1
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Lian B, Zhang J, Yin X, Wang J, Li L, Ju Q, Wang Y, Jiang Y, Liu X, Chen Y, Tang X, Sun C. SIRT1 improves lactate homeostasis in the brain to alleviate parkinsonism via deacetylation and inhibition of PKM2. Cell Rep Med 2024; 5:101684. [PMID: 39128469 PMCID: PMC11384727 DOI: 10.1016/j.xcrm.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.
Collapse
Affiliation(s)
- Bolin Lian
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiang Yin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jiayan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| |
Collapse
|
3
|
Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells 2024; 13:1177. [PMID: 39056759 PMCID: PMC11274880 DOI: 10.3390/cells13141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Believed for a long time to be merely a waste product of cell metabolism, lactate is now considered a molecule with several roles, having metabolic and signalling functions together with a new, recently discovered role as an epigenetic modulator. Lactate produced by the skeletal muscle during physical exercise is conducted to the liver, which uses the metabolite as a gluconeogenic precursor, thus generating the well-known "Cori cycle". Moreover, the presence of lactate in the mitochondria associated with the lactate oxidation complex has become increasingly clear over the years. The signalling role of lactate occurs through binding with the GPR81 receptor, which triggers the typical signalling cascade of the G-protein-coupled receptors. Recently, it has been demonstrated that lactate regulates chromatin state and gene transcription by binding to histones. This review aims to describe the different roles of lactate in skeletal muscle, in both healthy and pathological conditions, and to highlight how lactate can influence muscle regeneration by acting directly on satellite cells.
Collapse
Affiliation(s)
- Bianca Bartoloni
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "M. Serio", Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Michele Mannelli
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "M. Serio", Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "M. Serio", Università degli Studi di Firenze, 50134 Firenze, Italy
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "M. Serio", Università degli Studi di Firenze, 50134 Firenze, Italy
| |
Collapse
|
4
|
Wang S, Zeng X, Liu S, Hoque SAM, Min L, Ding N, Zhu Z. Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism. BIOLOGY 2024; 13:370. [PMID: 38927250 PMCID: PMC11200616 DOI: 10.3390/biology13060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Artificial insemination (AI) with liquid-preserved semen has recently become common in pig breeding. The semen doses are produced in a centralized manner at the boar stud and then subsequently distributed and transported to sow farms. However, vibration emissions during transportation by logistic vehicles may adversely affect the quality of boar sperm. Therefore, this study aimed to explore the impact of vibration-induced emissions on sperm quality and function under simulated transportation conditions. Each time, ejaculates from all 15 boars were collected and then pooled together to minimize individual variations, and the sample was split using an extender for dilution. Different rotational speeds (0 rpm, 80 rpm, 140 rpm, 200 rpm) were utilized to simulate varying intensities of vibration exposure using an orbital shaker, considering different transportation times (0 h, 3 h, and 6 h). Subsequently, evaluations were conducted regarding sperm motility, plasma membrane integrity, acrosome integrity, mitochondrial function, adenosine triphosphate (ATP) levels, mitochondrial reactive oxygen species (ROS) levels, pH, glycolytic pathway enzyme activities, and capacitation following exposure to vibration emissions. Both vibration time and intensity impact sperm motility, plasma membrane integrity, and acrosomal integrity. Vibration exposure significantly reduced sperm ATP levels, mitochondrial membrane potential, and the levels of mitochondria-encoded proteins (MT-ND1, MT-ND6) (p < 0.05). After vibration emission treatment, the pH value and mitochondrial ROS levels significantly increased (p < 0.05). Inhibition of sperm glycolysis was observed, with reduced activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH), along with decreased lactate levels (p < 0.05). Additionally, sperm tyrosine phosphorylation levels were significantly reduced by vibration emissions compared to the control group (p < 0.05). After the vibration emission treatment, the number of sperm bound to each square millimeter of oviduct explants decreased significantly compared to the control group (p < 0.05). Similarly, compared to the control group, using semen subjected to vibration stress for AI results in significantly reduced pregnancy rates, total born litter size, live-born litter size, and healthy born litter size (p < 0.05).
Collapse
Affiliation(s)
- Shanpeng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| | - Xuejun Zeng
- Fujian Aoxin Biotechnology Group Co., Ltd., Zhangzhou 363000, China;
- Ji’an Aobao Biotechnology Group Co., Ltd., Ji’an 343000, China
| | - Shenao Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| | - S. A. Masudul Hoque
- Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| | - Nengshui Ding
- Fujian Aoxin Biotechnology Group Co., Ltd., Zhangzhou 363000, China;
- Ji’an Aobao Biotechnology Group Co., Ltd., Ji’an 343000, China
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China (L.M.)
| |
Collapse
|
5
|
Waddington EE, Allison DJ, Calabrese EM, Pekos C, Lee A, Walsh JJ, Heisz JJ. Orienteering combines vigorous-intensity exercise with navigation to improve human cognition and increase brain-derived neurotrophic factor. PLoS One 2024; 19:e0303785. [PMID: 38776348 PMCID: PMC11111042 DOI: 10.1371/journal.pone.0303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Exercise enhances aspects of human cognition, but its intensity may matter. Recent animal research suggests that vigorous exercise, which releases greater amounts of lactate, activates more brain-derived neurotrophic factor (BDNF) in the hippocampus and, thus, may be optimal for supporting cognitive function. The cognitive benefits of exercise may be further augmented when combined with cognitive training. The sport of orienteering simultaneously combines exercise with spatial navigation and, therefore, may result in greater cognitive benefits than exercising only, especially at vigorous intensities. The present study aimed to examine the effects of an acute bout of orienteering at different intensities on cognition and BDNF compared to exercising only. We hypothesized that vigorous-intensity orienteering would increase lactate and BDNF and improve cognition more than moderate-intensity orienteering or vigorous exercise alone. Sixty-three recreationally active, healthy young adults (Mage = 21.10±2.75 years) with no orienteering experience completed a 1.3 km intervention course by navigating and exercising at a vigorous (80-85% of heart rate reserve) or moderate (40-50% of heart rate reserve) intensity or exercising vigorously without navigation. Exercise intensity was monitored using peak lactate, heart rate and rating of perceived exertion. Serum BDNF was extracted immediately before and after the intervention. Memory was assessed using the Mnemonic Similarity Task (high-interference memory) and the Groton Maze Learning Test (spatial memory). Both exercising and orienteering at a vigorous intensity elicited greater peak lactate and increases in BDNF than moderate-intensity orienteering, and individuals with higher peak lactate also had greater increases in BDNF. High-interference memory improved after both vigorous-intensity interventions but did not improve after the moderate-intensity intervention. Spatial memory only increased after vigorous-intensity orienteering, suggesting that orienteering at a vigorous intensity may particularly benefit spatial cognition. Overall, the results demonstrate the benefits of vigorous exercise on human cognition and BDNF.
