1
|
Megarioti AH, Esch BM, Athanasopoulos A, Koulouris D, Makridakis M, Lygirou V, Samiotaki M, Zoidakis J, Sophianopoulou V, André B, Fröhlich F, Gournas C. Ferroptosis-protective membrane domains in quiescence. Cell Rep 2023; 42:113561. [PMID: 38096056 DOI: 10.1016/j.celrep.2023.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece; Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Bianca M Esch
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece
| | - Dimitrios Koulouris
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece
| | - Manousos Makridakis
- Biotechnology Division, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," 16672 Vari, Greece
| | - Jerome Zoidakis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; Biotechnology Division, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany.
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece.
| |
Collapse
|
2
|
Willet AH, Wos M, Igarashi MG, Ren L, Turner LA, Gould KL. Elevated levels of sphingolipid MIPC in the plasma membrane disrupt the coordination of cell growth with cell wall formation in fission yeast. PLoS Genet 2023; 19:e1010987. [PMID: 37792890 PMCID: PMC10578601 DOI: 10.1371/journal.pgen.1010987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| |
Collapse
|
3
|
Vesela P, Zahumensky J, Malinsky J. Lsp1 partially substitutes for Pil1 function in eisosome assembly under stress conditions. J Cell Sci 2023; 136:286927. [PMID: 36601791 DOI: 10.1242/jcs.260554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Eisosomes are large hemitubular structures that underlie the invaginated microdomains in the plasma membrane of various ascomycetous fungi, lichens and unicellular algae. In fungi, they are organized by BAR-domain containing proteins of the Pil1 family. Two such proteins, Pil1 and Lsp1, participate in eisosome formation in the yeast Saccharomyces cerevisiae. Under normal laboratory conditions, deletion of the PIL1 gene results in the inability of cells to assemble wild-type-like eisosomes. We found that under certain stress conditions, Lsp1 partially substitutes for the Pil1 function and mediates assembly of eisosomes, specifically following a decrease in the activity of serine palmitoyltransferase, for example, in response to hyperosmotic stress. Besides Lsp1, the assembly of eisosomes lacking Pil1 also requires Seg1 and Nce102 proteins. Using next-generation sequencing, we found that the seg1Δnce102Δpil1Δ strain, which is unable to form eisosomes, overexpresses genes coding for proteins of oxidative phosphorylation and tricarboxylic acid cycle. By contrast, genes involved in DNA repair, ribosome biogenesis and cell cycle are downregulated. Our results identify Lsp1 as a stress-responsive eisosome organizer and indicate several novel functional connections between the eisosome and essential cellular processes.
Collapse
Affiliation(s)
- Petra Vesela
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Jan Malinsky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| |
Collapse
|
4
|
Rodríguez-Moraga N, Ramos-Martín F, Buchoux S, Rippa S, D'Amelio N, Sarazin C. The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: An in silico study. Front Chem 2023; 11:1124129. [PMID: 36895318 PMCID: PMC9989204 DOI: 10.3389/fchem.2023.1124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Rhamnolipids (RLs) are secondary metabolites naturally produced by bacteria of the genera Pseudomonas and Burkholderia with biosurfactant properties. A specific interest raised from their potential as biocontrol agents for crop culture protection in regard to direct antifungal and elicitor activities. As for other amphiphilic compounds, a direct interaction with membrane lipids has been suggested as the key feature for the perception and subsequent activity of RLs. Methods: Molecular Dynamics (MD) simulations are used in this work to provide an atomistic description of their interactions with different membranous lipids and focusing on their antifungal properties. Results and discussion: Our results suggest the insertion of RLs into the modelled bilayers just below the plane drawn by lipid phosphate groups, a placement that is effective in promoting significant membrane fluidification of the hydrophobic core. This localization is promoted by the formation of ionic bonds between the carboxylate group of RLs and the amino group of the phosphatidylethanolamine (PE) or phosphatidylserine (PS) headgroups. Moreover, RL acyl chains adhere to the ergosterol structure, forming a significantly higher number of van der Waals contact with respect to what is observed for phospholipid acyl chains. All these interactions might be essential for the membranotropic-driven biological actions of RLs.
Collapse
Affiliation(s)
- Nely Rodríguez-Moraga
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
5
|
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun 2022; 13:1605. [PMID: 35338137 PMCID: PMC8956743 DOI: 10.1038/s41467-022-29272-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Cell membranes provide a selective semi-permeable barrier to the passive transport of molecules. This property differs greatly between organisms. While the cytoplasmic membrane of bacterial cells is highly permeable for weak acids and glycerol, yeasts can maintain large concentration gradients. Here we show that such differences can arise from the physical state of the plasma membrane. By combining stopped-flow kinetic measurements with molecular dynamics simulations, we performed a systematic analysis of the permeability of a variety of small molecules through synthetic membranes of different lipid composition to obtain detailed molecular insight into the permeation mechanisms. While membrane thickness is an important parameter for the permeability through fluid membranes, the largest differences occur when the membranes transit from the liquid-disordered to liquid-ordered and/or to gel state, which is in agreement with previous work on passive diffusion of water. By comparing our results with in vivo measurements from yeast, we conclude that the yeast membrane exists in a highly ordered and rigid state, which is comparable to synthetic saturated DPPC-sterol membranes. Membrane permeability of small molecules depends on the composition of the lipid bilayer. Here, authors compare permeability measured on membranes in different physical states and conclude that the yeast membrane exists in a highly ordered phase.
