1
|
Chen Y, He Y, Pan Y, Wen Y, Zhu L, Gao J, Chen W, Jiang D. Involvement of the Metallothionein gene OsMT2b in Drought and Cadmium Ions Stress in Rice. RICE (NEW YORK, N.Y.) 2024; 17:63. [PMID: 39294464 PMCID: PMC11411049 DOI: 10.1186/s12284-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Abiotic stress is one of the major factors restricting the production of rice (Oryza sativa L.). Developing rice varieties with dual abiotic stress tolerance is essential to ensure sustained rice production, which is necessary to illustrate the regulation mechanisms underlying dual stress tolerance. At present, only a few genes that regulate dual abiotic stress tolerance have been reported. In this study, we determined that the expression of OsMT2b was induced by both drought and Cd2+ stress. After stress treatment, OsMT2b-overexpression lines exhibited enhanced drought tolerance and better physiological performance in terms of relative water content and electrolyte leakage compared with wild-type (WT). Further analysis indicated that ROS levels were lower in OsMT2b-overexpression lines than in WT following stress treatment, suggesting that OsMT2b-overexpression lines had a stronger ability to scavenge ROS under stress. Reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that under drought stress, OsMT2b influenced the expression of genes involved in ROS scavenging to enhance drought tolerance in rice. In addition, OsMT2b-overexpression plants displayed increased tolerance to Cd2+ stress, and physiological assessment results were consistent with the observed phenotypic improvements. Thus, enhancing ROS scavenging ability through OsMT2b overexpression is a novel strategy to boost rice tolerance to both drought and Cd2+ stress, offering a promising approach for developing rice germplasm with enhanced resistance to the abiotic stressors.
Collapse
Affiliation(s)
- Yanxin Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Pan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jieer Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dagang Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Jiao A, Chen L, Ma X, Ma J, Cui D, Han B, Sun J, Han L. Linkage Mapping and Discovery of Candidate Genes for Drought Tolerance in Rice During the Vegetative Growth Period. RICE (NEW YORK, N.Y.) 2024; 17:53. [PMID: 39198267 PMCID: PMC11358570 DOI: 10.1186/s12284-024-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Drought is a major abiotic stress affecting crop yields. Mapping quantitative trait loci (QTLs) and mining genes for drought tolerance in rice are important for identifying gene functions and targets for molecular breeding. Here, we performed linkage analysis of drought tolerance using a recombinant inbred line population derived from Jileng 1 (drought sensitive) and Milyang 23 (drought tolerant). An ultra-high-density genetic map, previously constructed by our research team using genotype data from whole-genome sequencing, was used in combination with phenotypic data for rice grown under drought stress conditions in the field in 2017-2019. Thirty-nine QTLs related to leaf rolling index and leaf withering degree were identified, and QTLs were found on all chromosomes except chromosomes 6, 10, and 11. qLWD4-1 was detected after 32 days and 46 days of drought stress in 2017 and explained 7.07-8.19% of the phenotypic variation. Two loci, qLRI2-2 and qLWD4-2, were identified after 29, 42, and 57 days of drought stress in 2018. These loci explained 10.59-17.04% and 5.14-5.71% of the phenotypic variation, respectively. There were 281 genes within the QTL interval. Through gene functional annotation and expression analysis, two candidate genes, Os04g0574600 and OsCHR731, were found. Quantitative reverse transcription PCR analysis showed that the expression levels of these genes were significantly higher under drought stress than under normal conditions, indicating positive regulation. Notably, Os04g0574600 was a newly discovered drought tolerance gene. Haplotype analysis showed that the RIL population carried two haplotypes (Hap1 and Hap2) of both genes. Lines carrying Hap2 exhibited significantly or extremely stronger drought tolerance than those carrying Hap1, indicating that Hap2 is an excellent haplotype. Among rice germplasm resources, there were two and three haplotypes of Os04g0574600 and OsCHR731, respectively. A high proportion of local rice resources in Sichuan, Yunnan, Anhui, Guangdong and Fujian provinces had Hap of both genes. In wild rice, 50% of accessions contained Hap1 of Os04g0574600 and 50% carried Hap4; 13.51%, 59.46% and 27.03% of wild rice accessions contained Hap1, Hap2, and Hap3, respectively. Hap2 of Os04g0574600 was found in more indica rice resources than in japonica rice. Therefore, Hap2 has more potential for utilization in future drought tolerance breeding of japonica rice.
Collapse
Affiliation(s)
- Aixia Jiao
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Chen
- Institute of Crop Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, 750001, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Ma
- Institute of Crop Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, 750001, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianchang Sun
- Institute of Crop Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, 750001, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Pham HA, Cho K, Tran AD, Chandra D, So J, Nguyen HTT, Sang H, Lee JY, Han O. Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice. Int J Mol Sci 2024; 25:6579. [PMID: 38928285 PMCID: PMC11204006 DOI: 10.3390/ijms25126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Collapse
Affiliation(s)
- Hue Anh Pham
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Kyoungwon Cho
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Anh Duc Tran
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Deepanwita Chandra
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jinpyo So
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Hanh Thi Thuy Nguyen
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12406, Vietnam;
| | - Hyunkyu Sang
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| | - Jong-Yeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, RDA, Jeonju 54874, Republic of Korea
| | - Oksoo Han
- Kumho Life Science Laboratory, Department of Integrative Food, Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61166, Republic of Korea; (H.A.P.); (K.C.); (A.D.T.); (D.C.); (J.S.); (H.S.)
| |
Collapse
|
4
|
Thapa R, Tabien RE, Thomson MJ, Septiningsih EM. Genetic factors underlying anaerobic germination in rice: Genome-wide association study and transcriptomic analysis. THE PLANT GENOME 2024; 17:e20261. [PMID: 36169134 DOI: 10.1002/tpg2.20261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The success of rice (Oryza sativa L.) germination and survival under submerged conditions is mainly determined by the rapid growth of the coleoptile to reach the water surface. Previous reports have shown the presence of genetic variability within rice accessions in the levels of flooding tolerance during germination or anaerobic germination (AG). Although many studies have focused on the physiological mechanisms of oxygen stress, few studies have explored the breadth of natural variation in AG tolerance-related traits in rice. In this study, we evaluated the coleoptile lengths of a geographically diverse rice panel of 241 accessions, including global accessions along with elite breeding lines and released cultivars from the United States, under the normal and flooded conditions in laboratory and greenhouse environments. A genome-wide association study (GWAS) was performed using a 7K single-nucleotide polymorphism (SNP) array and the phenotypic data of normal coleoptile length, flooded coleoptile length, flooding tolerance index, and survival at 14 d after seeding (DAS). Out of the 30 significant GWAS quantitative trait loci (QTL) regions identified, 14 colocalized with previously identified candidate genes of AG tolerance, whereas 16 were potentially novel. Two rice accessions showing contrasting phenotypic responses to AG stress were selected for the transcriptomics study. The combined approach of GWAS and transcriptomics analysis identified 77 potential candidate genes related to AG tolerance. The findings of our study may assist rice improvement programs in developing rice cultivars with robust tolerance under flooding stress during germination and the early seedling stage.