Collapse
Affiliation(s)
- Emma E. Waddington
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - David J. Allison
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Emilie M. Calabrese
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Cara Pekos
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Adrienne Lee
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Jeremy J. Walsh
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer J. Heisz
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
7
|
Pérez-Fernández BA, Calzadilla L, Enrico Bena C, Del Giudice M, Bosia C, Boggiano T, Mulet R. Sodium acetate increases the productivity of HEK293 cells expressing the ECD-Her1 protein in batch cultures: experimental results and metabolic flux analysis. Front Bioeng Biotechnol 2024; 12:1335898. [PMID: 38659646 PMCID: PMC11039900 DOI: 10.3389/fbioe.2024.1335898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.
Collapse
Affiliation(s)
- Bárbara Ariane Pérez-Fernández
- Group of Complex Systems and Statistical Physics, Department of Applied Physics, Physics Faculty, University of Havana, Havana, Cuba
| | | | | | | | - Carla Bosia
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | | | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Havana, Cuba
| |
Collapse
|
8
|
Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S, Cabrera-Orefice A. The mitochondrial respiratory chain from Rhodotorula mucilaginosa, an extremophile yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149035. [PMID: 38360260 DOI: 10.1016/j.bbabio.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Schurr A. How the 'Aerobic/Anaerobic Glycolysis' Meme Formed a 'Habit of Mind' Which Impedes Progress in the Field of Brain Energy Metabolism. Int J Mol Sci 2024; 25:1433. [PMID: 38338711 PMCID: PMC10855259 DOI: 10.3390/ijms25031433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The division of glycolysis into two separate pathways, aerobic and anaerobic, depending on the presence or absence of oxygen, respectively, was formulated over eight decades ago. The former ends with pyruvate, while the latter ends with lactate. Today, this division is confusing and misleading as research over the past 35 years clearly has demonstrated that glycolysis ends with lactate not only in cancerous cells but also in healthy tissues and cells. The present essay offers a review of the history of said division and the more recent knowledge that has been gained about glycolysis and its end-product, lactate. Then, it presents arguments in an attempt to explain why separating glycolysis into aerobic and anaerobic pathways persists among scientists, clinicians and teachers alike, despite convincing evidence that such division is not only wrong scientifically but also hinders progress in the field of energy metabolism.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
11
|
Huang YF, Wang G, Ding L, Bai ZR, Leng Y, Tian JW, Zhang JZ, Li YQ, Ahmad, Qin YH, Li X, Qi X. Lactate-upregulated NADPH-dependent NOX4 expression via HCAR1/PI3K pathway contributes to ROS-induced osteoarthritis chondrocyte damage. Redox Biol 2023; 67:102867. [PMID: 37688977 PMCID: PMC10498433 DOI: 10.1016/j.redox.2023.102867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023] Open
Abstract
Increasing evidence shows that metabolic factors are involved in the pathological process of osteoarthritis (OA). Lactate has been shown to contribute to the onset and progression of diseases. While whether lactate is involved in the pathogenesis of OA through impaired chondrocyte function and its mechanism remains unclear. This study confirmed that serum lactate levels were elevated in OA patients compared to healthy controls and were positively correlated with synovial fluid lactate levels, which were also correlated with fasting blood glucose, high-density lipoprotein, triglyceride. Lactate treatment could up-regulate expressions of the lactate receptor hydroxy-carboxylic acid receptor 1 (HCAR1) and lactate transporters in human chondrocytes. We demonstrated the dual role of lactate, which as a metabolite increased NADPH levels by shunting glucose metabolism to the pentose phosphate pathway, and as a signaling molecule up-regulated NADPH oxidase 4 (NOX4) via activating PI3K/Akt signaling pathway through receptor HCAR1. Particularly, lactate could promote reactive oxygen species (ROS) generation and chondrocyte damage, which was attenuated by pre-treatment with the NOX4 inhibitor GLX351322. We also confirmed that lactate could increase expression of catabolic enzymes (MMP-3/13, ADAMTS-4), reduce the synthesis of type II collagen, promote expression of inflammatory cytokines (IL-6, CCL-3/4), and induce cellular hypertrophy and aging in chondrocytes. Subsequently, we showed that chondrocyte damage mediated by lactate could be reversed by pre-treatment with N-Acetyl-l-cysteine (NAC, ROS scavenger). Finally, we further verified in vivo that intra-articular injection of lactate in Sprague Dawley (SD) rat models could damage cartilage and exacerbate the progression of OA models that could be countered by the NOX4 inhibitor GLX351322. Our study highlights the involvement of lactate as a metabolic factor in the OA process, providing a theoretical basis for potential metabolic therapies of OA in the future.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Department of Orthopedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China; Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China; Department of Orthopedics, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Lu Ding
- Department of Orthopedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China; Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Zi-Ran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yi Leng
- Department of Orthopedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Jun-Wei Tian
- Department of Orthopedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Jian-Zeng Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yan-Qi Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Ahmad
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yuan-Hua Qin
- Department of Parasite, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China.
| | - Xin Qi
- Department of Orthopedics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
13
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Sheng G, Gao Y, Wu H, Liu Y, Yang Y. Functional heterogeneity of MCT1 and MCT4 in metabolic reprogramming affects osteosarcoma growth and metastasis. J Orthop Surg Res 2023; 18:131. [PMID: 36814318 PMCID: PMC9948327 DOI: 10.1186/s13018-023-03623-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary malignant bone tumor in adolescents and children and prone to develop lung metastasis. Its prognosis has been virtually unimproved over the last few decades, especially in patients with metastases, who suffer from a dismal survival. Recently, increasing attention has been devoted to monocarboxylate transporters-related (MCTs) metabolic reprogramming. However, the role of MCT1 and MCT4 in osteosarcoma progression and the underlying mechanisms remain to be further elucidated. METHODS In this study, we established MCT1 and/or MCT4 knockout cell lines by CRISPR/Cas9 genome editing technology. Then, we assessed glycolysis and oxidative phosphorylation capacities by measuring lactate flux and oxygen consumption. We also performed flowcytometry to test circulating tumor cells and PET/CT to evaluate glucose uptake. RESULTS MCT1 was found to be involved in both glycolysis and oxidative respiration due to its ability to transport lactate in both directions. MCT1 inhibition significantly reduced circulating tumor cells and distant metastases partially by increasing oxidative stress. MCT4 was primarily related to glycolysis and responsible for lactate export when the concentration of extracellular lactate was high. MCT4 inhibition dramatically suppressed cell proliferation in vitro and impaired tumor growth with reduction of glucose uptake in vivo. CONCLUSIONS Our results demonstrate the functional heterogeneity and redundancy of MCT1 and MCT4 in glucose metabolism and tumor progression in osteosarcoma. Thus, combined inhibition of MCT1 and MCT4 may be a promising therapeutic strategy for treating tumors expressing both transporters.
