCD) by apoptosis [loss of cell proliferation capacity (cell viability), exposure of phosphatidylserine at the outer cytoplasmic membrane leaflet, nuclear chromatin condensation, and DNA damage] in a process that required de novo protein synthesis. The execution of yeast cell death induced by NiO NPs is Yca1p metacaspase-dependent. NiO NPs also induced a decrease in the mitochondrial membrane potential and an increase in the frequency of respiratory-deficient mutants, which supports the involvement of mitochondria in the cell death process. Cells deficient in the apoptosis-inducing factor ( aif1Δ) displayed higher tolerance to NiO NPs, which reinforces the involvement of mitochondria in RCD by apoptosis. In summary, this study shows that NiO NPs induce caspase- and mitochondria-dependent apoptosis in yeast. Our results warn about the possible harmful effects associated with the use of NiO NPs.
Collapse
Affiliation(s)
- Cátia A Sousa
- Bioengineering Laboratory-CIETI, Chemical Engineering Department , ISEP-School of Engineering of Polytechnic Institute of Porto , Rua Dr António Bernardino de Almeida, 431 , 4249-015 Porto , Portugal.,CEB-Centre of Biological Engineering , University of Minho, Campus de Gualtar , 4710-057 Braga , Portugal.,REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , rua Dr. Roberto Frias , 4200-465 Porto , Portugal
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , rua Dr. Roberto Frias , 4200-465 Porto , Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Chemical Engineering Department , ISEP-School of Engineering of Polytechnic Institute of Porto , Rua Dr António Bernardino de Almeida, 431 , 4249-015 Porto , Portugal.,CEB-Centre of Biological Engineering , University of Minho, Campus de Gualtar , 4710-057 Braga , Portugal
| |
Collapse
|
35
|
Rogov AG, Ovchenkova AP, Goleva TN, Kireev II, Zvyagilskaya RA. New yeast models for studying mitochondrial morphology as affected by oxidative stress and other factors. Anal Biochem 2018; 552:24-29. [DOI: 10.1016/j.ab.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
36
|
Althuri A, Chintagunta AD, Sherpa KC, Banerjee R. Simultaneous Saccharification and Fermentation of Lignocellulosic Biomass. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2018. [DOI: 10.1007/978-3-319-67678-4_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Gharwalova L, Sigler K, Dolezalova J, Masak J, Rezanka T, Kolouchova I. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile. World J Microbiol Biotechnol 2017; 33:205. [DOI: 10.1007/s11274-017-2371-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023]
|
38
|
Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One 2017; 12:e0184838. [PMID: 28922393 PMCID: PMC5602661 DOI: 10.1371/journal.pone.0184838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.
Collapse
Affiliation(s)
- Camille Duc
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,Lallemand SAS, Blagnac, France
| | - Martine Pradal
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Isabelle Sanchez
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Catherine Tesnière
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Bruno Blondin
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
39
|
Tomimoto K, Akao T, Fukuda H. Phenotypes and brewing characteristics of sake yeast Kyokai no. 7 mutants resistant to valproate. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuya Tomimoto
- Brewing Microbiology Division; National Research Institute of Brewing; 3-7-1, Higashi-hiroshima Hiroshima 739-0046 Japan
| | - Takeshi Akao
- Brewing Microbiology Division; National Research Institute of Brewing; 3-7-1, Higashi-hiroshima Hiroshima 739-0046 Japan
| | - Hisashi Fukuda
- Planning and Management Division; National Research Institute of Brewing; 3-7-1, Higashi-hiroshima Hiroshima 739-0046 Japan
| |
Collapse
|
40
|
Pasquali F, Agrimonti C, Pagano L, Zappettini A, Villani M, Marmiroli M, White JC, Marmiroli N. Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:744-752. [PMID: 27890358 DOI: 10.1016/j.jhazmat.2016.11.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Cell sensitivity to quantum dots (QDs) has been attributed to a cascade triggered by oxidative stress leading to apoptosis. The role and function of mitochondria in animal cells are well understood but little information is available on the complex genetic networks that regulate nucleo-mitochondrial interaction. The effect of CdS QD exposure in yeast Saccharomyces cerevisiae was assessed under conditions of limited lethality (<10%), using cell physiological and morphological endpoints. Whole-genomic array analysis and the screening of a deletion mutant library were also carried out. The results showed that QDs: increased the level of reactive oxygen species (ROS) and decreased the level of reduced vs oxidized glutathione (GSH/GSSG); reduced oxygen consumption and the abundance of respiratory cytochromes; disrupted mitochondrial membrane potentials and affected mitochondrial morphology. Exposure affected the capacity of cells to grow on galactose, which requires nucleo-mitochondrial involvement. However, QDs exposure did not materially induce respiratory deficient (RD) mutants but only RD phenocopies. All of these cellular changes were correlated with several key nuclear genes, including TOM5 and FKS1, involved in the maintenance of mitochondrial organization and function. The consequences of these cellular effects are discussed in terms of dysregulation of cell function in response to these "pathological mitochondria".