Collapse
Affiliation(s)
- Jacopo Frallicciardi
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Josef Melcr
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Pareskevi Siginou
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Siewert J Marrink
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
6
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. Lipid Oxidation: Role of Membrane Phase-Separated Domains. J Chem Inf Model 2021; 61:2857-2868. [PMID: 34080860 DOI: 10.1021/acs.jcim.1c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid oxidation is associated with several inflammatory and neurodegenerative diseases, but many questions to unravel its effects on biomembranes are still open due to the complexity of the topic. For instance, recent studies indicated that phase-separated domains can have a significant effect on membrane function. It is reported that domain interfaces are "hot spots" for pore formation, but the underlying mechanisms and the effect of oxidation-induced phase separation on membranes remain elusive. Thus, to evaluate the permeability of the membrane coexisting of liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed atomistic molecular dynamics simulations. Specifically, we studied the membrane permeability of nonoxidized or oxidized homogeneous membranes (single-phase) and at the Lo/Ld domain interfaces of heterogeneous membranes, where the Ld domain is composed of either oxidized or nonoxidized lipids. Our simulation results reveal that the addition of only 1.5% of lipid aldehyde molecules at the Lo/Ld domain interfaces of heterogeneous membranes increases the membrane permeability, whereas their addition at homogeneous membranes does not have any effect. This study is of interest for a better understanding of cancer treatment methods based on oxidative stress (causing among others lipid oxidation), such as plasma medicine and photodynamic therapy.
Collapse
Affiliation(s)
- Maria C Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil.,Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil
| |
Collapse
|
7
|
Sousa C, Santos FC, Bento-Oliveira A, Mestre B, Silva LC, de Almeida RFM. Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. Methods Mol Biol 2021; 2187:247-269. [PMID: 32770511 DOI: 10.1007/978-1-0716-0814-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of steady-state and time-resolved fluorescence spectroscopy to study sterol and sphingolipid-enriched lipid domains as diverse as the ones found in mammalian and fungal membranes is herein described. We first address how to prepare liposomes that mimic raft-containing membranes of mammalian cells and how to use fluorescence spectroscopy to characterize the biophysical properties of these membrane model systems. We further illustrate the application of Förster resonance energy transfer (FRET) to study nanodomain reorganization upon interaction with small bioactive molecules, phenolic acids, an important group of phytochemical compounds. This methodology overcomes the resolution limits of conventional fluorescence microscopy allowing for the identification and characterization of lipid domains at the nanoscale.We continue by showing how to use fluorescence spectroscopy in the biophysical analysis of more complex biological systems, namely the plasma membrane of Saccharomyces cerevisiae yeast cells and the necessary adaptations to the filamentous fungus Neurospora crassa , evaluating the global order of the membrane, sphingolipid-enriched domains rigidity and abundance, and ergosterol-dependent properties.
Collapse
Affiliation(s)
- Carla Sousa
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa C Santos
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Mestre
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- Research Institute for medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
Santos FC, Marquês JT, Bento‐Oliveira A, Almeida RF. Sphingolipid‐enriched domains in fungi. FEBS Lett 2020; 594:3698-3718. [DOI: 10.1002/1873-3468.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa C. Santos
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Joaquim T. Marquês
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Andreia Bento‐Oliveira
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Rodrigo F.M. Almeida
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| |
Collapse
|
9
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
10
|
Srivastava A, Debnath A. Asymmetry and Rippling in Mixed Surfactant Bilayers from All-Atom and Coarse-Grained Simulations: Interdigitation and Per Chain Entropy. J Phys Chem B 2020; 124:6420-6436. [DOI: 10.1021/acs.jpcb.0c03761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Arpita Srivastava
- Department of Chemistry, IIT Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Ananya Debnath
- Department of Chemistry, IIT Jodhpur, Jodhpur 342037, Rajasthan, India
| |
Collapse
|
11
|
Bento-Oliveira A, Santos FC, Marquês JT, Paulo PMR, Korte T, Herrmann A, Marinho HS, de Almeida RFM. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020; 10:biom10060871. [PMID: 32517183 PMCID: PMC7356636 DOI: 10.3390/biom10060871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Filipa C. Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Joaquim Trigo Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Pedro M. R. Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisbon, Portugal;
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - H. Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
- Correspondence: ; Tel.: +351-217-500-925
| |
Collapse
|
12
|
Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I. