1
|
Zamarrón E, Mariscal P, Carpio C, Esteban L, Álvarez-Sala R, Prados MC. The role of environmental pollution in the development of pulmonary exacerbations in cystic fibrosis: a narrative review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0068. [PMID: 39072532 DOI: 10.1515/reveh-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
Cystic fibrosis is the most common autosomal recessive disease in the Caucasian race. Its course is chronic and progressive, with pulmonary involvement being associated with greater morbidity and mortality. One of the factors most related to worse prognosis in these patients is respiratory exacerbations. Although limited, there is evidence demonstrating that increased exposure to environmental pollution, both acute and chronic, is associated with an increase in these exacerbations. It is crucial to fully understand this relationship in order to attempt to improve the respiratory health of these patients. That is why the available evidence is reviewed and measures are established to reduce exposure to pollutants.
Collapse
Affiliation(s)
- Ester Zamarrón
- Department of Respiratory Medicine, Hospital Universitario La Paz, Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Pablo Mariscal
- Department of Respiratory Medicine, Hospital Universitario La Paz, Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Carlos Carpio
- Department of Respiratory Medicine, Hospital Universitario La Paz, Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Lucía Esteban
- Department of Respiratory Medicine, Hospital Universitario La Paz, Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Rodolfo Álvarez-Sala
- Department of Respiratory Medicine, Hospital Universitario La Paz, Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María Concepción Prados
- Department of Respiratory Medicine, Hospital Universitario La Paz, Instituto de investigación del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
2
|
You YA, Park S, Kwon E, Kim YA, Hur YM, Lee GI, Kim SM, Song JM, Kim MS, Kim YJ, Kim YH, Na SH, Park MH, Bae JG, Cho GJ, Lee SJ. Maternal PM2.5 exposure is associated with preterm birth and gestational diabetes mellitus, and mitochondrial OXPHOS dysfunction in cord blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10565-10578. [PMID: 38200189 PMCID: PMC10850187 DOI: 10.1007/s11356-023-31774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Maternal exposure to fine particulate matter (PM2.5) is associated with adverse pregnancy and neonatal health outcomes. To explore the mechanism, we performed mRNA sequencing of neonatal cord blood. From an ongoing prospective cohort, Air Pollution on Pregnancy Outcome (APPO) study, 454 pregnant women from six centers between January 2021 and June 2022 were recruited. Individual PM2.5 exposure was calculated using a time-weighted average model. In the APPO study, age-matched cord blood samples from the High PM2.5 (˃15 ug/m3; n = 10) and Low PM2.5 (≤ 15 ug/m3; n = 30) groups were randomly selected for mRNA sequencing. After selecting genes with differential expression in the two groups (p-value < 0.05 and log2 fold change > 1.5), pathway enrichment analysis was performed, and the mitochondrial pathway was analyzed using MitoCarta3.0. The risk of preterm birth (PTB) increased with every 5 µg/m3 increase of PM2.5 in the second trimester (odds ratio 1.391, p = 0.019) after adjusting for confounding variables. The risk of gestational diabetes mellitus (GDM) increased in the second (odds ratio 1.238, p = 0.041) and third trimester (odds ratio 1.290, p = 0.029), and entire pregnancy (odds ratio 1.295, p = 0.029). The mRNA-sequencing of cord blood showed that genes related to mitochondrial activity (FAM210B, KRT1, FOXO4, TRIM58, and FBXO7) and PTB-related genes (ADIPOR1, YBX1, OPTN, NFkB1, HBG2) were upregulated in the High PM2.5 group. In addition, exposure to high PM2.5 affected mitochondrial oxidative phosphorylation (OXPHOS) and proteins in the electron transport chain, a subunit of OXPHOS. These results suggest that exposure to high PM2.5 during pregnancy may increase the risk of PTB and GDM, and dysregulate PTB-related genes. Alterations in mitochondrial OXPHOS by high PM2.5 exposure may occur not only in preterm infants but also in normal newborns. Further studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Eunjin Kwon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Ga In Lee
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Jeong Min Song
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
3
|
Zou L, Wang Y, Hu Y, Liu L, Luo L, Chen Z, Zhuo Y, Li P, Zhou Q. N-cadherin Alleviates Apoptosis and Senescence of Nucleus Pulposus Cells via Suppressing ROS-dependent ERS in the Hyper-osmolarity Microenvironment. Int J Med Sci 2024; 21:341-356. [PMID: 38169592 PMCID: PMC10758147 DOI: 10.7150/ijms.90591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
The in-situ osmolarity is an important physicochemical factor that regulates cell fate of nucleus pulposus cells (NPCs). Our previous studies demonstrated that reduced N-cadherin (NCDH) expression in nucleus pulposus cells is associated with cellular damage under hyper-osmolarity microenvironment. This study was aimed at exploring the impacts of NCDH on senescence and apoptosis of NPCs, as well as the potential molecular mechanism. By comparing NPCs from patients with lumbar fractures and lumbar disc herniation, we identified a correlation between decreased NCDH expression and increased endoplasmic reticulum stress (ERS), resulting in undesirable cell fate (senescence and apoptosis). After blocking Reactive oxygen species (ROS) or ERS, it was indicated that hyper-osmolarity microenvironment induced ERS was ROS-dependent. Further results demonstrated the correlation in rat NPCs. Upregulation of NCDH expression reduced ROS-dependent ERS, thus limiting undesirable cell fates in vitro. This was further confirmed through the rat tail acupuncture injection model. NCDH overexpression successfully mitigated ERS, preserved extracellular matrix production and alleviating intervertebral disc degeneration in vivo. Together, NCDH can alleviate senescence and apoptosis of NPCs by suppressing ROS-dependent ERS via the ATF4-CHOP signaling axis in the hyper-osmolarity microenvironment, thus highlighting the therapeutic potential of NCDH in combating degenerative disc diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
4
|
Aguilera J, Kaushik A, Cauwenberghs N, Heider A, Ogulur I, Yazici D, Smith E, Alkotob S, Prunicki M, Akdis CA, Nadeau KC. Granzymes, IL-16, and poly(ADP-ribose) polymerase 1 increase during wildfire smoke exposure. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100093. [PMID: 37539354 PMCID: PMC10399148 DOI: 10.1016/j.jacig.2023.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Background Given the increasing prevalence of wildfires worldwide, understanding the effects of wildfire air pollutants on human health-particularly in specific immunologic pathways-is crucial. Exposure to air pollutants is associated with cardiorespiratory disease; however, immune and epithelial barrier alterations require further investigation. Objective We sought to determine the impact of wildfire smoke exposure on the immune system and epithelial barriers by using proteomics and immune cell phenotyping. Methods A San Francisco Bay area cohort (n = 15; age 30 ± 10 years) provided blood samples before (October 2019 to March 2020; air quality index = 37) and during (August 2020; air quality index = 80) a major wildfire. Exposure samples were collected 11 days (range, 10-12 days) after continuous exposure to wildfire smoke. We determined alterations in 506 proteins, including zonulin family peptide (ZFP); immune cell phenotypes by cytometry by time of flight (CyTOF); and their interrelationship using a correlation matrix. Results Targeted proteomic analyses (n = 15) revealed a decrease of spondin-2 and an increase of granzymes A, B, and H, killer cell immunoglobulin-like receptor 3DL1, IL-16, nibrin, poly(ADP-ribose) polymerase 1, C1q TNF-related protein, fibroblast growth factor 19, and von Willebrand factor after 11 days' average continuous exposure to smoke from a large wildfire (P < .05). We also observed a large correlation cluster between immune regulation pathways (IL-16, granzymes A, B, and H, and killer cell immunoglobulin-like receptor 3DL1), DNA repair [poly(ADP-ribose) 1, nibrin], and natural killer cells. We did not observe changes in ZFP levels suggesting a change in epithelial barriers. However, ZFP was associated with immune cell phenotypes (naive CD4+, TH2 cells). Conclusion We observed functional changes in critical immune cells and their proteins during wildfire smoke exposure. Future studies in larger cohorts or in firefighters exposed to wildfire smoke should further assess immune changes and intervention targets.
