1
|
Yen L, Henao-Díaz A, Zimmerman J, Giménez-Lirola L. Considerations on the stability of IgG antibody in clinical specimens. J Vet Diagn Invest 2024:10406387241296848. [PMID: 39673476 PMCID: PMC11645686 DOI: 10.1177/10406387241296848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
The 1890s marked a significant milestone with the introduction of antibody-based agglutination and precipitation assays, revolutionizing the detection of bacterial pathogens in both animals and humans. This era also witnessed pivotal contributions to our understanding of humoral immunity, as researchers elucidated the structure and functions of antibody molecules, laying the groundwork for diagnostic applications. Among antibody isotypes, IgG is of paramount importance in diagnostic investigations given its definitive indication of infection or vaccination, coupled with its widespread presence and detectability across various specimen types, such as serum, colostrum, milk, oral fluids, urine, feces, and tissue exudate. Despite their resilience, immunoglobulins are susceptible to structural alterations induced by physicochemical and enzymatic processes, which can compromise the reliability of their detection. Here we review comprehensively the historical milestones, underlying mechanisms, and influencing factors (e.g., temperature, pH, storage) that shape the structural integrity and stability of IgG antibodies in aqueous solutions and various clinical specimens.
Collapse
Affiliation(s)
- Lu Yen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alexandra Henao-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- Pig Improvement Company México, Santiago de Querétaro, Querétaro, México
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Luis Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Yu G, Zhao Q, Bi X, Wang J. DDAffinity: predicting the changes in binding affinity of multiple point mutations using protein 3D structure. Bioinformatics 2024; 40:i418-i427. [PMID: 38940145 PMCID: PMC11211828 DOI: 10.1093/bioinformatics/btae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION Mutations are the crucial driving force for biological evolution as they can disrupt protein stability and protein-protein interactions which have notable impacts on protein structure, function, and expression. However, existing computational methods for protein mutation effects prediction are generally limited to single point mutations with global dependencies, and do not systematically take into account the local and global synergistic epistasis inherent in multiple point mutations. RESULTS To this end, we propose a novel spatial and sequential message passing neural network, named DDAffinity, to predict the changes in binding affinity caused by multiple point mutations based on protein 3D structures. Specifically, instead of being on the whole protein, we perform message passing on the k-nearest neighbor residue graphs to extract pocket features of the protein 3D structures. Furthermore, to learn global topological features, a two-step additive Gaussian noising strategy during training is applied to blur out local details of protein geometry. We evaluate DDAffinity on benchmark datasets and external validation datasets. Overall, the predictive performance of DDAffinity is significantly improved compared with state-of-the-art baselines on multiple point mutations, including end-to-end and pre-training based methods. The ablation studies indicate the reasonable design of all components of DDAffinity. In addition, applications in nonredundant blind testing, predicting mutation effects of SARS-CoV-2 RBD variants, and optimizing human antibody against SARS-CoV-2 illustrate the effectiveness of DDAffinity. AVAILABILITY AND IMPLEMENTATION DDAffinity is available at https://github.com/ak422/DDAffinity.
Collapse
Affiliation(s)
- Guanglei Yu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830017, China
| | - Qichang Zhao
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Xuehua Bi
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830017, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| |
Collapse
|
3
|
Kang ES, Kim NH, Lim HK, Jeon H, Han K, No YH, Kim K, Khaleel ZH, Shin D, Eom K, Nam J, Lee BS, Kim HJ, Suh M, Lee J, Thach TT, Hyun J, Kim YH. Structure-Guided Engineering of Thermodynamically Enhanced SaCas9 for Improved Gene Suppression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404680. [PMID: 38944889 DOI: 10.1002/adma.202404680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Proteins with multiple domains play pivotal roles in various biological processes, necessitating a thorough understanding of their structural stability and functional interplay. Here, a structure-guided protein engineering approach is proposed to develop thermostable Cas9 (CRISPR-associated protein 9) variant for CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference applications. By employing thermodynamic analysis, combining distance mapping and molecular dynamics simulations, deletable domains are identified to enhance stability while preserving the DNA recognition function of Cas9. The resulting engineered Cas9, termed small and dead form Cas9, exhibits improved thermostability and maintains target DNA recognition function. Cryo-electron microscopy analysis reveals structural integrity with reduced atomic density in the deleted domain. Fusion with functional elements enables intracellular delivery and nuclear localization, demonstrating efficient gene suppression in diverse cell types. Direct delivery in the mouse brain shows enhanced knockdown efficiency, highlighting the potential of structure-guided engineering to develop functional CRISPR systems tailored for specific applications. This study underscores the significance of integrating computational and experimental approaches for protein engineering, offering insights into designing tailored molecular tools for precise biological interventions.
Collapse
Affiliation(s)
- Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Kyoung Lim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeyeon Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kayoung Han
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young Hyun No
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyungtae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Dongsun Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiyoung Nam
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bok-Soo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han-Joo Kim
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
| | - Minah Suh
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- KIST-SKKU Brain Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Huang X, Li W, Cao X, Zhang Q, Lin Y, Xu S, Dong X, Liu P, Liu Y, He G, Luo K, Feng S. Generation and characterization of a nanobody against the avian influenza virus H7 subtype. Int J Biol Macromol 2024; 267:131458. [PMID: 38593899 DOI: 10.1016/j.ijbiomac.2024.131458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Avian influenza virus (AIV) H7N9 diseases have been recently reported, raising concerns about a potential pandemic. Thus, there is an urgent need for effective therapeutics for AIV H7N9 infections. Herein, camelid immunization and yeast two-hybrid techniques were used to identify potent neutralizing nanobodies (Nbs) targeting the H7 subtype hemagglutinin. First, we evaluated the binding specificity and hemagglutination inhibition activity of the screened Nbs against the H7 subtype hemagglutinin. Nb-Z77, with high hemagglutination inhibition activity was selected from the screened Nbs to optimize the yeast expression conditions and construct oligomeric forms of Nb-Z77 using various ligation methods. The oligomers Nb-Z77-DiGS, Nb-Z77-TriGS, Nb-Z77-Fc and Nb-Z77-Foldon were successfully constructed and expressed. Nb-Z77-DiGS and Nb-Z77-Foldon exhibited considerably greater activity than did Nb-Z77 against H7 subtype hemagglutinin, with median effective concentrations of 384.7 and 27.33 pM and binding affinity values of 213 and 5.21 pM, respectively. Nb-Z77-DiGS and Nb-Z77-Foldon completely inhibited the hemagglutination activity of the inactivated virus H7-Re1 at the lowest concentration of 0.938 μg/mL. This study screened a strain of Nb with high hemagglutination inhibition activity and enhanced its antiviral activity through oligomerization, which may have great potential for developing effective agents for the prevention, diagnosis, and treatment of AIV H7 subtype infection.
