1
|
Chen C, Ma Y, Zuo L, Xiao Y, Jiang Y, Gao J. The CALCINEURIN B-LIKE 4/CBL-INTERACTING PROTEIN 3 module degrades repressor JAZ5 during rose petal senescence. PLANT PHYSIOLOGY 2023; 193:1605-1620. [PMID: 37403193 PMCID: PMC10517193 DOI: 10.1093/plphys/kiad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Flower senescence is genetically regulated and developmentally controlled. The phytohormone ethylene induces flower senescence in rose (Rosa hybrida), but the underlying signaling network is not well understood. Given that calcium regulates senescence in animals and plants, we explored the role of calcium in petal senescence. Here, we report that the expression of calcineurin B-like protein 4 (RhCBL4), which encodes a calcium receptor, is induced by senescence and ethylene signaling in rose petals. RhCBL4 interacts with CBL-interacting protein kinase 3 (RhCIPK3), and both positively regulate petal senescence. Furthermore, we determined that RhCIPK3 interacts with the jasmonic acid response repressor jasmonate ZIM-domain 5 (RhJAZ5). RhCIPK3 phosphorylates RhJAZ5 and promotes its degradation in the presence of ethylene. Our results reveal that the RhCBL4-RhCIPK3-RhJAZ5 module mediates ethylene-regulated petal senescence. These findings provide insights into flower senescence, which may facilitate innovations in postharvest technology for extending rose flower longevity.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yue Xiao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Angulo M, García MJ, Alcántara E, Pérez-Vicente R, Romera FJ. Comparative Study of Several Fe Deficiency Responses in the Arabidopsis thaliana Ethylene Insensitive Mutants ein2-1 and ein2-5. PLANTS (BASEL, SWITZERLAND) 2021; 10:262. [PMID: 33573082 PMCID: PMC7912600 DOI: 10.3390/plants10020262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants since it participates in essential processes such as photosynthesis, respiration and nitrogen assimilation. Fe is an abundant element in most soils, but its availability for plants is low, especially in calcareous soils. Fe deficiency causes Fe chlorosis, which can affect the productivity of the affected crops. Plants favor Fe acquisition by developing morphological and physiological responses in their roots. Ethylene (ET) and nitric oxide (NO) have been involved in the induction of Fe deficiency responses in dicot (Strategy I) plants, such as Arabidopsis. In this work, we have conducted a comparative study on the development of subapical root hairs, of the expression of the main Fe acquisition genes FRO2 and IRT1, and of the master transcription factor FIT, in two Arabidopsis thaliana ET insensitive mutants, ein2-1 and ein2-5, affected in EIN2, a critical component of the ET transduction pathway. The results obtained show that both mutants do not induce subapical root hairs either under Fe deficiency or upon treatments with the ET precursor 1-aminocyclopropane-1-carboxylate (ACC) and the NO donor S-nitrosoglutathione (GSNO). By contrast, both of them upregulate the Fe acquisition genes FRO2 and IRT1 (and FIT) under Fe deficiency. However, the upregulation was different when the mutants were exposed to ET [ACC and cobalt (Co), an ET synthesis inhibitor] and GSNO treatments. All these results clearly support the participation of ET and NO, through EIN2, in the regulation of subapical root hairs and Fe acquisition genes. The results will be discussed, taking into account the role of both ET and NO in the regulation of Fe deficiency responses.
