1
|
Wright T, Turnis ME, Grace CR, Li X, Brakefield LA, Wang YD, Xu H, Kaminska E, Climer LK, Mukiza TO, Chang CL, Moldoveanu T, Opferman JT. Anti-apoptotic MCL-1 promotes long-chain fatty acid oxidation through interaction with ACSL1. Mol Cell 2024; 84:1338-1353.e8. [PMID: 38503284 PMCID: PMC11017322 DOI: 10.1016/j.molcel.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid β-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Tristen Wright
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lauren A Brakefield
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Xu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ewa Kaminska
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leslie K Climer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tresor O Mukiza
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Sovilj D, Kelemen CD, Dvorakova S, Zobalova R, Raabova H, Kriska J, Hermanova Z, Knotek T, Anderova M, Klener P, Filimonenko V, Neuzil J, Andera L. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak. Apoptosis 2024; 29:424-438. [PMID: 38001340 DOI: 10.1007/s10495-023-01917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.
Collapse
Affiliation(s)
- Dana Sovilj
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Helena Raabova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kriska
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Klener
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic.
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Adhikary U, Paulo JA, Godes M, Roychoudhury S, Prew MS, Ben-Nun Y, Yu EW, Budhraja A, Opferman JT, Chowdhury D, Gygi SP, Walensky LD. Targeting MCL-1 triggers DNA damage and an anti-proliferative response independent from apoptosis induction. Cell Rep 2023; 42:113176. [PMID: 37773750 PMCID: PMC10787359 DOI: 10.1016/j.celrep.2023.113176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
MCL-1 is a high-priority target due to its dominant role in the pathogenesis and chemoresistance of cancer, yet clinical trials of MCL-1 inhibitors are revealing toxic side effects. MCL-1 biology is complex, extending beyond apoptotic regulation and confounded by its multiple isoforms, its domains of unresolved structure and function, and challenges in distinguishing noncanonical activities from the apoptotic response. We find that, in the presence or absence of an intact mitochondrial apoptotic pathway, genetic deletion or pharmacologic targeting of MCL-1 induces DNA damage and retards cell proliferation. Indeed, the cancer cell susceptibility profile of MCL-1 inhibitors better matches that of anti-proliferative than pro-apoptotic drugs, expanding their potential therapeutic applications, including synergistic combinations, but heightening therapeutic window concerns. Proteomic profiling provides a resource for mechanistic dissection and reveals the minichromosome maintenance DNA helicase as an interacting nuclear protein complex that links MCL-1 to the regulation of DNA integrity and cell-cycle progression.
Collapse
Affiliation(s)
- Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Godes
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Michelle S Prew
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yael Ben-Nun
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ellen W Yu
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Prew MS, Adhikary U, Choi DW, Portero EP, Paulo JA, Gowda P, Budhraja A, Opferman JT, Gygi SP, Danial NN, Walensky LD. MCL-1 is a master regulator of cancer dependency on fatty acid oxidation. Cell Rep 2022; 41:111445. [PMID: 36198266 PMCID: PMC9933948 DOI: 10.1016/j.celrep.2022.111445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 01/07/2023] Open
Abstract
MCL-1 is an anti-apoptotic BCL-2 family protein essential for survival of diverse cell types and is a major driver of cancer and chemoresistance. The mechanistic basis for the oncogenic supremacy of MCL-1 among its anti-apoptotic homologs is unclear and implicates physiologic roles of MCL-1 beyond apoptotic suppression. Here we find that MCL-1-dependent hematologic cancer cells specifically rely on fatty acid oxidation (FAO) as a fuel source because of metabolic wiring enforced by MCL-1 itself. We demonstrate that FAO regulation by MCL-1 is independent of its anti-apoptotic activity, based on metabolomic, proteomic, and genomic profiling of MCL-1-dependent leukemia cells lacking an intact apoptotic pathway. Genetic deletion of Mcl-1 results in transcriptional downregulation of FAO pathway proteins such that glucose withdrawal triggers cell death despite apoptotic blockade. Our data reveal that MCL-1 is a master regulator of FAO, rendering MCL-1-driven cancer cells uniquely susceptible to treatment with FAO inhibitors.