Collapse
Affiliation(s)
- Xiuqin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuewei Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yizhen Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinying Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peiqi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ge He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Advances in antibody-based therapy in oncology. NATURE CANCER 2023; 4:165-180. [PMID: 36806801 DOI: 10.1038/s43018-023-00516-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/10/2023] [Indexed: 02/22/2023]
Abstract
Monoclonal antibodies are a growing class of targeted cancer therapeutics, characterized by exquisite specificity, long serum half-life, high affinity and immune effector functions. In this review, we outline key advances in the field with a particular focus on recent and emerging classes of engineered antibody therapeutic candidates, discuss molecular structure and mechanisms of action and provide updates on clinical development and practice.
Collapse
|
6
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
7
|
Jia L, Jain M, Sun Y. Improving antibody thermostability based on statistical analysis of sequence and structural consensus data. Antib Ther 2022; 5:202-210. [PMID: 35967906 PMCID: PMC9372885 DOI: 10.1093/abt/tbac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The use of Monoclonal Antibodies (MAbs) as therapeutics has been increasing over the past 30 years due to their high specificity and strong affinity towards the target. One of the major challenges towarding their use as drugs is their low thermostability, which impacts both efficacy as well as manufacturing and delivery.
Methods
To aid the design of thermally more stable mutants, consensus sequence-based method has been widely used. These methods typically have a success rate of about 50% with maximum melting temperature increment ranging from 10 to 32 °C. In order to improve the prediction performance, we have developed a new and fast MAbs specific method by adding a 3D structural layer to the consensus sequence method. This is done by analyzing the close-by residue pairs which are conserved in more than eight hundred MAbs’ 3D structures.
Results
Combining consensus sequence and structural residue pair covariance methods, we developed an in-house application for predicting human MAb thermostability to guide protein engineers to design stable molecules. Major advantage of this structural level assessment is in significantly reducing the false positives by almost half from the consensus sequence method alone. This application has shown success in designing MAb engineering panels in multiple biologics programs.
Conclusions
Our data science-based method shows impacts in Mab engineering.
Collapse
Affiliation(s)
- Lei Jia
- Discovery Research , Amgen, Thousand Oaks, CA, USA
| | - Mani Jain
- Discovery Research , Amgen, Thousand Oaks, CA, USA
| | - Yaxiong Sun
- Discovery Research , Amgen, Thousand Oaks, CA, USA
| |
Collapse
|
8
|
Bunc M, Hadži S, Graf C, Bončina M, Lah J. Aggregation Time Machine: A Platform for the Prediction and Optimization of Long-Term Antibody Stability Using Short-Term Kinetic Analysis. J Med Chem 2022; 65:2623-2632. [PMID: 35090111 PMCID: PMC8842250 DOI: 10.1021/acs.jmedchem.1c02010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Monoclonal antibodies
are the fastest growing class of therapeutics.
However, aggregation limits their shelf life and can lead to adverse
immune responses. Assessment and optimization of the long-term antibody
stability are therefore key challenges in the biologic drug development.
Here, we present a platform based on the analysis of temperature-dependent
aggregation data that can dramatically shorten the assessment of the
long-term aggregation stability and thus accelerate the optimization
of antibody formulations. For a set of antibodies used in the therapeutic
areas from oncology to rheumatology and osteoporosis, we obtain an
accurate prediction of aggregate fractions for up to three years using
the data obtained on a much shorter time scale. Significantly, the
strategy combining kinetic and thermodynamic analysis not only contributes
to a better understanding of the molecular mechanisms of antibody
aggregation but has already proven to be very effective in the development
and production of biological therapeutics.
Collapse
Affiliation(s)
- Marko Bunc
- Technical Research and Development, Global Drug Development, Novartis, Lek d.d., 1234 Mengeš, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - San Hadži
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Christian Graf
- Technical Research and Development, Global Drug Development, Novartis, Hexal AG, 82041 Oberhaching, Germany
| | - Matjaž Bončina
- Technical Research and Development, Global Drug Development, Novartis, Lek d.d., 1234 Mengeš, Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Ikeuchi E, Kuroda D, Nakakido M, Murakami A, Tsumoto K. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain V HH antibodies. Sci Rep 2021; 11:20624. [PMID: 34663870 PMCID: PMC8523659 DOI: 10.1038/s41598-021-98977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
The high binding affinities and specificities of antibodies have led to their use as drugs and biosensors. Single-domain VHH antibodies exhibit high specificity and affinity but have higher stability and solubility than conventional antibodies as they are single-domain proteins. In this work, based on physicochemical measurements and molecular dynamics (MD) simulations, we have gained insight that will facilitate rational design of single-chain VHH antibodies. We first assessed two homologous VHH antibodies by differential scanning calorimetry (DSC); one had a high (64.8 °C) and the other a low (58.6 °C) melting temperature. We then generated a series of the variants of the low stability antibody and analyzed their thermal stabilities by DSC and characterized their structures through MD simulations. We found that a single mutation that resulted in 8.2 °C improvement in melting temperature resulted in binding affinity an order of magnitude lower than the parent antibody, likely due to a shift of conformational space explored by the single-chain VHH antibody. These results suggest that the delicate balance among conformational stability, binding capability, and conformational space explored by antibodies must be considered in design of fully functional single-chain VHH antibodies.
Collapse
Affiliation(s)
- Emina Ikeuchi
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Panasonic Corporation Technology Division, Kyoto, 619-0237, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akikazu Murakami
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan. .,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan. .,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
10
|
Nilvebrant J, Ereño-Orbea J, Gorelik M, Julian MC, Tessier PM, Julien JP, Sidhu SS. Systematic Engineering of Optimized Autonomous Heavy-Chain Variable Domains. J Mol Biol 2021; 433:167241. [PMID: 34508727 DOI: 10.1016/j.jmb.2021.167241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023]
Abstract
Autonomous heavy-chain variable (VH) domains are the smallest functional antibody fragments, and they possess unique features, including small size and convex paratopes, which provide enhanced targeting of concave epitopes that are difficult to access with larger conventional antibodies. However, human VH domains have evolved to fold and function with a light chain partner, and alone, they typically suffer from low stability and high aggregation propensity. Development of autonomous human VH domains, in which aggregation propensity is reduced without compromising antigen recognition, has proven challenging. Here, we used an autonomous human VH domain as a scaffold to construct phage-displayed synthetic libraries in which aspartate was systematically incorporated at different paratope positions. In selections, the library yielded many anti-EphA1 receptor VH domains, which were characterized in detail. Structural analyses of a parental anti-EphA1 VH domain and an improved variant provided insights into the effects of aspartate and other substitutions on preventing aggregation while retaining function. Our naïve libraries and in vitro selection procedures offer a systematic approach to generating highly functional autonomous human VH domains that resist aggregation and could be used for basic research and biomedical applications.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Maryna Gorelik
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Mark C Julian
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Departments of Chemical Engineering, Pharmaceutical Sciences, and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
11
|
Peptide Inhibitors of Vascular Endothelial Growth Factor A: Current Situation and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091337. [PMID: 34575413 PMCID: PMC8467741 DOI: 10.3390/pharmaceutics13091337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the family of extracellular signaling proteins involved in the processes of angiogenesis. VEGFA overexpression and altered regulation of VEGFA signaling pathways lead to pathological angiogenesis, which contributes to the progression of various diseases, such as age-related macular degeneration and cancer. Monoclonal antibodies and decoy receptors have been extensively used in the anti-angiogenic therapies for the neutralization of VEGFA. However, multiple side effects, solubility and aggregation issues, and the involvement of compensatory VEGFA-independent pro-angiogenic mechanisms limit the use of the existing VEGFA inhibitors. Short chemically synthesized VEGFA binding peptides are a promising alternative to these full-length proteins. In this review, we summarize anti-VEGFA peptides identified so far and discuss the molecular basis of their inhibitory activity to highlight their pharmacological potential as anti-angiogenic drugs.
Collapse
|
12
|
Sarfati H, Naftaly S, Papo N, Keasar C. Predicting mutant outcome by combining deep mutational scanning and machine learning. Proteins 2021; 90:45-57. [PMID: 34293212 DOI: 10.1002/prot.26184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 06/01/2021] [Accepted: 07/11/2021] [Indexed: 02/02/2023]
Abstract
Deep mutational scanning provides unprecedented wealth of quantitative data regarding the functional outcome of mutations in proteins. A single experiment may measure properties (eg, structural stability) of numerous protein variants. Leveraging the experimental data to gain insights about unexplored regions of the mutational landscape is a major computational challenge. Such insights may facilitate further experimental work and accelerate the development of novel protein variants with beneficial therapeutic or industrially relevant properties. Here we present a novel, machine learning approach for the prediction of functional mutation outcome in the context of deep mutational screens. Using sequence (one-hot) features of variants with known properties, as well as structural features derived from models thereof, we train predictive statistical models to estimate the unknown properties of other variants. The utility of the new computational scheme is demonstrated using five sets of mutational scanning data, denoted "targets": (a) protease specificity of APPI (amyloid precursor protein inhibitor) variants; (b-d) three stability related properties of IGBPG (immunoglobulin G-binding β1 domain of streptococcal protein G) variants; and (e) fluorescence of GFP (green fluorescent protein) variants. Performance is measured by the overall correlation of the predicted and observed properties, and enrichment-the ability to predict the most potent variants and presumably guide further experiments. Despite the diversity of the targets the statistical models can generalize variant examples thereof and predict the properties of test variants with both single and multiple mutations.
Collapse
Affiliation(s)
- Hagit Sarfati
- Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Si Naftaly
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Chen Keasar
- Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
13
|
Ohshita N, Motoyama K, Iohara D, Hirayama F, Taharabaru T, Watabe N, Kawabata Y, Onodera R, Higashi T. Polypseudorotaxane-based supramolecular hydrogels consisting of cyclodextrins and Pluronics as stabilizing agents for antibody drugs. Carbohydr Polym 2021; 256:117419. [PMID: 33483011 DOI: 10.1016/j.carbpol.2020.117419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
Recently, antibody drugs have been used worldwide, and based on worldwide sales, 7 of the top 10 pharmaceutical products in 2019 were antibody-based drugs. However, antibody drugs often form aggregates upon thermal and shaking stresses with few efficient stabilizing agents against both stresses. Herein, we developed polypseudorotaxane (PpRX) hydrogels consisting of cyclodextrins (CyDs) and polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG block copolymers (Pluronics F108, F87, F68, and L44), and evaluated their utility as antibody stabilizing agents. α- and γ-CyDs formed PpRX hydrogels with Pluronics, where CyD/F108 gels showed remarkable stabilizing effects for human immunoglobulin G (IgG) against both thermal and shaking stresses beyond CyD/PEG gels or generic gels. The effects were probably due to the interaction between IgG and the free PPG block of Pluronic F108, resulting in the strong IgG retention in the gels. These findings suggest the great potential of CyD/Pluronic gels as pharmaceutical materials for antibody formulations.
Collapse
Affiliation(s)
- Naoko Ohshita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Watabe
- Renishaw plc. 4-29-8 Yotsuya, Shinjuku-ku, Tokyo 160-0004, Japan
| | - Youhei Kawabata
- Renishaw plc. 4-29-8 Yotsuya, Shinjuku-ku, Tokyo 160-0004, Japan; Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
14
|
Deal CE, Carfi A, Plante OJ. Advancements in mRNA Encoded Antibodies for Passive Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9020108. [PMID: 33572679 PMCID: PMC7910832 DOI: 10.3390/vaccines9020108] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Monoclonal antibodies are the fastest growing therapeutic class in medicine today. They hold great promise for a myriad of indications, including cancer, allergy, autoimmune and infectious diseases. However, the wide accessibility of these therapeutics is hindered by manufacturing and purification challenges that result in high costs and long lead times. Efforts are being made to find alternative ways to produce and deliver antibodies in more expedient and cost-effective platforms. The field of mRNA has made significant progress in the last ten years and has emerged as a highly attractive means of encoding and producing any protein of interest in vivo. Through the natural role of mRNA as a transient carrier of genetic information for translation into proteins, in vivo expression of mRNA-encoded antibodies offer many advantages over recombinantly produced antibodies. In this review, we examine both preclinical and clinical studies that demonstrate the feasibility of mRNA-encoded antibodies and discuss the remaining challenges ahead.
Collapse
|
15
|
Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. J Biol Chem 2021; 296:100334. [PMID: 33508322 PMCID: PMC7949129 DOI: 10.1016/j.jbc.2021.100334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic light chain (AL) amyloidosis is a fatal protein misfolding disease in which excessive secretion, misfolding, and subsequent aggregation of free antibody light chains eventually lead to deposition of amyloid plaques in various organs. Patient-specific mutations in the antibody VL domain are closely linked to the disease, but the molecular mechanisms by which certain mutations induce misfolding and amyloid aggregation of antibody domains are still poorly understood. Here, we compare a patient VL domain with its nonamyloidogenic germline counterpart and show that, out of the five mutations present, two of them strongly destabilize the protein and induce amyloid fibril formation. Surprisingly, the decisive, disease-causing mutations are located in the highly variable complementarity determining regions (CDRs) but exhibit a strong impact on the dynamics of conserved core regions of the patient VL domain. This effect seems to be based on a deviation from the canonical CDR structures of CDR2 and CDR3 induced by the substitutions. The amyloid-driving mutations are not necessarily involved in propagating fibril formation by providing specific side chain interactions within the fibril structure. Rather, they destabilize the VL domain in a specific way, increasing the dynamics of framework regions, which can then change their conformation to form the fibril core. These findings reveal unexpected influences of CDR-framework interactions on antibody architecture, stability, and amyloid propensity.