Collapse
Affiliation(s)
- Juan Aguilera
- the Center for Community Health Impact, University of Texas Health Science Center School of Public Health, El Paso
| | - Abhinav Kaushik
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
| | - Nicholas Cauwenberghs
- the Department of Cardiovascular Sciences, Hypertension and Cardiovascular Epidemiology Research Unit, KU Leuven, Leuven
| | - Anja Heider
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Duygu Yazici
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Eric Smith
- the David Geffen School of Medicine at University of California, Los Angeles
| | | | - Mary Prunicki
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
| | - Cezmi A. Akdis
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
- the Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos
| | - Kari C. Nadeau
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
- the Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston
| |
Collapse
|
5
|
Lakhdar R, Mumby S, Abubakar-Waziri H, Porter A, Adcock IM, Chung KF. Lung toxicity of particulates and gaseous pollutants using ex-vivo airway epithelial cell culture systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119323. [PMID: 35447256 DOI: 10.1016/j.envpol.2022.119323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Air pollution consists of a multi-faceted mix of gases and ambient particulate matter (PM) with diverse organic and non-organic chemical components that contribute to increasing morbidity and mortality worldwide. In particular, epidemiological and clinical studies indicate that respiratory health is adversely affected by exposure to air pollution by both causing and worsening (exacerbating) diseases such as chronic obstructive pulmonary disease (COPD), asthma, interstitial pulmonary fibrosis and lung cancer. The molecular mechanisms of air pollution-induced pulmonary toxicity have been evaluated with regards to different types of PM of various sizes and concentrations with single and multiple exposures over different time periods. These data provide a plausible interrelationship between cellular toxicity and the activation of multiple biological processes including proinflammatory responses, oxidative stress, mitochondrial oxidative damage, autophagy, apoptosis, cell genotoxicity, cellular senescence and epithelial-mesenchymal transition. However, these molecular changes have been studied predominantly in cell lines rather than in primary bronchial or nasal cells from healthy subjects or those isolated from patients with airways disease. In addition, they have been conducted under different cell culture conditions and generally in submerged culture rather than the more relevant air-liquid interface culture and with a variety of air pollutant exposure protocols. Cell types may respond differentially to pollution delivered as an aerosol rather than being bathed in media containing agglomerations of particles. As a result, the actual pathophysiological pathways activated by different PMs in primary cells from the airways of healthy and asthmatic subjects remains unclear. This review summarises the literature on the different methodologies utilised in studying the impact of submicron-sized pollutants on cells derived from the respiratory tract with an emphasis on data obtained from primary human cell. We highlight the critical underlying molecular mechanisms that may be important in driving disease processes in response to air pollution in vivo.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Sharon Mumby
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Alexandra Porter
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Ian M Adcock
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Kian Fan Chung
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| |
Collapse
|
6
|
Blayac M, Coll P, Urbach V, Fanen P, Epaud R, Lanone S. The Impact of Air Pollution on the Course of Cystic Fibrosis: A Review. Front Physiol 2022; 13:908230. [PMID: 35721541 PMCID: PMC9202997 DOI: 10.3389/fphys.2022.908230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.
Collapse
Affiliation(s)
- Marion Blayac
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Patrice Coll
- Université Paris Cité and Univ Paris Est Créteil, CNRS, LISA, Paris, France
| | | | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- AP-HP, Hopital Henri-Mondor, Service Génétique, Creteil, France
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- Centre Hospitalier Intercommunal, Centre des Maladies Respiratoires Rares (RespiRare®)-CRCM, Creteil, France
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
7
|
Effect of Total Suspended Particulate Matter in the Air on Inflammation Factors and Apoptotic Markers in Diabetic Rats: The Protective Effect of Insulin and Crocin. Rep Biochem Mol Biol 2021; 10:334-345. [PMID: 34604423 DOI: 10.52547/rbmb.10.2.334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Background The effect of total suspended particulate matter (TSP) was investigated on the expression of inflammatory and apoptotic factors in diabetic rats, and the effect of crocin and insulin was examined on these factors. Methods Fifty-four adult male wistar rats were divided into nine experimental groups: control group, crocin group (received crocin, 50 mg/kg), diabetic group (received a single dose of alloxan at 120 mg/kg, IP), TSP group (5 mg/kg TSP instilled intratracheally), diabetic-crocin group (received crocin at 50 mg/kg after the induction of diabetes by alloxan (120 mg/kg)), diabetic-insulin group (received regular insulin (5 U/kg), crocin-TSP group (received crocin at 50 mg/kg, IP, and then 5 mg/kg TSP was instilled intratracheally), diabetic-TSP-insulin group (after receiving alloxan (120 mg/kg) and instilling TSP (5 mg/kg, intratracheally), a single dose (5 U/kg) of regular insulin), and diabetic-TSP-crocin group (after receiving alloxan (120 mg/kg) and instilling TSP (5 mg/kg, intratracheally), a single dose of crocin (50 mg/kg, IP)). Quantitative real-time PCR was performed to measure the expression of the mRNAs of apoptotic (Bax and Bcl2) and inflammatory mediators (TNFα, COX2, iNOS/eNOS) in Wistar rats. Results In diabetic and TSP groups the inflammatory factors and BAX/Bcl2 ratio significantly increased compared to the control group. In diabetic-TSP-insulin and diabetic-TSP-crocin, a significant decrease was observed in the rate of inflammatory factors and BAX/Bcl2 ratio. Conclusion The results suggested that diabetes and exposure to TSP increase the rate of apoptosis and inflammation, and also demonstrated the anti-apoptotic and anti-inflammation role of insulin and crocin.
Collapse
|
8
|
Nguyen JP, Huff RD, Cao QT, Tiessen N, Carlsten C, Hirota JA. Effects of environmental air pollutants on CFTR expression and function in human airway epithelial cells. Toxicol In Vitro 2021; 77:105253. [PMID: 34601066 DOI: 10.1016/j.tiv.2021.105253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
The airway epithelium is exposed to a variety of air pollutants, which have been associated with the onset and worsening of respiratory diseases. These air pollutants can vary depending on their composition and associated chemicals, leading to different molecular interactions and biological effects. Mucociliary clearance is an important host defense mechanism against environmental air pollutants and this process is regulated by various ion transporters including the cystic fibrosis transmembrane conductance regulator (CFTR). With evidence suggesting that environmental air pollutants can lead to acquired CFTR dysfunction, it may be possible to leverage therapeutic approaches used in cystic fibrosis (CF) management. The aim of our study was to test whether environmental air pollutants tobacco smoke extract, urban particulate matter, and diesel exhaust particles lead to acquired CFTR dysfunction and whether it could be rescued with pharmacological interventions. Human airway epithelial cells (Calu-3) were exposed to air pollutant extracts for 24 h, with and without pharmacological interventions, with readouts of CFTR expression and function. We demonstrate that both tobacco smoke extract and diesel exhaust particles led to acquired CFTR dysfunction and that rescue of acquired CFTR dysfunction is possible with pharmacological interventions in diesel exhaust particle models. Our study emphasizes that CFTR function is not only important in the context of CF but may also play a role in other respiratory diseases impacted by environmental air pollutants. In addition, the pharmacological interventions approved for CF management may be more broadly leveraged for chronic respiratory disease management.