Collapse
Affiliation(s)
- Gaohong Sheng
- grid.33199.310000 0004 0368 7223Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030 China
| | - Yuan Gao
- grid.33199.310000 0004 0368 7223Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Yang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
| |
Collapse
|
15
|
Zhang Y, Li W, Bian Y, Li Y, Cong L. Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ 2023; 11:e14797. [PMID: 36748090 PMCID: PMC9899054 DOI: 10.7717/peerj.14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is a common malignancy with high morbidity and mortality rates. Changes in liver metabolism are key factors in the development of primary hepatic carcinoma, and mitochondrial dysfunction is closely related to the occurrence and development of tumours. Accordingly, the study of the metabolic mechanism of mitochondria in primary hepatic carcinomas has gained increasing attention. A growing body of research suggests that defects in mitochondrial respiration are not generally responsible for aerobic glycolysis, nor are they typically selected during tumour evolution. Conversely, the dysfunction of mitochondrial oxidative phosphorylation (OXPHOS) may promote the proliferation, metastasis, and invasion of primary hepatic carcinoma. This review presents the current paradigm of the roles of aerobic glycolysis and OXPHOS in the occurrence and development of hepatocellular carcinoma (HCC). Mitochondrial OXPHOS and cytoplasmic glycolysis cooperate to maintain the energy balance in HCC cells. Our study provides evidence for the targeting of mitochondrial metabolism as a potential therapy for HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Wenhuan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Bian
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Lei Cong
- Department of Oncology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China,Department of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Bioenergetic changes in response to sperm capacitation and two-way metabolic compensation in a new murine model. Cell Mol Life Sci 2023; 80:11. [PMID: 36534181 PMCID: PMC9763147 DOI: 10.1007/s00018-022-04652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
The acquisition of fertilizing ability by mammalian spermatozoa, known as "capacitation," includes processes that depend on particular metabolic pathways. This has led to the hypothesis that ATP demands might differ between capacitated and non-capacitated cells. Mouse sperm can produce ATP via OXPHOS and aerobic glycolysis, an advantageous characteristic considering that these cells have to function in the complex and variable environment of the female reproductive tract. Nonetheless, despite evidence showing that both metabolic pathways play a role in events associated with mouse sperm capacitation, there is contradictory evidence regarding changes promoted by capacitation in this species. In addition, the vast majority of studies regarding murine sperm metabolism use Mus musculus laboratory strains as model, thus neglecting the wide diversity of sperm traits of other species of Mus. Focus on closely related species with distinct evolutionary histories, which may be the result of different selective pressures, could shed light on diversity of metabolic processes. Here, we analyzed variations in sperm bioenergetics associated with capacitation in spermatozoa of the steppe mouse, Mus spicilegus, a species with high sperm performance. Furthermore, we compared sperm metabolic traits of this species with similar traits previously characterized in M. musculus. We found that the metabolism of M. spicilegus sperm responded to capacitation in a manner similar to that of M. musculus sperm. However, M. spicilegus sperm showed distinct metabolic features, including the ability to perform cross-pathway metabolic compensation in response to either respiratory or glycolytic inhibition, thus revealing a delicate fine-tuning of its metabolic capacities.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN - UNC), Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT - CONICET, UNC), Córdoba, Argentina.
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| |
Collapse
|
17
|
Schurr A. From rags to riches: Lactate ascension as a pivotal metabolite in neuroenergetics. Front Neurosci 2023; 17:1145358. [PMID: 36937681 PMCID: PMC10019773 DOI: 10.3389/fnins.2023.1145358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
|
18
|
Pires RA, Correia TML, Almeida AA, Coqueiro RDS, Machado M, Teles MF, Peixoto ÁS, Queiroz RF, Pereira R. Time-Course of Redox Status, Redox-Related, and Mitochondrial-Dynamics-Related Gene Expression after an Acute Bout of Different Physical Exercise Protocols. Life (Basel) 2022; 12:life12122113. [PMID: 36556478 PMCID: PMC9781780 DOI: 10.3390/life12122113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
We investigated the magnitude of exercise-induced changes in muscular bioenergetics, redox balance, mitochondrial function, and gene expression within 24 h after the exercise bouts performed with different intensities, durations, and execution modes (continuous or with intervals). Sixty-five male Swiss mice were divided into four groups: one control (n = 5) and three experimental groups (20 animals/group), submitted to a forced swimming bout with an additional load (% of animal weight): low-intensity continuous (LIC), high-intensity continuous (HIC), and high-intensity interval (HII). Five animals from each group were euthanized at 0 h, 6 h, 12 h, and 24 h postexercise. Gastrocnemius muscle was removed to analyze the expression of genes involved in mitochondrial biogenesis (Ppargc1a), fusion (Mfn2), fission (Dnm1L), and mitophagy (Park2), as well as inflammation (Nos2) and antioxidant defense (Nfe2l2, GPx1). Lipid peroxidation (TBARS), total peroxidase, glutathione peroxidase (GPx), and citrate synthase (CS) activity were also measured. Lactacidemia was measured from a blood sample obtained immediately postexercise. Lactacidemia was higher the higher the exercise intensity (LIC < HIC < HII), while the inverse was observed for TBARS levels. The CS activity was higher in the HII group than the other groups. The antioxidant activity was higher 24 h postexercise in all groups compared to the control and greater in the HII group than the LIC and HIC groups. The gene expression profile exhibited a particular profile for each exercise protocol, but with some similarities between the LIC and HII groups. Taken together, these results suggest that the intervals applied to high-intensity exercise seem to minimize the signs of oxidative damage and drive the mitochondrial dynamics to maintain the mitochondrial network, similar to low-intensity continuous exercise.
Collapse
Affiliation(s)
- Ramon Alves Pires
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Thiago Macedo Lopes Correia
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Amanda Alves Almeida
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
| | - Raildo da Silva Coqueiro
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
| | - Marco Machado
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Fundação Universitária de Itaperuna (FUNITA), Itaperuna 28300-000, Brazil
- Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, Universidade Iguaçu Campus V, Itaperuna 28300-000, Brazil
| | - Mauro Fernandes Teles
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
| | - Álbert Souza Peixoto
- Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Raphael Ferreira Queiroz
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
- Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista 40110-100, Brazil
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Biochemistry and Molecular (Brazilian Society for Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Jequie 45210-506, Brazil
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Jequie 45210-506, Brazil
- Correspondence:
| |
Collapse
|
19
|
Jen CT, Hsu BY, Chen BH. A study on anti-fatigue effects in rats by nanoemulsion and liposome prepared from American ginseng root residue extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Lan J, Cadassou O, Corbet C, Riant O, Feron O. Discovery of Mitochondrial Complex I Inhibitors as Anticancer and Radiosensitizer Drugs Based on Compensatory Stimulation of Lactate Release. Cancers (Basel) 2022; 14:5454. [PMID: 36358872 PMCID: PMC9658316 DOI: 10.3390/cancers14215454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
Cancer cells may stimulate glycolytic flux when O2 becomes insufficient. Increase in L-lactate release therefore appears as an escape mechanism to drugs targeting mitochondrial respiration but also represents a response that may be exploited to screen for compounds blocking either mitochondrial carriers of oxidizable substrates or the electron transport chain. Here, we developed a screening procedure based on the capacity of cancer cells to release L-lactate to gain insights on the development of mitochondrial complex I inhibitors. For this purpose, we synthesized derivatives of carboxyamidotriazole, a compound previously described as a potential OXPHOS inhibitor. Two series of derivatives were generated by cycloaddition between benzylazide and either cyanoacetamides or alkynes. A primary assay measuring L-lactate release as a compensatory mechanism upon OXPHOS inhibition led us to identify 15 hits among 28 derivatives. A secondary assay measuring O2 consumption in permeabilized cancer cells confirmed that 12 compounds among the hits exhibited reversible complex I inhibitory activity. Anticancer effects of a short list of 5 compounds identified to induce more L-lactate release than reference compound were then evaluated on cancer cells and tumor-mimicking 3D spheroids. Human and mouse cancer cell monolayers exhibiting high level of respiration in basal conditions were up to 3-fold more sensitive than less oxidative cancer cells. 3D tumor spheroids further revealed potency differences between selected compounds in terms of cytotoxicity but also radiosensitizing activity resulting from local reoxygenation. In conclusion, this study documents the feasibility to efficiently screen in 96-well plate format for mitochondrial complex I inhibitors based on the capacity of drug candidates to induce L-lactate release.