Collapse
|
16
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Micro-Heterogeneity of Antibody Molecules. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:1-26. [PMID: 34687006 DOI: 10.1007/978-3-030-76912-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) are mostly of the IgG class and constitute highly efficacious biopharmaceuticals for a wide range of clinical indications. Full-length IgG mAbs are large proteins that are subject to multiple posttranslational modifications (PTMs) during biosynthesis, purification, or storage, resulting in micro-heterogeneity. The production of recombinant mAbs in nonhuman cell lines may result in loss of structural fidelity and the generation of variants having altered stability, biological activities, and/or immunogenic potential. Additionally, even fully human therapeutic mAbs are of unique specificity, by design, and, consequently, of unique structure; therefore, structural elements may be recognized as non-self by individuals within an outbred human population to provoke an anti-therapeutic/anti-drug antibody (ATA/ADA) response. Consequently, regulatory authorities require that the structure of a potential mAb drug product is comprehensively characterized employing state-of-the-art orthogonal analytical technologies; the PTM profile may define a set of critical quality attributes (CQAs) for the drug product that must be maintained, employing quality by design parameters, throughout the lifetime of the drug. Glycosylation of IgG-Fc, at Asn297 on each heavy chain, is an established CQA since its presence and fine structure can have a profound impact on efficacy and safety. The glycoform profile of serum-derived IgG is highly heterogeneous while mAbs produced in mammalian cells in vitro is less heterogeneous and can be "orchestrated" depending on the cell line employed and the culture conditions adopted. Thus, the gross structure and PTM profile of a given mAb, established for the drug substance gaining regulatory approval, have to be maintained for the lifespan of the drug. This review outlines our current understanding of common PTMs detected in mAbs and endogenous IgG and the relationship between a variant's structural attribute and its impact on clinical performance.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
17
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Wallace AL, Schneider MI, Toomey JR, Schneider RM, Klempner MS, Wang Y, Cavacini LA. IgA as a potential candidate for enteric monoclonal antibody therapeutics with improved gastrointestinal stability. Vaccine 2020; 38:7490-7497. [PMID: 33041102 PMCID: PMC7604562 DOI: 10.1016/j.vaccine.2020.09.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Mucosal surfaces of the gastrointestinal tract play an important role in immune homeostasis and defense and may be compromised by enteric disorders or infection. Therapeutic intervention using monoclonal antibody (mAb) offers the potential for treatment with minimal off-target effects as well as the possibility of limited systemic exposure when administered orally. Critically, to achieve efficacy at luminal surfaces, mAb must remain stable and functionally active in the gastrointestinal environment. To better understand the impact of isotype, class, and molecular structure on the intestinal stability of recombinant antibodies, we used an in vitro simulated intestinal fluid (SIF) assay to evaluate a panel of antibody candidates for enteric mAb-based therapeutics. Recombinant IgG1 was the least stable following SIF incubation, while the stability of IgA generally increased upon polymerization, with subtle differences between subclasses. Notably, patterns of variability within and between mAbs suggest that variable regions contribute to mAb stability and potentially mediate mAb susceptibility to proteases. Despite relatively rapid degradation in SIF, mAbs targeting Enterotoxigenic Escherichia coli (ETEC) displayed functional activity following SIF treatment, with SIgA1 showing improved function compared to SIgA2. The results of this study have implications for the design of enteric therapeutics and subsequent selection of lead candidates based upon in vitro intestinal stability assessments.
Collapse
Affiliation(s)
- Aaron L Wallace
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| | - Matthew I Schneider
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| | - Jacqueline R Toomey
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| | - Ryan M Schneider
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| | - Mark S Klempner
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| | - Lisa A Cavacini
- MassBiologics of the University of Massachusetts Medical School, 460 Walk Hill St., Mattapan, MA 02126, USA.
| |
Collapse
|
19
|
Kuroda D, Tsumoto K. Engineering Stability, Viscosity, and Immunogenicity of Antibodies by Computational Design. J Pharm Sci 2020; 109:1631-1651. [DOI: 10.1016/j.xphs.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
|
20
|
Hutton ARJ, McCrudden MTC, Larrañeta E, Donnelly RF. Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics. J Mater Chem B 2020; 8:4202-4209. [PMID: 32292995 DOI: 10.1039/d0tb00021c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a view to improve the current monoclonal antibody-based therapies dominating the pharmaceutical market, low molecular weight (MW) protein-based macromolecules, such as recombinant antibody fragments, typically within the range of 10-70 kDa, have been developed. Previously, our group successfully delivered Avastin®, a monoclonal antibody (mAb) across the skin using hydrogel-forming microneedles (MN). However, it is thought that this delivery system can be further enhanced using novel, lower MW biomolecules. To address this perception, in the current study, FITC-dextran of different MWs (10, 70 and 150 kDa) was used to model the transdermal delivery of low MW biotherapeutics and mAbs with MWs of approximately 150 kDa. Conversely, fluorescein sodium was the compound selected to model hydrophilic, low MW drugs. As expected, fluorescein sodium produced the greatest cumulative permeation (637.4 ± 42.69 μg). The amounts of FITC-dextran 10 kDa and 150 kDa which permeated across neonatal porcine skin in vitro were 462.17 ± 65.85 μg and 213.54 ± 15.19 μg after 24 h, respectively. The results collated here suggest that the delivery of emerging novel biotherapeutics, via'super swelling' hydrogel-forming MNs, have the potential to result in greater permeation across human skin, compared to the delivery of mAbs delivered via the same route.
