1
|
Dos Santos Alves EM, de Araújo FWC, Soares PC, da Silva LAR, de Araújo Gonçalves DN, do Nascimento E. Reestablishment of ad libitum feeding following partial food deprivation: Impact on locomotor activity, visceral fat, food intake, and circadian glycemic curve. Chronobiol Int 2024; 41:941-958. [PMID: 38845540 DOI: 10.1080/07420528.2024.2361143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 08/09/2024]
Abstract
Food deprivation has been associated with the development of metabolic pathologies. Few studies have explored the repercussions of a partial food deprivation following the reestablishment of an ad libitum diet. This study investigates the impact of a partial food deprivation (an 8-hour food intake restriction coupled with a 4-hour feeding window during the active phase) and the subsequent return to ad libitum feeding on the glycemic curve, food intake, and locomotor behavior. Wistar rats aged 45 days were subjected to 6 weeks of a partial food deprivation followed by 6 weeks of ad libitum feeding. Body weight, visceral fat, food intake, circadian glycemia, oral glucose tolerance, and locomotor activity were evaluated. It was found that the partial food deprivation resulted in the reduction of both the body weight and food intake; however, it increased visceral fat by 60%. Circadian glycemic values were altered at all intervals during the light phase, and glucose sensitivity improved at 60 minutes in the oral glucose tolerance test (OGTT). In the food-deprived group, the locomotor activity rhythm was reduced, with an observed delay in the peak of activity, reduction in total activity, and a decrease in the rhythmicity percentage. After the reestablishment of the ad libitum feeding, there was recovery of body weight, no difference in visceral fat, normalization of the food intake pattern, circadian glycemia, and oral glucose tolerance. Additionally, the return to ad libitum feeding restored locomotor activity, although the duration required for its complete recovery warrants further investigation. In conclusion, partial food deprivation induces physio-metabolic changes in rats, most of which are reversed after reestablishing ad libitum feeding.
Collapse
Affiliation(s)
- Eryka Maria Dos Santos Alves
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco (UFPE), Cidade Universitaria, Recife, Pernambuco, Brazil
| | | | - Pierre Castro Soares
- Department of Veterinary Medicine, Rural Federal University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Laura Alexia Ramos da Silva
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco (UFPE), Cidade Universitaria, Recife, Pernambuco, Brazil
| | | | - Elizabeth do Nascimento
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco (UFPE), Cidade Universitaria, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
3
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
4
|
Sorokin M, Buzdin AA, Guryanova A, Efimov V, Suntsova MV, Zolotovskaia MA, Koroleva EV, Sekacheva MI, Tkachev VS, Garazha A, Kremenchutckaya K, Drobyshev A, Seryakov A, Gudkov A, Alekseenko IV, Rakitina O, Kostina MB, Vladimirova U, Moisseev A, Bulgin D, Radomskaya E, Shestakov V, Baklaushev VP, Prassolov V, Shegay PV, Li X, Poddubskaya EV, Gaifullin N. Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers. Comput Struct Biotechnol J 2023; 21:3964-3986. [PMID: 37635765 PMCID: PMC10448432 DOI: 10.1016/j.csbj.2023.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.
Collapse
Affiliation(s)
- Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton A. Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Anastasia Guryanova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Victor Efimov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria V. Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena V. Koroleva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Marina I. Sekacheva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Victor S. Tkachev
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | - Andrew Garazha
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | | | - Aleksey Drobyshev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | - Alexander Gudkov
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Irina V. Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", 2, Kurchatov Square, Moscow 123182, Russian
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, Moscow 117198, Russia
| | - Olga Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Maria B. Kostina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Uliana Vladimirova
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Oncobox Ltd., Moscow 121205, Russia
| | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry Bulgin
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Elena Radomskaya
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Viktor Shestakov
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | | | - Vladimir Prassolov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119991, Russia
| | - Petr V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Xinmin Li
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | | | - Nurshat Gaifullin
- Department of Physiology and General Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
5
|
Zhang S, Feng X. Effect of 17β-trenbolone exposure during adolescence on the circadian rhythm in male mice. CHEMOSPHERE 2022; 288:132496. [PMID: 34627821 DOI: 10.1016/j.chemosphere.2021.132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main control area of the clock rhythm in the mammalian brain. It drives daily behaviours and rhythms by synchronizing or suppressing the oscillations of clock genes in peripheral tissue. It is an important brain tissue structure that affects rhythm stability. SCN has high plasticity and is easily affected by the external environment. In this experiment, we found that exposure to the endocrine disruptor 17β-trenbolone (17β-TBOH) affects the rhythmic function of SCN in the brains of adolescent male balb/c mice. Behavioural results showed that exposure to 17β-TBOH disrupted daily activity-rest rhythms, reduced the robustness of endogenous rhythms, altered sleep-wake-related behaviours, and increased the stress to light stimulation. At the cellular level, exposure to 17β-TBOH decreased the c-fos immune response of SCN neurons to the large phase shift, indicating that it affected the coupling ability of SCN neurons. At the molecular level, exposure to 17β-TBOH interfered with the daily expression of hormones, changed the expression levels of the core clock genes and cell communication genes in the SCN, and affected the expression of wake-up genes in the hypothalamus. Finally, we observed the effect of exposure to 17β-TBOH on energy metabolism. The results showed that 17β-TBOH reduced the metabolic response and affected the metabolic function of the liver. This study revealed the influence of environmental endocrine disrupting chemicals (EDCs) on rhythms and metabolic disorders, and provides references for follow-up research.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Littleton ES, Childress ML, Gosting ML, Jackson AN, Kojima S. Genome-wide correlation analysis to identify amplitude regulators of circadian transcriptome output. Sci Rep 2020; 10:21839. [PMID: 33318596 PMCID: PMC7736363 DOI: 10.1038/s41598-020-78851-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-autonomous circadian system, consisting of core clock genes, generates near 24-h rhythms and regulates the downstream rhythmic gene expression. While it has become clear that the percentage of rhythmic genes varies among mouse tissues, it remains unclear how this variation can be generated, particularly when the clock machinery is nearly identical in all tissues. In this study, we sought to characterize circadian transcriptome datasets that are publicly available and identify the critical component(s) involved in creating this variation. We found that the relative amplitude of 13 genes and the average level of 197 genes correlated with the percentage of cycling genes. Of those, the correlation of Rorc in both relative amplitude and the average level was one of the strongest. In addition, the level of Per2AS, a novel non-coding transcript that is expressed at the Period 2 locus, was also linearly correlated, although with a much lesser degree compared to Rorc. Overall, our study provides insight into how the variation in the percentage of clock-controlled genes can be generated in mouse tissues and suggests that Rorc and potentially Per2AS are involved in regulating the amplitude of circadian transcriptome output.