Collapse
Affiliation(s)
| | | | - Luca Pagano
- Department of Life Sciences, University of Parma, Parma, Italy; Stockbridge school of Agriculture, University of Massachusetts, Amherst, MA, USA; The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Andrea Zappettini
- IMEM-CNR - Istituto dei Materiali per l'Elettronica ed il Magnetismo, Parma, Italy
| | - Marco Villani
- IMEM-CNR - Istituto dei Materiali per l'Elettronica ed il Magnetismo, Parma, Italy
| | - Marta Marmiroli
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Nelson Marmiroli
- Department of Life Sciences, University of Parma, Parma, Italy; CINSA - Consorzio Interuniversitario Nazionale per le Scienze Ambientali, University of Parma, Parma, Italy.
| |
Collapse
|
41
|
Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2017; 83:AEM.02759-16. [PMID: 27864171 DOI: 10.1128/aem.02759-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022] Open
Abstract
There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.
Collapse
|
42
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
43
|
Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress. Appl Environ Microbiol 2016; 82:4789-4801. [PMID: 27235439 DOI: 10.1128/aem.01213-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.
Collapse
|
44
|
Carraro M, Bernardi P. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium 2016; 60:102-7. [PMID: 26995056 DOI: 10.1016/j.ceca.2016.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/28/2023]
Abstract
Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca(2+)] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca(2+) and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca(2+) uniporter, which in mammals allows rapid equilibration of cytosolic Ca(2+) with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca(2+) and oxidative stress.
Collapse
Affiliation(s)
- Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
45
|
Ootsubo Y, Hibino T, Wakazono T, Mukai Y, Che FS. IREN, a novel EF-hand motif-containing nuclease, functions in the degradation of nuclear DNA during the hypersensitive response cell death in rice. Biosci Biotechnol Biochem 2016; 80:748-60. [PMID: 26766411 DOI: 10.1080/09168451.2015.1123610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hypersensitive response (HR), a type of programmed cell death that is accompanied by DNA degradation and loss of plasma membrane integrity, is a common feature of plant immune responses. We previously reported that transcription of IREN which encodes a novel EF-hand containing plant nuclease is controlled by OsNAC4, a key positive regulator of HR cell death. Transient overexpression of IREN in rice protoplasts also led to rapid DNA fragmentation, while suppression of IREN using RNA interference showed remarkable decrease of DNA fragmentation during HR cell death. Maximum DNA degradation associated with the recombinant IREN was observed in the presence of Ca(2+) and Mg(2+) or Ca(2+) and Mn(2+). Interestingly, DNA degradation mediated by the recombinant IREN was completely abolished by Zn(2+), even when Ca(2+), Mg(2+), or Mn(2+) were present in the reaction buffer. These data indicate that IREN functions in the degradation of nuclear DNA during HR cell death.
Collapse
Affiliation(s)
- Yuka Ootsubo
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Takanori Hibino
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Takahito Wakazono
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Yukio Mukai
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| | - Fang-Sik Che
- a Graduate School of Bioscience , Nagahama Institute of Bio-Science and Technology , 1266 Tamura, Nagahama , Shiga 526-0829 , Japan
| |
Collapse
|
46
|
LI B, LU MQ, WANG QZ, SHI GY, LIAO W, HUANG SS. Raman Spectra Analysis for Single Mitochondrias after Apoptosis Process of Yeast Cells Stressed by Acetic Acid. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60824-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Egbe NE, Paget CM, Wang H, Ashe MP. Alcohols inhibit translation to regulate morphogenesis in C. albicans. Fungal Genet Biol 2015; 77:50-60. [PMID: 25843913 PMCID: PMC4444595 DOI: 10.1016/j.fgb.2015.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 11/27/2022]
Abstract
Alcohols induce morphological alterations in C. albicans. Alcohols inhibit protein synthesis. Translational inhibition occurs as a result of eIF2B regulation. Regulation of protein synthesis and morphogenesis are mechanistically connected.