Collapse
Affiliation(s)
- Michelle S Prew
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erika P Portero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pruthvi Gowda
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
6
|
Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 2021; 4:1029. [PMID: 34475520 PMCID: PMC8413315 DOI: 10.1038/s42003-021-02564-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
MCL1 (myeloid cell leukemia-1) is a widely recognized pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) family and a promising target for cancer therapy. While the role MCL1 plays in apoptosis is well defined, its participation in emerging non-apoptotic signaling pathways is only beginning to be appreciated. Here, we synthesize studies characterizing MCL1s influence on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that MCL1 plays in cellular homeostasis regulation. Throughout this review, we discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy Bcl-2 homology 3 (BH3)-mimetics in the future. In this review Widden and Placzek synthesize studies characterizing the influence that myeloid cell leukemia-1 (MCL1) has on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that it plays in cellular homeostasis regulation. They discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy BH3-mimetics in the future.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Peng H, Chiu TY, Liang YJ, Lee CJ, Liu CS, Suen CS, Yen JJY, Chen HT, Hwang MJ, Hussain MM, Yang HC, Yang-Yen HF. PRAP1 is a novel lipid-binding protein that promotes lipid absorption by facilitating MTTP-mediated lipid transport. J Biol Chem 2021; 296:100052. [PMID: 33168624 PMCID: PMC7949078 DOI: 10.1074/jbc.ra120.015002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTTP) is an endoplasmic reticulum resident protein that is essential for the assembly and secretion of triglyceride (TG)-rich, apoB-containing lipoproteins. Although the function and structure of mammalian MTTP have been extensively studied, how exactly MTTP transfers lipids to lipid acceptors and whether there are other biomolecules involved in MTTP-mediated lipid transport remain elusive. Here we identify a role in this process for the poorly characterized protein PRAP1. We report that PRAP1 and MTTP are partially colocalized in the endoplasmic reticulum. We observe that PRAP1 directly binds to TG and facilitates MTTP-mediated lipid transfer. A single amino acid mutation at position 85 (E85V) impairs PRAP1's ability to form a ternary complex with TG and MTTP, as well as impairs its ability to facilitate MTTP-mediated apoB-containing lipoprotein assembly and secretion, suggesting that the ternary complex formation is required for PRAP1 to facilitate MTTP-mediated lipid transport. PRAP1 is detectable in chylomicron/VLDL-rich plasma fractions, suggesting that MTTP recognizes PRAP1-bound TG as a cargo and transfers TG along with PRAP1 to lipid acceptors. Both PRAP1-deficient and E85V knock-in mutant mice fed a chow diet manifested an increase in the length of their small intestines, likely to compensate for challenges in absorbing lipid. Interestingly, both genetically modified mice gained significantly less body weight and fat mass when on high-fat diets compared with littermate controls and were prevented from hepatosteatosis. Together, this study provides evidence that PRAP1 plays an important role in MTTP-mediated lipid transport and lipid absorption.
Collapse
Affiliation(s)
- Hubert Peng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yuan Chiu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Jen Liang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Jen Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Syuan Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeffrey J-Y Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - M Mahmood Hussain
- Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
8
|
Djajawi TM, Liu L, Gong JN, Huang AS, Luo MJ, Xu Z, Okamoto T, Call MJ, Huang DCS, van Delft MF. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ 2020; 27:2484-2499. [PMID: 32094511 PMCID: PMC7370232 DOI: 10.1038/s41418-020-0517-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co-operate to mark MCL1 for degradation by the proteasome—specifically when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane. MTCH2 has not previously been reported to regulate protein stability, but is known to influence the mitochondrial localization of certain key apoptosis regulators and to impact metabolism. We have now pinpointed an essential but previously unappreciated role for MTCH2 in turnover of the MCL1:NOXA complex by MARCH5, further strengthening its links to BCL2-regulated apoptosis.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lei Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ming-Jie Luo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhen Xu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Melissa J Call
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Abstract
Regulation of both the extrinsic and the mitochondria-dependent intrinsic apoptotic pathways plays a key role in the development of the hematopoietic system, for sustaining cell survival during generation of various cell types, in eliminating cells with dual identities such as CD4/CD8 double-positive cells (Hettmann, Didonato, Karin, & Leiden, 1999; Ogasawara, Suda, & Nagata, 1995), for sustaining cells during the rapid clonal expansion phase (Schirmer, Vallejo, Weyand, & Gronzy, 1998), as well as eliminating cells during the contraction phase (Yajima et al., 2006). The anti-apoptotic protein Mcl-1 is necessary for sustaining hematopoietic stem cells (HPS) (Akashi et al., 2003; Akashi, Traver, Miyamoto, & Weissman, 2000). The anti-apoptotic factors Mcl-1, Bcl-2, and Bcl-xL were also found to be over-expressed in acute myeloid leukemia (AML) (Kaufmann et al., 2016) and acute lymphocytic leukemia (ALL) (Findley, Gu, Yeager, & Zhou, 1997), suggesting that dis-regulated apoptotic processes could be a factor in the instigation of leukemia and/or its relapse. Molecules targeting these proteins were used as single agents to treat leukemia. However, by using a set of recently developed specific molecule inhibitors targeting anti-apoptotic proteins, distinct roles are being discovered for these anti-apoptotic proteins during hematopoietic and tumor development. Furthermore, using these inhibitors in proper combinations can effectively induce apoptosis in various solid tumors, even though each agent on its own cannot induce apoptosis in them. These new findings suggest that inhibiting anti-apoptotic elements can induce apoptosis without external stimuli in most cells, but it comes with a risk that some combinations could also trigger apoptosis in healthy cells. One way to address the safety issue is by limiting exposure to all the agents to only cancer cells, thus making the combination safe and effective. In this article, we review this rapidly developing idea in cancer research.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Anesthesiology, Kansai Medical University, Hirakata 573-1010, Japan.
| | - Lydia Lartigue
- CureMatch, Inc., 6440 Lusk Blvd, San Diego CA 92121, USA.