Collapse
Affiliation(s)
- Evan S Littleton
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Madison L Childress
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Michaela L Gosting
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Ayana N Jackson
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Amaike K, Oshima T, Skoulding NS, Toyama Y, Hirota T, Itami K. Small Molecules Modulating Mammalian Biological Clocks: Exciting New Opportunities for Synthetic Chemistry. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Umemura Y, Yagita K. Development of the Circadian Core Machinery in Mammals. J Mol Biol 2020; 432:3611-3617. [DOI: 10.1016/j.jmb.2019.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
|
9
|
Abstract
For many years now a treatment mitigating the debilitating effects of jet lag has been sought. Rapid travel across time zones leads, in most people, to temporary symptoms, in particular poor sleep, daytime alertness and poor performance. Mis-timed circadian rhythms are considered to be the main factor underlying jet-lag symptoms, together with the sleep deprivation from long haul flights. Virtually all aspects of physiology are rhythmic, from cells to systems, and circadian rhythms are coordinated by a central pacemaker or clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN adapts slowly to changes in time zone, and peripheral clocks or oscillators adapt at different rates, such that the organism is in a state of desynchrony from the external environment and internally. Light exposure is the main factor controlling the circadian system and needs to be considered together with any pharmacological interventions. This review covers the relatively new chronobiotic drugs, which can hasten adaptation of the circadian system, together with drugs directly affecting alertness and sleep propensity. No current treatment can instantly shift circadian phase to a new time zone; however, adaptation can be hastened. The melatoninergic drugs are promising but larger trials in real-life situations are needed. For short stopovers it is recommended to preserve sleep and alertness without necessarily modifying the circadian system. New research suggests that modification of clock function via genetic manipulation may one day have clinical applications.
Collapse
Affiliation(s)
- Josephine Arendt
- Faculty of Health and Medical Sciences (FHMS), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
10
|
Saderi N, Báez-Ruiz A, Azuara-Álvarez LE, Escobar C, Salgado-Delgado RC. Differential Recovery Speed of Activity and Metabolic Rhythms in Rats After an Experimental Protocol of Shift-Work. J Biol Rhythms 2019; 34:154-166. [PMID: 30764694 DOI: 10.1177/0748730419828534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The circadian system drives the temporal organization of body physiology in relation to the changing daily environment. Shift-work (SW) disrupts this temporal order and is associated with the loss of homeostasis and metabolic syndrome. In a rodent model of SW based on forced activity in the rest phase for 4 weeks, we describe the occurrence of circadian desynchrony, as well as metabolic and liver dysfunction. To provide better evidence for the impact of altered timing of activity, this study explored how long it takes to recover metabolic rhythms and behavior. Rats were submitted to experimental SW for 4 weeks and then were left to recover for one week. Daily locomotor activity, food intake patterns, serum glucose and triglycerides, and the expression levels of hepatic Pparα, Srebp-1c, Pepck, Bmal1 and Per2 were assessed during the recovery period and were compared with expected data according to a control condition. SW triggered the circadian desynchronization of all of the analyzed parameters. A difference in the time required for realignment was observed among parameters. Locomotor activity achieved the expected phase on day 2, whereas the nocturnal feeding pattern was restored on the sixth recovery day. Daily rhythms of plasma glucose and triglycerides and of Pparα, Pepck and Bmal1 expression in the liver resynchronized on the seventh day, whereas Srebp-1c and Per2 persisted arrhythmic for the entire recovery week. SW does not equally affect behavior and metabolic rhythms, leading to internal desynchrony during the recovery phase.
Collapse
Affiliation(s)
- Nadia Saderi
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Adrián Báez-Ruiz
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Lucia E Azuara-Álvarez
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carolina Escobar
- Departamento de Anatomia, Facultad de Medicina, Universidad Autónoma de Mexico, Distrito Federal, Mexico
| | - Roberto C Salgado-Delgado
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
11
|
Anea CB, Merloiu AM, Fulton DJR, Patel V, Rudic RD. Immunohistochemistry of the circadian clock in mouse and human vascular tissues. ACTA ACUST UNITED AC 2018; 2. [PMID: 30101218 PMCID: PMC6085090 DOI: 10.20517/2574-1209.2018.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim The circadian clock is a molecular network that controls the body
physiological rhythms. In blood vessels, the circadian clock components
modulate vascular remodeling, blood pressure, and signaling. The goal in
this study was to determine the pattern of expression of circadian clock
proteins in the endothelium, smooth muscle, and adventitia of the
vasculature of human and mouse tissues. Methods Immunohistochemistry was performed in frozen sections of mouse aorta,
common carotid artery, femoral artery, lung, and heart at 12 AM and 12 PM
for Bmal1, Clock, Npas2, Per and other clock components. Studies of
expression were also assessed in human saphenous vein both by immunoblotting
and immunohistochemistry. Results In this study, we identified the expression of Bmal1, Clock, Npas,
Per1, Cry1, and accessory clock components by immunohistochemical staining
in the endothelium, smooth muscle and adventitia of the mouse vasculature
with differing temporal and cellular profiles depending on vasculature and
tissue analyzed. The human saphenous vein also exhibited expression of clock
genes that exhibited an oscillatory pattern in Bmal1 and Cry by
immunoblotting. Conclusion These studies show that circadian clock components display
differences in expression and localization throughout the cardiovascular
system, which may confer nuances of circadian clock signaling in a
cell-specific manner.