Collapse
Affiliation(s)
- Junjie Lan
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Octavia Cadassou
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
21
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
22
|
Carrillo-Garmendia A, Martinez-Ortiz C, Canizal-Garcia M, González-Hernández JC, Arvizu-Medrano SM, Gracida J, Madrigal-Perez LA, Regalado-Gonzalez C. Cytotoxicity of quercetin is related to mitochondrial respiration impairment in Saccharomyces cerevisiae. Yeast 2022; 39:617-628. [PMID: 36285422 DOI: 10.1002/yea.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 01/28/2023] Open
Abstract
Quercetin is a flavonol ubiquitously present in fruits and vegetables that shows a potential therapeutic use in non-transmissible chronic diseases, such as cancer and diabetes. Although this phytochemical has shown promising health benefits, the molecular mechanism behind this compound is still unclear. Interestingly, quercetin displays toxic properties against phylogenetically distant organisms such as bacteria and eukaryotic cells, suggesting that its molecular target resides on a highly conserved pathway. The cytotoxicity of quercetin could be explained by energy depletion occasioned by mitochondrial respiration impairment and its concomitant pleiotropic effect. Thereby, the molecular basis of quercetin cytotoxicity could shed light on potential molecular mechanisms associated with its health benefits. Nonetheless, the evidence supporting this hypothesis is still lacking. Thus, this study aimed to evaluate whether quercetin supplementation affects mitochondrial respiration and whether this is related to quercetin cytotoxicity. Saccharomyces cerevisiae was used as a study model to assess the effect of quercetin on energetic metabolism. Herein, we provide evidence that quercetin supplementation: (1) decreased the exponential growth of S. cerevisiae in a glucose-dependent manner; (2) affected diauxic growth in a similar way to antimycin A (complex III inhibitor of electron transport chain); (3) suppressed the growth of S. cerevisiae cultures supplemented with non-fermentable carbon sources (glycerol and lactate); (4) promoted a glucose-dependent inhibition of the basal, maximal, and ATP-linked respiration; (5) diminished complex II and IV activities. Altogether, these data indicate that quercetin disturbs mitochondrial respiration between the ubiquinone pool and cytochrome c, and this phenotype is associated with its cytotoxic properties.
Collapse
Affiliation(s)
| | - Cecilia Martinez-Ortiz
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, Mexico
| | - Melina Canizal-Garcia
- Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Morelia, Michoacán, Mexico
| | | | | | - Jorge Gracida
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, Mexico
| | - Luis Alberto Madrigal-Perez
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Michoacán, Mexico
| | | |
Collapse
|
23
|
Brooks GA, Curl CC, Leija RG, Osmond AD, Duong JJ, Arevalo JA. Tracing the lactate shuttle to the mitochondrial reticulum. Exp Mol Med 2022; 54:1332-1347. [PMID: 36075947 PMCID: PMC9534995 DOI: 10.1038/s12276-022-00802-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Isotope tracer infusion studies employing lactate, glucose, glycerol, and fatty acid isotope tracers were central to the deduction and demonstration of the Lactate Shuttle at the whole-body level. In concert with the ability to perform tissue metabolite concentration measurements, as well as determinations of unidirectional and net metabolite exchanges by means of arterial-venous difference (a-v) and blood flow measurements across tissue beds including skeletal muscle, the heart and the brain, lactate shuttling within organs and tissues was made evident. From an extensive body of work on men and women, resting or exercising, before or after endurance training, at sea level or high altitude, we now know that Organ-Organ, Cell-Cell, and Intracellular Lactate Shuttles operate continuously. By means of lactate shuttling, fuel-energy substrates can be exchanged between producer (driver) cells, such as those in skeletal muscle, and consumer (recipient) cells, such as those in the brain, heart, muscle, liver and kidneys. Within tissues, lactate can be exchanged between white and red fibers within a muscle bed and between astrocytes and neurons in the brain. Within cells, lactate can be exchanged between the cytosol and mitochondria and between the cytosol and peroxisomes. Lactate shuttling between driver and recipient cells depends on concentration gradients created by the mitochondrial respiratory apparatus in recipient cells for oxidative disposal of lactate.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA.
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA
| |
Collapse
|
24
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
25
|
The different effects of intramuscularly-injected lactate on white and brown adipose tissue in vivo. Mol Biol Rep 2022; 49:8507-8516. [PMID: 35753026 DOI: 10.1007/s11033-022-07672-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lactate is an important product of glycolysis metabolism during exercise and has long been recognized as an important metabolic signaling molecule involved in inhibiting lipolysis and promoting lipogenesis, which consequently leads to regulated adipose tissue metabolism. However, recent studies have shown that lactate promotes the browning of white adipose tissue (WAT), which induces heat production and energy expenditure and ultimately causes weight loss. These studies assessing the effects of lactate on lipid metabolism in adipose tissue have revealed conflicting data, making it an important area worthy of further research. METHODS In this study, using intramuscular injection of lactate to the gastrocnemius, we identified the role of lactate treatment on lipid metabolism and mitochondrial biogenesis of white adipose tissue and brown adipose tissue (BAT). RESULTS Our results showed that lactate treatment activated the cAMP/PKA signaling pathway and promoted the expression of lipolysis-related proteins (AMPK, HSL, ATGL) and mitochondrial biomarkers (PGC-1α, COXIV) of WAT, while BAT showed an opposite trend after lactate treatment. Further studies showed that lactate treatment significantly increased serum epinephrine and promoted β3-AR protein expression in WAT and significantly decreased in BAT. CONCLUSION Our study shows that lactate seems to regulate β3-adrenergic receptors differently in WAT and BAT, thereby eliciting disparate responses in adipose tissue.