Collapse
Affiliation(s)
- Ranjita Thapa
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Michael J Thomson
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | |
Collapse
|
5
|
Zhang Y, Xiao W, Wang M, Khan M, Liu JH. A C2H2-type zinc finger protein ZAT12 of Poncirus trifoliata acts downstream of CBF1 to regulate cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1317-1329. [PMID: 38017362 DOI: 10.1111/tpj.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The Cys2/His2 (C2H2)-type zinc finger family has been reported to regulate multiple aspects of plant development and abiotic stress response. However, the role of C2H2-type zinc finger proteins in cold tolerance remains largely unclear. Through RNA-sequence analysis, a cold-responsive zinc finger protein, named as PtrZAT12, was identified and isolated from trifoliate orange (Poncirus trifoliata L. Raf.), a cold-hardy plant closely related to citrus. Furthermore, we found that PtrZAT12 was markedly induced by various abiotic stresses, especially cold stress. PtrZAT12 is a nuclear protein, and physiological analysis suggests that overexpression of PtrZAT12 conferred enhanced cold tolerance in transgenic tobacco (Nicotiana tabacum) plants, while knockdown of PtrZAT12 by virus-induced gene silencing (VIGS) increased the cold sensitivity of trifoliate orange and repressed expression of genes involved in stress tolerance. The promoter of PtrZAT12 harbors a DRE/CRT cis-acting element, which was verified to be specifically bound by PtrCBF1 (Poncirus trifoliata C-repeat BINDING FACTOR1). VIGS-mediated silencing of PtrCBF1 reduced the relative expression levels of PtrZAT12 and decreased the cold resistance of trifoliate orange. Based on these results, we propose that PtrZAT12 is a direct target of CBF1 and plays a positive role in modulation of cold stress tolerance. The knowledge gains new insight into a regulatory module composed of CBF1-ZAT12 in response to cold stress and advances our understanding of cold stress response in plants.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
7
|
Bhattacharjee B, Ali A, Rangappa K, Choudhury BU, Mishra VK. A detailed study on genetic diversity, antioxidant machinery, and expression profile of drought-responsive genes in rice genotypes exposed to artificial osmotic stress. Sci Rep 2023; 13:18388. [PMID: 37884634 PMCID: PMC10603178 DOI: 10.1038/s41598-023-45661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023] Open
Abstract
Seasonal variations in rainfall patterns, particularly during sowing, early growing season, and flowering, drastically affect rice production in northeastern India. However, sensitivity to drought stress is genotype-specific. Since 80% of the land in this region is used for rice production, it is crucial to understand how they have adapted to water stress. This study evaluated 112 rice genotypes grown in NE India for seed germination percentage and seedling development under PEG-mediated drought stress. Among the rice genotype, Sahbhagi dhan, RCPL-1-82, Bhalum-3 and RCPL-1-128 showed drought-tolerant traits, while Ketaki Joha, Chakhao, Chandan, RCPL-1-185 and IR-64 were the most drought-sensitive rice genotypes. Drought-tolerant rice also showed significantly higher seed germination potential, proline content, antioxidant activity and expression of drought-responsive genes than drought-sensitive rice genotypes. A similar expression pattern of genes was also observed in the rice genotype treated with a 50% water deficit in pot culture. In addition, drought stress reduced the pollen fertility and yield per plant in sensitive rice genotypes. Molecular markers associated with drought stress were also used to characterize genetic diversity among the rice genotypes studied.
Collapse
Affiliation(s)
- Bijoya Bhattacharjee
- Division of Crop Sciences, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India.
| | - Akib Ali
- Division of Crop Sciences, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| | - Krishnappa Rangappa
- Division of Crop Sciences, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| | - Burhan U Choudhury
- Division of System Research and Engineering, ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| | - V K Mishra
- ICAR Research Complex for NER, Umiam, Meghalaya, 793103, India
| |
Collapse
|
8
|
Toor MD, Kizilkaya R, Ullah I, Koleva L, Basit A, Mohamed HI. Potential Role of Vermicompost in Abiotic Stress Tolerance of Crop Plants: a Review. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2023. [DOI: 10.1007/s42729-023-01476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023]
|
9
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
10
|
Bai Q, Niu Z, Chen Q, Gao C, Zhu M, Bai J, Liu M, He L, Liu J, Jiang Y, Wan D. The C 2 H 2 -type zinc finger transcription factor OSIC1 positively regulates stomatal closure under osmotic stress in poplar. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:943-960. [PMID: 36632734 PMCID: PMC10106854 DOI: 10.1111/pbi.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/23/2022] [Indexed: 05/04/2023]
Abstract
Salt and drought impair plant osmotic homeostasis and greatly limit plant growth and development. Plants decrease stomatal aperture to reduce water loss and maintain osmotic homeostasis, leading to improved stress tolerance. Herein, we identified the C2 H2 transcription factor gene OSMOTIC STRESS INDUCED C2 H2 1 (OSIC1) from Populus alba var. pyramidalis to be induced by salt, drought, polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA). Overexpression of OSIC1 conferred transgenic poplar more tolerance to high salinity, drought and PEG6000 treatment by reducing stomatal aperture, while its mutant generated by the CRISPR/Cas9 system showed the opposite phenotype. Furthermore, OSIC1 directly up-regulates PalCuAOζ in vitro and in vivo, encoding a copper-containing polyamine oxidase, to enhance H2 O2 accumulation in guard cells and thus modulates stomatal closure when stresses occur. Additionally, ABA-, drought- and salt-induced PalMPK3 phosphorylates OSIC1 to increase its transcriptional activity to PalCuAOζ. This regulation of OSIC1 at the transcriptional and protein levels guarantees rapid stomatal closure when poplar responds to osmotic stress. Our results revealed a novel transcriptional regulatory mechanism of H2 O2 production in guard cells mediated by the OSIC1-PalCuAOζ module. These findings deepen our understanding of how perennial woody plants, like poplar, respond to osmotic stress caused by salt and drought and provide potential targets for breeding.
Collapse
Affiliation(s)
- Qiuxian Bai
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Qingyuan Chen
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Chengyu Gao
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Jiexian Bai
- College of Computer Information Engineering,Shanxi Technology and Business CollegeTaiyuanChina
| | - Meijun Liu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Ling He
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| | - Yuanzhong Jiang
- Key Laboratory for Bio‐resources and Eco‐environment of Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro‐Ecosystem, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
11
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
13
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
14
|
Bao C, Qin G, Cao F, He J, Shen X, Chen P, Niu C, Zhang D, Ren T, Zhi F, Ma L, Ma F, Guan Q. MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple. THE NEW PHYTOLOGIST 2022; 236:2131-2150. [PMID: 36161284 DOI: 10.1111/nph.18512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Drought limits apple yield and fruit quality. However, the molecular mechanism of apple in response to drought is not well known. Here, we report a Cys2/His2 (C2H2)-type zinc-finger protein, MdZAT5, that positively regulates apple drought tolerance by regulating drought-responsive RNAs and microRNAs (miRNAs). DNA affinity purification and sequencing and yeast-one hybrid analysis identified the binding motifs of MdZAT5, T/ACACT/AC/A/G. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and electrophoretic mobility shift assays (EMSAs) showed that MdZAT5 directly binds to the promoters of the drought-responsive genes including MdRHA2a, MdLEA14, MdTPX1, and MdCAT3, and activates their expression under drought stress. MdZAT5 interacts with and directly targets HYPONASTIC LEAVES1 (MdHYL1). MdZAT5 may facilitate the interaction of MdHYL1 with pri-miRNAs or MdDCL1 by activating MdHYL1 expression, thereby regulating the biogenesis of drought-responsive miRNAs. Genetic dissection showed that MdHYL1 is essential for MdZAT5-mediated drought tolerance and miRNA biogenesis. In addition, ChIP-qPCR and EMSA revealed that MdZAT5 binds directly to the promoters of some MIR genes including Mdm-miR171i and Mdm-miR172c, and modulates their transcription. Taken together, our findings improve our understanding of the molecular mechanisms of drought response in apple and provide a candidate gene for the breeding of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
15
|
Zhao L, Li Y, Li Y, Chen W, Yao J, Fang S, Lv Y, Zhang Y, Zhu S. Systematical Characterization of the Cotton Di19 Gene Family and the Role of GhDi19-3 and GhDi19-4 as Two Negative Regulators in Response to Salt Stress. Antioxidants (Basel) 2022; 11:2225. [PMID: 36421411 PMCID: PMC9686973 DOI: 10.3390/antiox11112225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Drought-induced 19 (Di19) protein is a Cys2/His2 (C2H2) type zinc-finger protein, which plays a crucial role in plant development and in response to abiotic stress. This study systematically investigated the characteristics of the GhDi19 gene family, including the member number, gene structure, chromosomal distribution, promoter cis-elements, and expression profiles. Transcriptomic analysis indicated that some GhDi19s were up-regulated under heat and salt stress. Particularly, two nuclear localized proteins, GhDi19-3 and GhDi19-4, were identified as being in potential salt stress responsive roles. GhDi19-3 and GhDi19-4 decreased sensitivity under salt stress through virus-induced gene silencing (VIGS), and showed significantly lower levels of H2O2, malondialdehyde (MDA), and peroxidase (POD) as well as significantly increased superoxide dismutase (SOD) activity. This suggested that their abilities were improved to effectively reduce the reactive oxygen species (ROS) damage. Furthermore, certain calcium signaling and abscisic acid (ABA)-responsive gene expression levels showed up- and down-regulation changes in target gene-silenced plants, suggesting that GhDi19-3 and GhDi19-4 were involved in calcium signaling and ABA signaling pathways in response to salt stress. In conclusion, GhDi19-3 and GhDi19-4, two negative transcription factors, were found to be responsive to salt stress through calcium signaling and ABA signaling pathways.