Collapse
Affiliation(s)
- Macarena Angulo
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain; (M.A.); (E.A.); (F.J.R.)
| | - María José García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain;
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain; (M.A.); (E.A.); (F.J.R.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain; (M.A.); (E.A.); (F.J.R.)
| |
Collapse
|
3
|
Lee HJ, Park JS, Shin SY, Kim SG, Lee G, Kim HS, Jeon JH, Cho HS. Submergence deactivates wound-induced plant defence against herbivores. Commun Biol 2020; 3:651. [PMID: 33159149 PMCID: PMC7648080 DOI: 10.1038/s42003-020-01376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
Flooding is a common and critical disaster in agriculture, because it causes defects in plant growth and even crop loss. An increase in herbivore populations is often observed after floods, which leads to additional damage to the plants. Although molecular mechanisms underlying the plant responses to flooding have been identified, how plant defence systems are affected by flooding remains poorly understood. Herein, we show that submergence deactivates wound-induced defence against herbivore attack in Arabidopsis thaliana. Submergence rapidly suppressed the wound-induced expression of jasmonic acid (JA) biosynthesis genes, resulting in reduced JA accumulation. While plants exposed to hypoxia in argon gas exhibited similar reduced wound responses, the inhibitory effects were initiated after short-term submergence without signs for lack of oxygen. Instead, expression of ethylene-responsive genes was increased after short-term submergence. Blocking ethylene signalling by ein2-1 mutation partially restored suppressed expression of several wound-responsive genes by submergence. In addition, submergence rapidly removed active markers of histone modifications at a gene locus involved in JA biosynthesis. Our findings suggest that submergence inactivates defence systems of plants, which would explain the proliferation of herbivores after flooding. Hyo-Jun Lee et al. show that submergence in Arabidopsis deactivates wound-induced defence against herbivore attack by suppressing the expression of jasmonic acid biosynthesis genes and increasing expression of ethylene-responsive genes. These results shed light on how flooding may impact plant defence systems.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
4
|
Muñoz P, Munné-Bosch S. Oxylipins in plastidial retrograde signaling. Redox Biol 2020; 37:101717. [PMID: 32979794 PMCID: PMC7511966 DOI: 10.1016/j.redox.2020.101717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxylipins (compounds derived from the oxidation of polyunsaturated fatty acids) are essential in retrograde signaling emanating from plastids to the nucleus during plant developmental and stress responses. In this graphical review, we provide an overview of the chemical structure, biosynthesis and role of oxylipins, as both redox and hormonal signals, in controlling plant development and stress responses. We also briefly summarize current gaps in the understanding of the involvement of oxylipins in plastidial retrograde signaling to highlight future avenues for research.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
6
|
Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, Wang F, Ma N, Li Y. RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. HORTICULTURE RESEARCH 2019; 6:131. [PMID: 31814984 PMCID: PMC6885062 DOI: 10.1038/s41438-019-0221-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 05/27/2023]
Abstract
Rose (Rosa hybrida) plants are major ornamental species worldwide, and their commercial value greatly depends on their open flowers, as both the quality of fully open petals and long vase life are important. Petal senescence can be started and accelerated by various hormone signals, and ethylene is considered an accelerator of petal senescence in rose. To date, however, the underlying mechanism of signaling crosstalk between ethylene and other hormones such as JA in petal senescence remains largely unknown. Here, we isolated RhMYB108, an R2R3-MYB transcription factor, which is highly expressed in senescing petals as well as in petals treated with exogenous ethylene and JA. Applications of exogenous ethylene and JA markedly accelerated petal senescence, while the process was delayed in response to applications of 1-MCP, an ethylene action inhibitor. In addition, silencing of RhMYB108 alter the expression of SAGs such as RhNAC029, RhNAC053, RhNAC092, RhSAG12, and RhSAG113, and finally block ethylene- and JA-induced petal senescence. Furthermore, RhMYB108 was identified to target the promoters of RhNAC053, RhNAC092, and RhSAG113. Our results reveal a model in which RhMYB108 functions as a receptor of ethylene and JA signals to modulate the onset of petal senescence by targeting and enhancing senescence-associated gene expression.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Qingcui Zhao