Collapse
|
26
|
Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front Nutr 2022; 9:800901. [PMID: 35571940 PMCID: PMC9099001 DOI: 10.3389/fnut.2022.800901] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Ming Cai
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wanju Sun
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- *Correspondence: Wanju Sun
| | - Jingyun Hu
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Jingyun Hu
| |
Collapse
|
27
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
28
|
The Effect of Semen Cryopreservation Process on Metabolomic Profiles of Turkey Sperm as Assessed by NMR Analysis. BIOLOGY 2022; 11:biology11050642. [PMID: 35625370 PMCID: PMC9138281 DOI: 10.3390/biology11050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022]
Abstract
Semen cryopreservation represents the main tool for preservation of biodiversity; however, in avian species, the freezing−thawing process results in a sharp reduction in sperm quality and consequently fertility. Thus, to gain a first insight into the molecular basis of the cryopreservation of turkey sperm, the NMR-assessed metabolite profiles of fresh and frozen−thawed samples were herein investigated and compared with sperm qualitative parameters. Cryopreservation decreased the sperm viability, mobility, and osmotic tolerance of frozen−thawed samples. This decrease in sperm quality was associated with the variation in the levels of some metabolites in both aqueous and lipid sperm extracts, as investigated by NMR analysis. Higher amounts of the amino acids Ala, Ile, Leu, Phe, Tyr, and Val were found in fresh than in frozen−thawed sperm; on the contrary, Gly content increased after cryopreservation. A positive correlation (p < 0.01) between the amino acid levels and all qualitative parameters was found, except in the case of Gly, the levels of which were negatively correlated (p < 0.01) with sperm quality. Other water-soluble compounds, namely formate, lactate, AMP, creatine, and carnitine, turned out to be present at higher concentrations in fresh sperm, whereas cryopreserved samples showed increased levels of citrate and acetyl-carnitine. Frozen−thawed sperm also showed decreases in cholesterol and polyunsaturated fatty acids, whereas saturated fatty acids were found to be higher in cryopreserved than in fresh sperm. Interestingly, lactate, carnitine (p < 0.01), AMP, creatine, cholesterol, and phosphatidylcholine (p < 0.05) levels were positively correlated with all sperm quality parameters, whereas citrate (p < 0.01), fumarate, acetyl-carnitine, and saturated fatty acids (p < 0.05) showed negative correlations. A detailed discussion aimed at explaining these correlations in the sperm cell context is provided, returning a clearer scenario of metabolic changes occurring in turkey sperm cryopreservation.
Collapse
|
29
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
30
|
Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology. Metabolites 2022; 12:metabo12010072. [PMID: 35050194 PMCID: PMC8780167 DOI: 10.3390/metabo12010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
The term ‘aerobic glycolysis’ has been in use ever since Warburg conducted his research on cancer cells’ proliferation and discovered that cells use glycolysis to produce adenosine triphosphate (ATP) rather than the more efficient oxidative phosphorylation (oxphos) pathway, despite an abundance of oxygen. When measurements of glucose and oxygen utilization by activated neural tissue indicated that glucose was consumed without an accompanied oxygen consumption, the investigators who performed those measurements also termed their discovery ‘aerobic glycolysis’. Red blood cells do not contain mitochondria and, therefore, produce their energy needs via glycolysis alone. Other processes within the central nervous system (CNS) and additional organs and tissues (heart, muscle, and so on), such as ion pumps, are also known to utilize glycolysis only for the production of ATP necessary to support their function. Unfortunately, the phenomenon of ‘aerobic glycolysis’ is an enigma wherever it is encountered, thus several hypotheses have been produced in attempts to explain it; that is, whether it occurs in cancer cells, in activated neural tissue, or during postprandial or exercise metabolism. Here, it is argued that, where the phenomenon in neural tissue is concerned, the prefix ‘aerobic’ in the term ‘aerobic glycolysis’ should be removed. Data collected over the past three decades indicate that L-lactate, the end product of the glycolytic pathway, plays an essential role in brain energy metabolism, justifying the elimination of the prefix ‘aerobic’. Similar justification is probably appropriate for other tissues as well.
Collapse
|
31
|
Brooks GA, Osmond AD, Leija RG, Curl CC, Arevalo JA, Duong JJ, Horning MA. The blood lactate/pyruvate equilibrium affair. Am J Physiol Endocrinol Metab 2022; 322:E34-E43. [PMID: 34719944 PMCID: PMC8722269 DOI: 10.1152/ajpendo.00270.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Lactate Shuttle hypothesis is supported by a variety of techniques including mass spectrometry analytics following infusion of carbon-labeled isotopic tracers. However, there has been controversy over whether lactate tracers measure lactate (L) or pyruvate (P) turnover. Here, we review the analytical errors, use of inappropriate tissue and animal models, failure to consider L and P pool sizes in modeling results, inappropriate tracer and blood sampling sites, and failure to anticipate roles of heart and lung parenchyma on L⇔P interactions. With support from magnetic resonance spectroscopy (MRS) and immunocytochemistry, we conclude that carbon-labeled lactate tracers can be used to quantitate lactate fluxes.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| | - Michael A Horning
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California
| |
Collapse
|
32
|
Passarella S, Schurr A, Portincasa P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives. Int J Mol Sci 2021; 22:ijms222312620. [PMID: 34884425 PMCID: PMC8657705 DOI: 10.3390/ijms222312620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.
Collapse
Affiliation(s)
- Salvatore Passarella
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-3293606374
| | - Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
33
|
Suh EH, Geraldes CFGC, Chirayil S, Faubert B, Ayala R, DeBerardinis RJ, Sherry AD. Detection of glucose-derived D- and L-lactate in cancer cells by the use of a chiral NMR shift reagent. Cancer Metab 2021; 9:38. [PMID: 34742347 PMCID: PMC8571830 DOI: 10.1186/s40170-021-00267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Background Excessive lactate production, a hallmark of cancer, is largely formed by the reduction of pyruvate via lactate dehydrogenase (LDH) to l-lactate. Although d-lactate can also be produced from glucose via the methylglyoxal pathway in small amounts, less is known about the amount of d-lactate produced in cancer cells. Since the stereoisomers of lactate cannot be distinguished by conventional 1H NMR spectroscopy, a chiral NMR shift reagent was used to fully resolve the 1H NMR resonances of d- and l-lactate. Methods The production of l-lactate from glucose and d-lactate from methylglyoxal was first demonstrated in freshly isolated red blood cells using the chiral NMR shift reagent, YbDO3A-trisamide. Then, two different cell lines with high GLO1 expression (H1648 and H 1395) were selected from a panel of over 80 well-characterized human NSCLC cell lines, grown to confluence in standard tissue culture media, washed with phosphate-buffered saline, and exposed to glucose in a buffer for 4 h. After 4 h, a small volume of extracellular fluid was collected and mixed with YbDO3A-trisamide for analysis by 1H NMR spectroscopy. Results A suspension of freshly isolated red blood cells exposed to 5mM glucose produced l-lactate as expected but very little d-lactate. To evaluate the utility of the chiral NMR shift reagent, methylglyoxal was then added to red cells along with glucose to stimulate the production of d-lactate via the glyoxalate pathway. In this case, both d-lactate and l-lactate were produced and their NMR chemical shifts assigned. NSCLC cell lines with different expression levels of GLO1 produced both l- and d-lactate after incubation with glucose and glutamine alone. A GLO1-deleted parental cell line (3553T3) showed no production of d-lactate from glucose while re-expression of GLO1 resulted in higher production of d-lactate. Conclusions The shift-reagent-aided NMR technique demonstrates that d-lactate is produced from glucose in NSCLC cells via the methylglyoxal pathway. The biological role of d-lactate is uncertain but a convenient method for monitoring d-lactate production could provide new insights into the biological roles of d- versus l-lactate in cancer metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00267-4.