Collapse
Affiliation(s)
- Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youzhong Li
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
16
|
Ju C, Ma X, Han B, Zhang W, Zhao Z, Geng L, Cui D, Han L. Candidate gene discovery for salt tolerance in rice ( Oryza sativa L.) at the germination stage based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2022; 13:1010654. [PMID: 36388603 PMCID: PMC9664195 DOI: 10.3389/fpls.2022.1010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Salt stress affects rice seed germination and seedling formation, seriously restricting rice production. Screening salt-tolerant rice varieties and analyzing the genetic mechanisms underlying salt tolerance are therefore very important to ensure rice production. In this study, 313 Oryza sativa ssp. japonica germplasm were used to conduct a genome-wide association study (GWAS) using 1% NaCl as a salt stress treatment during germination stage. The germination potential (GP) on different days and the germination index (GI) under salt stress were used as salt tolerance indicators. The results of population structure analysis showed that the 313 germplasm studied could be divided into two subpopulations, consistent with the geographical origins of the materials. There were 52 loci significantly related to salt tolerance during germination, and the phenotypic contribution rate of 29 loci was > 10%. A region on chromosome 11 (17049672-17249672 bp) was repeatedly located, and the candidate gene LOC_Os11g29490, which encodes a plasma membrane ATPase, was identified in this locus. Further haplotype analysis showed the GP of germplasm with different haplotypes at that locus significantly differed under salt stress (p < 0.05), and germplasm carrying Hap2 displayed strong salt tolerance during the germination stage. Two other promising candidate genes for salt tolerance were identified: LOC_Os01g27170 (OsHAK3), which encodes a potassium transporter, and LOC_Os10g42550 (OsITPK5), which encodes an inositol 1, 3, 4-trisphosphate 5/6-kinase. The results of this study provide a theoretical basis for salt-tolerant gene cloning and molecular design breeding in rice.
Collapse
Affiliation(s)
- Chunyan Ju
- Chongqing Engineering Research Center of Specialty Crop Resources, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Zhengwu Zhao
- Chongqing Engineering Research Center of Specialty Crop Resources, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Identification, Phylogeny, Divergence, Structure, and Expression Analysis of A20/AN1 Zinc Finger Domain Containing Stress-Associated Proteins (SAPs) Genes in Jatropha curcas L. Genes (Basel) 2022; 13:genes13101766. [PMID: 36292651 PMCID: PMC9601316 DOI: 10.3390/genes13101766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Jatropha is a small woody perennial biofuel-producing shrub. Stress-associated proteins (SAPs) are novel stress regulatory zinc-finger proteins and are mainly associated with tolerance against various environmental abiotic stresses in Jatropha. In the present study, the JcSAP gene family were analyzed comprehensively in Jatropha curcas and 11 JcSAP genes were identified. Phylogenetic analysis classified the JcSAP genes into four groups based on sequence similarity, similar gene structure features, conserved A20 and/or AN1 domains, and their responsive motifs. Moreover, the divergence analysis further evaluated the evolutionary aspects of the JcSAP genes with the predicted time of divergence from 9.1 to 40 MYA. Furthermore, a diverse range of cis-elements including light-responsive elements, hormone-responsive elements, and stress-responsive elements were detected in the promoter region of JcSAP genes while the miRNA target sites predicted the regulation of JcSAP genes via a candid miRNA mediated post-transcriptional regulatory network. In addition, the expression profiles of JcSAP genes in different tissues under stress treatment indicated that many JcSAP genes play functional developmental roles in different tissues, and exhibit significant differential expression under stress treatment. These results collectively laid a foundation for the functional diversification of JcSAP genes.
Collapse
|
18
|
Genome-Wide Identification and Expression Analysis of the Zinc Finger Protein Gene Subfamilies under Drought Stress in Triticum aestivum. PLANTS 2022; 11:plants11192511. [PMID: 36235376 PMCID: PMC9572532 DOI: 10.3390/plants11192511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022]
Abstract
The zinc finger protein (ZFP) family is one of plants’ most diverse family of transcription factors. These proteins with finger-like structural domains have been shown to play a critical role in plant responses to abiotic stresses such as drought. This study aimed to systematically characterize Triticum aestivum ZFPs (TaZFPs) and understand their roles under drought stress. A total of 9 TaC2H2, 38 TaC3HC4, 79 TaCCCH, and 143 TaPHD were identified, which were divided into 4, 7, 12, and 14 distinct subgroups based on their phylogenetic relationships, respectively. Segmental duplication dominated the evolution of four subfamilies and made important contributions to the large-scale amplification of gene families. Syntenic relationships, gene duplications, and Ka/Ks result consistently indicate a potential strong purifying selection on TaZFPs. Additionally, TaZFPs have various abiotic stress-associated cis-acting regulatory elements and have tissue-specific expression patterns showing different responses to drought and heat stress. Therefore, these genes may play multiple functions in plant growth and stress resistance responses. This is the first comprehensive genome-wide analysis of ZFP gene families in T. aestivum to elucidate the basis of their function and resistance mechanisms, providing a reference for precise manipulation of genetic engineering for drought resistance in T. aestivum.
Collapse
|
19
|
Zhang R, Zhang C, Lyu S, Wu H, Yuan M, Fang Z, Li F, Hou X. BcTFIIIA Negatively Regulates Turnip Mosaic Virus Infection through Interaction with Viral CP and VPg Proteins in Pak Choi (Brassica campestris ssp. chinensis). Genes (Basel) 2022; 13:genes13071209. [PMID: 35885992 PMCID: PMC9317785 DOI: 10.3390/genes13071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
TFIIIA is a zinc-finger transcription factor that is involved in post-transcriptional regulation during development. Here, the BcTFIIIA gene was isolated from pak choi. Sequence analysis showed that BcTFIIIA encodes 383 amino acids (aa) with an open reading frame (ORF) of 1152 base pairs (bp). We investigated the subcellular location of BcTFIIIA and found the localized protein in the nucleus. BcTFIIIA was suppressed when the pak choi was infected by the turnip mosaic virus (TuMV). The BcTFIIIA mRNA expression level in a resistant variety was higher than that in a sensitive variety, as determined by qRT-PCR analysis. Yeast two hybrid (Y2H) assay and bimolecular fluorescence complementation (BiFC) suggested that BcTFIIIA interacts with TuMV CP and VPg in vivo, respectively, and in vitro. A virus-induced gene silencing (VIGS) experiment showed that the silencing of BcTFIIIA gene expression in pak choi promoted the accumulation of TuMV. These results suggest that BcTFIIIA negatively regulates viral infection through the interaction with TuMV CP and VPg.
Collapse
Affiliation(s)
- Rujia Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyuan Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengguo Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
20
|
Shuai Y, Feng G, Yang Z, Liu Q, Han J, Xu X, Nie G, Huang L, Zhang X. Genome-wide identification of C2H2-type zinc finger gene family members and their expression during abiotic stress responses in orchardgrass ( Dactylis glomerata). Genome 2022; 65:189-203. [PMID: 35104149 DOI: 10.1139/gen-2020-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C2H2-type zinc finger protein (ZFP) family is one of the largest transcription factor families in the plant kingdom and its members are involved in plant growth, development, and stress responses. As an economically valuable perennial graminaceous forage crop, orchardgrass (Dactylis glomerata) is an important feedstuff resource owing to its high yield and quality. In this study, 125 C2H2-type ZFPs in orchardgrass (Dg-ZFPs) were identified and further classified by phylogenetic analysis. The members with similar gene structures were generally clustered into the same groups, with proteins containing the conserved QALGGH motif being concentrated in groups VIII and IX. Gene ontology and miRNA target analyses indicated that Dg-ZFPs likely perform diverse biological functions through their gene interactions. The RNA-seq data revealed differentially expressed genes across tissues and development phases, suggesting that some Dg-ZFPs might participate in growth and development regulation. Abiotic stress responses of Dg-ZFP genes were verified by qPCR and Saccharomyces cerevisiae transformation, revealing that Dg-ZFP125 could enhance the tolerance of yeasts to osmotic and salt stresses. Our study performed a novel systematic analysis of Dg-ZFPs in orchardgrass, providing a reference for this gene family in other grasses and revealing new insights for enhancing gene utilization.