Collapse
Affiliation(s)
- Jenny P Nguyen
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Quynh T Cao
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
9
|
Lee SH, Ha SM, Jeong MJ, Park DJ, Polo CN, Seo YJ, Kim SH. Effects of reactive oxygen species generation induced by Wonju City particulate matter on mitochondrial dysfunction in human middle ear cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49244-49257. [PMID: 33932209 DOI: 10.1007/s11356-021-14216-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric particulate matter (PM) contains different components that can elicit varying adverse health effects in humans and animals. Studies on PM toxicity and its underlying mechanisms in the middle ear are limited, and they generally use a PM standard. However, as PM composition varies temporally and geographically, it is crucial to identify the toxic PM constituents according to season and region and investigate their associated health effects. Thus, we sought to determine whether PM induces cytotoxicity and inflammatory factor and reactive oxygen species (ROS) generation in human middle ear epithelial cells obtained from patients with otitis media. The cells were treated with both standard urban PM and PM directly captured from the atmosphere in Wonju City. The association between mitochondrial dysfunction and PM was investigated. PM exposure significantly increased COX-2 and TNF-α mRNA expression, increased ROS generation, induced inflammatory responses, and caused abnormalities in mitochondrial motility and function. Furthermore, PM induced cell apoptosis, which consequently reduced cell survival, particularly at the concentration of 100 μg/mL. Overall, our study provides new insights into the toxic effects of standard and atmospheric PM on middle ear cell line.
Collapse
Affiliation(s)
- Su Hoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Sun Mok Ha
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Min Jae Jeong
- Department of Environmental Engineering, College of Public Health, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea
| | - Carlos Noriega Polo
- College of Medicine, Universitat de València, Av. de Blasco Ibáñez, 13, 46010, València, Valencia, Spain
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea.
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Ilsan-dong, Wonju-si, Gangwon-do, 26426, South Korea.
| | - Seong Heon Kim
- Department of Environmental Engineering, College of Public Health, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea.
| |
Collapse
|
10
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
11
|
Pompilio A, Di Bonaventura G. Ambient air pollution and respiratory bacterial infections, a troubling association: epidemiology, underlying mechanisms, and future challenges. Crit Rev Microbiol 2020; 46:600-630. [PMID: 33059504 DOI: 10.1080/1040841x.2020.1816894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The World Health Organization attributed more than four million premature deaths to ambient air pollution in 2016. Numerous epidemiologic studies demonstrate that acute respiratory tract infections and exacerbations of pre-existing chronic airway diseases can result from exposure to ambient (outdoor) air pollution. In this context, the atmosphere contains both chemical and microbial pollutants (bioaerosols), whose impact on human health remains unclear. Therefore, this review: summarises the findings from recent studies on the association between exposure to air pollutants-especially particulate matter and ozone-and onset or exacerbation of respiratory infections (e.g. pneumonia, cystic fibrosis lung infection, and tuberculosis); discusses the mechanisms underlying the relationship between air pollution and respiratory bacterial infections, which is necessary to define prevention and treatment strategies; demonstrates the relevance of air pollution modelling in investigating and preventing the impact of exposure to air pollutants on human health; and outlines future actions required to improve air quality and reduce morbidity and mortality related to air pollution.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
12
|
Patergnani S, Vitto VAM, Pinton P, Rimessi A. Mitochondrial Stress Responses and "Mito-Inflammation" in Cystic Fibrosis. Front Pharmacol 2020; 11:581114. [PMID: 33101035 PMCID: PMC7554583 DOI: 10.3389/fphar.2020.581114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated to mutations in the cystic fibrosis transmembrane conductance regulator gene, which results in the alteration of biological fluid and electrolyte homeostasis. The characteristic pathological manifestation is represented by exaggerated proinflammatory response in lung of CF patients, driven by recurrent infections and worsen by hypersecretion of proinflammatory mediators and progressive tissue destruction. Treating inflammation remains a priority in CF. However, current anti-inflammatory treatments, including non-steroidal agents, are poorly effective and present dramatic side effects in CF patients. Different studies suggest an intimate relationship between mitochondria and CF lung disease, supporting the hypothesis that a decline in mitochondrial function endorses the development of the hyperinflammatory phenotype observed in CF lung. This allowed the implementation of a new concept: the "mito-inflammation," a compartmentalization of inflammatory process, related to the role of mitochondria in engage and sustain the inflammatory responses, resulting a druggable target to counteract the amplification of inflammatory signals in CF. Here, we will offer an overview of the contribution of mitochondria in the pathogenesis of CF lung disease, delving into mitochondrial quality control responses, which concur significantly to exacerbation of CF lung inflammatory responses. Finally, we will discuss the new therapeutic avenues that aim to target the mito-inflammation, an alternative therapeutic advantage for mitochondrial quality control that improves CF patient's inflammatory state.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Sotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman LY, Canivet L, Perdrix E, Loyens A, Marchetti P, Lo Guidice JM, Garçon G. Mitochondrial alterations triggered by repeated exposure to fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) fractions of ambient particulate matter. ENVIRONMENT INTERNATIONAL 2020; 142:105830. [PMID: 32585499 DOI: 10.1016/j.envint.2020.105830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive. Mitochondria are major endogenous sources of reactive oxygen species (ROS) through oxidative metabolism, and coordinate many critical cellular signaling processes. Mitochondria have been often studied in the context of PM toxicity and generally associated with apoptosis activation. However, little is known about the underlying adaptation mechanisms that could occur following exposure at sub-apoptotic doses of ambient PM. Here, normal human bronchial epithelial BEAS-2B cells were acutely or repeatedly exposed to relatively low doses (5 µg.cm-2) of FP (PM2.5-0.18) or quasi-UFP (Q-UFP; PM0.18) to better access the critical changes in mitochondrial morphology, functions, and dynamics. No significant cytotoxicity nor increase of apoptotic events were reported for any exposure. Mitochondrial membrane potential (ΔΨm) and intracellular ATP content were also not significantly impaired. After cell exposure to sub-apoptotic doses of FP and notably Q-UFP, oxidative phosphorylation was increased as well as mitochondrial mass, resulting in increased production of mitochondrial superoxide anion. Given this oxidative boost, the NRF2-ARE signaling pathway was significantly activated. However, mitochondrial dynamic alterations in favor of accentuated fission process were observed, in particular after Q-UFP vs FP, and repeated vs acute exposure. Taken together, these results supported mitochondrial quality control and metabolism dysfunction as an early lung underlying mechanism of toxicity, thereby leading to accumulation of defective mitochondria and enhanced endogenous ROS generation. Therefore, these features might play a key role in maintaining PM-induced oxidative stress and inflammation within lung cells, which could dramatically contribute to the exacerbation of inflammatory chronic lung diseases. The prospective findings of this work could also offer new insights into the physiopathology of lung toxicity, arguably initiate and/or exacerbate by acutely and rather repeated exposure to ambient FP and mostly Q-UFP.
Collapse
Affiliation(s)
- J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - C De Sousa
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - M Tardivel
- Univ. Lille, BioImaging Centre Lille-Nord de France (BICeL), 59000, Lille, France
| | - S Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - L Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - A Loyens
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - Lille Neuroscience & Cognition, 59000 Lille, France
| | - P Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France.
| |
Collapse
|
14
|
Pardo M, Qiu X, Zimmermann R, Rudich Y. Particulate Matter Toxicity Is Nrf2 and Mitochondria Dependent: The Roles of Metals and Polycyclic Aromatic Hydrocarbons. Chem Res Toxicol 2020; 33:1110-1120. [PMID: 32302097 PMCID: PMC7304922 DOI: 10.1021/acs.chemrestox.0c00007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Particulate matter
(PM), an important component of air pollution,
induces significant adverse health effects. Many of the observed health
effects caused by inhaled PM are associated with oxidative stress
and inflammation. This association has been linked in particular to
the particles’ chemical components, especially the inorganic/metal
and the organic/polycyclic aromatic hydrocarbon (PAH) fractions, and
their ability to generate reactive oxygen species in biological systems.