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Daxing Zeng
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Jiehua Xu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| | - Hougao Zhou
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Fenglan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510642 China
| | - Nan Ma
- China Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yonghong Li
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong 518055 China
- Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055 Guangdong China
| |
Collapse
|
7
|
Schubert R, Grunewald S, von Sivers L, Hause B. Effects of Jasmonate on Ethylene Function during the Development of Tomato Stamens. PLANTS 2019; 8:plants8080277. [PMID: 31405001 PMCID: PMC6724093 DOI: 10.3390/plants8080277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022]
Abstract
The phenotype of the tomato mutant jasmonate-insensitive1-1 (jai1-1) mutated in the JA-Ile co-receptor COI1 demonstrates JA function in flower development, since it is female-sterile. In addition, jai1-1 exhibits a premature anther dehydration and pollen release, being in contrast to a delayed anther dehiscence in the JA-insensitive Arabidopsis mutant coi1-1. The double mutant jai1-1 Never ripe (jai1-1 Nr), which is in addition insensitive to ethylene (ET), showed a rescue of the jai1-1 phenotype regarding pollen release. This suggests that JA inhibits a premature rise in ET to prevent premature stamen desiccation. To elucidate the interplay of JA and ET in more detail, stamen development in jai1-1 Nr was compared to wild type, jai1-1 and Nr regarding water content, pollen vitality, hormone levels, and accumulation of phenylpropanoids and transcripts encoding known JA- and ET-regulated genes. For the latter, RT-qPCR based on nanofluidic arrays was employed. The data showed that additional prominent phenotypic features of jai1-1, such as diminished water content and pollen vitality, and accumulation of phenylpropanoids were at least partially rescued by the ET-insensitivity. Hormone levels and accumulation of transcripts were not affected. The data revealed that strictly JA-regulated processes cannot be rescued by ET-insensitivity, thereby emphasizing a rather minor role of ET in JA-regulated stamen development.
Collapse
Affiliation(s)
- Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Stephan Grunewald
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Lea von Sivers
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany.
| |
Collapse
|
8
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
9
|
Sundaresan S, Philosoph-Hadas S, Ma C, Jiang CZ, Riov J, Mugasimangalam R, Kochanek B, Salim S, Reid MS, Meir S. The Tomato Hybrid Proline-rich Protein regulates the abscission zone competence to respond to ethylene signals. HORTICULTURE RESEARCH 2018; 5:28. [PMID: 29872533 PMCID: PMC5981600 DOI: 10.1038/s41438-018-0033-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/04/2023]
Abstract
The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Present Address: Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Chao Ma
- Department of Plant Sciences, University of California, Davis, CA USA
- Present Address: Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA USA
- Crops Pathology & Genetic Research Unit, USDA-ARS, Davis, CA USA
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. Ltd, Bangalore, India
| | - Betina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Michael S. Reid
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| |
Collapse
|
10
|
Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1361-1369. [PMID: 28201612 DOI: 10.1093/jxb/erx004] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Plants are challenged with numerous abiotic stresses, such as drought, cold, heat, and salt stress. These environmental stresses are major causes of crop failure and reduced yields worldwide. Phytohormones play essential roles in regulating various plant physiological processes and alleviating stressful perturbations. Jasmonate (JA), a group of oxylipin compounds ubiquitous in the plant kingdom, acts as a crucial signal to modulate multiple plant processes. Recent studies have shown evidence supporting the involvement of JA in leaf senescence and tolerance to cold stress. Concentrations of JA are much higher in senescent leaves compared with those in non-senescent ones. Treatment with exogenous JA induces leaf senescence and expression of senescence-associated genes. In response to cold stress, exogenous application of JA enhances Arabidopsis freezing tolerance with or without cold acclimation. Consistently, biosynthesis of endogenous JA is activated in response to cold exposure. JA positively regulates the CBF (C-REPEAT BINDING FACTOR) transcriptional pathway to up-regulate downstream cold-responsive genes and ultimately improve cold tolerance. JA interacts with other hormone signaling pathways (such as auxin, ethylene, and gibberellin) to regulate leaf senescence and tolerance to cold stress. In this review, we summarize recent studies that have provided insights into JA-mediated leaf senescence and cold-stress tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