Collapse
Affiliation(s)
- Ciprian B Anea
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ana M Merloiu
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - David J R Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - R Dan Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
Preußner M, Heyd F. Temperature‐controlled Rhythmic Gene Expression in Endothermic Mammals: All Diurnal Rhythms are Equal, but Some are Circadian. Bioessays 2018; 40:e1700216. [DOI: 10.1002/bies.201700216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Marco Preußner
- Laboratory of RNA BiochemistryInstitute of Chemistry and BiochemistryFreie Universität Berlin Takustrasse 6Berlin14195Germany
| | - Florian Heyd
- Laboratory of RNA BiochemistryInstitute of Chemistry and BiochemistryFreie Universität Berlin Takustrasse 6Berlin14195Germany
| |
Collapse
|
13
|
Maeda K, Kurata H. Long negative feedback loop enhances period tunability of biological oscillators. J Theor Biol 2018; 440:21-31. [PMID: 29253507 DOI: 10.1016/j.jtbi.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022]
Abstract
Oscillatory phenomena play a major role in organisms. In some biological oscillations such as cell cycles and heartbeats, the period can be tuned without significant changes in the amplitude. This property is called (period) tunability, one of the prominent features of biological oscillations. However, how biological oscillators produce tunable oscillations remains largely unexplored. We tackle this question using computational experiments. It has been reported that positive-plus-negative feedback oscillators produce tunable oscillations through the hysteresis-based mechanism. First, in this study, we confirmed that positive-plus-negative feedback oscillators generate tunable oscillations. Second, we found that tunability is positively correlated with the dynamic range of oscillations. Third, we showed that long negative feedback oscillators without any additional positive feedback loops can produce tunable oscillations. Finally, we computationally demonstrated that by lengthening the negative feedback loop, the Repressilator, known as a non-tunable synthetic gene oscillator, can be converted into a tunable oscillator. This work provides synthetic biologists with clues to design tunable gene oscillators.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Frontier Research Academy for Young Researchers, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan; Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
14
|
Kopp R, Martínez IO, Legradi J, Legler J. Exposure to endocrine disrupting chemicals perturbs lipid metabolism and circadian rhythms. J Environ Sci (China) 2017; 62:133-137. [PMID: 29289284 DOI: 10.1016/j.jes.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/15/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A growing body of evidence indicates that exposure to environmental chemicals can contribute to the etiology of obesity by inappropriately stimulating adipogenesis as well as perturbing lipid metabolism and energy balance. One potential mechanism by which chemical exposure can influence lipid metabolism is through disturbance of circadian rhythms, endogenously-driven cycles of roughly 24hr in length that coordinate biochemical, physiological, and behavioral processes in all organisms. Here we show for the first time that exposure to endocrine disrupting compounds (EDCs), including the pesticide tributyltin, two commercial flame retardants, and a UV-filter chemical found in sunscreens, can perturb both circadian clocks and lipid metabolism in vertebrates. Exposure of developing zebrafish to EDCs affects core clock activity and leads to a remarkable increase in lipid accumulation that is reminiscent of the effects observed for longdaysin, a known disruptor of circadian rhythms. Our data reveal a novel obesogenic mechanism of action for environmental chemicals, an observation which warrants further research. Because circadian clocks regulate a wide variety of physiological processes, identification of environmental chemicals capable of perturbing these systems may provide important insights into the development of environmentally-induced metabolic disease.
Collapse
Affiliation(s)
- Renate Kopp
- Institute for Environmental Studies (IVM), VU University Amsterdam, 1081, HV, The Netherlands.
| | - Irene Ozáez Martínez
- Biology and Environmental Toxicology Group, Faculty of Sciences, National Distance Education University, 28015 Madrid, Spain
| | - Jessica Legradi
- Institute for Environmental Studies (IVM), VU University Amsterdam, 1081, HV, The Netherlands
| | - Juliette Legler
- Institute for Environmental Studies (IVM), VU University Amsterdam, 1081, HV, The Netherlands; Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
15
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
16
|
Chen Z, Yoo SH, Takahashi JS. Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems. Annu Rev Pharmacol Toxicol 2017; 58:231-252. [PMID: 28968186 DOI: 10.1146/annurev-pharmtox-010617-052645] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping systems drive oscillatory gene expression to regulate essential cellular and physiological processes. When the systems are perturbed, pathological consequences ensue and disease risks rise. A growing number of small-molecule modulators have been reported to target circadian systems. Such small molecules, identified via high-throughput screening or derivatized from known scaffolds, have shown promise as drug candidates to improve biological timing and physiological outputs in disease models. In this review, we first briefly describe the circadian system, including the core oscillator and the cellular networks. Research progress on clock-modulating small molecules is presented, focusing on development strategies and biological efficacies. We highlight the therapeutic potential of small molecules in clock-related pathologies, including jet lag and shiftwork; various chronic diseases, particularly metabolic disease; and aging. Emerging opportunities to identify and exploit clock modulators as novel therapeutic agents are discussed.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;
| | - Joseph S Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
17
|
Period2 3'-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proc Natl Acad Sci U S A 2017; 114:E8855-E8864. [PMID: 28973913 DOI: 10.1073/pnas.1706611114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3'-UTR region: Per2::Luc, which retains the endogenous Per2 3'-UTR and Per2::LucSV, where the endogenous Per2 3'-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3'-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc Analysis of the Per2 3'-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2::LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3'-UTR, miR-24, and PER2 in Per2 expression and core clock function.
Collapse
|
18
|
Gloston GF, Yoo SH, Chen ZJ. Clock-Enhancing Small Molecules and Potential Applications in Chronic Diseases and Aging. Front Neurol 2017; 8:100. [PMID: 28360884 PMCID: PMC5350099 DOI: 10.3389/fneur.2017.00100] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
Normal physiological functions require a robust biological timer called the circadian clock. When clocks are dysregulated, misaligned, or dampened, pathological consequences ensue, leading to chronic diseases and accelerated aging. An emerging research area is the development of clock-targeting compounds that may serve as drug candidates to correct dysregulated rhythms and hence mitigate disease symptoms and age-related decline. In this review, we first present a concise view of the circadian oscillator, physiological networks, and regulatory mechanisms of circadian amplitude. Given a close association of circadian amplitude dampening and disease progression, clock-enhancing small molecules (CEMs) are of particular interest as candidate chronotherapeutics. A recent proof-of-principle study illustrated that the natural polymethoxylated flavonoid nobiletin directly targets the circadian oscillator and elicits robust metabolic improvements in mice. We describe mood disorders and aging as potential therapeutic targets of CEMs. Future studies of CEMs will shed important insight into the regulation and disease relevance of circadian clocks.