Collapse
Affiliation(s)
- Yang Shuai
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiating Han
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.,College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
21
|
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:803603. [PMID: 35154193 PMCID: PMC8829427 DOI: 10.3389/fpls.2021.803603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Najeebul Rehman Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Roohi Mushtaq
- Department of Biotechnology and Bioinformatics, SP College, Cluster University Srinagar, Srinagar, India
| | - Jai Singh Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stuttgart, AR, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Huang X, Huang L, Zhao X, Jia J, Zhang G, Zhang M, Jiang M. A J-Protein OsDjC46 Interacts with ZFP36 to Participate in ABA-Mediated Antioxidant Defense in Rice. Antioxidants (Basel) 2022; 11:antiox11020207. [PMID: 35204090 PMCID: PMC8868554 DOI: 10.3390/antiox11020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
ZFP36 has been shown to be involved in ABA-induced antioxidant defense and enhance rice tolerance to drought, salt stress and oxidative stress. Using ZFP36 as bait, a yeast two-hybrid system was used to obtain the interacting protein OsDjC46, which belongs to heat shock protein and usually exists in the form of molecular chaperone, was identified. Further Co-IP (co-immunoprecipitation), BiFC (bimolecular fluorescence complement) and GST (glutathione-S-transferase) pull-down experiments verified that ZFP36 interacted with OsDjC46 in vivo and in vitro. Heat shock protein has been shown to increase plant resistance to stresses, but whether OsDjC46 was a key factor in plant response to various stresses has not been reported. Here, various stimuli, such as abscisic acid (ABA), hydrogen peroxidase (H2O2), polyethylene (PEG) and sodium chloride (NaCl) markedly induced the expression of OsDjC46 in the seedlings. Overexpression of OsDjC46 in rice can enhance the tolerance to salinity and drought; in contrast, knockout of OsDjC46 rice plants was more sensitive to salt stress and drought. Further investigation revealed that OsDjC46 could participate in regulating the expression and activities of antioxidant of SOD and CAT under drought and salt stress. Taken together, these findings reveal a novel function of OsDjC46 in adjusting ABA-induced antioxidant defense.
Collapse
Affiliation(s)
- Xingxiu Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Liping Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Xixi Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Jing Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Gang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Mengyao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-84396372
| |
Collapse
|
23
|
Haq F, Xu X, Ma W, Shah SMA, Liu L, Zhu B, Zou L, Chen G. A Xanthomonas transcription activator-like effector is trapped in nonhost plants for immunity. PLANT COMMUNICATIONS 2022; 3:100249. [PMID: 35059629 PMCID: PMC8760140 DOI: 10.1016/j.xplc.2021.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/29/2021] [Accepted: 10/13/2021] [Indexed: 05/10/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight in rice, delivers transcription activator-like effector (TALE) proteins into host cells to activate susceptibility or resistance (R) genes that promote disease or immunity, respectively. Nonhost plants serve as potential reservoirs of R genes; consequently, nonhost R genes may trap TALEs to trigger an immune response. In this study, we screened 17 Xoo TALEs for their ability to induce a hypersensitive response (HR) in the nonhost plant Nicotiana benthamiana (Nb); only AvrXa10 elicited an HR when transiently expressed in Nb. The HR generated by AvrXa10 required both the central repeat region and the activation domain, suggesting a specific interaction between AvrXa10 and a potential R-like gene in nonhost plants. Evans blue staining and ion leakage measurements confirmed that the AvrXa10-triggered HR was a form of cell death, and the transient expression of AvrXa10 in Nb induced immune responses. Genes targeted by AvrXa10 in the Nb genome were identified by transcriptome profiling and prediction of effector binding sites. Using several approaches (in vivo reporter assays, electrophoretic mobility-shift assays, targeted designer TALEs, and on-spot gene silencing), we confirmed that AvrXa10 targets NbZnFP1, a C2H2-type zinc finger protein that resides in the nucleus. Functional analysis indicated that overexpression of NbZnFP1 and its rice orthologs triggered cell death in rice protoplasts. An NbZnFP1 ortholog was also identified in tomato and was specifically activated by AvrXa10. These results demonstrate that NbZnFP1 is a nonhost R gene that traps AvrXa10 to promote plant immunity in Nb.
Collapse
Affiliation(s)
- Fazal Haq
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
| | - Xiameng Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
| | - Wenxiu Ma
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
| | - Syed Mashab Ali Shah
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
| | - Linlin Liu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
| | - Bo Zhu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture of the Ministry of Agriculture, Shanghai, 200240, China
- Corresponding author
| |
Collapse
|
24
|
Kong W, Zhang C, Zhang S, Qiang Y, Zhang Y, Zhong H, Li Y. Uncovering the Novel QTLs and Candidate Genes of Salt Tolerance in Rice with Linkage Mapping, RTM-GWAS, and RNA-seq. RICE (NEW YORK, N.Y.) 2021; 14:93. [PMID: 34778931 PMCID: PMC8590990 DOI: 10.1186/s12284-021-00535-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/06/2021] [Indexed: 05/07/2023]
Abstract
Salinity is a major abiotic stress that limits plant growth and crop productivity. Indica rice and japonica rice show significant differences in tolerance to abiotic stress, and it is considered a feasible method to breed progeny with stronger tolerance to abiotic stress by crossing indica and japonica rice. We herein developed a high-generation recombinant inbred lines (RILs) from Luohui 9 (indica) X RPY geng (japonica). Based on the high-density bin map of this RILs population, salt tolerance QTLs controlling final survival rates were analyzed by linkage mapping and RTM-GWAS methods. A total of seven QTLs were identified on chromosome 3, 4, 5, 6, and 8. qST-3.1, qST-5.1, qST-6.1, and qST-6.2 were novel salt tolerance QTLs in this study and their function were functionally verified by comparative analysis of parental genotype RILs. The gene aggregation result of these four new QTLs emphasized that the combination of the four QTL synergistic genotypes can significantly improve the salt stress tolerance of rice. By comparing the transcriptomes of the root tissues of the parents' seedlings, at 3 days and 7 days after salt treatment, we then achieved fine mapping of QTLs based on differentially expressed genes (DEGs) identification and DEGs annotations, namely, LOC_Os06g01250 in qST-6.1, LOC_Os06g37300 in qST-6.2, LOC_Os05g14880 in qST-5.1. The homologous genes of these candidate genes were involved in abiotic stress tolerance in different plants. These results indicated that LOC_Os05g14880, LOC_Os06g01250, and LOC_Os06g37300 were the candidate genes of qST-5.1, qST-6.1, and qST-6.2. Our finding provided novel salt tolerance-related QTLs, candidate genes, and several RILs with better tolerance, which will facilitate breeding for improved salt tolerance of rice varieties and promote the exploration tolerance mechanisms of rice salt stress.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yalin Qiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yue Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
25
|
Iqbal Z, Iqbal MS, Khan MIR, Ansari MI. Toward Integrated Multi-Omics Intervention: Rice Trait Improvement and Stress Management. FRONTIERS IN PLANT SCIENCE 2021; 12:741419. [PMID: 34721467 PMCID: PMC8554098 DOI: 10.3389/fpls.2021.741419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
26
|
A C2H2-Type Zinc-Finger Protein from Millettia pinnata, MpZFP1, Enhances Salt Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms221910832. [PMID: 34639173 PMCID: PMC8509772 DOI: 10.3390/ijms221910832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
C2H2 zinc finger proteins (ZFPs) play important roles in plant development and response to abiotic stresses, and have been studied extensively. However, there are few studies on ZFPs in mangroves and mangrove associates, which represent a unique plant community with robust stress tolerance. MpZFP1, which is highly induced by salt stress in the mangrove associate Millettia pinnata, was cloned and functionally characterized in this study. MpZFP1 protein contains two zinc finger domains with conserved QALGGH motifs and targets to the nucleus. The heterologous expression of MpZFP1 in Arabidopsis increased the seeds' germination rate, seedling survival rate, and biomass accumulation under salt stress. The transgenic plants also increased the expression of stress-responsive genes, including RD22 and RD29A, and reduced the accumulation of reactive oxygen species (ROS). These results indicate that MpZFP1 is a positive regulator of plant responses to salt stress due to its activation of gene expression and efficient scavenging of ROS.