Collapse
Affiliation(s)
- Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
21
|
Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation. Int J Pharm 2020; 576:119029. [DOI: 10.1016/j.ijpharm.2020.119029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
|
22
|
Timr S, Madern D, Sterpone F. Protein thermal stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:239-272. [PMID: 32145947 DOI: 10.1016/bs.pmbts.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins, in general, fold to a well-organized three-dimensional structure in order to function. The stability of this functional shape can be perturbed by external environmental conditions, such as temperature. Understanding the molecular factors underlying the resistance of proteins to the thermal stress has important consequences. First of all, it can aid the design of thermostable enzymes able to perform efficient catalysis in the high-temperature regime. Second, it is an essential brick of knowledge required to decipher the evolutionary pathways of life adaptation on Earth. Thanks to the development of atomistic simulations and ad hoc enhanced sampling techniques, it is now possible to investigate this problem in silico, and therefore provide support to experiments. After having described the methodological aspects, the chapter proposes an extended discussion on two problems. First, we focus on thermophilic proteins, a perfect model to address the issue of thermal stability and molecular evolution. Second, we discuss the issue of how protein thermal stability is affected by crowded in vivo-like conditions.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
23
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
24
|
Oyama H, Koga H, Tadokoro T, Maenaka K, Shiota A, Yokoyama M, Noda M, Torisu T, Uchiyama S. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody. J Pharm Sci 2020; 109:308-315. [DOI: 10.1016/j.xphs.2019.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022]
|
25
|
A KLVFFAE-Derived Peptide Probe for Detection of Alpha-Synuclein Fibrils. Appl Biochem Biotechnol 2019; 190:1411-1424. [PMID: 31776941 DOI: 10.1007/s12010-019-03197-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
Aggregation of an amyloid protein, α-synuclein (αS), is a critical step in the neurodegenerative pathway of Parkinson's diseases (PD). Specific detection of amyloid conformers (i.e., monomers, oligomers, and fibrils) produced during αS aggregation is critical in better understanding a molecular basis of PD and developing a diagnostic tool. While various molecular probes are available for detection of αS fibrils, which may serve as a reservoir of toxic αS aggregate forms, these probes suffer from limited conformer-specificity and operational flexibility. In the present study, we explored the potential of non-self-aggregating peptides derived from the highly aggregation-prone KLVFFAE region of an amyloid protein, β-amyloid, as molecular probes for αS aggregates. We show that of the four peptides tested (KLVFWAK, ELVFWAE, and their C-terminal capping variants, all of which were attached with fluorescein isothiocyanate at their respective N-termini), KLVFWAK with C-terminal capping was selectively bound to αS fibrils over monomers and oligomers and readily used for monitoring αS fibrilization. Our analyses suggest that binding of the peptide to αS fibrils is mediated by both electrostatic and hydrophobic interactions. We anticipate that our peptide can readily be optimized for conformer-specificity and operational flexibility. Overall, this study presents the creation of a KLVFFAE-based molecular probe for αS fibrils and demonstrates fine-tuning of its conformer-specificity by terminal mutations and capping.
Collapse
|
26
|
Ollier R, Wassmann P, Monney T, Ries Fecourt C, Gn S, C A V, Ayoub D, Stutz C, Gudi GS, Blein S. Single-step Protein A and Protein G avidity purification methods to support bispecific antibody discovery and development. MAbs 2019; 11:1464-1478. [PMID: 31462177 PMCID: PMC6816383 DOI: 10.1080/19420862.2019.1660564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Heavy chain (Hc) heterodimers represent a majority of bispecific antibodies (bsAbs) under clinical development. Although recent technologies achieve high levels of Hc heterodimerization (HD), traces of homodimer contaminants are often present, and as a consequence robust purification techniques for generating highly pure heterodimers in a single step are needed. Here, we describe two different purification methods that exploit differences in Protein A (PA) or Protein G (PG) avidity between homo- and heterodimers. Differential elution between species was enabled by removing PA or PG binding in one of the Hcs of the bsAb. The PA method allowed the avidity purification of heterodimers based on the VH3 subclass, which naturally binds PA and interferes with separation, by using a combination of IgG3 Fc and a single amino acid change in VH3, N82aS. The PG method relied on a combination of three mutations that completely disrupts PG binding, M428G/N434A in IgG1 Fc and K213V in IgG1 CH1. Both methods achieved a high level of heterodimer purity as single-step techniques without Hc HD (93–98%). Since PA and PG have overlapping binding sites with the neonatal Fc receptor (FcRn), we investigated the effects of our engineering both in vitro and in vivo. Mild to moderate differences in FcRn binding and Fc thermal stability were observed, but these did not significantly change the serum half-lives of engineered control antibodies and heterodimers. The methods are conceptually compatible with various Hc HD platforms such as BEAT® (Bispecific Engagement by Antibodies based on the T cell receptor), in which the PA method has already been successfully implemented.
Collapse
Affiliation(s)
- Romain Ollier
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Paul Wassmann
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Thierry Monney
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Christelle Ries Fecourt
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Sunitha Gn
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Vinu C A
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre , Navi Mumbai , India
| | - Daniel Ayoub
- Department of Formulation and Analytical Development, Glenmark Pharmaceuticals SA , La Chaux-de-Fonds , Switzerland
| | - Cian Stutz
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| | - Girish S Gudi
- Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Inc ., Paramus , NJ , USA
| | - Stanislas Blein
- Department of Antibody Engineering, Glenmark Biotherapeutics SA, Biopôle Lausanne - Epalinges, Bâtiment SE-B , Epalinges , Switzerland
| |
Collapse
|
27
|
Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. Proc Natl Acad Sci U S A 2019; 116:16367-16377. [PMID: 31371509 DOI: 10.1073/pnas.1903888116] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The accurate prediction of protein stability upon sequence mutation is an important but unsolved challenge in protein engineering. Large mutational datasets are required to train computational predictors, but traditional methods for collecting stability data are either low-throughput or measure protein stability indirectly. Here, we develop an automated method to generate thermodynamic stability data for nearly every single mutant in a small 56-residue protein. Analysis reveals that most single mutants have a neutral effect on stability, mutational sensitivity is largely governed by residue burial, and unexpectedly, hydrophobics are the best tolerated amino acid type. Correlating the output of various stability-prediction algorithms against our data shows that nearly all perform better on boundary and surface positions than for those in the core and are better at predicting large-to-small mutations than small-to-large ones. We show that the most stable variants in the single-mutant landscape are better identified using combinations of 2 prediction algorithms and including more algorithms can provide diminishing returns. In most cases, poor in silico predictions were tied to compositional differences between the data being analyzed and the datasets used to train the algorithm. Finally, we find that strategies to extract stabilities from high-throughput fitness data such as deep mutational scanning are promising and that data produced by these methods may be applicable toward training future stability-prediction tools.
Collapse
|
28
|
Austerberry JI, Thistlethwaite A, Fisher K, Golovanov AP, Pluen A, Esfandiary R, van der Walle CF, Warwicker J, Derrick JP, Curtis R. Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry 2019; 58:3413-3421. [DOI: 10.1021/acs.biochem.9b00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- James I. Austerberry
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Angela Thistlethwaite
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alexander P. Golovanov
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Alain Pluen
- Manchester Pharmacy School, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Reza Esfandiary
- Dosage Form Design & Development, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | | | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
29
|
Sakhnini LI, Greisen PJ, Wiberg C, Bozoky Z, Lund S, Wolf Perez AM, Karkov HS, Huus K, Hansen JJ, Bülow L, Lorenzen N, Dainiak MB, Pedersen AK. Improving the Developability of an Antigen Binding Fragment by Aspartate Substitutions. Biochemistry 2019; 58:2750-2759. [DOI: 10.1021/acs.biochem.9b00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laila I. Sakhnini
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
- Department of Pure and Applied Biochemistry, Lund University, 223 62 Lund, Sweden
| | - Per J. Greisen
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Charlotte Wiberg
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Zoltan Bozoky
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Søren Lund
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Hanne S. Karkov
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Kasper Huus
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | | - Leif Bülow
- Department of Pure and Applied Biochemistry, Lund University, 223 62 Lund, Sweden
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Maria B. Dainiak
- Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Anja K. Pedersen
- Chemistry, Manufacturing and Control, Novo Nordisk A/S, 2820 Gentofte, Denmark
| |
Collapse
|
30
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
31
|
Saito S, Namisaki H, Hiraishi K, Takahashi N, Iida S. A stable engineered human IgG3 antibody with decreased aggregation during antibody expression and low pH stress. Protein Sci 2019; 28:900-909. [PMID: 30834577 PMCID: PMC6459999 DOI: 10.1002/pro.3598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.