Collapse
Affiliation(s)
- Gabrielle F Gloston
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, TX , USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, TX , USA
| | - Zheng Jake Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, TX , USA
| |
Collapse
|
19
|
Bishehsari F, Levi F, Turek FW, Keshavarzian A. Circadian Rhythms in Gastrointestinal Health and Diseases. Gastroenterology 2016; 151:e1-5. [PMID: 27480174 PMCID: PMC5002365 DOI: 10.1053/j.gastro.2016.07.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Faraz Bishehsari
- Department of Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Francis Levi
- Warwick Medical School, University of Warwick, UK,Cancer Chronotherapy and Post-Operative Liver Team, Institut National de la Santé et de la Recherche Médicale UMRS 935, 94800 Villejuif, France
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL
| | - Ali Keshavarzian
- Department of Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
20
|
Wang Y, Pati P, Xu Y, Chen F, Stepp DW, Huo Y, Rudic RD, Fulton DJR. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species. PLoS One 2016; 11:e0155075. [PMID: 27168152 PMCID: PMC4863972 DOI: 10.1371/journal.pone.0155075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/24/2016] [Indexed: 12/04/2022] Open
Abstract
The circadian clock is a transcriptional network that functions to regulate the expression of genes important in the anticipation of changes in cellular and organ function. Recent studies have revealed that the recognition of pathogens and subsequent initiation of inflammatory responses are strongly regulated by a macrophage-intrinsic circadian clock. We hypothesized that the circadian pattern of gene expression might be influenced by inflammatory stimuli and that loss of circadian function in immune cells can promote pro-inflammatory behavior. To investigate circadian rhythms in inflammatory cells, peritoneal macrophages were isolated from mPer2luciferase transgenic mice and circadian oscillations were studied in response to stimuli. Using Cosinor analysis, we found that LPS significantly altered the circadian period in peritoneal macrophages from mPer2luciferase mice while qPCR data suggested that the pattern of expression of the core circadian gene (Bmal1) was disrupted. Inhibition of TLR4 offered protection from the LPS-induced impairment in rhythm, suggesting a role for toll-like receptor signaling. To explore the mechanisms involved, we inhibited LPS-stimulated NO and superoxide. Inhibition of NO synthesis with L-NAME had no effect on circadian rhythms. In contrast, inhibition of superoxide with Tempol or PEG-SOD ameliorated the LPS-induced changes in circadian periodicity. In gain of function experiments, we found that overexpression of NOX5, a source of ROS, could significantly disrupt circadian function in a circadian reporter cell line (U2OS) whereas iNOS overexpression, a source of NO, was ineffective. To assess whether alteration of circadian rhythms influences macrophage function, peritoneal macrophages were isolated from Bmal1-KO and Per-TKO mice. Compared to WT macrophages, macrophages from circadian knockout mice exhibited altered balance between NO and ROS release, increased uptake of oxLDL and increased adhesion and migration. These results suggest that pro-inflammatory stimuli can disrupt circadian rhythms in macrophages and that impaired circadian rhythms may contribute to cardiovascular diseases by altering macrophage behavior.
Collapse
Affiliation(s)
- Yusi Wang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Paramita Pati
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Yiming Xu
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Feng Chen
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - R. Daniel Rudic
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
- * E-mail: (DF); (RDR)
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
- * E-mail: (DF); (RDR)
| |
Collapse
|
21
|
Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch 2016; 468:983-91. [PMID: 27108448 PMCID: PMC4893061 DOI: 10.1007/s00424-016-1820-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.
Collapse
|
22
|
He B, Nohara K, Park N, Park YS, Guillory B, Zhao Z, Garcia JM, Koike N, Lee CC, Takahashi JS, Yoo SH, Chen Z. The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metab 2016; 23:610-21. [PMID: 27076076 PMCID: PMC4832569 DOI: 10.1016/j.cmet.2016.03.007] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Dysregulation of circadian rhythms is associated with metabolic dysfunction, yet it is unclear whether enhancing clock function can ameliorate metabolic disorders. In an unbiased chemical screen using fibroblasts expressing PER2::Luc, we identified Nobiletin (NOB), a natural polymethoxylated flavone, as a clock amplitude-enhancing small molecule. When administered to diet-induced obese (DIO) mice, NOB strongly counteracted metabolic syndrome and augmented energy expenditure and locomotor activity in a Clock gene-dependent manner. In db/db mutant mice, the clock is also required for the mitigating effects of NOB on metabolic disorders. In DIO mouse liver, NOB enhanced clock protein levels and elicited pronounced gene expression remodeling. We identified retinoid acid receptor-related orphan receptors as direct targets of NOB, revealing a pharmacological intervention that enhances circadian rhythms to combat metabolic disease via the circadian gene network.
Collapse
Affiliation(s)
- Baokun He
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Noheon Park
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yong-Sung Park
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Bobby Guillory
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, and Department of Medicine, and Molecular and Cell Biology, Dan L. Duncan Cancer Center, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jose M Garcia
- Division of Endocrinology, Diabetes and Metabolism, MCL, Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, and Department of Medicine, and Molecular and Cell Biology, Dan L. Duncan Cancer Center, Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Joseph S Takahashi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Mitachi K, Kurosu YE, Hazlett BT, Kurosu M. Oxyma-based phosphates for racemization-free peptide segment couplings. J Pept Sci 2016; 22:186-91. [PMID: 26856693 PMCID: PMC4820766 DOI: 10.1002/psc.2859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/25/2015] [Accepted: 12/27/2015] [Indexed: 12/26/2022]
Abstract
Glyceroacetonide-Oxyma [(2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-cyano-2-(hydroxyimino)acetate (1)] displayed remarkable physico-chemical properties as an additive for peptide-forming reactions. Although racemization-free amide-forming reactions have been established for N-urethane-protected α-amino acids with EDCI, 1, and NaHCO3 in water or DMF-water media, amide-forming reactions of N-acyl-protected α-amino acids and segment couplings of oligopeptides still require further development. Diethylphosphoryl-glyceroacetonide-oxyma (DPGOx 3) exhibits relative stability in aprotic solvents and is an effective coupling reagent for N-acyl-protected α-amino acids and oligo peptide segments. The conditions reported here is also effective in lactam-forming reactions. Unlike most of the reported coupling reagents, simple aqueous work-up procedures can remove the reagents and by-products generated in the reactions.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Yuki E. Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Brandon T. Hazlett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| |
Collapse
|
24
|
Gosak M, Stožer A, Markovič R, Dolenšek J, Marhl M, Rupnik MS, Perc M. The relationship between node degree and dissipation rate in networks of diffusively coupled oscillators and its significance for pancreatic beta cells. CHAOS (WOODBURY, N.Y.) 2015; 25:073115. [PMID: 26232966 DOI: 10.1063/1.4926673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-sustained oscillatory dynamics is a motion along a stable limit cycle in the phase space, and it arises in a wide variety of mechanical, electrical, and biological systems. Typically, oscillations are due to a balance between energy dissipation and generation. Their stability depends on the properties of the attractor, in particular, its dissipative characteristics, which in turn determine the flexibility of a given dynamical system. In a network of oscillators, the coupling additionally contributes to the dissipation, and hence affects the robustness of the oscillatory solution. Here, we therefore investigate how a heterogeneous network structure affects the dissipation rate of individual oscillators. First, we show that in a network of diffusively coupled oscillators, the dissipation is a linearly decreasing function of the node degree, and we demonstrate this numerically by calculating the average divergence of coupled Hopf oscillators. Subsequently, we use recordings of intracellular calcium dynamics in pancreatic beta cells in mouse acute tissue slices and the corresponding functional connectivity networks for an experimental verification of the presented theory. We use methods of nonlinear time series analysis to reconstruct the phase space and calculate the sum of Lyapunov exponents. Our analysis reveals a clear tendency of cells with a higher degree, that is, more interconnected cells, having more negative values of divergence, thus confirming our theoretical predictions. We discuss these findings in the context of energetic aspects of signaling in beta cells and potential risks for pathological changes in the tissue.