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093, USA,.
| |
Collapse
|
10
|
Kabashima A, Hirsova P, Bronk SF, Hernandez MC, Truty MJ, Ilyas SI, Kaufmann SH, Gores GJ. Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma. J Hepatol 2018; 68:1228-1238. [PMID: 29408314 PMCID: PMC5960421 DOI: 10.1016/j.jhep.2018.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Myeloid cell leukemia 1 (MCL1), a prosurvival member of the BCL2 protein family, has a pivotal role in human cholangiocarcinoma (CCA) cell survival. We previously reported that fibroblast growth factor receptor (FGFR) signalling mediates MCL1-dependent survival of CCA cells in vitro and in vivo. However, the mode and mechanisms of cell death in this model were not delineated. METHODS Human CCA cell lines were treated with the pan-FGFR inhibitor LY2874455 and the mode of cell death examined by several complementary assays. Mitochondrial oxidative metabolism was examined using a XF24 extracellular flux analyser. The efficiency of FGFR inhibition in patient-derived xenografts (PDX) was also assessed. RESULTS CCA cells expressed two species of MCL1, a full-length form localised to the outer mitochondrial membrane, and an N terminus-truncated species compartmentalised within the mitochondrial matrix. The pan-FGFR inhibitor LY2874455 induced non-apoptotic cell death in the CCA cell lines associated with cellular depletion of both MCL1 species. The cell death was accompanied by failure of mitochondrial oxidative metabolism and was most consistent with necrosis. Enforced expression of N terminus-truncated MCL1 targeted to the mitochondrial matrix, but not full-length MCL1 targeted to the outer mitochondrial membrane, rescued cell death and mitochondrial function. LY2874455 treatment of PDX-bearing mice was associated with tumour cell loss of MCL1 and cell necrosis. CONCLUSIONS FGFR inhibition induces loss of matrix MCL1, resulting in cell necrosis. These observations support a heretofore unidentified, alternative MCL1 survival function, namely prevention of cell necrosis, and have implications for treatment of human CCA. LAY SUMMARY Herein, we report that therapeutic inhibition of a cell receptor expressed by bile duct cancer cells resulted in the loss of a critical survival protein termed MCL1. Cellular depletion of MCL1 resulted in the death of the cancer cells by a process characterised by cell rupture. Cell death by this process can stimulate the immune system and has implications for combination therapy using receptor inhibition with immunotherapy.
Collapse
Affiliation(s)
- Ayano Kabashima
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, Lee T, Gómez H, Lluch A, Pérez-Fidalgo JA, Wolf MM, Andrejeva G, Rathmell JC, Fesik SW, Arteaga CL. MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab 2017; 26:633-647.e7. [PMID: 28978427 PMCID: PMC5650077 DOI: 10.1016/j.cmet.2017.09.009] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/06/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022]
Abstract
Most patients with advanced triple-negative breast cancer (TNBC) develop drug resistance. MYC and MCL1 are frequently co-amplified in drug-resistant TNBC after neoadjuvant chemotherapy. Herein, we demonstrate that MYC and MCL1 cooperate in the maintenance of chemotherapy-resistant cancer stem cells (CSCs) in TNBC. MYC and MCL1 increased mitochondrial oxidative phosphorylation (mtOXPHOS) and the generation of reactive oxygen species (ROS), processes involved in maintenance of CSCs. A mutant of MCL1 that cannot localize in mitochondria reduced mtOXPHOS, ROS levels, and drug-resistant CSCs without affecting the anti-apoptotic function of MCL1. Increased levels of ROS, a by-product of activated mtOXPHOS, led to the accumulation of HIF-1α. Pharmacological inhibition of HIF-1α attenuated CSC enrichment and tumor initiation in vivo. These data suggest that (1) MYC and MCL1 confer resistance to chemotherapy by expanding CSCs via mtOXPHOS and (2) targeting mitochondrial respiration and HIF-1α may reverse chemotherapy resistance in TNBC.