Collapse
|
27
|
Li Y, Sun A, Wu Q, Zou X, Chen F, Cai R, Xie H, Zhang M, Guo X. Comprehensive genomic survey, structural classification and expression analysis of C 2H 2-type zinc finger factor in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2021; 21:380. [PMID: 34407757 PMCID: PMC8375173 DOI: 10.1186/s12870-021-03016-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/06/2021] [Indexed: 06/04/2023]
Abstract
BACKGROUND The C2H2-type zinc finger proteins (C2H2-ZFPs) are one of major classes of transcription factors that play important roles in plant growth, development and stress responses. Limit information about the C2H2-ZF genes hinders the molecular breeding in bread wheat (Triticum aestivum). RESULTS In this study, 457 C2H2-ZFP proteins (including 253 splice variants), which contain four types of conserved domain (named Q, M, Z, and D), could be further classified into ten subsets. They were identified to be distributed in 21 chromosomes in T. aestivum. Subset-specific motifs, like NPL-, SFP1-, DL- (EAR-like-motif), R-, PL-, L- and EK-, might make C2H2-ZFP diverse multifunction. Interestingly, NPL- and SFP1-box were firstly found to be located in C2H2-ZFP proteins. Synteny analyses showed that only 4 pairs of C2H2 family genes in T. aestivum, 65 genes in B. distachyon, 66 genes in A. tauschii, 68 genes in rice, 9 genes in Arabidopsis, were syntenic relationships respectively. It indicated that TaZFPs were closely related to genes in Poaceae. From the published transcriptome data, totally 198 of 204 TaC2H2-ZF genes have expression data. Among them, 25 TaC2H2-ZF genes were certificated to be significantly differentially expressed in 5 different organs and 15 different development stages by quantitative RT-PCR. The 18 TaC2H2-ZF genes were verified in response to heat, drought, and heat & drought stresses. According to expression pattern analysis, several TaZFPs, like Traes_5BL_D53A846BE.1, were not only highly expressed in L2DAAs, RTLS, RMS, but also endowed tolerance to drought and heat stresses, making them good candidates for molecular breeding. CONCLUSIONS This study systematically characterized the TaC2H2-ZFPs and their potential roles in T. aestivum. Our findings provide new insights into the C2H2-ZF genes in T. aestivum as well as a foundation for further studies on the roles of TaC2H2-ZF genes in T. aestivum molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Aolong Sun
- College of Biology, Hunan University, Changsha, 410082, China
| | - Qun Wu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruqiong Cai
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hai Xie
- College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Zhang
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
28
|
Dave A, Sanadhya P, Joshi PS, Agarwal P, Agarwal PK. Molecular cloning and characterization of high-affinity potassium transporter (AlHKT2;1) gene promoter from halophyte Aeluropus lagopoides. Int J Biol Macromol 2021; 181:1254-1264. [PMID: 33989688 DOI: 10.1016/j.ijbiomac.2021.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
HKT subfamily II functions as Na+- K+ co-transporter and prevents plants from salinity stress. A 760 bp promoter region of AlHKT2;1 was isolated, sequenced and cloned. The full length promoter D1, has many cis-regulatory elements like MYB, MBS, W box, ABRE etc. involved in abiotic stress responses. D1 and subsequent 5' deletions were cloned into pCAMBIA1301 and studied for its efficacy in stress conditions in heterologous system. Blue colour staining was observed in flower petals, anther lobe, and dehiscence slit of anther in T0 plants. The T1 seedlings showed staining in leaf veins, shoot vasculature and root except root tip. T1 seedlings were subjected to NaCl, KCl, NaCl + KCl and ABA stresses. GUS activity was quantified by 4-methylumbelliferyl glucuronide (4-MUG) assay under control and stress conditions. The smallest deletion- D4 also showed GUS expression but highest activity was observed in D2 as compared to full length promoter and other deletions. The electrophoretic mobility shift assay using stress-induced protein with different promoter deletions revealed more prominent binding in D2. These results suggest that AlHKT2;1 promoter is involved in abiotic stress response and deletion D2 might be sufficient to drive the stress-inducible expression of various genes involved in providing stress tolerance in plants.
Collapse
Affiliation(s)
- Ankita Dave
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Payal Sanadhya
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Priyanka S Joshi
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
29
|
CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.). Mol Biol Rep 2021; 48:3605-3615. [PMID: 33950408 DOI: 10.1007/s11033-021-06375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas) technology is an effective tool for site-specific genome editing, used to precisely induce mutagenesis in different plant species including rice. Salinity is one of the most stressful environmental constraints affecting agricultural productivity worldwide. As plant adaptation to salinity stress is under polygenic control therefore, 51 rice genes have been identified that play crucial role in response to salinity. This review offers an exclusive overview of genes identified in rice genome for salinity stress tolerance. This will provide an idea to produce rice varieties with enhanced salt tolerance using the potentially efficient CRISPR-Cas technology. Several undesirable off-target effects of CRISPR-Cas technology and their possible solutions have also been highlighted.
Collapse
|
30
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
31
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
32
|
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants (Basel) 2021; 10:277. [PMID: 33670123 PMCID: PMC7916865 DOI: 10.3390/antiox10020277] [Citation(s) in RCA: 323] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1-2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.
Collapse
Affiliation(s)
- Swati Sachdev
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareli Road, Lucknow 226 025, India;
| | | | | | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
33
|
Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 2020; 242:126626. [PMID: 33189069 DOI: 10.1016/j.micres.2020.126626] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
In many regions of the world, the incidence and extent of drought spells are predicted to increase which will create considerable pressure on global agricultural yields. Most likely among all the abiotic stresses, drought has the strongest effect on soil biota and plants along with complex environmental effects on other ecological systems. Plants being sessile appears the least resilient where drought creates osmotic stress, limits nutrient mobility due to soil heterogeneity, and reduces nutrient access to plant roots. Drought tolerance is a complex quantitative trait controlled by many genes and is one of the difficult traits to study and characterize. Nevertheless, existing studies on drought have indicated the mechanisms of drought resistance in plants on the morphological, physiological, and molecular basis and strategies have been devised to cope with the drought stress such as mass screening, breeding, marker-assisted selection, exogenous application of hormones or osmoprotectants and or engineering for drought resistance. These strategies have largely ignored the role of the rhizosphere in the plant's drought response. Studies have shown that soil microbes have a substantial role in modulation of plant response towards biotic and abiotic stress including drought. This response is complex and involves alteration in host root system architecture through hormones, osmoregulation, signaling through reactive oxygen species (ROS), induction of systemic tolerance (IST), production of large chain extracellular polysaccharides (EPS), and transcriptional regulation of host stress response genes. This review focuses on the integrated rhizosphere management strategy for drought stress mitigation in plants with a special focus on rhizosphere management. This combinatorial approach may include rhizosphere engineering by addition of drought-tolerant bacteria, nanoparticles, liquid nano clay (LNC), nutrients, organic matter, along with plant-modification with next-generation genome editing tool (e.g., CRISPR/Cas9) for quickly addressing emerging challenges in agriculture. Furthermore, large volumes of rainwater and wastewater generated daily can be smartly recycled and reused for agriculture. Farmers and other stakeholders will get a proper knowledge-exchange and an ideal road map to utilize available technologies effectively and to translate the measures into successful plant-water stress management. The proposed approach is cost-effective, eco-friendly, user-friendly, and will impart long-lasting benefits on agriculture and ecosystem and reduce vulnerability to climate change.