The transcription factor NF-E2 nuclear factor erythroid-related factor
2 (Nrf2) is activated by redox imbalance and regulates the expression
of phase II detoxifying enzymes. Nrf2 plays a key role in preventing
PM-induced toxicity by protecting against oxidative damage and inflammation.
This review focuses on specific PM fractions, particularly the dissolved
metals and PAH fractions, and their roles in inducing oxidative stress
and inflammation in cell and animal models with respect to Nrf2 and
mitochondria.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P.R. China
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, University of Rostock, 18055 Rostock, Germany.,Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group Helmholtz Zentrum, 81379 München, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Araújo JE, Jorge S, Santos HM, Chiechi A, Galstyan A, Lodeiro C, Diniz M, Kleinman MT, Ljubimova JY, Capelo JL. Proteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:839-848. [PMID: 31412487 DOI: 10.1016/j.scitotenv.2019.06.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The adverse effects of air pollution have been long studied in the lung and respiratory systems, but the molecular changes that this causes at the central nervous system level have yet to be fully investigated and understood. To explore the evolution with time of protein expression levels in the brain of rats exposed to particulate matter of different sizes, we carried out two-dimensional gel electrophoresis followed by determination of dysregulated proteins through Coomassie blue staining-based densities (SameSpots software) and subsequent protein identification using MALDI-based mass spectrometry. Expression differences in dysregulated proteins were found to be statistically significant with p-value <0.05. A systems biology-based approach was utilized to determine critical biochemical pathways involved in the rats' brain response. Our results suggest that rats' brains have a particulate matter size dependent-response, being the mitochondrial activity and the astrocyte function severely affected. Our proteomic study confirms the dysregulation of different biochemical pathways involving energy metabolism, mitochondrial activity, and oxidative pathways as some of the main effects of PM exposure on the rat brain. SIGNIFICANCE: Rat brains exposed to particulate matter with origin in car engines are affected in two main areas: mitochondrial activity, by the dysregulation of many pathways linked to the respiratory chain, and neuronal and astrocytic function, which stimulates brain changes triggering tumorigenesis and neurodegeneration.
Collapse
Affiliation(s)
- J E Araújo
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - H M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - A Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - A Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal
| | - M Diniz
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M T Kleinman
- Department of Medicine, University of California at Irvine, 19182 Jamboree Rd. FRF, 100, Irvine, CA, United States
| | - Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA 90048, United States
| | - J L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Proteomass Scientific Society, Rua dos Inventores, Madan Park, 2829-516, Caparica, Portugal.
| |
Collapse
|
16
|
Pardo M, Xu F, Shemesh M, Qiu X, Barak Y, Zhu T, Rudich Y. Nrf2 protects against diverse PM 2.5 components-induced mitochondrial oxidative damage in lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:303-313. [PMID: 30878937 DOI: 10.1016/j.scitotenv.2019.01.436] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Michal Shemesh
- Cell Observatory of the MICC Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
17
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
18
|
Brugha R, Edmondson C, Davies JC. Outdoor air pollution and cystic fibrosis. Paediatr Respir Rev 2018; 28:80-86. [PMID: 29793860 DOI: 10.1016/j.prrv.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/01/2023]
Abstract
Outdoor air pollution is increasingly identified as a contributor to respiratory and cardiovascular disease. Pro-inflammatory particles and gases are inhaled deep into the lungs, and are associated with impaired lung growth and exacerbations of chronic respiratory diseases. The magnitude of these effects are of interest to patients and families, and have been assessed in studies specific to CF. Using systematic review methodology, we sought to collate these studies in order to summarise the known effects of air pollution in cystic fibrosis, and to present information on decreasing personal air pollution exposures.
Collapse
Affiliation(s)
- Rossa Brugha
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| | - Claire Edmondson
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| | - Jane C Davies
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| |
Collapse
|
19
|
Abstract
PURPOSE OF THE REVIEW The connections between allergy, asthma and metabolic syndrome are becoming increasingly clear. Recent research suggests a unifying mitochondrial link between the diverse phenotypes of these interlinked morbidities. The scope of this review is to highlight cellular mechanisms, epidemiology and environmental allergens influencing mitochondrial function and its importance in allergy and asthma. We briefly also consider the potential of mitochondria-targeted therapies in prevention and cure. RECENT FINDINGS Recent research has shown allergy, asthma and metabolic syndrome to be linked to mitochondrial dysfunction. Environmental pollutants and allergens are observed to cause mitochondrial dysfunction, primarily by inducing oxidative stress and ROS production. Malfunctioning mitochondria change the bioenergetics of the cell and its metabolic profile to favour systemic inflammation, which drives all three types of morbidities. Given the existing experimental evidence, approaches targeting mitochondria (e.g. antioxidant therapy and mitochondrial replacement) are being conducted in relevant disease models-with some progressing towards clinical trials, making mitochondrial function the focus of translational therapy research in asthma, allergy and linked metabolic syndrome.
Collapse
Affiliation(s)
- Divyaanka Iyer
- CSIR Institute of Genomics and Integrative Biology, Delhi University campus, Mall Road, Delhi, 110007, India
| | - Navya Mishra
- Indian Institute of Public Health, Gurugram, India.,Chest Research Foundation, Pune, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi University campus, Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
20
|
Psoter KJ, De Roos AJ, Wakefield J, Mayer JD, Rosenfeld M. Air pollution exposure is associated with MRSA acquisition in young U.S. children with cystic fibrosis. BMC Pulm Med 2017; 17:106. [PMID: 28750627 PMCID: PMC5530959 DOI: 10.1186/s12890-017-0449-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/19/2017] [Indexed: 01/21/2023] Open
Abstract
Background The role of air pollution in increasing susceptibility to respiratory tract infections in the cystic fibrosis (CF) population has not been well described. We recently demonstrated that chronic PM2.5 exposure is associated with an increased risk of initial Pseudomonas aeruginosa acquisition in young children with CF. The purpose of this study was to determine whether PM2.5 exposure is a risk factor for acquisition of other respiratory pathogens in young children with CF. Methods We conducted a retrospective study of initial acquisition of methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA), Stenotrophomonas maltophilia and Achromobacter xylosoxidans in U.S. children <6 years of age with CF using the CF Foundation Patient Registry, 2003–2009. Multivariable Weibull regression with interval-censored outcomes was used to evaluate the association of PM2.5 concentration in the year prior to birth and risk of acquisition of each organism. Results During follow-up 63%, 17%, 24%, and 5% of children acquired MSSA, MRSA, S. maltophilia, and A. xylosoxidans, respectively. A 10 μg/m3 increase in PM2.5 exposure was associated with a 68% increased risk of MRSA acquisition (Hazard Ratio: 1.68; 95% Confidence Interval: 1.24, 2.27). PM2.5 was not associated with acquisition of other respiratory pathogens. Conclusions Fine particulate matter is an independent risk factor for initial MRSA acquisition in young children with CF. These results support the increasing evidence that air pollution contributes to pulmonary morbidities in the CF community.