Collapse
Affiliation(s)
- Kyung-Min Lee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer M Giltnane
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Luis J Schwarz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Mellissa J Nixon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mónica V Estrada
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Violeta Sánchez
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melinda E Sanders
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Henry Gómez
- Instituto Nacional de Enfermedades Neoplásicas, 15038 Lima, Perú
| | - Ana Lluch
- Hospital Clínico Universitario, Biomedical Research Institute INCLIVA, Universidad de Valencia, 46010 Valencia, Spain
| | - J Alejandro Pérez-Fidalgo
- Hospital Clínico Universitario, Biomedical Research Institute INCLIVA, Universidad de Valencia, 46010 Valencia, Spain
| | - Melissa Magdalene Wolf
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabriela Andrejeva
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Bcl-2 protein family expression pattern determines synergistic pro-apoptotic effects of BH3 mimetics with hemisynthetic cardiac glycoside UNBS1450 in acute myeloid leukemia. Leukemia 2016; 31:755-759. [PMID: 27872497 PMCID: PMC5339427 DOI: 10.1038/leu.2016.341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Varadarajan S, Poornima P, Milani M, Gowda K, Amin S, Wang HG, Cohen GM. Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner. Oncotarget 2016; 6:12668-81. [PMID: 26059440 PMCID: PMC4494965 DOI: 10.18632/oncotarget.3706] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
The anti-apoptotic BCL-2 family proteins are important targets for cancer chemotherapy. Specific and potent inhibitors of the BCL-2 family, such as ABT-263 (navitoclax) and ABT-199, are only effective against some members of the BCL-2 family but do not target MCL-1, which is commonly amplified in tumors and associated with chemoresistance. In this report, the selectivity and potency of two putative MCL-1 inhibitors, dinaciclib and maritoclax, were assessed. Although both compounds induced Bax/Bak- and caspase-9-dependent apoptosis, dinaciclib was more potent than maritoclax in downregulating MCL-1 and also in inducing apoptosis. However, the compounds induced apoptosis, even in cells lacking MCL-1, suggesting multiple mechanisms of cell death. Furthermore, maritoclax induced extensive mitochondrial fragmentation, and a Bax/Bak- but MCL-1-independent accumulation of mitochondrial reactive oxygen species (ROS), with an accompanying loss of complexes I and III of the electron transport chain. ROS scavengers, such as MitoQ, could not salvage maritoclax-mediated effects on mitochondrial structure and function. Taken together, our data demonstrate that neither dinaciclib nor maritoclax exclusively target MCL-1. Although dinaciclib is clearly not a specific MCL-1 inhibitor, its ability to rapidly downregulate MCL-1 may be beneficial in many clinical settings, where it may reverse chemoresistance or sensitize to other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paramasivan Poornima
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Hong-Gang Wang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA.,Department of Pediatrics, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Radhakrishnan P, Ruh N, Harnoss JM, Kiss J, Mollenhauer M, Scherr AL, Platzer LK, Schmidt T, Podar K, Opferman JT, Weitz J, Schulze-Bergkamen H, Koehler BC, Ulrich A, Schneider M. Prolyl Hydroxylase 3 Attenuates MCL-1-Mediated ATP Production to Suppress the Metastatic Potential of Colorectal Cancer Cells. Cancer Res 2016; 76:2219-30. [PMID: 26921340 DOI: 10.1158/0008-5472.can-15-1474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/06/2016] [Indexed: 11/16/2022]
Abstract
Hypoxia is a common feature of solid tumors. Prolyl hydroxylase enzymes (PHD1-3) are molecular oxygen sensors that regulate hypoxia-inducible factor activity, but their functions in metastatic disease remain unclear. Here, we assessed the significance of PHD enzymes during the metastatic spread of colorectal cancer. PHD expression analysis in 124 colorectal cancer patients revealed that reduced tumoral expression of PHD3 correlated with increased frequency of distant metastases and poor outcome. Tumorigenicity and metastatic potential of colorectal tumor cells over and underexpressing PHD3 were investigated in orthotopic and heterotopic tumor models. PHD3 overexpression in a syngeneic tumor model resulted in fewer liver metastases, whereas PHD3 knockdown induced tumor spread. The migration of PHD3-overexpressing tumor cells was also attenuated in vitro Conversely, migratory potential and colony formation were enhanced in PHD3-deficient cells, and this phenotype was associated with enhanced mitochondrial ATP production. Furthermore, the effects of PHD3 deficiency were accompanied by increased mitochondrial expression of the BCL-2 family member, member myeloid cell leukemia sequence 1 (MCL-1), and could be reversed by simultaneous inhibition of MCL-1. MCL-1 protein expression was likewise enhanced in human colorectal tumors expressing low levels of PHD3. Therefore, we demonstrate that downregulation of PHD3 augments metastatic spread in human colorectal cancer and identify MCL-1 as a novel downstream effector of oxygen sensing. Importantly, these findings offer new insight into the possible, context-specific deleterious effects of pharmacologic PHD inhibition. Cancer Res; 76(8); 2219-30. ©2016 AACR.