Collapse
Affiliation(s)
- Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Marhl
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Matjaž Perc
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
25
|
Nakajima M, Koinuma S, Shigeyoshi Y. Reduction of translation rate stabilizes circadian rhythm and reduces the magnitude of phase shift. Biochem Biophys Res Commun 2015; 464:354-9. [PMID: 26141234 DOI: 10.1016/j.bbrc.2015.06.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
In the intracellular environment, the circadian oscillator is exposed to molecular noise. Nevertheless, cellular rhythms are robust and show almost constant period length for several weeks. To find which molecular processes modulate the stability, we examined the effects of a sublethal dose of inhibitors for processes in the molecular clock. Inhibition of PER1/2 phosphorylation by CKIε/δ led to reduced amplitude and enhancement of damping, suggesting that inhibition of this process destabilized oscillation. In contrast, moderate inhibition of translation led to stabilization of the circadian oscillation. Moreover, inhibition of translation also reduced magnitude of phase shift. These results suggest that some specific molecular processes are crucial for stabilizing the circadian rhythm, and that the molecular clock may be stabilized by optimizing parameters of some crucial processes in the primary negative feedback loop. Moreover, our findings also suggested that rhythm stability is closely associated with phase stability against stimuli.
Collapse
Affiliation(s)
- Masato Nakajima
- Department of Anatomy and Neurobiology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan.
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan.
| |
Collapse
|
26
|
Oshima T, Yamanaka I, Kumar A, Yamaguchi J, Nishiwaki-Ohkawa T, Muto K, Kawamura R, Hirota T, Yagita K, Irle S, Kay SA, Yoshimura T, Itami K. CH Activation Generates Period-Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Lerner I, Bartok O, Wolfson V, Menet JS, Weissbein U, Afik S, Haimovich D, Gafni C, Friedman N, Rosbash M, Kadener S. Clk post-transcriptional control denoises circadian transcription both temporally and spatially. Nat Commun 2015; 6:7056. [PMID: 25952406 DOI: 10.1038/ncomms8056] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/26/2015] [Indexed: 02/08/2023] Open
Abstract
The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.
Collapse
Affiliation(s)
- Immanuel Lerner
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Victoria Wolfson
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Jerome S Menet
- Howard Hughes Medical Institute, Biology Department, Brandeis University, 415 South Street, Waltham, Massachusetts 02451, USA
| | - Uri Weissbein
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Shaked Afik
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Daniel Haimovich
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.,School of Computer Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Chen Gafni
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Nir Friedman
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel.,School of Computer Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| | - Michael Rosbash
- Howard Hughes Medical Institute, Biology Department, Brandeis University, 415 South Street, Waltham, Massachusetts 02451, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, Edmund J. Safra Campus, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
28
|
CH Activation Generates Period-Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angew Chem Int Ed Engl 2015; 54:7193-7. [DOI: 10.1002/anie.201502942] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 01/10/2023]
|
29
|
Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. J Neurosci 2015; 35:1905-20. [PMID: 25653351 DOI: 10.1523/jneurosci.2661-14.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic synaptic transmission plays an important role in resetting and synchronizing circadian rhythms in the suprachiasmatic nucleus (SCN). Although the circadian modulation of intrinsic membrane currents and biochemical signaling have been examined in the SCN, the modulation of specific synaptic pathways within the SCN is unexplored. In addition, little is known about the functional properties of these pathways, including which ones involve GABAA receptors (GABAA-Rs). In brain slices obtained from mice, we examined synaptic responses originating from the SCN neurons expressing vasoactive intestinal peptide (VIP+ neurons). Focusing on the local projection within the ventromedial SCN, we found that VIP+ afferents provided input onto 49% of neurons with a preference for VIP-negative (VIP-) neurons. Responses were mediated by GABAA-Rs. The projection was sparsely connected and preferentially targeted a subset of SCN neurons unrelated to postsynaptic VIP expression. For most aspects of VIP+ network output, there was no circadian regulation. Excitability and spontaneous firing of the presynaptic VIP+ neurons were unchanged between day and night, and their network connectivity and synaptic function up through the evoked synaptic conductance were also unchanged. On the other hand, VIP+ input onto VIP- neurons became less inhibitory at night suggesting a postsynaptic alteration in the coupling of GABAA-R conductances to action potential firing. These data suggest that components of the VIP network and its synaptic output up through GABAA-R opening are invariant during the circadian cycle, but the effect on action potential firing is modulated by postsynaptic processes occurring after GABAA-R channel opening.
Collapse
|
30
|
Nohara K, Yoo SH, Chen Z(J. Manipulating the circadian and sleep cycles to protect against metabolic disease. Front Endocrinol (Lausanne) 2015; 6:35. [PMID: 25852644 PMCID: PMC4369727 DOI: 10.3389/fendo.2015.00035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.
Collapse
Affiliation(s)
- Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng (Jake) Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- *Correspondence: Zheng (Jake) Chen, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.200, Houston, TX 77030, USA e-mail:
| |
Collapse
|
31
|
Miro-Bueno J, Sosík P. Brain clock driven by neuropeptides and second messengers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032705. [PMID: 25314471 DOI: 10.1103/physreve.90.032705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 06/04/2023]
Abstract
The master circadian pacemaker in mammals is localized in a small portion of the brain called the suprachiasmatic nucleus (SCN). It is unclear how the SCN produces circadian rhythms. A common interpretation is that the SCN produces oscillations through the coupling of genetic oscillators in the neurons. The coupling is effected by a network of neuropeptides and second messengers. This network is crucial for the correct function of the SCN. However, models that study a possible oscillatory behavior of the network itself have received little attention. Here we propose and analyze a model to examine this oscillatory potential. We show that an intercellular oscillator emerges in the SCN as a result of the neuropeptide and second messenger dynamics. We find that this intercellular clock can produce circadian rhythms by itself with and without genetic clocks. We also found that the model is robust to perturbation of parameters and can be entrained by light-dark cycles.