Collapse
Affiliation(s)
- Kevin J Psoter
- Department of Pediatrics, School of Medicine, The Johns Hopkins University Bayview Medical Center, 5200 Eastern Ave, Mason F. Lord Bldg, Center Towers, Suite 4200, Baltimore, MD, 21224, USA.
| | - Anneclaire J De Roos
- Department of Environmental and Occupational Health, Drexel University School of Public Health, Philadelphia, PA, USA
| | - Jon Wakefield
- Departments of Biostatistics and Statistics, University of Washington, Seattle, WA, USA
| | - Jonathan D Mayer
- Departments of Epidemiology, Geography, Global Health, Medicine (Allergy and Infectious Diseases), Family Medicine, and Health Services, University of Washington, Seattle, WA, USA
| | - Margaret Rosenfeld
- Division of Pulmonary Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
21
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
22
|
Das DN, Sinha N, Naik PP, Panda PK, Mukhopadhyay S, Mallick SK, Sarangi I, Bhutia SK. Mutagenic and genotoxic potential of native air borne particulate matter from industrial area of Rourkela city, Odisha, India. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:131-139. [PMID: 27458701 DOI: 10.1016/j.etap.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
In this study, we examined potential adverse health effect of particulate matter (PM) collected from industrial areas of Rourkela, Odisha, India. Results indicate that PM in these areas contains benzo[a]pyrene in addition to other unidentified molecules. Ames test revealed the above PM to be highly mutagenic. Further studies of PM in HaCaT cells suggest its DNA damaging potential which may lead to apoptosis. Generation of reactive oxygen and nitrogen species following PM exposure may be an early event in the PM induced apoptosis. In addition, the activity of cytochrome P450 (CYP450), the key xenobiotic metabolism enzyme, was found to be increased following PM exposure indicating its role in PM induced toxicity. To confirm this, we used genetic and pharmacological inhibitors of CYP450 like CYP1B1 siRNA and Clotrimazole. Interestingly, we found that the use of these inhibitors significantly suppressed the PM induced apoptosis in HaCaT cells, which confirm the crucial role of CYP1B1 in the toxic manifestation of PM. For further analysis, blood samples were collected from the volunteer donor and analyzed for immunophenotypes and comet assay to survey any change in immune cells and DNA damage in blood cells respectively. The study was performed with 55 blood samples including 32 from industrial areas and 23 people from non-industrial zone of Rourkela city. Samples had a mean±SD age of 35±6.2years (35 men and 20 women). Our investigation did not observe any significant alteration in lymphocytes (P=0.671), B cell (P=0.104), cytotoxic T cell (P=0.512), helper T cell (P=0.396), NK cell (P=0.675) and monocytes (P=0.170) of blood cells from these two groups. Taken together; this study first time reports the possible health hazards of PM from industrial areas of Odisha, India.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | | | | | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
23
|
Fine particulate matter exposure and initial Pseudomonas aeruginosa acquisition in cystic fibrosis. Ann Am Thorac Soc 2015; 12:385-91. [PMID: 25594356 DOI: 10.1513/annalsats.201408-400oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Increasing evidence suggests that exposure to ambient air pollution contributes to the severity of cystic fibrosis (CF) respiratory disease in school-age children and adults; however, the effects of air pollution on young children with CF are poorly understood. OBJECTIVES To investigate the association of exposure to fine particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) and initial Pseudomonas aeruginosa acquisition in young children with CF. METHODS Retrospective analysis of initial Pseudomonas acquisition in children 6 years of age or younger, using Cystic Fibrosis Foundation National Patient Registry data from 2003 to 2009. PM2.5 exposure was estimated by inverse distance weighting methods based on air pollution monitors within 30 miles of place of residence, for the year before the patient's birth. Multivariable Weibull regression with interval-censored outcomes was done to evaluate the association of time to initial Pseudomonas acquisition and PM2.5 concentrations. MEASUREMENTS AND MAIN RESULTS A total of 3,575 children met inclusion criteria and 48% (n=1,711) acquired Pseudomonas at a median age of 15 months (25th-75th percentiles, 9-25 mo). An increase in PM2.5 exposure of 10 μg/m3 was associated with a 24% increased risk of Pseudomonas acquisition (95% confidence interval, 1-51%) during follow-up. Results were generally consistent across exposure metrics. CONCLUSIONS These results suggest that increased PM2.5 exposure is associated with earlier Pseudomonas acquisition in young children with CF and may play an important, previously unrecognized, role in the etiology of initial Pseudomonas infection.
Collapse
|
24
|
Behndig AF, Shanmuganathan K, Whitmarsh L, Stenfors N, Brown JL, Frew AJ, Kelly FJ, Mudway IS, Sandström T, Wilson SJ. Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium - an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects. BMC Pulm Med 2015; 15:99. [PMID: 26303256 PMCID: PMC4547420 DOI: 10.1186/s12890-015-0096-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms. METHODS Moderate (n = 16) and mild (n = 16) asthmatics, atopic non-asthmatic controls (rhinitics) (n = 13) and healthy controls (n = 21) were exposed to filtered air or DE (100 μg/m(3)) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis. RESULTS No evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge. CONCLUSION In the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated.
Collapse
Affiliation(s)
- Annelie F Behndig
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden.
| | - Karthika Shanmuganathan
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Laura Whitmarsh
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Nikolai Stenfors
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden.
| | - Joanna L Brown
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Anthony J Frew
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Frank J Kelly
- MRC - PHE Centre for Environment and Health, Franklin-Wilkins Building, King's College London, London, UK.
| | - Ian S Mudway
- MRC - PHE Centre for Environment and Health, Franklin-Wilkins Building, King's College London, London, UK.
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden.
| | - Susan J Wilson
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK. .,Histochemistry Research Unit, Sir Henry Wellcome Laboratories, Mailpoint 894, Level B, South Block, Southampton General Hospital, Tremona Road, Southampton, UK.
| |
Collapse
|
25
|
Hsia TC, Yin MC. s-Ethyl Cysteine ands-Methyl Cysteine Protect Human Bronchial Epithelial Cells Against Hydrogen Peroxide Induced Injury. J Food Sci 2015; 80:H2094-101. [DOI: 10.1111/1750-3841.12973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Te-chun Hsia
- Dept. of Respiratory Therapy; China Medical Univ; Taichung City Taiwan
- Dept. of Internal Medicine; China Medical Univ. Hospital; Taichung City Taiwan
| | - Mei-chin Yin
- Dept. of Health and Nutrition Biotechnology; Asia Univ; Taichung City Taiwan
- Dept. of Nutrition; China Medical Univ; Taichung City Taiwan
| |
Collapse
|
26
|
Nagiah S, Phulukdaree A, Naidoo D, Ramcharan K, Naidoo RN, Moodley D, Chuturgoon A. Oxidative stress and air pollution exposure during pregnancy: A molecular assessment. Hum Exp Toxicol 2014; 34:838-47. [PMID: 25403174 DOI: 10.1177/0960327114559992] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic air pollution exposure during pregnancy can cause oxidative stress leading to adverse birth outcomes. The aim of this study was to assess and compare oxidative stress response in peripheral lymphocytes isolated from pregnant women from a highly industrialized locale (south Durban (SD); n = 50) and a control with lower air pollutant levels (north Durban (ND); n = 50). Oxidative stress response was measured by quantifying malondialdehyde (MDA) levels and a SuperArray gene panel. Mitochondrial function (adenosine triphosphate (ATP) levels and mitochondrial depolarization), DNA integrity (comet assay and mitochondrial DNA (mtDNA) viability) and DNA repair (OGG1) were assessed. Antioxidant response was assessed by quantification of glutathione (GSH) and SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2) and uncoupling protein 2 (UCP2) protein and messenger RNA (mRNA) expression. Levels of MDA (p = 0.9), mitochondrial depolarization (p = 0.88), ATP (1.89-fold), SOD2 (1.23-fold) and UCP2 (1.58-fold) gene expression were elevated in the SD group with significantly higher UCP2 protein levels (p = 0.05) and longer comet tail length (p = 0.0004). The expression of Nrf2 protein (p = 0.03) and mRNA levels (-1.37-fold), GSH concentration (p < 0.0001), mtDNA amplification (-2.04-fold) and OGG1 mRNA (-2.78-fold) activity were decreased in the SD group. Of the 84 oxidative stress-related genes evaluated, 26 were differentially regulated. Pregnant women exposed to higher air pollutant levels showed increased markers for oxidative stress and compromised DNA integrity and repair.