Collapse
Affiliation(s)
- Praveenkumar Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadine Ruh
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Judit Kiss
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Mollenhauer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Lisa K Platzer
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Joseph T Opferman
- St. Jude Children's Research Hospital, Cell & Molecular Biology, Memphis, Tennessee
| | - Juergen Weitz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany. Department of Visceral, Thoracic and Vascular Surgery, Dresden University Hospital, Dresden, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Bruno C Koehler
- Department of Medical Oncology, Internal Medicine VI, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
15
|
Lawson AP, Long MJC, Coffey RT, Qian Y, Weerapana E, El Oualid F, Hedstrom L. Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes. Cancer Res 2015; 75:5130-5142. [PMID: 26542215 DOI: 10.1158/0008-5472.can-15-1544] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023]
Abstract
The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Rory T Coffey
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Graduate Program in Molecular and Cellular Biology, Brandeis University, MS008, 415 South St., Waltham MA 02453-9110
| | - Yu Qian
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | | | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-9110 USA
| |
Collapse
|
16
|
Synowiec E, Hoser G, Wojcik K, Pawlowska E, Skorski T, Błasiak J. UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib. Int J Mol Sci 2015; 16:18111-28. [PMID: 26251899 PMCID: PMC4581238 DOI: 10.3390/ijms160818111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 02/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2·s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/radiation effects
- DNA Damage/drug effects
- DNA Damage/radiation effects
- Drug Resistance, Neoplasm/radiation effects
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/radiation effects
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Potential, Mitochondrial/drug effects
- Membrane Potential, Mitochondrial/radiation effects
- Mice
- Oxidative Stress/drug effects
- Oxidative Stress/radiation effects
- Point Mutation
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Grazyna Hoser
- Department of Clinical Cytobiology, Medical Center for Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland.
| | - Katarzyna Wojcik
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Tomasz Skorski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
17
|
Harnett CC, Abusneina A, Clément J, Gauthier ER. Inhibition of MCL-1 by obatoclax sensitizes Sp2/0-Ag14 hybridoma cells to glutamine deprivation-induced apoptosis. Cell Biochem Funct 2015; 33:334-40. [DOI: 10.1002/cbf.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Curtis C. Harnett
- Biomolecular Sciences Ph.D. program; Laurentian University; Sudbury Ontario Canada
| | | | - Julie Clément
- Department of Chemistry and Biochemistry; Laurentian University; Sudbury Ontario Canada
| | - Eric R. Gauthier
- Biomolecular Sciences Ph.D. program; Laurentian University; Sudbury Ontario Canada
- Department of Chemistry and Biochemistry; Laurentian University; Sudbury Ontario Canada
- Biology Department; Laurentian University; Sudbury Ontario Canada
| |
Collapse
|
18
|
Reynolds LM, Ding J, Taylor JR, Lohman K, Soranzo N, de la Fuente A, Liu TF, Johnson C, Barr RG, Register TC, Donohue KM, Talor MV, Cihakova D, Gu C, Divers J, Siscovick D, Burke G, Post W, Shea S, Jacobs DR, Hoeschele I, McCall CE, Kritchevsky SB, Herrington D, Tracy RP, Liu Y. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics 2015; 16:333. [PMID: 25898983 PMCID: PMC4417516 DOI: 10.1186/s12864-015-1522-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/10/2015] [Indexed: 01/08/2023] Open
Abstract
Background Transcriptomic studies hold great potential towards understanding the human aging process. Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small samples sizes and mixed cell types often make these results difficult to interpret. Results Using transcriptomic profiles in CD14+ monocytes from 1,264 participants of the Multi-Ethnic Study of Atherosclerosis (aged 55–94 years), we identified 2,704 genes differentially expressed with chronological age (false discovery rate, FDR ≤ 0.001). We further identified six networks of co-expressed genes that included prominent genes from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with age-associated expression were also associated (FDR ≤ 0.01) with pulse pressure independent of chronological age. Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n = 423) of the population, we identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein synthesis machinery gene expression with age was detectable in both cell types. Conclusions An overall decline in expression of ribosomal protein synthesis genes with age was detected in CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship between identified age-associated genes/pathways and aging-related diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1522-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Jackson R Taylor
- Department of Gerontology and Geriatric Medicine, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Kurt Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | | | - Alberto de la Fuente
- FBN, Leibniz Institute for Farm Animal Biology, Genetics and Biometry, Mecklenburg-Vorpommern, Germany.
| | - Tie Fu Liu
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Craig Johnson
- Departments of Medicine and Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, 98115, USA.
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Kathleen M Donohue
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - Monica V Talor
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Daniela Cihakova
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Jasmin Divers
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - David Siscovick
- New York Academy of Medicine, New York, New York, 10029, USA.
| | - Gregory Burke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Wendy Post
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21205, USA.
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University, New York, New York, 10032, USA.
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, 55454, USA.
| | - Ina Hoeschele
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, USA.
| | - Charles E McCall
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA. .,Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA. .,Department of Gerontology and Geriatric Medicine, J. Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | - Russell P Tracy
- Department of Pathology, University of Vermont, Colchester, Vermont, 05446, USA.