Collapse
Affiliation(s)
- Seiji Saito
- Antibody & Biologics Research Laboratories, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo, 194-8533, Japan
| | - Hiroshi Namisaki
- Open Innovation Department, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo, 194-8533, Japan
| | - Keiko Hiraishi
- Antibody & Biologics Research Laboratories, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo, 194-8533, Japan
| | - Nobuaki Takahashi
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo, 194-8533, Japan
| | - Shigeru Iida
- Antibody & Biologics Research Laboratories, R&D Division, Kyowa Hakko Kirin Co., Ltd., Tokyo, 194-8533, Japan
| |
Collapse
|
32
|
Valadon P, Pérez-Tapia SM, Nelson RS, Guzmán-Bringas OU, Arrieta-Oliva HI, Gómez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries™: antibody libraries for therapeutic antibody discovery. MAbs 2019; 11:516-531. [PMID: 30663541 PMCID: PMC6512909 DOI: 10.1080/19420862.2019.1571879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe here the design, construction and validation of ALTHEA Gold Libraries™. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries™ with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries™ are a valuable source of specific, high affinity and highly stable antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary Ann Pohl
- c Tri-Institutional Therapeutics Discovery Institute , New York , NY , USA
| | | |
Collapse
|
33
|
Starr CG, Tessier PM. Selecting and engineering monoclonal antibodies with drug-like specificity. Curr Opin Biotechnol 2019; 60:119-127. [PMID: 30822699 DOI: 10.1016/j.copbio.2019.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/16/2018] [Accepted: 01/19/2019] [Indexed: 11/19/2022]
Abstract
Despite the recent explosion in the use of monoclonal antibodies (mAbs) as drugs, it remains a significant challenge to generate antibodies with a combination of physicochemical properties that are optimal for therapeutic applications. We argue that one of the most important and underappreciated drug-like antibody properties is high specificity - defined here as low levels of antibody non-specific and self-interactions - which is linked to low off-target binding and slow antibody clearance in vivo and high solubility and low viscosity in vitro. Here, we review the latest advances in characterizing antibody specificity and elucidating its molecular determinants as well as using these findings to improve the selection and engineering of antibodies with extremely high, drug-like specificity.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
He L, Tai W, Li J, Chen Y, Gao Y, Li J, Sun S, Zhou Y, Du L, Zhao G. Enhanced Ability of Oligomeric Nanobodies Targeting MERS Coronavirus Receptor-Binding Domain. Viruses 2019; 11:v11020166. [PMID: 30791410 PMCID: PMC6410414 DOI: 10.3390/v11020166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), an infectious coronavirus first reported in 2012, has a mortality rate greater than 35%. Therapeutic antibodies are key tools for preventing and treating MERS-CoV infection, but to date no such agents have been approved for treatment of this virus. Nanobodies (Nbs) are camelid heavy chain variable domains with properties distinct from those of conventional antibodies and antibody fragments. We generated two oligomeric Nbs by linking two or three monomeric Nbs (Mono-Nbs) targeting the MERS-CoV receptor-binding domain (RBD), and compared their RBD-binding affinity, RBD⁻receptor binding inhibition, stability, and neutralizing and cross-neutralizing activity against MERS-CoV. Relative to Mono-Nb, dimeric Nb (Di-Nb) and trimeric Nb (Tri-Nb) had significantly greater ability to bind MERS-CoV RBD proteins with or without mutations in the RBD, thereby potently blocking RBD⁻MERS-CoV receptor binding. The engineered oligomeric Nbs were very stable under extreme conditions, including low or high pH, protease (pepsin), chaotropic denaturant (urea), and high temperature. Importantly, Di-Nb and Tri-Nb exerted significantly elevated broad-spectrum neutralizing activity against at least 19 human and camel MERS-CoV strains isolated in different countries and years. Overall, the engineered Nbs could be developed into effective therapeutic agents for prevention and treatment of MERS-CoV infection.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yaning Gao
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Junfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
35
|
Constructive approach for synthesis of a functional IgG using a reconstituted cell-free protein synthesis system. Sci Rep 2019; 9:671. [PMID: 30679500 PMCID: PMC6345822 DOI: 10.1038/s41598-018-36691-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
IgG is an indispensable biological experimental tool as well as a widely-used therapeutic protein. However, cell culture-based expression of monoclonal IgG is costly and time-consuming, making this process difficult to use for high-throughput screening in early-stage evaluation of biologics. With the goal of establishing a fast, simple, and robust high-throughput expression system for IgG, we implemented the synthesis of functional aglycosylated IgG by constructive approach based on a reconstituted prokaryotic cell-free protein synthesis system (PURE system). Optimization of the PURE system revealed that the following factors and reaction conditions were needed for IgG synthesis: (1) inclusion of the disulfide bond isomerase DsbC, (2) adjustment of the GSH/GSSG ratio, (3) inclusion of the molecular chaperone DnaK and its cofactors, and (4) use of an extended incubation time. Synthesis temperature and template DNA ratio (light chain-/heavy chain-encoding) also had been optimized for each IgG. Under optimal conditions, peak production of the anti-HER2 antibody trastuzumab reached 124 µg/mL. Furthermore, the active forms of other IgGs, including IgG1, IgG2, and IgG4 subclasses, also were synthesized. These results provide basic information for the development of novel high-throughput expression and functional screening systems for IgG, as well as useful information for understanding the IgG synthesis process.
Collapse
|
36
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
37
|
Clarke SC, Ma B, Trinklein ND, Schellenberger U, Osborn MJ, Ouisse LH, Boudreau A, Davison LM, Harris KE, Ugamraj HS, Balasubramani A, Dang KH, Jorgensen B, Ogana HAN, Pham DT, Pratap PP, Sankaran P, Anegon I, van Schooten WC, Brüggemann M, Buelow R, Force Aldred S. Multispecific Antibody Development Platform Based on Human Heavy Chain Antibodies. Front Immunol 2019; 9:3037. [PMID: 30666250 PMCID: PMC6330309 DOI: 10.3389/fimmu.2018.03037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023] Open
Abstract
Heavy chain-only antibodies (HCAbs) do not associate with light chains and their VH regions are functional as single domains, forming the smallest active antibody fragment. These VH regions are ideal building blocks for a variety of antibody-based biologics because they tolerate fusion to other molecules and may also be attached in series to construct multispecific antibodies without the need for protein engineering to ensure proper heavy and light chain pairing. Production of human HCAbs has been impeded by the fact that natural human VH regions require light chain association and display poor biophysical characteristics when expressed in the absence of light chains. Here, we present an innovative platform for the rapid development of diverse sets of human HCAbs that have been selected in vivo. Our unique approach combines antibody repertoire analysis with immunization of transgenic rats, called UniRats, that produce chimeric HCAbs with fully human VH domains in response to an antigen challenge. UniRats express HCAbs from large transgenic loci representing the entire productive human heavy chain V(D)J repertoire, mount robust immune responses to a wide array of antigens, exhibit diverse V gene usage and generate large panels of stable, high affinity, antigen-specific molecules.
Collapse
Affiliation(s)
| | - Biao Ma
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | | | - Laure-Hélène Ouisse
- Centre de Recherche en Transplantation et Immunologie, Inserm UMR 1064, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | - Duy T Pham
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, Inserm UMR 1064, Université de Nantes, Nantes, France
| | | | | | | | | |
Collapse
|
38
|
Matz H, Dooley H. Shark IgNAR-derived binding domains as potential diagnostic and therapeutic agents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:100-107. [PMID: 30236879 DOI: 10.1016/j.dci.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/19/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Many of the most successful drugs generated in recent years are based upon monoclonal antibodies (mAbs). However, for some therapeutic and diagnostic applications mAbs are far from ideal; for example, while their relatively large size and inherent receptor binding aids their longevity in vivo it can also limit their tissue penetration. Further, their structural complexity makes them expensive to produce and prone to denaturation in non-physiological environments. Thus, researchers have been searching for alternative antigen-binding molecules that can be utilized in situations where mAbs are suboptimal tools. One potential source currently being explored are the shark-derived binding domains known as VNARs. Despite their small size VNARs can bind antigens with high specificity and high affinity. Combined with their propensity to bind epitopes that are inaccessible to conventional mAbs, and their ability to resist denaturation, VNARs are an emerging prospect for use in therapeutic, diagnostic, and biotechnological applications.
Collapse
Affiliation(s)
- Hanover Matz
- Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology (IMET), Baltimore, MD, 21202, USA
| | - Helen Dooley
- Dept. Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology (IMET), Baltimore, MD, 21202, USA.
| |
Collapse
|
39
|
Schaefer JV, Sedlák E, Kast F, Nemergut M, Plückthun A. Modification of the kinetic stability of immunoglobulin G by solvent additives. MAbs 2018. [PMID: 29537925 DOI: 10.1080/19420862.2018.1450126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biophysical properties of antibody-based biopharmaceuticals are a critical part of their release criteria. In this context, finding the appropriate formulation is equally important as optimizing their intrinsic biophysical properties through protein engineering, and both are mutually dependent. Most previous studies have empirically tested the impact of additives on measures of colloidal stability, while mechanistic aspects have usually been limited to only the thermodynamic stability of the protein. Here we emphasize the kinetic impact of additives on the irreversible denaturation steps of immunoglobulins G (IgG) and their antigen-binding fragments (Fabs), as these are the key committed steps preceding aggregation, and thus especially informative in elucidating the molecular parameters of activity loss. We examined the effects of ten additives on the conformational kinetic stability by differential scanning calorimetry (DSC), using a recently developed three-step model containing both reversible and irreversible steps. The data highlight and help to rationalize different effects of the additives on the properties of full-length IgG, analyzed by onset and aggregation temperatures as well as by kinetic parameters derived from our model. Our results further help to explain the observation that stabilizing mutations in the antigen-binding fragment (Fab) significantly affect the kinetic parameters of its thermal denaturation, but not the aggregation properties of the full-length IgGs. We show that the proper analysis of DSC scans for full-length IgGs and their corresponding Fabs not only helps in ranking their stability in different formats and formulations, but provides important mechanistic insights for improving the conformational kinetic stability of IgGs.
Collapse
Affiliation(s)
- Jonas V Schaefer
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Erik Sedlák
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland.,b Center for Interdisciplinary Biosciences, P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Florian Kast
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| | - Michal Nemergut
- c Department of Biophysics , P.J. Šafárik University , Jesenná 5, Košice , Slovakia
| | - Andreas Plückthun
- a Department of Biochemistry , University of Zurich , Winterthurerstrasse 190, Zurich , Switzerland
| |
Collapse
|
40
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Kovaltsuk A, Krawczyk K, Galson JD, Kelly DF, Deane CM, Trück J. How B-Cell Receptor Repertoire Sequencing Can Be Enriched with Structural Antibody Data. Front Immunol 2017; 8:1753. [PMID: 29276518 PMCID: PMC5727015 DOI: 10.3389/fimmu.2017.01753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022] Open
Abstract
Next-generation sequencing of immunoglobulin gene repertoires (Ig-seq) allows the investigation of large-scale antibody dynamics at a sequence level. However, structural information, a crucial descriptor of antibody binding capability, is not collected in Ig-seq protocols. Developing systematic relationships between the antibody sequence information gathered from Ig-seq and low-throughput techniques such as X-ray crystallography could radically improve our understanding of antibodies. The mapping of Ig-seq datasets to known antibody structures can indicate structurally, and perhaps functionally, uncharted areas. Furthermore, contrasting naïve and antigenically challenged datasets using structural antibody descriptors should provide insights into antibody maturation. As the number of antibody structures steadily increases and more and more Ig-seq datasets become available, the opportunities that arise from combining the two types of information increase as well. Here, we review how these data types enrich one another and show potential for advancing our knowledge of the immune system and improving antibody engineering.
Collapse
Affiliation(s)
| | - Konrad Krawczyk
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Jacob D Galson
- Division of Immunology and the Children's Research Center, University Children's Hospital, University of Zürich, Zürich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, United Kingdom
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology and the Children's Research Center, University Children's Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
42
|
Čalyševa J, Vihinen M. PON-SC - program for identifying steric clashes caused by amino acid substitutions. BMC Bioinformatics 2017; 18:531. [PMID: 29187139 PMCID: PMC5707825 DOI: 10.1186/s12859-017-1947-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Amino acid substitutions due to DNA nucleotide replacements are frequently disease-causing because of affecting functionally important sites. If the substituting amino acid does not fit into the protein, it causes structural alterations that are often harmful. Clashes of amino acids cause local or global structural changes. Testing structural compatibility of variations has been difficult due to the lack of a dedicated method that could handle vast amounts of variation data produced by next generation sequencing technologies. Results We developed a method, PON-SC, for detecting protein structural clashes due to amino acid substitutions. The method utilizes side chain rotamer library and tests whether any of the common rotamers can be fitted into the protein structure. The tool was tested both with variants that cause and do not cause clashes and found to have accuracy of 0.71 over five test datasets. Conclusions We developed a fast method for residue side chain clash detection. The method provides in addition to the prediction also visualization of the variant in three dimensional structure. Electronic supplementary material The online version of this article (10.1186/s12859-017-1947-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jelena Čalyševa
- Protein Structure and Bioinformatics, Department of Experimental Medical Science, Lund University, BMC B13, SE-22 184, Lund, Sweden.,Present address: EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Mauno Vihinen
- Protein Structure and Bioinformatics, Department of Experimental Medical Science, Lund University, BMC B13, SE-22 184, Lund, Sweden.