Collapse
Affiliation(s)
- Jesus Miro-Bueno
- Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and Science, Silesian University in Opava, 74601 Opava, Czech Republic
| | - Petr Sosík
- Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and Science, Silesian University in Opava, 74601 Opava, Czech Republic and Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Hatori M, Gill S, Mure LS, Goulding M, O'Leary DDM, Panda S. Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. eLife 2014; 3:e03357. [PMID: 25035422 PMCID: PMC4137275 DOI: 10.7554/elife.03357] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The robustness and limited plasticity of the master circadian clock in the suprachiasmatic nucleus (SCN) is attributed to strong intercellular communication among its constituent neurons. However, factors that specify this characteristic feature of the SCN are unknown. Here, we identified Lhx1 as a regulator of SCN coupling. A phase-shifting light pulse causes acute reduction in Lhx1 expression and of its target genes that participate in SCN coupling. Mice lacking Lhx1 in the SCN have intact circadian oscillators, but reduced levels of coupling factors. Consequently, the mice rapidly phase shift under a jet lag paradigm and their behavior rhythms gradually deteriorate under constant condition. Ex vivo recordings of the SCN from these mice showed rapid desynchronization of unit oscillators. Therefore, by regulating expression of genes mediating intercellular communication, Lhx1 imparts synchrony among SCN neurons and ensures consolidated rhythms of activity and rest that is resistant to photic noise. DOI:http://dx.doi.org/10.7554/eLife.03357.001 As anyone who has experienced jet lag can testify, our sleeping pattern is normally synchronized with the local day–night cycle. Nevertheless, if a person is made to live in constant darkness as part of an experiment, they still continue to experience daily changes in their alertness levels. In most individuals, this internal ‘circadian rhythm’ repeats with a period of just over 24 hr, and exposure to light brings it into line with the 24-hr clock. The internal circadian rhythm is generated by a structure deep within the brain called the suprachiasmatic nucleus (SCN), which is essentially the ‘master clock’ of the brain. However, each cell within the SCN also contains its own clock, and can generate rhythmic activity independently of its neighbors. Cross-talk between these cells results in the production of a single circadian rhythm. Now, Hatori et al. have identified the master regulator that controls this cross-talk. When mice living in 24-hr darkness were exposed to an hour of light in the early evening, they showed changes in the levels of proteins associated with many SCN genes. But one gene in particular, known as Lhx1, stood out because it was strongly suppressed by light. Mice with a complete absence of Lhx1 die in the womb. However, mice that lose Lhx1 during embryonic development survive, although they struggle to maintain circadian rhythms when kept in complete darkness. This is not because their SCN cells fail to generate circadian rhythms. Instead, it is because the loss of Lhx1—a transcription factor that controls the expression of many other genes—means that the SCN cells do not produce the proteins they need to synchronize their outputs. As well as identifying a key gene involved in the generation and maintenance of circadian rhythms, Hatori et al. have underlined the importance of cell-to-cell communication in these processes. These insights may ultimately have therapeutic relevance for individuals with sleep disturbances caused by jet lag, shift work or certain sleep disorders. DOI:http://dx.doi.org/10.7554/eLife.03357.002
Collapse
Affiliation(s)
- Megumi Hatori
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Shubhroz Gill
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Ludovic S Mure
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Dennis D M O'Leary
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
33
|
Erkekoglu P, Baydar T. Chronopharmacodynamics of drugs in toxicological aspects: A short review for clinical pharmacists and pharmacy practitioners. J Res Pharm Pract 2014; 1:41-7. [PMID: 24991588 PMCID: PMC4076864 DOI: 10.4103/2279-042x.108369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For many decades, researchers are aware of the importance of circadian rhythm in physiological/biochemical properties and drug metabolism. Chronopharmacology is the study of how the effects of drugs vary with biological timing and endogenous periodicities. It has been attaching substantial attention in the last years. Chronopharmacodynamics mainly deals with the biochemical and physiological effects of drugs on the body, the mechanisms of drug action, the relationship between drug concentration and effect in relation to circadian clock. In this review, we will focus on mammalian circadian pharmacodynamics and discuss new chronotherapy approaches. Moreover, we will try to highlight the chronopharmacodynamics of cardiovascular drugs, anti-cancer drugs, analgesics and non-steroidal anti-inflammatory drugs (NSAIDs) and give some practical concerns for clinical pharmacists and pharmacy practitioners, concerning this issue.
Collapse
Affiliation(s)
- Pinar Erkekoglu
- Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Terken Baydar
- Department of Toxicology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
34
|
Balan R, Suraishkumar GK. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris. Biotechnol Prog 2014; 30:673-80. [PMID: 24692289 DOI: 10.1002/btpr.1909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/12/2014] [Indexed: 11/11/2022]
Abstract
We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm.
Collapse
Affiliation(s)
- Ranjini Balan
- Dept. of Biotechnology, Indian Inst. of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | | |
Collapse
|
35
|
Ramanathan C, Xu H, Khan SK, Shen Y, Gitis PJ, Welsh DK, Hogenesch JB, Liu AC. Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet 2014; 10:e1004244. [PMID: 24699442 PMCID: PMC3974647 DOI: 10.1371/journal.pgen.1004244] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/02/2014] [Indexed: 12/02/2022] Open
Abstract
In animals, circadian rhythms in physiology and behavior result from coherent rhythmic interactions between clocks in the brain and those throughout the body. Despite the many tissue specific clocks, most understanding of the molecular core clock mechanism comes from studies of the suprachiasmatic nuclei (SCN) of the hypothalamus and a few other cell types. Here we report establishment and genetic characterization of three cell-autonomous mouse clock models: 3T3 fibroblasts, 3T3-L1 adipocytes, and MMH-D3 hepatocytes. Each model is genetically tractable and has an integrated luciferase reporter that allows for longitudinal luminescence recording of rhythmic clock gene expression using an inexpensive off-the-shelf microplate reader. To test these cellular models, we generated a library of short hairpin RNAs (shRNAs) against a panel of known clock genes and evaluated their impact on circadian rhythms. Knockdown of Bmal1, Clock, Cry1, and Cry2 each resulted in similar phenotypes in all three models, consistent with previous studies. However, we observed cell type-specific knockdown phenotypes for the Period and Rev-Erb families of clock genes. In particular, Per1 and Per2, which have strong behavioral effects in knockout mice, appear to play different roles in regulating period length and amplitude in these peripheral systems. Per3, which has relatively modest behavioral effects in knockout mice, substantially affects period length in the three cellular models and in dissociated SCN neurons. In summary, this study establishes new cell-autonomous clock models that are of particular relevance to metabolism and suitable for screening for clock modifiers, and reveals previously under-appreciated cell type-specific functions of clock genes. Various aspects of our daily rhythms in physiology and behavior such as the sleep-wake cycle are regulated by endogenous circadian clocks that are present in nearly every cell. It is generally accepted that these oscillators share a similar biochemical negative feedback mechanism, consisting of transcriptional activators and repressors. In this study, we developed cell-autonomous, metabolically relevant clock models in mouse hepatocytes and adipocytes. Each clock model has an integrated luciferase reporter that allows for kinetic luminescence recording with an inexpensive microplate reader and thus is feasible for most laboratories. These models are amenable to high throughput screening of small molecules or genomic entities for impacts on cell-autonomous clocks relevant to metabolism. We validated these new models by RNA interference via lentivirus-mediated knockdown of known clock genes. As expected, we found that many core clock components have similar functions across cell types. To our surprise, however, we also uncovered previously under-appreciated cell type-specific functions of core clock genes, particularly Per1, Per2, and Per3. Because the circadian system is integrated with, and influenced by, the local physiology that is under its control, our studies provide important implications for future studies into cell type-specific mechanisms of various circadian systems.