Collapse
Affiliation(s)
- Eul Hyun Suh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, Faculty of Science and Technology, University of Coimbra, 3000-393, Coimbra, Portugal.,CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raul Ayala
- School of Health Professions at Yvonne A. Ewell Townview Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
van der Walt G, Lindeque JZ, Mason S, Louw R. Sub-Cellular Metabolomics Contributes Mitochondria-Specific Metabolic Insights to a Mouse Model of Leigh Syndrome. Metabolites 2021; 11:metabo11100658. [PMID: 34677373 PMCID: PMC8537744 DOI: 10.3390/metabo11100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Direct injury of mitochondrial respiratory chain (RC) complex I by Ndufs4 subunit mutations results in complex I deficiency (CID) and a progressive encephalomyopathy, known as Leigh syndrome. While mitochondrial, cytosolic and multi-organelle pathways are known to be involved in the neuromuscular LS pathogenesis, compartment-specific metabolomics has, to date, not been applied to murine models of CID. We thus hypothesized that sub-cellular metabolomics would be able to contribute organelle-specific insights to known Ndufs4 metabolic perturbations. To that end, whole brains and skeletal muscle from late-stage Ndufs4 mice and age/sex-matched controls were harvested for mitochondrial and cytosolic isolation. Untargeted 1H-NMR and semi-targeted LC-MS/MS metabolomics was applied to the resulting cell fractions, whereafter important variables (VIPs) were selected by univariate statistics. A predominant increase in multiple targeted amino acids was observed in whole-brain samples, with a more prominent effect at the mitochondrial level. Similar pathways were implicated in the muscle tissue, showing a greater depletion of core metabolites with a compartment-specific distribution, however. The altered metabolites expectedly implicate altered redox homeostasis, alternate RC fueling, one-carbon metabolism, urea cycling and dysregulated proteostasis to different degrees in the analyzed tissues. A first application of EDTA-chelated magnesium and calcium measurement by NMR also revealed tissue- and compartment-specific alterations, implicating stress response-related calcium redistribution between neural cell compartments, as well as whole-cell muscle magnesium depletion. Altogether, these results confirm the ability of compartment-specific metabolomics to capture known alterations related to Ndufs4 KO and CID while proving its worth in elucidating metabolic compartmentalization in said pathways that went undetected in the diluted whole-cell samples previously studied.
Collapse
|
35
|
Meng X, Baine JM, Yan T, Wang S. Comprehensive Analysis of Lysine Lactylation in Rice ( Oryza sativa) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8287-8297. [PMID: 34264677 DOI: 10.1021/acs.jafc.1c00760] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein lysine lactylation is a new post-translational modification (PTM) prevalently found in fungi and mammalian cells that directly stimulates gene transcription and regulates the glycolytic flux. However, lysine lactylation sites and regulations remain largely unexplored, especially in cereal crops. Herein, we report the first global lactylome profile in rice, which effectively identified 638 lysine lactylation sites across 342 proteins in rice grains. Functional annotations demonstrated that lysine lactylation was enriched in proteins associated with central carbon metabolism and protein biosynthesis. We also observed that proteins serving as nutrition reservoirs in rice grains were frequently targeted by lactylation. Homology analyses indicated that lactylation was conserved on both histone and nonhistone proteins across plants, human cells, and fungi. In addition to lactylation, additional types of acylations could co-occur in many proteins at identical lysine residues, indicating potential cross-talks between these modifications. Our study provided a comprehensive profile of protein lysine lactylation in cereal crop grains.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Jonathan M Baine
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
36
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
37
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:ijms22105375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Salvatore Passarella
- School of Medicine, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
- Correspondence: (S.P.); (P.P.); Tel.: +39-328-468-7215 (P.P.)
| |
Collapse
|
38
|
Lu G, Liu Z, Wang X, Wang C. Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods 2021; 10:foods10051030. [PMID: 34068545 PMCID: PMC8151278 DOI: 10.3390/foods10051030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
As an ancient Chinese herbal medicine, Panax ginseng C.A. Meyer (P. ginseng) has been used both as food and medicine for nutrient supplements and treatment of human diseases in China for years. Fatigue, as a complex and multi-cause symptom, harms life from all sides. Millions worldwide suffer from fatigue, mainly caused by physical labor, mental stress, and chronic diseases. Multiple medicines, especially P. ginseng, were used for many patients or sub-healthy people who suffer from fatigue as a treatment or healthcare product. This review covers the extract and major components of P. ginseng with the function of anti-fatigue and summarizes the anti-fatigue effect of P. ginseng for different types of fatigue in animal models and clinical studies. In addition, the anti-fatigue mechanism of P. ginseng associated with enhancing energy metabolism, antioxidant and anti-inflammatory activity is discussed.
Collapse
Affiliation(s)
| | | | - Xu Wang
- Correspondence: ; Tel.: +86-022-60912421
| | | |
Collapse
|
39
|
Abstract
After almost a century of misunderstanding, it is time to appreciate that lactate shuttling is an important feature of energy flux and metabolic regulation that involves a complex series of metabolic, neuroendocrine, cardiovascular, and cardiac events in vivo. Cell–cell and intracellular lactate shuttles in the heart and between the heart and other tissues fulfill essential purposes of energy substrate production and distribution as well as cell signaling under fully aerobic conditions. Recognition of lactate shuttling came first in studies of physical exercise where the roles of driver (producer) and recipient (consumer) cells and tissues were obvious. One powerful example of cell–cell lactate shuttling was the exchange of carbohydrate energy in the form of lactate between working limb skeletal muscle and the heart. The exchange of mass represented a conservation of mass that required the integration of neuroendocrine, autoregulatory, and cardiovascular systems. Now, with greater scrutiny and recognition of the effect of the cardiac cycle on myocardial blood flow, there brings an appreciation that metabolic fluxes must accommodate to pressure-flow realities within an organ in which they occur. Therefore, the presence of an intra-cardiac lactate shuttle is posited to explain how cardiac mechanics and metabolism are synchronized. Specifically, interruption of blood flow during the isotonic phase of systole is supported by glycolysis and subsequent return of blood flow during diastole allows for recovery sustained by oxidative metabolism.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
40
|
D'Adamo P, Horvat A, Gurgone A, Mignogna ML, Bianchi V, Masetti M, Ripamonti M, Taverna S, Velebit J, Malnar M, Muhič M, Fink K, Bachi A, Restuccia U, Belloli S, Moresco RM, Mercalli A, Piemonti L, Potokar M, Bobnar ST, Kreft M, Chowdhury HH, Stenovec M, Vardjan N, Zorec R. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism 2021; 116:154463. [PMID: 33309713 PMCID: PMC7871014 DOI: 10.1016/j.metabol.2020.154463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.