Many molecules are secreted into the growth media by microorganisms to modulate the metabolic and physiological processes of the organism. For instance, alcohols like butanol, ethanol and isoamyl alcohol are produced by the human pathogenic fungus, Candida albicans and induce morphological differentiation. Here we show that these same alcohols cause a rapid inhibition of protein synthesis. More specifically, the alcohols target translation initiation, a complex stage of the gene expression process. Using molecular techniques, we have identified the likely translational target of these alcohols in C. albicans as the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, which supports the exchange reaction where eIF2.GDP is converted to eIF2.GTP. Even minimal regulation at this step will lead to alterations in the levels of specific proteins that may allow the exigencies of the fungus to be realised. Indeed, similar to the effects of alcohols, a minimal inhibition of protein synthesis with cycloheximide also causes an induction of filamentous growth. These results suggest a molecular basis for the effect of various alcohols on morphological differentiation in C. albicans.
Collapse
Affiliation(s)
- Nkechi E Egbe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Caroline M Paget
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Hui Wang
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark P Ashe
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
48
|
On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1400-9. [PMID: 25779081 DOI: 10.1016/j.bbadis.2015.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
We have explored the mechanisms underlying ethanol-induced mitochondrial dynamics disruption and mitophagy. Ethanol increases mitochondrial fission in a concentration-dependent manner through Drp1 mitochondrial translocation and OPA1 proteolytic cleavage. ARPE-19 (a human retinal pigment epithelial cell line) cells challenged with ethanol showed mitochondrial potential disruptions mediated by alterations in mitochondrial complex IV protein level and increases in mitochondrial reactive oxygen species production. In addition, ethanol activated the canonical autophagic pathway, as denoted by autophagosome formation and autophagy regulator elements including Beclin1, ATG5-ATG12 and P-S6 kinase. Likewise, autophagy inhibition dramatically increased mitochondrial fission and cell death, whereas autophagy stimulation rendered the opposite results, placing autophagy as a cytoprotective response aimed to remove damaged mitochondria. Interestingly, although ethanol induced mitochondrial Bax translocation, this episode was associated to cell death rather than mitochondrial fission or autophagy responses. Thus, Bax required 600 mM ethanol to migrate to mitochondria, a concentration that resulted in cell death. Furthermore, mouse embryonic fibroblasts lacking this protein respond to ethanol by undergoing mitochondrial fission and autophagy but not cytotoxicity. Finally, by using the specific mitochondrial-targeted scavenger MitoQ, we revealed mitochondria as the main source of reactive oxygen species that trigger autophagy activation. These findings suggest that cells respond to ethanol activating mitochondrial fission machinery by Drp1 and OPA1 rather than bax, in a manner that stimulates cytoprotective autophagy through mitochondrial ROS.
Collapse
|
49
|
Li S, Liu L, Chen J. Mitochondrial fusion and fission are involved in stress tolerance of Candida glabrata. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0041-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Recently, cell tolerance toward environmental stresses has become the major problem in the development of industrial microbial fermentation. Acetoin is an important chemical that can be synthesized by microbes. Its toxicity was investigated using Candida glabrata as the model in this study.
Results
A series of physiological and biochemical experiments demonstrated that the organic solvent acetoin can inhibit cell growth by increasing intracellular reactive oxygen species (ROS) production and inducing damage to mitochondria and cell apoptosis. Integrating RT-PCR experiments, the genes fzo1 and dnm1 were overexpressed to regulate the balance between mitochondrial fusion and fission. Enhancement of mitochondrial fusion was shown to significantly increase cell tolerance toward acetoin stress by inhibiting ROS production and increasing the intracellular adenosine triphosphate (ATP) supply, which was also demonstrated by the addition of citrate.
Conclusions
Regulating mitochondrial fusion-fission may be an alternative strategy for rationally improving the growth performance of eukaryotes under high environmental stress conditions, and also expands our knowledge of the mechanisms of cell tolerance through the processes of energy-related metabolic pathways.
Collapse
|
50
|
Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:654853. [PMID: 25530885 PMCID: PMC4235189 DOI: 10.1155/2014/654853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/25/2014] [Indexed: 12/03/2022]
Abstract
A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency.
Collapse
|