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
19
|
Giménez-Cassina A, Danial NN. Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins. Trends Endocrinol Metab 2015; 26:165-75. [PMID: 25748272 PMCID: PMC4380665 DOI: 10.1016/j.tem.2015.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/07/2015] [Accepted: 02/08/2015] [Indexed: 12/21/2022]
Abstract
Cells have evolved a highly integrated network of mechanisms to coordinate cellular survival/death, proliferation, differentiation, and repair with metabolic states. It is therefore not surprising that proteins with canonical roles in cell death/survival also modulate nutrient and energy metabolism and vice versa. The finding that many BCL-2 (B cell lymphoma 2) proteins reside at mitochondria or can translocate to this organelle has long motivated investigation into their involvement in normal mitochondrial physiology and metabolism. These endeavors have led to the discovery of homeostatic roles for BCL-2 proteins beyond apoptosis. We predominantly focus on recent findings that link select BCL-2 proteins to carbon substrate utilization at the level of mitochondrial fuel choice, electron transport, and metabolite import independent of their cell death regulatory function.
Collapse
Affiliation(s)
- Alfredo Giménez-Cassina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Enhanced stability of Mcl1, a prosurvival Bcl2 relative, blunts stress-induced apoptosis, causes male sterility, and promotes tumorigenesis. Proc Natl Acad Sci U S A 2013; 111:261-6. [PMID: 24363325 DOI: 10.1073/pnas.1321259110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The B-cell CLL/lymphoma 2 (Bcl2) relative Myeloid cell leukemia sequence 1 (Mcl1) is essential for cell survival during development and for tissue homeostasis throughout life. Unlike Bcl2, Mcl1 turns over rapidly, but the physiological significance of its turnover has been unclear. We have gained insight into the roles of Mcl1 turnover in vivo by analyzing mice harboring a modified allele of Mcl1 that serendipitously proved to encode an abnormally stabilized form of Mcl1 due to a 13-aa N-terminal extension. Although the mice developed normally and appeared unremarkable, the homozygous males unexpectedly proved infertile due to defective spermatogenesis, which was evoked by enhanced Mcl1 prosurvival activity. Under unstressed conditions, the modified Mcl1 is present at levels comparable to the native protein, but it is markedly stabilized in cells subjected to stresses, such as protein synthesis inhibition or UV irradiation. Strikingly, the modified Mcl1 allele could genetically complement the loss of Bcl2, because introduction of even a single allele significantly ameliorated the severe polycystic kidney disease and consequent runting caused by Bcl2 loss. Significantly, the development of c-MYC-induced acute myeloid leukemia was also accelerated in mice harboring that Mcl1 allele. Our collective findings reveal that, under certain circumstances, the N terminus of Mcl1 regulates its degradation; that some cell types require degradation of Mcl1 to induce apoptosis; and, most importantly, that rapid turnover of Mcl1 can serve as a tumor-suppressive mechanism.
Collapse
|
21
|
Programming cancer cells for high expression levels of Mcl1. EMBO Rep 2013; 14:328-36. [PMID: 23478333 DOI: 10.1038/embor.2013.20] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 02/11/2013] [Indexed: 01/21/2023] Open
Abstract
The Bcl2 pro-survival protein family has long been recognized for its important contributions to cancer. At elevated levels relative to pro-apoptotic effector members, the survival proteins prevent cancer cells from initiating apoptosis in the face of many intrinsic tumour-suppressing pathways and extrinsic therapeutic treatments aimed at controlling tumorigenesis. Recent studies, including genome-wide analyses, have begun to focus attention on a particularly enigmatic member of the family-myeloid cell leukaemia 1 (Mcl1). For reasons that are not clear, Mcl1 in cancer cells is turned over rapidly, eliminated primarily through the ubiquitin-proteasome pathway. Moreover, the mechanistic aspects of this constitutive membrane-associated protein have not been fully elucidated. As the pro-cancer activity of Mcl1 requires elevated expression levels of the protein, the cancer genome adapts to ensure either high levels of synthesis or evasion of degradation, or both. Here, we focus on the complex strategies at play and their therapeutic implications.
Collapse
|
22
|
Andersen JL, Kornbluth S. The tangled circuitry of metabolism and apoptosis. Mol Cell 2013; 49:399-410. [PMID: 23395270 PMCID: PMC3801185 DOI: 10.1016/j.molcel.2012.12.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/11/2012] [Accepted: 12/26/2012] [Indexed: 12/15/2022]
Abstract
For single-cell organisms, nutrient uptake and metabolism are central to the fundamental decision of whether to grow or divide. In metazoans, cell fate decisions are more complex: organismal homeostasis must be strictly maintained by balancing cell proliferation and death. Despite this increased complexity, cell fate within multicellular organisms is also influenced by metabolism; recent studies, triggered in part by an interest in tumor metabolism, are beginning to illuminate the mechanisms through which proliferation, death, and metabolism are intertwined. In particular, work on Bcl-2 family proteins suggests that the signaling pathways governing metabolism and apoptosis are inextricably linked. Here we review the crosstalk between these pathways, emphasizing recent work that illustrates the emerging dual nature of several core apoptotic proteins in regulating both metabolism and cell death.