Collapse
Affiliation(s)
- S Nagiah
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - A Phulukdaree
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - D Naidoo
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - K Ramcharan
- Discipline of Occupational and Environmental Health, University of KwaZulu Natal, Durban, South Africa
| | - R N Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu Natal, Durban, South Africa
| | - D Moodley
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| | - A Chuturgoon
- Discipline of Medical Biochemistry, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
27
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
28
|
Khavinson VK, Tendler SM, Vanyushin BF, Kasyanenko NA, Kvetnoy IM, Linkova NS, Ashapkin VV, Polyakova VO, Basharina VS, Bernadotte A. Peptide regulation of gene expression and protein synthesis in bronchial epithelium. Lung 2014; 192:781-91. [PMID: 25015171 DOI: 10.1007/s00408-014-9620-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/22/2014] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Some studies have shown that peptides have high treatment potential due to their biological activity, harmlessness, and tissue-specific action. Tetrapeptide Ala-Asp-Glu-Leu (ADEL) was effective on models of acute bacterial lung inflammation, fibrosis, and toxic lung damage in several studies. METHODS We measured Ki67, Mcl-1, p53, CD79, and NOS-3 protein levels in the 1st, 7th, and 14th passages of bronchoepithelial human embryonic cell cultures. Gene expression of NKX2-1, SCGB1A1, SCGB3A2, FOXA1, FOXA2, MUC4, MUC5AC, and SFTPA1 was measured by real-time polymerase chain reaction. Using the methods of spectrophotometry, viscometry, and circular dichroism, we studied the ADEL-DNA interaction in vitro. RESULTS Peptide ADEL regulates the levels of Ki67, Mcl-1, p53, CD79, and NOS-3 proteins in cell cultures of human bronchial epithelium in various passages. The strongest activating effect of peptide ADEL on bronchial epithelial cell proliferation through Ki67 and Mcl-1 was observed in "old" cell cultures. ADEL regulates the expression of genes involved in bronchial epithelium differentiation: NKX2-1, SCGB1A1, SCGB3A2, FOXA1, and FOXA2. ADEL also activates several genes, which reduced expression correlated with pathological lung development: MUC4, MUC5AC, and SFTPA1. Spectrophotometry, viscometry, and circular dichroism showed ADEL-DNA interaction, with a binding region in the major groove (N7 guanine). CONCLUSIONS ADEL can bind to specific DNA regions and regulate gene expression and synthesis of proteins involved in the differentiation and maintenance of functional activity of the bronchial epithelium. Through activation of some specific gene expression, peptide ADEL may protect the bronchial epithelium from pulmonary pathology. ADEL also may have a geroprotective effect on bronchial tissue.
Collapse
Affiliation(s)
- V Kh Khavinson
- Pavlov Institute of Physiology of RAS, St-Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lymphocyte-derived microparticles induce apoptosis of airway epithelial cells through activation of p38 MAPK and production of arachidonic acid. Apoptosis 2014; 19:1113-27. [DOI: 10.1007/s10495-014-0993-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Farhat SCL, Almeida MB, Silva-Filho LVRF, Farhat J, Rodrigues JC, Braga ALF. Ozone is associated with an increased risk of respiratory exacerbations in patients with cystic fibrosis. Chest 2014; 144:1186-1192. [PMID: 23493973 PMCID: PMC7172612 DOI: 10.1378/chest.12-2414] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Tropospheric oxidant pollutants may injure the respiratory tract. Cystic fibrosis (CF) respiratory disease involves significant inflammation and excessive oxidative stress, and exposure to air pollutants can magnify the lung damage. The objective of this study was to investigate the association between the short-term variation in the concentration of air pollutants in metropolitan São Paulo, Brazil, and the occurrence of respiratory exacerbations in children and adolescents with CF. Methods A longitudinal panel of repeated measurements was obtained from 103 patients attending the outpatient center of our institution from September 6, 2006 through September 4, 2007. Daily concentrations of inhaled particulate matter, sulfur dioxide, nitrogen dioxide, ozone (O3), carbon monoxide, and meteorologic variables, such as the minimum temperature and relative humidity, were evaluated. The generalized estimation equation model for binomial distribution was used to assess the impact of these measurements on the occurrence of acute respiratory exacerbations. Results In total, 103 patients with CF (median age, 8.9 years) made 408 visits, with a mean ± SD of 4 ± 1.74 visits per patient (range, 2-9). A respiratory disease exacerbation was diagnosed on 142 visits (38.4%). An interquartile range increase in the O3 concentration (45.62 μg/m3) had a positive, delayed (2 days after exposure) effect on the risk of a respiratory exacerbation (relative risk = 1.86; 95% CI, 1.14-3.02). Conclusions This study demonstrates that exposure to short-term air pollution in a large urban center increases the risk of a pulmonary exacerbation in patients with CF.
Collapse
Affiliation(s)
- Sylvia C L Farhat
- Emergency Unit, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo; Children's Institute, Clinics Hospital and the Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo.
| | - Marina B Almeida
- Pulmonology Unit, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo
| | - Luiz Vicente R F Silva-Filho
- Pulmonology Unit, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo; Virology Laboratory, Tropical Medicine Institute, University of São Paulo, São Paulo
| | - Juliana Farhat
- Children's Institute, Clinics Hospital and the Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo
| | - Joaquim C Rodrigues
- Pulmonology Unit, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo
| | - Alfésio L F Braga
- Children's Institute, Clinics Hospital and the Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of São Paulo Medical School, São Paulo; Environmental Exposure and Risk Assessment, Collective Health Post-graduation Program, Catholic University of Santos, Santos, Brazil
| |
Collapse
|
31
|
Sureshbabu A, Bhandari V. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol 2013; 4:384. [PMID: 24421769 PMCID: PMC3872744 DOI: 10.3389/fphys.2013.00384] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
During mild stressful conditions, cells activate a multitude of mechanisms in an attempt to repair or re-establish homeostasis. One such mechanism is autophagic degradation of mitochondria or mitophagy to dispose damaged mitochondria. However, if stress persists beyond recovery then dysfunctional mitochondria can ignite cell death. This review article summarizes recent studies highlighting the molecular pathways that facilitate mitochondria to alter its morphological dynamics, coordinate stress responses, initiate mitophagy and activate cell death in relevance to pulmonary pathologies. Thorough understanding of how these signaling mechanisms get disrupted may aid in designing new mitochondria-based therapies to combat lung diseases.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine New Haven, CT, USA
| | - Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
32
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med 2013; 7:631-46. [PMID: 23978003 DOI: 10.1586/17476348.2013.834252] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | | |
Collapse
|
33
|
Goeminne PC, Kiciński M, Vermeulen F, Fierens F, De Boeck K, Nemery B, Nawrot TS, Dupont LJ. Impact of air pollution on cystic fibrosis pulmonary exacerbations: a case-crossover analysis. Chest 2013; 143:946-954. [PMID: 23081770 DOI: 10.1378/chest.12-1005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Pulmonary exacerbations in cystic fibrosis (CF) contribute to the burden of disease, with a negative impact on quality of life, costs, and lung function. Our aim was to evaluate whether exacerbations, defi ned by antibiotic use, were triggered by daily fl uctuations in air pollution. METHODS In a case-crossover analysis, we evaluated 215 patients with CF and pollution data from January 1, 1998, to December 31, 2010. Exacerbation was defi ned as the start of IV or oral antibiotic use in a home or hospital setting. We calculated regional background levels of particulate matter with a diameter , 10 m m (PM 10 ), ozone, and nitrogen dioxide (NO 2 ) on the day of the event and on the 2 days prior to the event at each patient’s home address. We matched for day of the week and controlled for temperature on the day of the event and the 2 preceding days. In the month where antibiotic treatment was started, all days with the same temperature ( 2°C) as the event day served as control days, excluding 3 days before and after the start of treatment. RESULTS A total of 215 patients (male sex, 49%, mean age, 21 13 years) had 2,204 antibiotic treatments (1,107 IV and 1,097 oral). Over a period of 12 years, an increase in risk of antibiotic use was associated with increasing concentrations of PM 10 , NO 2 , and ozone on the event day and for NO 2 on the day before. A tendency toward signifi cance was seen the day before antibiotic use for PM 10 and ozone. Overall, a rise in OR was seen from 2 days before until the day of the start of antibiotics. CONCLUSIONS In patients with CF and exacerbations, ambient concentrations of ozone, PM 10 , and NO 2 play a role in triggering an exacerbation.