Collapse
Affiliation(s)
- Rabisa Zia
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Jawad Siddique
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
34
|
He F, Niu MX, Feng CH, Li HG, Su Y, Su WL, Pang H, Yang Y, Yu X, Wang HL, Wang J, Liu C, Yin W, Xia X. PeSTZ1 confers salt stress tolerance by scavenging the accumulation of ROS through regulating the expression of PeZAT12 and PeAPX2 in Populus. TREE PHYSIOLOGY 2020; 40:1292-1311. [PMID: 32334430 DOI: 10.1093/treephys/tpaa050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/23/2023]
Abstract
ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) plays an important role in stress responses, but the transcriptional regulation of ZAT12 in response to abiotic stress remains unclear. In this study, we confirmed that a SALT TOLERANCE ZINC FINGER1 transcription factor from Populus euphratica (PeSTZ1) could regulate the expression of PeZAT12 by dual-luciferase reporter (DLR) assay and electrophoretic mobility shift assay. The expression of PeSTZ1 was rapidly induced by NaCl and hydrogen peroxide (H2O2) treatments. Overexpressing PeSTZ1 in poplar 84K (Populus alba × Populus glandulosa) plant was endowed with a strong tolerance to salt stress. Under salt stress, transgenic poplar exhibited higher expression levels of PeZAT12 and accumulated a larger amount of antioxidant than the wild-type plants. Meanwhile, ASCORBATE PEROXIDASE2 (PeAPX2) can be activated by PeZAT12 and PeSTZ1, promoting the accumulation of cytosolic ascorbate peroxidase (APX) to scavenge reactive oxygen species (ROS) under salt stress. This new regulatory model (PeSTZ1-PeZAT12-PeAPX2) was found in poplar, providing a new idea and insight for the interpretation of poplar resistance. Transgenic poplar reduced the accumulation of ROS, restrained the degradation of chlorophyll and guaranteed the photosynthesis and electron transport system. On the other hand, transgenic poplar slickly adjusted K+/Na+ homeostasis to alleviate salt toxicity in photosynthetic organs of plants under salt stress and then increased biomass accumulation. In summary, PeSTZ1 confers salt stress tolerance by scavenging the accumulation of ROS through regulating the expression of PeZAT12 and PeAPX2 in poplar.
Collapse
Affiliation(s)
- Fang He
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Meng-Xue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Cong-Hua Feng
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Hui-Guang Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Yanyan Su
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Wan-Long Su
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Hongguang Pang
- Horticulture Science, College of Horticulture, Hebei Agricultural University, 2596 Lekai South Street, Lianchi District, Baoding, Hebei 071001, China
| | - Yanli Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Xiao Yu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Jie Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Chao Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 35 East Tsinghua Road, Haidian District, Beijing 100083, China
| |
Collapse
|
35
|
Chamani Mohasses F, Solouki M, Ghareyazie B, Fahmideh L, Mohsenpour M. Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study. PLoS One 2020; 15:e0237334. [PMID: 32776991 PMCID: PMC7416939 DOI: 10.1371/journal.pone.0237334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
We studied the correlation of synonymous codon usage (SCU) on gene expression levels under drought stress in rice. Sixty genes related to drought stress (with high, intermediate and low expression) were selected from rice meta-analysis data and various codon usage indices such as the effective number of codon usage (ENC), codon adaptation index (CAI) and relative synonymous codon usage (RSCU) were calculated. We found that in genes highly expressing under drought 1) GC content was higher, 2) ENC value was lower, 3) the preferred codons of some amino acids changed and 4) the RSCU ratio of GC-end codons relative to AT-end codons for 18 amino acids increased significantly compared with those in other genes. We introduce ARSCU as the Average ratio of RSCUs of GC-end codons to AT-end codons in each gene that could significantly separate high-expression genes under drought from low-expression genes. ARSCU is calculated using the program ARSCU-Calculator developed by our group to help predicting expression level of rice genes under drought. An index above ARSCU threshold is expected to indicate that the gene under study may belong to the "high expression group under drought". This information may be applied for codon optimization of genes for rice genetic engineering. To validate these findings, we further used 60 other genes (randomly selected subset of 43233 genes studied for their response to drought stress). ARSCU value was able to predict the level of expression at 88.33% of the cases. Using third set of 60 genes selected amongst high expressing genes not related to drought, only 31.65% of the genes showed ARSCU value of higher than the set threshold. This indicates that the phenomenon we described in this report may be unique for drought related genes. To justify the observed correlation between CUB and high expressing genes under drought, possible role of tRNA post transcriptional modification and tRFs was hypothesized as possible underlying biological mechanism.
Collapse
Affiliation(s)
- Fatemeh Chamani Mohasses
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behzad Ghareyazie
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Fahmideh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Motahhareh Mohsenpour
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
36
|
Liu YT, Shi QH, Cao HJ, Ma QB, Nian H, Zhang XX. Heterologous Expression of a Glycine soja C2H2 Zinc Finger Gene Improves Aluminum Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:E2754. [PMID: 32326652 PMCID: PMC7215988 DOI: 10.3390/ijms21082754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.
Collapse
Affiliation(s)
- Yuan-Tai Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Han Shi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - He-Jie Cao
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Bin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiu-Xiang Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
37
|
Cheuk A, Ouellet F, Houde M. The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance. BMC PLANT BIOLOGY 2020; 20:144. [PMID: 32264833 PMCID: PMC7140352 DOI: 10.1186/s12870-020-02355-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/23/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speed up functional gene characterization. RESULTS We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant's life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected. CONCLUSIONS This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.
Collapse
Affiliation(s)
- Arnaud Cheuk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Francois Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
38
|
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:115. [PMID: 32153617 PMCID: PMC7044346 DOI: 10.3389/fpls.2020.00115] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
39
|
Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Genes (Basel) 2020; 11:genes11020171. [PMID: 32041281 PMCID: PMC7074296 DOI: 10.3390/genes11020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Cucumber is one of the most important vegetables in the world. The C2H2 zinc finger protein (C2H2-ZFP) family plays an important role in the growth development and abiotic stress responses of plants. However, there have been no systematic studies on cucumber. In this study, we performed a genome-wide study of C2H2-ZFP genes and analyzed their chromosomal location, gene structure, conservation motif, and transcriptional expression. In total, 101 putative cucumber C2H2-ZFP genes were identified and divided into six groups (I–VI). RNA-seq transcriptome data on different organs revealed temporal and spatial expression specificity of the C2H2-ZFP genes. Expression analysis of sixteen selected C2H2-ZFP genes in response to cold, drought, salt, and abscisic acid (ABA) treatments by real-time quantitative polymerase chain reaction showed that C2H2-ZFP genes may be involved in different signaling pathways. These results provide valuable information for studying the function of cucumber C2H2-ZFP genes in the future.
Collapse
|
40
|
Hu X, Zhu L, Zhang Y, Xu L, Li N, Zhang X, Pan Y. Genome-wide identification of C2H2 zinc-finger genes and their expression patterns under heat stress in tomato ( Solanum lycopersicum L.). PeerJ 2019; 7:e7929. [PMID: 31788352 PMCID: PMC6882421 DOI: 10.7717/peerj.7929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
The C2H2 zinc finger protein (C2H2-ZFP) transcription factor family regulates the expression of a wide variety of genes in response to various developmental processes or abiotic stresses; however, these proteins have not yet been comprehensively analyzed in tomato (Solanum lycopersicum). In this study, a total of 104 C2H2-ZFs were identified in an uneven distribution across the entire tomato genome, and include seven segmental duplication events. Based on their phylogenetic relationships, these genes were clustered into nine distinct categories analogous to those in Arabidopsis thaliana. High similarities were found between the exon–intron structures and conserved motifs of the genes within each group. Correspondingly, the expression patterns of the C2H2-ZF genes indicated that they function in different tissues and at different developmental stages. Additionally, quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 34 selected C2H2-ZFs are changed dramatically among the roots, stems, and leaves at different time points of a heat stress treatment, suggesting that the C2H2-ZFPs are extensively involved in the heat stress response but have potentially varying roles. These results form the basis for the further molecular and functional analysis of the C2H2-ZFPs, especially for those members that significantly varied under heat treatment, which may be targeted to improve the heat tolerance of tomato and other Solanaceae species.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lili Zhu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Na Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Genome-Wide Transcriptome Analysis of Rice Seedlings after Seed Dressing with Paenibacillus yonginensis DCY84 T and Silicon. Int J Mol Sci 2019; 20:ijms20235883. [PMID: 31771205 PMCID: PMC6928808 DOI: 10.3390/ijms20235883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Plant-growth-promoting bacteria (PGPB) are beneficial microorganisms that can also protect against disease and environmental stress. Silicon (Si) is the second most abundant element in soil, and is known to increase plant growth, grain yield, resistance to biotic stress, and tolerance to abiotic stress. Combined treatment of PGPB and Si has been shown to further enhance plant growth and crop yield. To determine the global effects of the PGPB and Si on rice growth, we compared rice plants treated with Paenibacillus yonginensis DCY84T (DCY84T) and Si with untreated rice. To identify the genes that respond to DCY84T+Si treatment in rice, we performed an RNA-Seq transcriptome analysis by sampling treated and untreated roots on a weekly basis for three weeks. Overall, 576 genes were upregulated, and 394 genes were downregulated in treated roots, using threshold fold-changes of at least 2 (log2) and p-values < 0.05. Gene ontology analysis showed that phenylpropanoids and the L-phenylalanine metabolic process were prominent in the upregulated genes. In a metabolic overview analysis using the MapMan toolkit, pathways involving phenylpropanoids and ethylene were strongly associated with upregulated genes. The functions of seven upregulated genes were identified as being associated with drought stress through a literature search, and a stress experiment confirmed that plants treated with DCY84T+Si exhibited greater drought tolerance than the untreated control plants. Furthermore, the predicted protein–protein interaction network analysis associated with DCY84T+ Si suggests mechanisms underlying growth promotion and stress tolerance.