11
|
Szyrajew K, Bielewicz D, Dolata J, Wójcik AM, Nowak K, Szczygieł-Sommer A, Szweykowska-Kulinska Z, Jarmolowski A, Gaj MD. MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:18. [PMID: 28167951 PMCID: PMC5253390 DOI: 10.3389/fpls.2017.00018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 05/06/2023]
Abstract
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190 genes of the 114 MIRNA families was monitored during SE induction and the levels of the primary (pri-miRNAs) transcripts vs. the mature miRNAs were investigated. The results revealed that the majority (98%) of the MIR genes were active and that most of them (64%) were differentially expressed during SE. A distinct attribute of the MIR expression in SE was the strong repression of MIR transcripts at the early stage of SE followed by their significant up-regulation in the advanced stage of SE. Comparison of the mature miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of miRNA is associated with SE induction. Candidate miRNA molecules of the assumed function in the embryogenic response were identified among the mature miRNAs that had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164, miR166, miR169, miR319, miR390, miR393, miR396, and miR398. Consistent with the central role of phytohormones and stress factors in SE induction, the functions of the candidate miRNAs were annotated to phytohormone and stress responses. To confirm the functions of the candidate miRNAs in SE, the expression patterns of the mature miRNAs and their presumed targets were compared and regulatory relation during SE was indicated for most of the analyzed miRNA-target pairs. The results of the study contribute to the refinement of the miRNA-controlled regulatory pathways that operate during embryogenic induction in plants and provide a valuable platform for the identification of the genes that are targeted by the candidate miRNAs in SE induction.
Collapse
Affiliation(s)
- Katarzyna Szyrajew
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Małgorzata D. Gaj
| |
Collapse
|
12
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
13
|
Llanes A, Andrade A, Alemano S, Luna V. Alterations of Endogenous Hormonal Levels in Plants under Drought and Salinity. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.79129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Gao Y, Liu C, Li X, Xu H, Liang Y, Ma N, Fei Z, Gao J, Jiang CZ, Ma C. Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family Gene RhIAA16 Involved in Petal Shedding in Rose. FRONTIERS IN PLANT SCIENCE 2016; 7:1375. [PMID: 27695465 PMCID: PMC5023668 DOI: 10.3389/fpls.2016.01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 05/18/2023]
Abstract
Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission.
Collapse
Affiliation(s)
- Yuerong Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Chun Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Xiaodong Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Haiqian Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Yue Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research ServiceIthaca, NY, USA
- Boyce Thompson InstituteIthaca, NY, USA
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research ServiceDavis, CA, USA
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
- *Correspondence: Chao Ma, Cai-Zhong Jiang,
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
- *Correspondence: Chao Ma, Cai-Zhong Jiang,
| |
Collapse
|
15
|
Dobritzsch S, Weyhe M, Schubert R, Dindas J, Hause G, Kopka J, Hause B. Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses. BMC Biol 2015; 13:28. [PMID: 25895675 PMCID: PMC4443647 DOI: 10.1186/s12915-015-0135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1. RESULTS Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release. CONCLUSIONS Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Collapse
Affiliation(s)
- Susanne Dobritzsch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Martin Weyhe
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Ramona Schubert
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| | - Julian Dindas
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
- Present address: Department of Botany I, University of Würzburg, Julius-von-Sachs-Platz 2, D97082, Würzburg, Germany.
| | - Gerd Hause
- Martin Luther University Halle Wittenberg, Biocenter, Electron Microscopy, Weinbergweg 22, D06120, Halle, Germany.
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D14476, Potsdam, (OT) Golm, Germany.