Collapse
Affiliation(s)
| | - Michał Kiciński
- Center for Environmental Sciences, UHasselt, Hasselt, KU Leuven, Leuven, Belgium
| | | | - Frans Fierens
- Belgian Interregional Environment Agency, Brussels, KU Leuven, Leuven, Belgium
| | - Kris De Boeck
- Department of Paediatric Pulmonology, UZ Leuven, Leuven, Belgium
| | - Benoit Nemery
- Department of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, UHasselt, Hasselt, KU Leuven, Leuven, Belgium; Department of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
34
|
Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 2013; 10:18. [PMID: 23656717 PMCID: PMC3660297 DOI: 10.1186/1743-8977-10-18] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/01/2013] [Indexed: 11/23/2022] Open
Abstract
Background Mitochondria have small mitochondrial DNA (mtDNA) molecules independent from the nuclear DNA, a separate epigenetic machinery that generates mtDNA methylation, and are primary sources of oxidative-stress generation in response to exogenous environments. However, no study has yet investigated whether mitochondrial DNA methylation is sensitive to pro-oxidant environmental exposures. Methods We sampled 40 male participants (20 high-, 20 low-exposure) from each of three studies on airborne pollutants, including investigations of steel workers exposed to metal-rich particulate matter (measured as PM1) in Brescia, Italy (Study 1); gas-station attendants exposed to air benzene in Milan, Italy (Study 2); and truck drivers exposed to traffic-derived Elemental Carbon (EC) in Beijing, China (Study 3). We have measured DNA methylation from buffy coats of the participants. We measured methylation by bisulfite-Pyrosequencing in three mtDNA regions, i.e., the transfer RNA phenylalanine (MT-TF), 12S ribosomal RNA (MT-RNR1) gene and “D-loop” control region. All analyses were adjusted for age and smoking. Results In Study 1, participants with high metal-rich PM1 exposure showed higher MT-TF and MT-RNR1 methylation than low-exposed controls (difference = 1.41, P = 0.002); MT-TF and MT-RNR1 methylation was significantly associated with PM1 exposure (beta = 1.35, P = 0.025); and MT-RNR1 methylation was positively correlated with mtDNA copy number (r = 0.36; P = 0.02). D-loop methylation was not associated with PM1 exposure. We found no effects on mtDNA methylation from air benzene (Study 2) and traffic-derived EC exposure (Study 3). Conclusions Mitochondrial MT-TF and MT-RNR1 DNA methylation was associated with metal-rich PM1 exposure and mtDNA copy number. Our results suggest that locus-specific mtDNA methylation is correlated to selected exposures and mtDNA damage. Larger studies are needed to validate our observations.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This overview highlights recent experimental and epidemiological evidence for the programming effects of outdoor air pollution exposures during early development on lung function and chronic respiratory disorders, such as asthma and related allergic disorders. RECENT FINDINGS Air pollutants may impact anatomy and/or physiological functioning of the lung and interrelated systems. Programming effects may result from pollutant-induced shifts in a number of molecular, cellular, and physiological states and their interacting systems. Specific key regulatory systems susceptible to programming may influence lung development and vulnerability to respiratory diseases, including both central and peripheral components of neuroendocrine pathways and autonomic nervous system (ANS) functioning which, in turn, influence the immune system. Starting in utero, environmental factors, including air pollutants, may permanently organize these systems toward trajectories of enhanced pediatric (e.g., asthma, allergy) as well as adult disease risk (e.g., chronic obstructive pulmonary disease). Evidence supports a central role of oxidative stress in the toxic effects of air pollution. Additional research suggests xenobiotic metabolism and subcellular components, such as mitochondria are targets of ambient air pollution and play a role in asthma and allergy programming. Mechanisms operating at the level of the placenta are being elucidated. Epigenetic mechanisms may be at the roots of adaptive developmental programming. SUMMARY Optimal coordinated functioning of many complex processes and their networks of interaction are necessary for normal lung development and the maintenance of respiratory health. Outdoor air pollution may play an important role in early programming of respiratory health and is potentially amenable to intervention.
Collapse
|
36
|
Sunil VR, Vayas KN, Massa CB, Gow AJ, Laskin JD, Laskin DL. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics. Toxicol Sci 2013; 133:309-19. [PMID: 23492811 DOI: 10.1093/toxsci/kft071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Valdivieso AG, Santa-Coloma TA. CFTR activity and mitochondrial function. Redox Biol 2013; 1:190-202. [PMID: 24024153 PMCID: PMC3757715 DOI: 10.1016/j.redox.2012.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.
Collapse
Affiliation(s)
- Angel Gabriel Valdivieso
- Institute for Biomedical Research (BIOMED CONICET-UCA), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | | |
Collapse
|
38
|
Delgado-Buenrostro NL, Freyre-Fonseca V, Cuéllar CMG, Sánchez-Pérez Y, Gutierrez-Cirlos EB, Cabellos-Avelar T, Orozco-Ibarra M, Pedraza-Chaverri J, Chirino YI. Decrease in respiratory function and electron transport chain induced by airborne particulate matter (PM10) exposure in lung mitochondria. Toxicol Pathol 2012; 41:628-38. [PMID: 23104767 DOI: 10.1177/0192623312463784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Particulate matter, with a mean aerodynamic diameter of ≤10 µm (PM10), exposure is considered as a risk factor for cardiovascular and respiratory diseases. The mechanism of cell damage induced by PM10 exposure is related to mitochondrial alterations. The aim of this work was to investigate the detailed alterations induced by PM10 on mitochondrial function. Since lung tissue is one of the most important targets of PM10 inhalation, isolated mitochondria from lung rat tissue were exposed to PM10 and structural alterations were analyzed by transmission electron microscopy. Mitochondrial function was evaluated by respiratory control index (RCI), membrane potential, adenosine triphosphate (ATP) synthesis, and activity of respiratory chain. Results showed that exposure to PM10 in isolated mitochondria from lung tissue caused enlarged intermembrane spaces and shape alterations, disruption of cristae, and the decrease in dense granules. Oxygraphic traces showed a concentration-dependent decrease in oxygen consumption and RCI. In addition, mitochondrial membrane potential, ATP synthesis, and activity of complexes II and IV showed an increase and decrease, respectively, after PM10 exposure. PM10 exposure induced disruption in structure and function in isolated mitochondria from lung rat tissue.
Collapse
|
39
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
40
|
Abstract
The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases.