Collapse
|
42
|
Genome-wide identification, classification, expression profiling and DNA methylation (5mC) analysis of stress-responsive ZFP transcription factors in rice (Oryza sativa L.). Gene 2019; 718:144018. [DOI: 10.1016/j.gene.2019.144018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
|
43
|
He F, Li H, Wang J, Su Y, Wang H, Feng C, Yang Y, Niu M, Liu C, Yin W, Xia X. PeSTZ1, a C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating PeAPX2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2169-2183. [PMID: 30977939 PMCID: PMC6790368 DOI: 10.1111/pbi.13130] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
In the present study, PeSTZ1, a cysteine-2/histidine-2-type zinc finger transcription factor, was isolated from the desert poplar, Populus euphratica, which serves as a model stress adaptation system for trees. PeSTZ1 was preferentially expressed in the young stems and was significantly up-regulated during chilling and freezing treatments. PeSTZ1 was localized to the nucleus and bound specifically to the PeAPX2 promoter. To examine the potential functions of PeSTZ1, we overexpressed it in poplar 84K hybrids (Populus alba × Populus glandulosa), which are known to be stress-sensitive. Upon exposure to freezing stress, transgenic poplars maintained higher photosynthetic activity and dissipated more excess light energy (in the form of heat) than wild-type poplars. Thus, PeSTZ1 functions as a transcription activator to enhance freezing tolerance without sacrificing growth. Under freezing stress, PeSTZ1 acts upstream of ASCORBATE PEROXIDASE2 (PeAPX2) and directly regulates its expression by binding to its promoter. Activated PeAPX2 promotes cytosolic APX that scavenges reactive oxygen species (ROS) under cold stress. PeSTZ1 may operate in parallel with C-REPEAT-BINDING FACTORS to regulate COLD-REGULATED gene expression. Moreover, PeSTZ1 up-regulation reduces malondialdehyde and ROS accumulation by activating the antioxidant system. Taken together, these results suggested that overexpressing PeSTZ1 in 84K poplar enhances freezing tolerance through the modulation of ROS scavenging via the direct regulation of PeAPX2 expression.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jing‐Jing Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Meng‐Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
44
|
To HTM, Nguyen HT, Dang NTM, Nguyen NH, Bui TX, Lavarenne J, Phung NTP, Gantet P, Lebrun M, Bellafiore S, Champion A. Unraveling the Genetic Elements Involved in Shoot and Root Growth Regulation by Jasmonate in Rice Using a Genome-Wide Association Study. RICE (NEW YORK, N.Y.) 2019; 12:69. [PMID: 31485824 PMCID: PMC6726733 DOI: 10.1186/s12284-019-0327-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/22/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Due to their sessile life style, plant survival is dependent on the ability to build up fast and highly adapted responses to environmental stresses by modulating defense response and organ growth. The phytohormone jasmonate plays an essential role in regulating these plant responses to stress. RESULTS To assess variation of plant growth responses and identify genetic determinants associated to JA treatment, we conducted a genome-wide association study (GWAS) using an original panel of Vietnamese rice accessions. The phenotyping results showed a high natural genetic variability of the 155 tested rice accessions in response to JA for shoot and root growth. The level of growth inhibition by JA is different according to the rice varieties tested. We conducted genome-wide association study and identified 28 significant associations for root length (RTL), shoot length (SHL), root weight (RTW), shoot weight (SHW) and total weight (TTW) in response to JA treatment. Three common QTLs were found for RTL, RTW and SHL. Among a list of 560 candidate genes found to co-locate with the QTLs, a transcriptome analysis from public database for the JA response allows us to identify 232 regulated genes including several JA-responsive transcription factors known to play a role in stress response. CONCLUSION Our genome-wide association study shows that common and specific genetic elements are associated with inhibition of shoot and root growth under JA treatment suggesting the involvement of a complex JA-dependent genetic control of rice growth inhibition at the whole plant level. Besides, numerous candidate genes associated to stress and JA response are co-located with the association loci, providing useful information for future studies on genetics and breeding to optimize the growth-defense trade-off in rice.
Collapse
Affiliation(s)
- Huong Thi Mai To
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), LMI-RICE2, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam.
| | - Hieu Trang Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), LMI-RICE2, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, UMR IPME, UMR LSTM, Montpellier, France
| | - Nguyet Thi Minh Dang
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), LMI-RICE2, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
| | - Ngan Huyen Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), LMI-RICE2, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
| | - Thai Xuan Bui
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), LMI-RICE2, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
| | - Jérémy Lavarenne
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, UMR IPME, UMR LSTM, Montpellier, France
| | | | - Pascal Gantet
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, UMR IPME, UMR LSTM, Montpellier, France
| | - Michel Lebrun
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), LMI-RICE2, 18 Hoang Quoc Viet, Cau Giay district, Hanoi, Vietnam
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, UMR IPME, UMR LSTM, Montpellier, France
| | - Stephane Bellafiore
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, UMR IPME, UMR LSTM, Montpellier, France
| | - Antony Champion
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, UMR DIADE, UMR IPME, UMR LSTM, Montpellier, France.
| |
Collapse
|
45
|
Han G, Yuan F, Guo J, Zhang Y, Sui N, Wang B. AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:55-67. [PMID: 31203894 DOI: 10.1016/j.plantsci.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/20/2023]
Abstract
C2H2-type zinc finger proteins play important roles in plant growth, development, and abiotic stress tolerance. Here, we explored the role of the C2H2-type zinc finger protein SALT INDUCED ZINC FINGER PROTEIN1 (AtSIZ1; At3G25910) in Arabidopsis thaliana under salt stress. AtSIZ1 expression was induced by salt treatment. During the germination stage, the germination rate, germination energy, germination index, cotyledon growth rate, and root length were significantly higher in AtSIZ1 overexpression lines than in the wild type under various stress treatments, whereas these indices were significantly reduced in AtSIZ1 loss-of-function mutants. At the mature seedling stage, the overexpression lines maintained higher levels of K+, proline, and soluble sugar, lower levels of Na+ and MDA, and lower Na+/K+ ratios than the wild type. Stress-related marker genes such as SOS1, AtP5CS1, AtGSTU5, COR15A, RD29A, and RD29B were expressed at higher levels in the overexpression lines than the wild type and loss-of-function mutants under salt treatment. These results indicate that AtSIZ1 improves salt tolerance in Arabidopsis by helping plants maintain ionic homeostasis and osmotic balance.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China.
| |
Collapse
|
46
|
Oladosu Y, Rafii MY, Samuel C, Fatai A, Magaji U, Kareem I, Kamarudin ZS, Muhammad I, Kolapo K. Drought Resistance in Rice from Conventional to Molecular Breeding: A Review. Int J Mol Sci 2019; 20:E3519. [PMID: 31323764 PMCID: PMC6678081 DOI: 10.3390/ijms20143519] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Drought is the leading threat to agricultural food production, especially in the cultivation of rice, a semi-aquatic plant. Drought tolerance is a complex quantitative trait with a complicated phenotype that affects different developmental stages in plants. The level of susceptibility or tolerance of rice to several drought conditions is coordinated by the action of different drought-responsive genes in relation with other stress components which stimulate signal transduction pathways. Interdisciplinary researchers have broken the complex mechanism of plant tolerance using various methods such as genetic engineering or marker-assisted selection to develop a new cultivar with improved drought resistance. The main objectives of this review were to highlight the current method of developing a durable drought-resistant rice variety through conventional breeding and the use of biotechnological tools and to comprehensively review the available information on drought-resistant genes, QTL analysis, gene transformation and marker-assisted selection. The response, indicators, causes, and adaptation processes to the drought stress were discussed in the review. Overall, this review provides a systemic glimpse of breeding methods from conventional to the latest innovation in molecular development of drought-tolerant rice variety. This information could serve as guidance for researchers and rice breeders.