Collapse
Affiliation(s)
- Patrizia D'Adamo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| | - Anemari Horvat
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Antonia Gurgone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Veronica Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Masetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Ripamonti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jelena Velebit
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Maja Malnar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Marko Muhič
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Katja Fink
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Sara Belloli
- Institute of Bioimaging and Physiology, CNR, Segrate (MI), Italy; Experimental Imaging Center (EIC), San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Maria Moresco
- Experimental Imaging Center (EIC), San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano-Bicocca, Monza (MB), Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Maja Potokar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Marko Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Helena H Chowdhury
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Matjaž Stenovec
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia
| | - Nina Vardjan
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Laboratory of Neuroendocrinology - Molecular Cell Physiology, Ljubljana, Slovenia; Celica Biomedical, Laboratory for Cell Engineering, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
42
|
Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP. Lactate in contemporary biology: a phoenix risen. J Physiol 2021; 600:1229-1251. [PMID: 33566386 PMCID: PMC9188361 DOI: 10.1113/jp280955] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
After a century, it's time to turn the page on understanding of lactate metabolism and appreciate that lactate shuttling is an important component of intermediary metabolism in vivo. Cell‐cell and intracellular lactate shuttles fulfil purposes of energy substrate production and distribution, as well as cell signalling under fully aerobic conditions. Recognition of lactate shuttling came first in studies of physical exercise where the roles of driver (producer) and recipient (consumer) cells and tissues were obvious. Moreover, the presence of lactate shuttling as part of postprandial glucose disposal and satiety signalling has been recognized. Mitochondrial respiration creates the physiological sink for lactate disposal in vivo. Repeated lactate exposure from regular exercise results in adaptive processes such as mitochondrial biogenesis and other healthful circulatory and neurological characteristics such as improved physical work capacity, metabolic flexibility, learning, and memory. The importance of lactate and lactate shuttling in healthful living is further emphasized when lactate signalling and shuttling are dysregulated as occurs in particular illnesses and injuries. Like a phoenix, lactate has risen to major importance in 21st century biology.
![]()
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ashley P Tovar
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
43
|
Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P. Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 2021; 27:697-719. [PMID: 33555313 DOI: 10.1093/humupd/dmab001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The best-known role of spermatozoa is to fertilize the oocyte and to transmit the paternal genome to offspring. These highly specialized cells have a unique structure consisting of all the elements absolutely necessary to each stage of fertilization and to embryonic development. Mature spermatozoa are made up of a head with the nucleus, a neck, and a flagellum that allows motility and that contains a midpiece with a mitochondrial helix. Mitochondria are central to cellular energy production but they also have various other functions. Although mitochondria are recognized as essential to spermatozoa, their exact pathophysiological role and their functioning are complex. Available literature relative to mitochondria in spermatozoa is dense and contradictory in some cases. Furthermore, mitochondria are only indirectly involved in cytoplasmic heredity as their DNA, the paternal mitochondrial DNA, is not transmitted to descendants. OBJECTIVE AND RATIONAL This review aims to summarize available literature on mitochondria in spermatozoa, and, in particular, that with respect to humans, with the perspective of better understanding the anomalies that could be implicated in male infertility. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews pertaining to human spermatozoa and mitochondria. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA', 'spermatozoa' or 'sperm' and 'reactive oxygen species' or 'calcium' or 'apoptosis' or signaling pathways'. These keywords were combined with other relevant search phrases. References from these articles were used to obtain additional articles. OUTCOMES Mitochondria are central to the metabolism of spermatozoa and they are implicated in energy production, redox equilibrium and calcium regulation, as well as apoptotic pathways, all of which are necessary for flagellar motility, capacitation, acrosome reaction and gametic fusion. In numerous cases, alterations in one of the aforementioned functions could be linked to a decline in sperm quality and/or infertility. The link between the mitochondrial genome and the quality of spermatozoa appears to be more complex. Although the quantity of mtDNA, and the existence of large-scale deletions therein, are inversely correlated to sperm quality, the effects of mutations seem to be heterogeneous and particularly related to their pathogenicity. WIDER IMPLICATIONS The importance of the role of mitochondria in reproduction, and particularly in gamete quality, has recently emerged following numerous publications. Better understanding of male infertility is of great interest in the current context where a significant decline in sperm quality has been observed.
Collapse
Affiliation(s)
- Magalie Boguenet
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France
| | - Pierre-Emmanuel Bouet
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Andrew Spiers
- Department of Reproductive Medicine, Angers University Hospital, Angers 49000, France
| | - Pascal Reynier
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Department of Biochemistry and Genetics, Angers University Hospital, Angers 49000, France
| | - Pascale May-Panloup
- MITOVASC Institute, CNRS 6015, INSERM U1083, Angers University, Angers 49000, France.,Reproductive Biology Unit, Angers University Hospital, Angers 49000, France
| |
Collapse
|
44
|
Relationships between Seminal Plasma Metabolites, Semen Characteristics and Sperm Kinetics in Donkey ( Equus asinus). Animals (Basel) 2021; 11:ani11010201. [PMID: 33467749 PMCID: PMC7830036 DOI: 10.3390/ani11010201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary A deeper knowledge of reproductive biology may be helpful in the donkey to avoid the risk of extinction that some breeds are facing. The evaluation of metabolites in seminal plasma provides crucial information for the knowledge of donkey sperm metabolism, for obtaining comparative information with other species, as well as for providing useful elements for the formulation of extenders for sperm dilution and conservation. Moreover, correlations of seminal metabolites with sperm kinetics highlight new possible markers of sperm quality. Using multivariate analysis, all metabolic, seminal, and spermatic data were merged in a single dot that grouped individual stallions within clusters in the Cartesian axes according to the different spermatic characteristics. This amount of information also allows to shed light on the effects of total or partial removal of seminal plasma for improving sperm preservation. The inclusion in the study of an azoospermic individual represents a further discriminating element in the analysis of sperm quality under physiological and pathological conditions. Abstract This study aimed to evaluate donkey seminal plasma metabolites and relate this information to the main characteristics of sperm quality. Sperm kinetics from 10 donkey stallions were analyzed with a computerized system at the time of collection (T0) and after 24 h storage at 4 °C (T24). Seminal plasma was frozen at −80 °C for subsequent proton nuclear magnetic resonance (1H NMR) spectroscopy. On three stallions, semen collection was repeated monthly for three times and sperm analysis also included mitochondrial activity and oxidative status. One stallion was azoospermic and a second semen collection was performed after one month. In the seminal plasma, 17 metabolites were identified; their levels showed numerous significant variations between the azoospermic and the normospermic individuals and grouped in well-defined clusters in a multivariate analysis. Comparing individuals with high and low sperm motility, the only discriminating metabolite was phenylalanine, whose levels were lower in the latter, as in the azoospermic individual. Phenylalanine was also the only metabolite highly correlated with all sperm kinematic parameters at T24. In conclusion, the present study has provided relevant information on the chemical characteristics of donkey semen, identified relationships between seminal metabolites, semen parameters, and sperm kinetics, and offered insights for future technological applications.