Collapse
|
41
|
Abstract
Epidemiological and toxicological research continues to support a link between urban air pollution and an increased incidence and/or severity of airway disease. Detrimental effects of ozone (O(3)), nitrogen dioxide (NO(2)) and particulate matter (PM), as well as traffic-related pollution as a whole, on respiratory symptoms and function are well documented. Not only do we have strong epidemiological evidence of a relationship between air pollution and exacerbation of asthma and respiratory morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), but recent studies, particularly in urban areas, have suggested a role for pollutants in the development of both asthma and COPD. Similarly, while prevalence and severity of atopic conditions appear to be more common in urban compared with rural communities, evidence is emerging that traffic-related pollutants may contribute to the development of allergy. Furthermore, numerous epidemiological and experimental studies suggest an association between exposure to NO(2) , O(3) , PM and combustion products of biomass fuels and an increased susceptibility to and morbidity from respiratory infection. Given the considerable contribution that traffic emissions make to urban air pollution researchers have sought to characterize the relative toxicity of traffic-related PM pollutants. Recent advances in mechanisms implicated in the association of air pollutants and airway disease include epigenetic alteration of genes by combustion-related pollutants and how polymorphisms in genes involved in antioxidant pathways and airway inflammation can modify responses to air pollution exposures. Other interesting epidemiological observations related to increased host susceptibility include a possible link between chronic PM exposure during childhood and vulnerability to COPD in adulthood, and that infants subjected to higher prenatal levels of air pollution may be at greater risk of developing respiratory conditions. While the characterization of pollutant components and sources promise to guide pollution control strategies, the identification of susceptible subpopulations will be necessary if targeted therapy/prevention of pollution-induced respiratory diseases is to be developed.
Collapse
Affiliation(s)
- F J Kelly
- MRC-HPA Centre for Environment and Health, King's College, London, 150 Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
42
|
Wang W, Le W, Ahuja R, Cho DY, Hwang PH, Upadhyay D. Inhibition of inflammatory mediators: role of statins in airway inflammation. Otolaryngol Head Neck Surg 2011; 144:982-7. [PMID: 21493317 DOI: 10.1177/0194599811400367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine if statins induce anti-inflammatory effects in upper airway inflammation. Mediators of innate and adaptive immunity regulate airway inflammation. Release of these mediators involves enzymatic conversion of polyunsaturated fatty acids into biologically active mediators, which can be blocked by statins. Although upper airway inflammation and chronic sinusitis occur in millions of patients with asthma worldwide, the anti-inflammatory effects of statins in upper airway inflammation have not been previously studied. STUDY DESIGN Laboratory research. SETTING Tertiary referral center. SUBJECTS AND METHODS Analysis of sinus tissues collected from patients with chronic rhinosinusitis revealed suppression of highly expressed inflammatory mediators in patients who were found to be on statins, suggesting that statins may induce anti-inflammatory effects. Therefore, the authors performed an in vitro study to determine if these anti-inflammatory effects were induced by statins. Cultured primary human airway epithelial cells were exposed to ambient air pollution particulates (PM) to trigger the inflammation, with and without statins, and the expression of inflammatory mediators was analyzed. RESULTS The authors found that expression of CCL5, CCL11, and IL13RA was suppressed in patients on statins. In vitro exposure to PM enhanced the expression of these mediators, while pretreatment with statins completely blocked these effects. Furthermore, the effects of statins were blocked by inhibition of the statin pathway using isopentenyl-5-pyrophosphate. Statins did not have any significant effect on the viability of normal cells. CONCLUSION Statins induce anti-inflammatory effects in human airway epithelial inflammation. Statins may play a role in the treatment and prevention of chronic rhinosinusitis and pulmonary exacerbation of obstructive airway diseases.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California 94305-5236, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sangani RG, Ghio AJ. Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis 2011; 6:191-8. [PMID: 21660296 PMCID: PMC3107695 DOI: 10.2147/copd.s14911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Indexed: 12/18/2022] Open
Abstract
The specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 1) injury and disease following cigarette smoking are associated with exposure to and retention of particles produced during smoking and 2) the biological effects of particles associated with cigarette smoking share a single mechanism of injury with all particles. Smoking one cigarette exposes the human respiratory tract to between 15,000 and 40,000 μg particulate matter; this is a carbonaceous product of an incomplete combustion. There are numerous human exposures to other particles, and these vary widely in composition, absolute magnitude, and size of the particle. Individuals exposed to all these particles share a common clinical presentation with a loss of pulmonary function, increased bronchial hyperresponsiveness, pathologic changes of emphysema and fibrosis, and comorbidities, including cardiovascular disease, cerebrovascular disease, peripheral vascular disease, and cancers. Mechanistically, all particle exposures produce an oxidative stress, which is associated with a series of reactions, including an activation of kinase cascades and transcription factors, release of inflammatory mediators, and apoptosis. If disease associated with cigarette smoking is recognized to be particle related, then certain aspects of the clinical presentation can be predicted; this would include worsening of pulmonary function and progression of pathological changes and comorbidity (eg, emphysema and carcinogenesis) after smoking cessation since the particle is retained in the lung and the exposure continues.
Collapse
Affiliation(s)
- Rahul G Sangani
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC 27599-7315, USA
| | | |
Collapse
|
44
|
DiMagno MJ, Lee SH, Owyang C, Zhou SY. Inhibition of acinar apoptosis occurs during acute pancreatitis in the human homologue DeltaF508 cystic fibrosis mouse. Am J Physiol Gastrointest Liver Physiol 2010; 299:G400-12. [PMID: 20522641 PMCID: PMC2928535 DOI: 10.1152/ajpgi.00061.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, we found that the University of North Carolina cystic fibrosis (UNC-CF) mouse had more severe experimental acute pancreatitis (AP) than wild-type (WT) mice characterized by exuberant pancreatic inflammation and impaired acinar apoptosis. Because exon 10 CFTR gene mutations exhibit different phenotypes in tissues such as the mouse lung, we tested the hypothesis that DeltaF508-CF mice also develop severe AP associated with an antiapoptotic acinar phenotype, which requires indirect effects of the extracellular milieu. We used cerulein hyperstimulation models of AP. More severe pancreatitis occurred in cerulein-injected DeltaF508-CF vs. WT mice based on histological severity (P < 0.01) and greater neutrophil sequestration [P < 0.0001; confirmed by myeloperoxidase activity (P < 0.005)]. In dispersed acini cerulein-evoked necrosis was greater in DeltaF508-CF acini compared with WT (P < 0.05) and in WT acini pretreated with CFTR(inh)-172 compared with vehicle (P < 0.05). Cerulein-injected DeltaF508-CF vs. WT mice had less apoptosis based on poly(ADP-ribose) polymerase (PARP) cleavage (P < 0.005), absent DNA laddering, and reduced terminal deoxynucleotidyltransferase biotin-dUTP nick end labeling (TUNEL) staining (P < 0.005). Unexpectedly, caspase-3 activation was greater in DeltaF508-CF vs. WT acini at baseline (P < 0.05) and during AP (P < 0.0001). Downstream, DeltaF508-CF pancreas overexpressed the X-linked inhibitor of apoptosis compared with WT (P < 0.005). In summary, the DeltaF508-CF mutation, similar to the UNC-CF "null" mutation, causes severe AP characterized by an exuberant inflammatory response and impaired acinar apoptosis. Enhanced acinar necrosis in DeltaF508-CF occurs independently of extracellular milieu and correlates with loss of CFTR-Cl conductance. Although both exon 10 models of CF inhibit acinar apoptosis execution, the DeltaF508-CF mouse differs by increasing apoptosis signaling. Impaired transduction of increased apoptosis signaling in DeltaF508-CF acini may be biologically relevant to the pathogenesis of AP associated with CFTR mutations.
Collapse
Affiliation(s)
- Matthew J. DiMagno
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sae-Hong Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Chung Owyang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Shi-yi Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
45
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs 2009; 20:131-40. [DOI: 10.1097/cad.0b013e3283212ade] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|