Collapse
Affiliation(s)
- Chidambaram Ramanathan
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Haiyan Xu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Sanjoy K. Khan
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Yang Shen
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Paula J. Gitis
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Center for Chronobiology, University of California, San Diego, La Jolla, California, United States of America
| | - David K. Welsh
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Center for Chronobiology, University of California, San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - John B. Hogenesch
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Andrew C. Liu
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
- Feinstone Genome Research Center, University of Memphis, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
36
|
Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster. PLoS Genet 2014; 10:e1004252. [PMID: 24698952 PMCID: PMC3974645 DOI: 10.1371/journal.pgen.1004252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/05/2014] [Indexed: 01/04/2023] Open
Abstract
Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK) and CYCLE (CYC) initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60%) or strongly (90%) without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain. Circadian clocks allow organisms to predict daily environmental changes. These clocks time the sleep/wake cycles and many other physiological and cellular pathways to 24hs rhythms. The current model states that circadian clocks keep time by the use of biochemical feedback loops. These feedback loops are responsible for the generation of high amplitude oscillations in gene expression. Abolishment of circadian transcriptional oscillations has been shown to abolish circadian function. Previous studies addressing this issue utilize manipulations in which the abolishment of the transcriptional oscillations is very dramatic and involves strong up or down-regulation of circadian genes. In this study we generated fruit flies in which we diminished the amplitude of circadian oscillations in a controlled way. We found that a decrease of more than 50% in the amplitude of circadian oscillations leads to impaired function of circadian physiological outputs in the periphery but does not significantly affect circadian behavior. This suggests that the clock in the brain has a specific compensatory mechanism. Moreover, we found that flies with reduced oscillation and impaired circadian neuronal communication display aberrant circadian rhythms. These finding support the idea of network buffering mechanisms that allows the brain to produce circadian rhythms even with low amplitude molecular oscillations.
Collapse
|
37
|
Erzberger A, Hampp G, Granada AE, Albrecht U, Herzel H. Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range. J R Soc Interface 2013; 10:20130221. [PMID: 23676895 DOI: 10.1098/rsif.2013.0221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light-dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light-dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates.
Collapse
Affiliation(s)
- A Erzberger
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| | | | | | | | | |
Collapse
|
38
|
Perez-Aso M, Feig JL, Mediero A, Aránzazu M, Cronstein BN. Adenosine A2A receptor and TNF-α regulate the circadian machinery of the human monocytic THP-1 cells. Inflammation 2013; 36:152-62. [PMID: 22923002 PMCID: PMC3553238 DOI: 10.1007/s10753-012-9530-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Morning stiffness and increased symptoms of inflammatory arthritis are among the most common manifestations of rheumatoid arthritis (RA). Tumor necrosis alpha (TNF-α), an important mediator of inflammation in RA, regulates the circadian expression of clock proteins, and adenosine A(2A) receptors (A(2A)R) mediate many of the anti-inflammatory and antirheumatic actions of methotrexate, the cornerstone drug in the treatment of RA. We found that A(2A)R activation and TNF-α activated the clock core loop of the human monocytic THP-1 cell line. We further observed that interleukin (IL)-10, but not IL-12, mRNA expression fluctuates in a circadian fashion and that TNF-α and A(2A)R stimulation combined increased IL-10 expression. Interestingly, TNF-α, but not CGS21680, dramatically inhibited IL-12 mRNA expression. The demonstration that A(2A)R and TNF-α regulate the intrinsic circadian clock in immune cells provides an explanation for both the pathologic changes in circadian rhythms in RA and for the adverse circadian effects of methotrexate, such as fatigue.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
39
|
Circadian Clocks, Food Intake, and Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:105-35. [DOI: 10.1016/b978-0-12-396971-2.00005-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Tsang AH, Sánchez-Moreno C, Bode B, Rossner MJ, Garaulet M, Oster H. Tissue-Specific Interaction of Per1/2 and Dec2 in the Regulation of Fibroblast Circadian Rhythms. J Biol Rhythms 2012; 27:478-89. [DOI: 10.1177/0748730412462838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In mammals, the molecular circadian clockwork is comprised of interlocked transcriptional-translational feedback loops (TTLs). Three Period ( Per1-3) and 2 Dec ( Dec1/2) genes interact in regulating the activity of the transcriptional activators CLOCK/NPAS2 and BMAL1. While deletion of Per1 and Per2 in mice results in behavioral arrhythmicity, Dec deletion has less dramatic effects on activity rhythms, affecting primarily phase of entrainment and free-running period. In intact animals, clock gene mutant phenotypes are often masked due to intercellular coupling mechanisms that stabilize cellular rhythms. Therefore, to study Per/Dec genetic interaction at the cellular level, we isolated fibroblasts from different tissues of Per1, Per2, and Dec2 single and double mutant mice. We show that in the cellular TTL, Pers and Dec2 act in a principally synergistic way, but tissue-specific differences in this interaction are seen. A rescue of rhythmicity in Per2 mutant cells after additional deletion of Dec2 was observed, indicating that in the absence of Per2, DEC2 destabilizes TTL function. Rhythm power in Per1/Dec2 and Per2/Dec2 double mutants was strongly reduced, suggesting that interaction of Dec2 with both Per genes is important for stabilizing clock period. Contrary to what was observed for behavior, nonsynergistic effects of Dec2 and Per1/2 mutations were observed on cellular clock phase regulation that do not correlate with period effects. Our data reveal cell type-specific interactions of Per1/2 and Dec2 in the regulation of period, phase, and rhythm sustainment, emphasizing the differential organization of the mammalian clock machinery in different tissues.