Collapse
Affiliation(s)
- Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | |
Collapse
|
23
|
Abstract
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Collapse
|
24
|
McNally MA, Soane L, Roelofs BA, Hartman AL, Hardwick JM. The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion 2013; 13:119-24. [PMID: 23333404 DOI: 10.1016/j.mito.2013.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 12/16/2012] [Accepted: 01/07/2013] [Indexed: 11/26/2022]
Abstract
Anti- and pro-apoptotic Bcl-2 family members regulate the mitochondrial phase of apoptotic cell death. The mitochondrial targeting mechanisms of Bcl-2 family proteins are tightly regulated. Known outer mitochondrial membrane targeting sequences include the C-terminal tail and central helical hairpin. Bcl-xL also localizes to the inner mitochondrial membrane, but these targeting sequences are unknown. Here we investigate the possibility that the N-terminus of Bcl-xL also contains mitochondrial targeting information. Amino acid residues 1-28 of Bcl-xL fused to EGFP are sufficient to target mitochondria. Although positive charges and helical propensity are required for targeting, similar to import sequences the N-terminus is not sufficient for efficient mitochondrial import.
Collapse
Affiliation(s)
- Melanie A McNally
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
25
|
Perciavalle RM, Opferman JT. Delving deeper: MCL-1's contributions to normal and cancer biology. Trends Cell Biol 2012; 23:22-9. [PMID: 23026029 DOI: 10.1016/j.tcb.2012.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
BCL-2 molecules are regulators of programmed cell death and defects in this pathway contribute to human diseases. One family member, MCL-1, is unique because its expression is tightly regulated and it is essential for promoting the survival of myriad cellular lineages. Additionally, MCL-1 promotes the maintenance of normal mitochondrial morphology and energy production. Dissection of these functions revealed recently that they depend on separate mitochondrial sublocalizations. MCL-1's antiapoptotic activity is restricted to the outer mitochondrial membrane (OMM), whereas its function in mitochondrial physiology requires localization to the matrix. These findings provide an attractive model for how MCL-1's diverse functions may contribute to normal cell homeostasis and function. MCL-1 is highly amplified in human cancer, suggesting that these functions may contribute to malignant cell growth and evasion of apoptosis.
Collapse
Affiliation(s)
- Rhonda M Perciavalle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
26
|
Abstract
Bcl-2 family proteins are known to control cell death and influence mitochondrial function. The function of Mcl-1, an anti-apoptotic Bcl-2 protein, is now shown to depend on its subcellular localization. Mcl-1 at the mitochondrial outer membrane inhibits mitochondrial permeabilization to block apoptosis. However, a cleaved form of Mcl-1 localizes to the mitochondrial matrix and controls inner mitochondrial morphology and oxidative phosphorylation, without directly modulating apoptosis.
Collapse
|
27
|
Hardwick JM, Chen YB, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol 2012; 22:318-28. [PMID: 22560661 DOI: 10.1016/j.tcb.2012.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Classical apoptotic cell death is now sufficiently well understood to be interrogated with mathematical modeling and manipulated with targeted drugs for clinical benefit. However, a biological black hole has emerged with the realization that apoptosis regulators are functionally multipolar. BCL-2 family proteins appear to have much greater effects on cells than can be explained by their known roles in apoptosis. Although these effects may be observable simply because the cell is not dead, the general assumption is that BCL-2 proteins have undiscovered biochemical activities. Conversely, these as yet uncharacterized day-jobs also may underlie their profound effects on cell survival, challenging current assumptions about classical apoptosis. Even their sub-mitochondrial localizations remain controversial. Here we attempt to integrate seemingly conflicting information with the prospect that BCL-2 proteins themselves may be the critical crosstalk between life and death.
Collapse
Affiliation(s)
- J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
28
|
Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 2012; 14:575-83. [PMID: 22544066 DOI: 10.1038/ncb2488] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 03/22/2012] [Indexed: 12/13/2022]
Abstract
MCL-1, an anti-apoptotic BCL-2 family member that is essential for the survival of multiple cell lineages, is also among the most highly amplified genes in cancer. Although MCL-1 is known to oppose cell death, precisely how it functions to promote survival of normal and malignant cells is poorly understood. Here, we report that different forms of MCL-1 reside in distinct mitochondrial locations and exhibit separable functions. On the outer mitochondrial membrane, an MCL-1 isoform acts like other anti-apoptotic BCL-2 molecules to antagonize apoptosis, whereas an amino-terminally truncated isoform of MCL-1 that is imported into the mitochondrial matrix is necessary to facilitate normal mitochondrial fusion, ATP production, membrane potential, respiration, cristae ultrastructure and maintenance of oligomeric ATP synthase. Our results provide insight into how the surprisingly diverse salutary functions of MCL-1 may control the survival of both normal and cancer cells.