| |
Collapse
|
43
|
Kennedy PJ, Oliveira C, Granja PL, Sarmento B. Monoclonal antibodies: technologies for early discovery and engineering. Crit Rev Biotechnol 2017; 38:394-408. [PMID: 28789584 DOI: 10.1080/07388551.2017.1357002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies are essential in modern life sciences biotechnology. Their architecture and diversity allow for high specificity and affinity to a wide array of biochemicals. Combining monoclonal antibody (mAb) technology with recombinant DNA and protein expression links antibody genotype with phenotype. Yet, the ability to select and screen for high affinity binders from recombinantly-displayed, combinatorial libraries unleashes the true power of mAbs and a flood of clinical applications. The identification of novel antibodies can be accomplished by a myriad of in vitro display technologies from the proven (e.g. phage) to the emerging (e.g. mammalian cell and cell-free) based on affinity binding as well as function. Lead candidates can be further engineered for increased affinity and half-life, reduced immunogenicity and/or enhanced manufacturing, and storage capabilities. This review begins with antibody biology and how the structure and genetic machinery relate to function, diversity, and in vivo affinity maturation and follows with the general requirements of (therapeutic) antibody discovery and engineering with an emphasis on in vitro display technologies. Throughout, we highlight where antibody biology inspires technology development and where high-throughput, "big data" and in silico strategies are playing an increasing role. Antibodies dominate the growing class of targeted therapeutics, alone or as bioconjugates. However, their versatility extends to research, diagnostics, and beyond.
Collapse
Affiliation(s)
- Patrick J Kennedy
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| | - Carla Oliveira
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,c IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal
| | - Pedro L Granja
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,d ICBAS - Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,e Departmento de Engenharia Metalúrgica e de Materiais , FEUP - Faculdade de Engenharia da Universidade do Porto , Porto , Portugal
| | - Bruno Sarmento
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,f CESPU , Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde , Gandra , Portugal
| |
Collapse
|
44
|
Goldman ER, Liu JL, Zabetakis D, Anderson GP. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Front Immunol 2017; 8:865. [PMID: 28791022 PMCID: PMC5524736 DOI: 10.3389/fimmu.2017.00865] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Jinny L Liu
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - Dan Zabetakis
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| | - George P Anderson
- Center for BioMolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
45
|
Very-large-scale production of antibodies in plants: The biologization of manufacturing. Biotechnol Adv 2017; 35:458-465. [DOI: 10.1016/j.biotechadv.2017.03.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
|
46
|
Higashi T, Ohshita N, Hirotsu T, Yamashita Y, Motoyama K, Koyama S, Iibuchi R, Uchida T, Mieda S, Handa K, Kimoto T, Arima H. Stabilizing Effects for Antibody Formulations and Safety Profiles of Cyclodextrin Polypseudorotaxane Hydrogels. J Pharm Sci 2017; 106:1266-1274. [DOI: 10.1016/j.xphs.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
|
47
|
Rouet R, Langley DB, Schofield P, Christie M, Roome B, Porebski BT, Buckle AM, Clifton BE, Jackson CJ, Stock D, Christ D. Structural reconstruction of protein ancestry. Proc Natl Acad Sci U S A 2017; 114:3897-3902. [PMID: 28356519 PMCID: PMC5393204 DOI: 10.1073/pnas.1613477114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ancestral protein reconstruction allows the resurrection and characterization of ancient proteins based on computational analyses of sequences of modern-day proteins. Unfortunately, many protein families are highly divergent and not suitable for sequence-based reconstruction approaches. This limitation is exemplified by the antigen receptors of jawed vertebrates (B- and T-cell receptors), heterodimers formed by pairs of Ig domains. These receptors are believed to have evolved from an extinct homodimeric ancestor through a process of gene duplication and diversification; however molecular evidence has so far remained elusive. Here, we use a structural approach and laboratory evolution to reconstruct such molecules and characterize their interaction with antigen. High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site. Our results provide structural evidence in support of long-held theories concerning the evolution of antigen receptors, and provide a blueprint for the experimental reconstruction of protein ancestry in the absence of phylogenetic evidence.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - David B Langley
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Mary Christie
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Brendan Roome
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Daniela Stock
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia;
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
48
|
Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:121-129. [DOI: 10.1016/j.jchromb.2017.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022]
|
49
|
Marks C, Deane C. Antibody H3 Structure Prediction. Comput Struct Biotechnol J 2017; 15:222-231. [PMID: 28228926 PMCID: PMC5312500 DOI: 10.1016/j.csbj.2017.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 01/20/2023] Open
Abstract
Antibodies are proteins of the immune system that are able to bind to a huge variety of different substances, making them attractive candidates for therapeutic applications. Antibody structures have the potential to be useful during drug development, allowing the implementation of rational design procedures. The most challenging part of the antibody structure to experimentally determine or model is the H3 loop, which in addition is often the most important region in an antibody's binding site. This review summarises the approaches used so far in the pursuit of accurate computational H3 structure prediction.
Collapse
Affiliation(s)
- C. Marks
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom
| | | |
Collapse
|
50
|
Høydahl LS, Nilssen NR, Gunnarsen KS, Pré MFD, Iversen R, Roos N, Chen X, Michaelsen TE, Sollid LM, Sandlie I, Løset GÅ. Multivalent pIX phage display selects for distinct and improved antibody properties. Sci Rep 2016; 6:39066. [PMID: 27966617 PMCID: PMC5155289 DOI: 10.1038/srep39066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Phage display screening readily allows for the identification of a multitude of antibody specificities, but to identify optimal lead candidates remains a challenge. Here, we direct the antibody-capsid fusion away from the signal sequence-dependent secretory SEC pathway in E. coli by utilizing the intrinsic signal sequence-independent property of pIX to obtain virion integration. This approach was combined with the use of an engineered helper phage known to improve antibody pIX display and retrieval. By direct comparison with pIII display, we demonstrate that antibody display using this pIX system translates into substantially improved retrieval of desired specificities with favorable biophysical properties in de novo selection. We show that the effect was due to less E. coli host toxicity during phage propagation conferred by the lack of a signal sequence. This pIX combinatorial display platform provides a generic alternative route for obtaining good binders with high stability and may thus find broad applicability.
Collapse
Affiliation(s)
- Lene S Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Nicolay R Nilssen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Kristin S Gunnarsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Rasmus Iversen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Xi Chen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Terje E Michaelsen
- Department of Immunology, Norwegian Institute of Public Health, N-0403 Oslo, Norway.,School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, N-0372 Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Geir Å Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway.,Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.,Nextera AS, N-0349 Oslo, Norway
| |
Collapse
|