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120, Halle, Germany.
| |
Collapse
|
16
|
Sundaresan S, Philosoph-Hadas S, Riov J, Belausov E, Kochanek B, Tucker ML, Meir S. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1355-68. [PMID: 25504336 PMCID: PMC4339595 DOI: 10.1093/jxb/eru483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Horticulture, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| | - Betina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan 5025001, Israel
| |
Collapse
|
17
|
Kim J, Chang C, Tucker ML. To grow old: regulatory role of ethylene and jasmonic acid in senescence. FRONTIERS IN PLANT SCIENCE 2015; 6:20. [PMID: 25688252 PMCID: PMC4310285 DOI: 10.3389/fpls.2015.00020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
Senescence, the final stage in the development of an organ or whole plant, is a genetically programmed process controlled by developmental and environmental signals. Age-related signals underlie the onset of senescence in specific organs (leaf, flower, and fruit) as well as the whole plant (monocarpic senescence). Rudimentary to most senescence processes is the plant hormone ethylene, a small gaseous molecule critical to diverse processes throughout the life of the plant. The role of ethylene in senescence was discovered almost 100 years ago, but the molecular mechanisms by which ethylene regulates senescence have been deciphered more recently primarily through genetic and molecular studies in Arabidopsis. Jasmonic acid (JA), another plant hormone, is emerging as a key player in the control of senescence. The regulatory network of ethylene and JA involves the integration of transcription factors, microRNAs, and other hormones. In this review, we summarize the current understanding of ethylene's role in senescence, and discuss the interplay of ethylene with JA in the regulation of senescence.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- *Correspondence: Joonyup Kim and Mark L. Tucker, Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, 10300 Baltimore Avenue, Building 006, Room 212, BARC-WEST, Beltsville, MD 20705, USA e-mail: ;
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, USA
- *Correspondence: Joonyup Kim and Mark L. Tucker, Soybean Genomics and Improvement Laboratory, United States Department of Agriculture–Agricultural Research Service, 10300 Baltimore Avenue, Building 006, Room 212, BARC-WEST, Beltsville, MD 20705, USA e-mail: ;
| |
Collapse
|
18
|
Curaba J, Singh MB, Bhalla PL. miRNAs in the crosstalk between phytohormone signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1425-38. [PMID: 24523503 DOI: 10.1093/jxb/eru002] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phytohormones are signal molecules produced within the plant that control its growth and development through the regulation of gene expression. Interaction between different phytohormone pathways is essential in coordinating tissue outgrowth in response to environmental changes, such as the adaptation of root development to water deficit or the initiation of seed germination during imbibition. Recently, microRNAs (miRNAs) have emerged as key regulators of phytohormone response pathways in planta by affecting their metabolism, distribution, and perception. Here we review current knowledge on the miRNA-mediated regulations involved in phytohormone crosstalk. We focus on the miRNAs exhibiting regulatory links with more than one phytohormone pathway and discuss their possible implication in coordinating multiple phytohormone responses during specific developmental processes.
Collapse
Affiliation(s)
- Julien Curaba
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
19
|
Kim J. Four shades of detachment: regulation of floral organ abscission. PLANT SIGNALING & BEHAVIOR 2014; 9:e976154. [PMID: 25482787 PMCID: PMC4623469 DOI: 10.4161/15592324.2014.976154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Abscission of floral organs from the main body of a plant is a dynamic process that is developmentally and environmentally regulated. In the past decade, genetic studies in Arabidopsis have identified key signaling components and revealed their interactions in the regulation of floral organ abscission. The phytohormones jasmonic acid (JA) and ethylene play critical roles in flower development and floral organ abscission. These hormones regulate the timing of floral organ abscission both independently and inter-dependently. Although significant progress has been made in understanding abscission signaling, there are still many unanswered questions. These include considering abscission in the context of reproductive development and interplay between hormones embedded in the developmental processes. This review summarizes recent advances in the identification of molecular components in Arabidopsis and discusses their relationship with reproductive development. The emerging roles of hormones in the regulation of floral organ abscission, particularly by JA and ethylene, are examined.