Collapse
|
29
|
Gores GJ, Kaufmann SH. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev 2012; 26:305-11. [PMID: 22345513 DOI: 10.1101/gad.186189.111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bcl-2, Bcl-x(L), Mcl-1, and A1 are the predominant anti-apoptotic members of the Bcl-2 family in somatic cells. Malignant B lymphocytes are critically dependent on Bcl-2 or Bcl-x(L) for survival. In contrast, a new study by Glaser and colleagues in the January 15, 2012, issue of Genes & Development (pp. 120-125) demonstrates that Mcl-1 is essential for development and survival of acute myelogenous leukemia cells. These results provide new impetus for the generation of selective Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Gregory J Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
30
|
Yang-Yen HF. Does N-terminal processing of Mcl-1 occur at mitochondrial outer membrane or matrix? J Biol Chem 2011; 286:le15; author reply le16. [PMID: 21784866 DOI: 10.1074/jbc.l111.218321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Warr MR, Mills JR, Nguyen M, Lemaire-Ewing S, Baardsnes J, Sun KLW, Malina A, Young JC, Jeyaraju DV, O'Connor-McCourt M, Pellegrini L, Pelletier J, Shore GC. Mitochondrion-dependent N-terminal processing of outer membrane Mcl-1 protein removes an essential Mule/Lasu1 protein-binding site. J Biol Chem 2011; 286:25098-107. [PMID: 21613222 DOI: 10.1074/jbc.m111.218321] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mcl-1, a pro-survival member of the Bcl-2 family located at the mitochondrial outer membrane, is subject to constitutive ubiquitylation by the Bcl-2 homology 3-only E3 ligase, Mule/Lasu1, resulting in rapid steady-state degradation via the proteasome. Insertion of newly synthesized Mcl-1 into the mitochondrial outer membrane is dependent on its C-terminal transmembrane segment, but once inserted, the N terminus of a portion of the Mcl-1 molecules can be subject to proteolytic processing. Remarkably, this processing requires an intact electrochemical potential across the inner membrane. Three lines of evidence directed at the endogenous protein, however, indicate that the resulting Mcl-1ΔN isoform resides in the outer membrane: (i) full-length Mcl-1 and Mcl-1ΔN resist extraction by alkali but are accessible to exogenous protease; (ii) almost the entire populations of Mcl-1 and Mcl-1ΔN are accessible to the membrane-impermeant Cys-reactive agent 4-acetamido-4'-[(iodoacetyl)amino]stilbene-2,2'-disulfonic acid; and (iii) Mcl-1 and Mcl-1ΔN exhibit equivalent chemical cross-linking to Bak in intact mitochondria, an Mcl-1 binding partner located in the outer membrane. In addition to the Mule Bcl-2 homology 3 domain, we show that interaction between Mcl-1 and Mule also requires the extreme N terminus of Mcl-1, which is lacking in Mcl-1ΔN. Thus, Mcl-1ΔN does not interact with Mule, exhibits reduced steady-state ubiquitylation, evades the hyper-rapid steady-state degradation that is observed for full-length Mcl-1 in response to treatments that limit global protein synthesis, and confers resistance to UV stress-induced cell death.
Collapse
Affiliation(s)
- Matthew R Warr
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Overexpression of PAX5 induces apoptosis in multiple myeloma cells. Int J Hematol 2010; 92:451-62. [PMID: 20882442 DOI: 10.1007/s12185-010-0691-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 12/22/2022]
Abstract
PAX5 is an essential transcription factor for the commitment of lymphoid progenitors to the B-lymphocyte lineage. PAX5 suppression results in retrodifferentiation of B lymphocytes to an uncommitted progenitor cell stage, whereas PAX5 suppression in mature B lymphocytes leads to further development into plasma cells. Here, we have analyzed the fate of plasma cell lines following PAX5 reexpression. Human B cell lines were infected with Ad5/F35 adenoviruses encoding either EYFP or PAX5. Expression analysis of specific plasma cell transcription factors (IRF4, Blimp-1 and XBP-1) suggests that PAX5 reexpression does not induce retrodifferentiation of plasma cells into B lymphocytes. Interestingly, the viability of RPMI-8226 and U266 multiple myeloma cell lines markedly declined at 4-7 days post-transduction, whereas other plasma cell lines maintained their viability. Apoptosis analysis through Annexin V measurement also revealed a higher level of apoptosis in PAX5-expressing myeloma cell lines. Finally, Western blot analysis of pro- and anti-apoptotic proteins revealed that the anti-apoptotic protein MCL-1 was down-modulated in PAX5-transduced multiple myeloma cell lines. In conclusion, our results show that the expression of PAX5 in plasma cell lines induces apoptosis exclusively in multiple myelomas. This might represent a potential therapeutic avenue in the treatment of multiple myeloma.
Collapse
|