Collapse
Affiliation(s)
- Yusuff Oladosu
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Y Rafii
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang, 43400 UPM, Selangor, Malaysia.
| | - Chukwu Samuel
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Arolu Fatai
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Usman Magaji
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Isiaka Kareem
- Department of Agronomy, University of Ilorin, Ilorin, P.M.B. 1515, Nigeria
| | - Zarifth Shafika Kamarudin
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Isma'ila Muhammad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Kazeem Kolapo
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
47
|
Wu M, Cai R, Liu H, Li F, Zhao Y, Xiang Y. A Moso Bamboo Drought-Induced 19 Protein, PeDi19-4, Enhanced Drought and Salt Tolerance in Plants via the ABA-Dependent Signaling Pathway. PLANT & CELL PHYSIOLOGY 2019; 60:e1-e14. [PMID: 30452736 DOI: 10.1093/pcp/pcy196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, 10 drought-induced 19 (Di19) proteins from Phyllostachys edulis were analyzed and an important stress-related candidate gene (PeDi19-4) was isolated based on analysis of phylogenetic relationships and expression profiles. PeDi19-4 is a nuclear localization protein that can bind the conserved TACA(A/G)T sequence, as determined using enzyme-linked immunosorbent assay (EMSA). PeDi19-4 has no transcriptional activity in yeast but functions as a transcription activator in plants. Overexpression of PeDi19-4 in rice and Arabidopsis thaliana enhanced drought and salt tolerance as determined through phenotypic analysis and the use of stress-associated physiological indicators. PeDi19-4 transgenic plants showed increased sensitivity to ABA during seed germination and early seedling growth. Additionally, transgenic rice accumulated more ABA than wild-type plants under drought and salt stress conditions. Moreover, the stomata of PeDi19-4-overexpressing plants changed significantly with ABA treatment. RNA sequencing revealed that PeDi19-4 regulated the expression of a wide spectrum of stress-/ABA-responsive differentially expressed genes. The stress-responsive genes (OsZFP252 and OsNAC6) and ABA-responsive genes (OsBZ8 and OsbZIP23) were direct targets of PeDi19-4. Our research indicated that PeDi19-4 enhanced drought and salt tolerance in plants via the ABA-dependent signaling pathway.
Collapse
Affiliation(s)
- Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fei Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
48
|
Comprehensive genomic survey, structural classification and expression analysis of C2H2 zinc finger protein gene family in Brassica rapa L. PLoS One 2019; 14:e0216071. [PMID: 31059545 PMCID: PMC6502316 DOI: 10.1371/journal.pone.0216071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
C2H2 zinc finger protein (ZFP) genes have been extensively studied in many organisms and can function as transcription factors and be involved in many biological processes including plant growth and development and stress responses. In the current study, a comprehensive genomics analysis of the C2H2-ZFP genes in B. rapa was performed. A total of 301 B. rapa putative C2H2-ZFP (BrC2H2-ZFP) genes were identified from the available Brassica genome databases, and further characterized through analysis of conserved amino acid residues in C2H2-ZF domains and their organization, subcellular localization, phylogeny, additional domain, chromosomal location, synteny relationship, Ka/Ks ratio, and expression pattern. We also analyzed the expression patterns of eight B. rapa C2H2-ZFP genes under salt and drought stress conditions by using qRT-PCR technique. Our results showed that about one-third of these B. rapa C2H2-ZFP genes were originated from segmental duplication caused by the WGT around 13 to 17 MYA, one-third of them were highly and consecutively expressed in all tested tissues, and 92% of them were located in nucleus by prediction supporting then their functional roles as transcription factors, of which some may play important roles in plant growth and development. The Ka/Ks ratios of 264 orthologous C2H2-ZFP gene pairs between A. thaliana and B. rapa were all, except two, inferior to 1 (varied from 0.0116 to 1.4919, with an average value of 0.3082), implying that these genes had mainly experienced purifying selection during species evolution. The estimated divergence times of the same set of gene pairs ranged from 6.23 to 38.60 MY, with an average value of 18.29 MY, indicating that these gene members have undergone different selective pressures resulting in different evolutionary rates during species evolution. In addition, a few of these B. rapa C2H2-ZFPs were shown to be involved in stress responses in a similar way as their orthologs in A. thaliana. Comparison between A. thaliana and B. rapa orthologous C2H2-ZFP genes showed that the majority of these C2H2-ZFP gene members encodes proteins with conserved subcellular localization and functional domains between the two species but differed in their expression patterns in five tissues or organs. Thus, our study provides valuable information for further functional determination of each C2H2-ZFP gene across the Brassica species, and may help to select the appropriate gene targets for further in-depth studies, and genetic engineering and improvement of Brassica crops.
Collapse
|
49
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
50
|
Descalsota-Empleo GI, Noraziyah AAS, Navea IP, Chung C, Dwiyanti MS, Labios RJD, Ikmal AM, Juanillas VM, Inabangan-Asilo MA, Amparado A, Reinke R, Cruz CMV, Chin JH, Swamy BPM. Genetic Dissection of Grain Nutritional Traits and Leaf Blight Resistance in Rice. Genes (Basel) 2019; 10:E30. [PMID: 30626141 PMCID: PMC6356647 DOI: 10.3390/genes10010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/16/2022] Open
Abstract
Colored rice is rich in nutrition and also a good source of valuable genes/quantitative trait loci (QTL) for nutrition, grain quality, and pest and disease resistance traits for use in rice breeding. Genome-wide association analysis using high-density single nucleotide polymorphism (SNP) is useful in precisely detecting QTLs and genes. We carried out genome-wide association analysis in 152 colored rice accessions, using 22,112 SNPs to map QTLs for nutritional, agronomic, and bacterial leaf blight (BLB) resistance traits. Wide variations and normal frequency distributions were observed for most of the traits except anthocyanin content and BLB resistance. The structural and principal component analysis revealed two subgroups. The linkage disequilibrium (LD) analysis showed 74.3% of the marker pairs in complete LD, with an average LD distance of 1000 kb and, interestingly, 36% of the LD pairs were less than 5 Kb, indicating high recombination in the panel. In total, 57 QTLs were identified for ten traits at p < 0.0001, and the phenotypic variance explained (PVE) by these QTLs varied from 9% to 18%. Interestingly, 30 (53%) QTLs were co-located with known or functionally-related genes. Some of the important candidate genes for grain Zinc (Zn) and BLB resistance were OsHMA9, OsMAPK6, OsNRAMP7, OsMADS13, and OsZFP252, and Xa1, Xa3, xa5, xa13 and xa26, respectively. Red rice genotype, Sayllebon, which is high in both Zn and anthocyanin content, could be a valuable material for a breeding program for nutritious rice. Overall, the QTLs identified in our study can be used for QTL pyramiding as well as genomic selection. Some of the novel QTLs can be further validated by fine mapping and functional characterization. The results show that pigmented rice is a valuable resource for mineral elements and antioxidant compounds; it can also provide novel alleles for disease resistance as well as for yield component traits. Therefore, large opportunities exist to further explore and exploit more colored rice accessions for use in breeding.
Collapse
Affiliation(s)
- Gwen Iris Descalsota-Empleo
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- University of the Southern Mindanao, Kabacan, Cotabato 9407, Philippines.
| | | | - Ian Paul Navea
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Nousbo Corp. #4-107, 89 Seohoro, Gwonsun, Suwon 16614, Gyeonggi, Korea.
| | - Chongtae Chung
- Chungcheongnam-do Agricultural Research and Extension Services, 167, Chusa-ro, Shinam-myeon, Yesan-gun 32418, Chungcheongnam-do, Korea.
| | - Maria Stefanie Dwiyanti
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
- Applied Plant Genome Laboratory, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan.
| | | | - Asmuni Mohd Ikmal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | | | | | - Amery Amparado
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | - Russell Reinke
- International Rice Research Institute (IRRI), Laguna 4031, Philippines.
| | | | - Joong Hyoun Chin
- Department of Integrative Bio-Industrial Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | | |
Collapse
|