Collapse
Key Words
- AGL15, AGAMOUS-LIKE 15
- AOS/DDE2, ALLENE OXIDE SYNTHASE/DELAYED DEHISCENCE 2
- ARF-GAP, ADP-ribosylation factor-GTPase activating protein
- AZ, abscission zone
- BOP1/2, BLADE ON PETIOLE 1/2
- BTP/POZ, Broad-Complex, Tramtrack, and Bric-a-brac/Pox virus and Zinc finger
- CST, CAST AWAY RECEPTOR-LIKE KINASE
- CTR1, CONSTITUTIVE TRIPLE RESPONSE 1
- DAB4/ COI1, DELAYED ABSCISSION 4/CORONATINE INSENSITIVE 1
- DAD1, DEFECTIVE ANTHER DEHISCENCE 1
- DDE1/OPR3, DELAYED DEHISCENCE 1/OXOPHYTODIENOATE-REDUCTASE 3
- EVR, EVERSHED RECEPTOR-LIKE KINASE
- EXP, EXPANSIN
- FAD7/8/3, FATTY ACID DESATURASE 7/8/3
- FYF, FOREVER YOUNG FLOWER
- HAE/HSL2, HAESA/HAESA-LIKE 2
- IM, inflorescence meristem
- JA, jasmonic acid
- JAZ, JASMONATE-ZIM DOMAIN
- KNAT1, KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1
- LOX3/4, LIPOXYGENASE 3/4
- LRR, leucine-rich repeat
- MAPK3/6, MAP Kinase 3/6
- MKK4/5, MAP Kinase Kinase 4/5
- NEV, NEVERSHED
- NPR1, NONEXPRESSOR OF PR GENES 1
- PG , POLYGALATURONASE
- PR1, Pathogenesis-related Protein 1
- SERK1, SOMATIC EMBRYO RECEPTOR-LIKE KIASE 1
- TCP4, TEOSINTE BRANCHED/CYCLOIDEA/PCF4
- XTH , XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE
- ein2-1, ethylene insensitive 2-1
- ethylene
- etr1-1, ethylene response1-1
- floral organ abscission
- flower senescence
- ida, inflorescence deficient in abscission
- inflorescence meristem
- jasmonic acid
- reproductive development
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory; Agricultural Research Service; USDA; Beltsville, MD USA
- Correspondence to: Joonyup Kim;
| |
Collapse
|
20
|
Kim J, Dotson B, Rey C, Lindsey J, Bleecker AB, Binder BM, Patterson SE. New clothes for the jasmonic acid receptor COI1: delayed abscission, meristem arrest and apical dominance. PLoS One 2013; 8:e60505. [PMID: 23573263 PMCID: PMC3613422 DOI: 10.1371/journal.pone.0060505] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
In a screen for delayed floral organ abscission in Arabidopsis, we have identified a novel mutant of CORONATINE INSENSITIVE 1 (COI1), the F-box protein that has been shown to be the jasmonic acid (JA) co-receptor. While JA has been shown to have an important role in senescence, root development, pollen dehiscence and defense responses, there has been little focus on its critical role in floral organ abscission. Abscission, or the detachment of organs from the main body of a plant, is an essential process during plant development and a unique type of cell separation regulated by endogenous and exogenous signals. Previous studies have indicated that auxin and ethylene are major plant hormones regulating abscission; and here we show that regulation of floral organ abscission is also controlled by jasmonic acid in Arabidopsis thaliana. Our characterization of coi1-1 and a novel allele (coi1-37) has also revealed an essential role in apical dominance and floral meristem arrest. In this study we provide genetic evidence indicating that delayed abscission 4 (dab4-1) is allelic to coi1-1 and that meristem arrest and apical dominance appear to be evolutionarily divergent functions for COI1 that are governed in an ecotype-dependent manner. Further characterizations of ethylene and JA responses of dab4-1/coi1-37 also provide new information suggesting separate pathways for ethylene and JA that control both floral organ abscission and hypocotyl growth in young seedlings. Our study opens the door revealing new roles for JA and its interaction with other hormones during plant development.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bradley Dotson
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, United States of America
| | - Camila Rey
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joshua Lindsey
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Anthony B. Bleecker
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sara E. Patterson
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|