Collapse
Affiliation(s)
| | | | - Brid Bode
- Circadian Rhythms Group, Göttingen, Germany
| | | | - Marta Garaulet
- Department of Physiology, Faculty of Biology, University of Murcia, Spain
| | - Henrik Oster
- Circadian Rhythms Group, Göttingen, Germany
- Medical Department I, University of Lübeck, Germany
| |
Collapse
|
41
|
Granados-Fuentes D, Herzog ED. The clock shop: coupled circadian oscillators. Exp Neurol 2012; 243:21-7. [PMID: 23099412 DOI: 10.1016/j.expneurol.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
Abstract
Daily rhythms in neural activity underlie circadian rhythms in sleep-wake and other daily behaviors. The cells within the mammalian suprachiasmatic nucleus (SCN) are intrinsically capable of 24-h timekeeping. These cells synchronize with each other and with local environmental cycles to drive coherent rhythms in daily behaviors. Recent studies have identified a small number of neuropeptides critical for this ability to synchronize and sustain coordinated daily rhythms. This review highlights the roles of specific intracellular and intercellular signals within the SCN that underlie circadian synchrony.
Collapse
|
42
|
Ramanathan C, Khan SK, Kathale ND, Xu H, Liu AC. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters. J Vis Exp 2012:4234. [PMID: 23052244 DOI: 10.3791/4234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
Collapse
|
43
|
Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 2012; 74:706-18. [PMID: 22632728 DOI: 10.1016/j.neuron.2012.02.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2012] [Indexed: 11/22/2022]
Abstract
Circadian rhythms offer an excellent opportunity to dissect the neural circuits underlying innate behavior because the genes and neurons involved are relatively well understood. We first sought to understand how Drosophila clock neurons interact in the simple circuit that generates circadian rhythms in larval light avoidance. We used genetics to manipulate two groups of clock neurons, increasing or reducing excitability, stopping their molecular clocks, and blocking neurotransmitter release and reception. Our results revealed that lateral neurons (LN(v)s) promote and dorsal clock neurons (DN(1)s) inhibit light avoidance, these neurons probably signal at different times of day, and both signals are required for rhythmic behavior. We found that similar principles apply in the more complex adult circadian circuit that generates locomotor rhythms. Thus, the changing balance in activity between clock neurons with opposing behavioral effects generates robust circadian behavior and probably helps organisms transition between discrete behavioral states, such as sleep and wakefulness.
Collapse
|
44
|
Goldbeter A, Gérard C, Gonze D, Leloup JC, Dupont G. Systems biology of cellular rhythms. FEBS Lett 2012; 586:2955-65. [PMID: 22841722 DOI: 10.1016/j.febslet.2012.07.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 12/22/2022]
Abstract
Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.
Collapse
Affiliation(s)
- A Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Abstract
The antidiuretic hormone vasopressin (VP) promotes water reabsorption from the kidney and levels of circulating VP are normally related linearly to plasma osmolality, aiming to maintain the latter close to a predetermined set point. Interestingly, VP levels rise also in the absence of an increase in osmolality during late sleep in various mammals, including rats and humans. This circadian rhythm is functionally important because the absence of a late night VP surge results in polyuria and disrupts sleep in humans. Previous work has indicated that the VP surge may be caused by facilitation of the central processes mediating the osmotic control of VP release, and the mechanism by which this occurs was recently studied in angled slices of rat hypothalamus that preserve intact network interactions between the suprachiasmatic nucleus (SCN; the biological clock), the organum vasculosum lamina terminalis (OVLT; the central osmosensory nucleus) and the supraoptic nucleus (SON; which contains VP-releasing neurohypophysial neurones). These studies confirmed that the electrical activity of SCN clock neurones is higher during the middle sleep period (MSP) than during the late sleep period (LSP). Moreover, they revealed that the excitation of SON neurones caused by hyperosmotic stimulation of the OVLT was greater during the LSP than during the MSP. Activation of clock neurones by repetitive electrical stimulation, or by injection of glutamate into the SCN, caused a presynaptic inhibition of glutamatergic synapses made between the axon terminals of OVLT neurones and SON neurones. Consistent with this effect, activation of clock neurones with glutamate also reduced the excitation of SON neurones caused by hyperosmotic stimulation of the OVLT. These results suggest that clock neurones in the SCN can mediate an increase in VP release through a disinhibition of excitatory synapses between the OVLT and the SON during the LSP.
Collapse
Affiliation(s)
- E Trudel
- Centre for Research in Neuroscience, McGill University and Montreal General Hospital, Montreal, Canada
| | | |
Collapse
|
46
|
Leise TL, Wang CW, Gitis PJ, Welsh DK. Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2::LUC bioluminescence. PLoS One 2012; 7:e33334. [PMID: 22479387 PMCID: PMC3315561 DOI: 10.1371/journal.pone.0033334] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
Biological oscillators naturally exhibit stochastic fluctuations in period and amplitude due to the random nature of molecular reactions. Accurately measuring the precision of noisy oscillators and the heterogeneity in period and strength of rhythmicity across a population of cells requires single-cell recordings of sufficient length to fully represent the variability of oscillations. We found persistent, independent circadian oscillations of clock gene expression in 6-week-long bioluminescence recordings of 80 primary fibroblast cells dissociated from PER2::LUC mice and kept in vitro for 6 months. Due to the stochastic nature of rhythmicity, the proportion of cells appearing rhythmic increases with the length of interval examined, with 100% of cells found to be rhythmic when using 3-week windows. Mean period and amplitude are remarkably stable throughout the 6-week recordings, with precision improving over time. For individual cells, precision of period and amplitude are correlated with cell size and rhythm amplitude, but not with period, and period exhibits much less cycle-to-cycle variability (CV 7.3%) than does amplitude (CV 37%). The time series are long enough to distinguish stochastic fluctuations within each cell from differences among cells, and we conclude that the cells do exhibit significant heterogeneity in period and strength of rhythmicity, which we measure using a novel statistical metric. Furthermore, stochastic modeling suggests that these single-cell clocks operate near a Hopf bifurcation, such that intrinsic noise enhances the oscillations by minimizing period variability and sustaining amplitude.
Collapse
Affiliation(s)
- Tanya L Leise
- Department of Mathematics, Amherst College, Amherst, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
47
|
Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light. Neuroscience 2011; 197:65-71. [DOI: 10.1016/j.neuroscience.2011.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/31/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
|
48
|
Circadian pacemakers: how clock properties relate to their cellular properties. Curr Biol 2011; 21:R894-6. [PMID: 22075431 DOI: 10.1016/j.cub.2011.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Circadian (~24 hour) pacemaking mechanisms exist within single cells. Which cellular properties contrive to produce a precise clockworks, and which cell properties are downstream of it? The literature is conflicted as to whether membrane excitability contributes to the mechanism. Now, a new conditional genetic strategy argues excitability is largely dispensable.
Collapse
|
49
|
McWatters HG, Devlin PF. Timing in plants - A rhythmic arrangement. FEBS Lett 2011; 585:1474-84. [DOI: 10.1016/j.febslet.2011.03.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/14/2011] [Accepted: 03/23/2011] [Indexed: 12/16/2022]
|