Collapse
|
45
|
The Influence of Intensive Anaerobic Effort on the Rhythm of Movement. Int J Sports Physiol Perform 2021; 16:544-549. [PMID: 33440338 DOI: 10.1123/ijspp.2019-0994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To estimate the influence of global anaerobic fatigue on rhythm performance. METHODS Fifteen young males participated in the experiment. Anaerobic fatigue was induced with 2 consecutive running-based anaerobic sprint tests (RAST). The level of lactate was controlled before the first RAST and 3 minutes after each RAST. The rhythm performance was assessed by using Optojump Next (Microgate, Bolzano, Italy). The rhythm test was conducted 3 times, before fatigue and immediately after each RAST. Eight variables of the rhythm test were analyzed: the mean frequency of jumps for the assisted and unassisted phase (XfAP and XfUAP), SD of jump frequency for the assisted and unassisted phase (SDfAP and SDfUAP), and mean absolute error for the assisted and unassisted phases of the test (XERAP and XERUAP, respectively). RESULTS One-way repeated-measures analysis of variance showed a significant main effect of anaerobic effort on rhythm variables only in the unassisted phase of the test. Statistically significant differences were observed in XfUAP between the first and third rhythm measurements (F2,28 = 4.98, P < .014, ηp2=26.23%), SD of jump frequency for the unassisted phase (SDfUAP; F2,28 = 3.48, P = .05, ηp2=19.9%), and mean absolute error for the unassisted phase (XERUAP; F2,28 = 3.36, P = .006, ηp2=19.43%). CONCLUSIONS The results show that rhythm of movement may be negatively influenced after intensive anaerobic fatigue. The exact mechanism of this phenomenon is not precisely defined, but both central and peripheral fatigue are suspected to be involved.
Collapse
|
46
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
47
|
Jain M, Aggarwal S, Nagar P, Tiwari R, Mustafiz A. A D-lactate dehydrogenase from rice is involved in conferring tolerance to multiple abiotic stresses by maintaining cellular homeostasis. Sci Rep 2020; 10:12835. [PMID: 32732944 PMCID: PMC7393112 DOI: 10.1038/s41598-020-69742-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
D-lactate dehydrogenase (D-LDH) converts D-lactate (the end product of glyoxalase system) to pyruvate and thereby completes the detoxification process of methylglyoxal. D-LDH detoxifies and diverts the stress induced toxic metabolites, MG and D-lactate, towards energy production and thus, protects the cell from their deteriorating effects. In this study, a D-LDH enzyme from rice (OsD-LDH2, encoded by Os07g08950.1) was characterized for its role in abiotic stress tolerance. For this, a combination of in silico, molecular, genetic and biochemical approaches was used. The kinetic analysis revealed OsD-LDH2 to be the most efficient D-LDH enzyme in comparison to D-LDHs from other plant species. Heterologous overexpression of OsD-LDH2 provides tolerance against multiple abiotic stresses in E. coli, yeast and plant system. The analysis of D-LDH mutant and OsD-LDH2 overexpressing transgenic plants uncovered the crucial role of D-LDH in mitigation of abiotic stresses. OsD-LDH2 overexpressing plants maintained lower level of ROS and other toxic metabolites along with better functioning of antioxidant system. This is the first report on correlation of D-LDH with multiple abiotic stress tolerance. Overall, OsD-LDH2 emerged as a promising candidate which can open a new direction for engineering stress tolerant crop varieties by maintaining their growth and yield in unfavorable conditions.
Collapse
Affiliation(s)
- Muskan Jain
- Laboratory of Plant Molecular Biology, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Sakshi Aggarwal
- Laboratory of Plant Molecular Biology, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Preeti Nagar
- Laboratory of Plant Molecular Biology, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Roopam Tiwari
- Laboratory of Plant Molecular Biology, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Ananda Mustafiz
- Laboratory of Plant Molecular Biology, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
48
|
Yan Z, Wu X, Zhao M, Zhang J. Lactic acid accumulation under heat stress related to accelerated glycolysis and mitochondrial dysfunction inhibits the mycelial growth of Pleurotus ostreatus. Appl Microbiol Biotechnol 2020; 104:6767-6777. [PMID: 32533305 DOI: 10.1007/s00253-020-10718-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 01/28/2023]
Abstract
High temperature is a major threat to Pleurotus ostreatus cultivation. In this study, a potential mechanism by which P. ostreatus mycelia growth is inhibited under heat stress was explored. Lactate, as a microbial fermentation product, was found unexpectedly in the mycelia of P. ostreatus under heat stress, and the time-dependent accumulation and corresponding inhibitory effect of lactate on mycelial growth was further confirmed. The addition of a glycolysis inhibitor, 2-deoxy-D-glucose (2DG), reduced the lactate content in mycelia and slightly restored mycelial growth under high-temperature conditions, which indicated the accumulation of lactate can be inhibited by glycolysis inhibition. Further data revealed mitochondrial dysfunction under high-temperature conditions, with evidence of decreased oxygen consumption and adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS). The removal of ROS with ascorbic acid decreased the lactate content, and mycelial growth recovered to a certain extent, indicating lactate accumulation could be affected by the mitochondrial ROS. Moreover, metabolic data showed that glycolysis and the tricarboxylic acid cycle were enhanced. This study reported the accumulation of lactate in P. ostreatus mycelia under heat stress and the inhibitory effect of lactate on the growth of mycelia, which might provide further insights into the stress response mechanism of edible fungi. Key Points • Lactate can accumulate in Pleurotus ostreatus mycelia under heat stress and inhibit its growth. • The accumulation of lactate may be due to the acceleration of glycolysis and the dysfunction of mitochondria of P. ostreatus mycelia under high-temperature stress. • The glycolysis and tricarboxylic acid cycle of P. ostreatus mycelia were accelerated under high-temperature stress.
Collapse
Affiliation(s)
- Zhiyu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
49
|
Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 2020; 235:7653-7662. [PMID: 32239718 DOI: 10.1002/jcp.29682] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
50
|
Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol 2020; 35:101454. [PMID: 32113910 PMCID: PMC7284908 DOI: 10.1016/j.redox.2020.101454] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Mistakenly thought to be the consequence of oxygen lack in contracting skeletal muscle we now know that the L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level. By shuttling between producer (driver) and consumer (recipient) cells lactate fulfills at least three purposes: 1] a major energy source for mitochondrial respiration; 2] the major gluconeogenic precursor; and 3] a signaling molecule. Working by mass action, cell redox regulation, allosteric binding, and reprogramming of chromatin by lactylation of lysine residues on histones, lactate has major influences in energy substrate partitioning. The physiological range of tissue [lactate] is 0.5–20 mM and the cellular Lactate/Pyruvate ratio (L/P) can range from 10 to >500; these changes during exercise and other stress-strain responses dwarf other metabolic signals in magnitude and span. Hence, lactate dynamics have rapid and major short- and long-term effects on cell redox and other control systems. By inhibiting lipolysis in adipose via HCAR-1, and muscle mitochondrial fatty acid uptake via malonyl-CoA and CPT1, lactate controls energy substrate partitioning. Repeated lactate exposure from regular exercise results in major effects on the expression of regulatory enzymes of glycolysis and mitochondrial respiration. Lactate is the fulcrum of metabolic regulation in vivo.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USA.
| |
Collapse
|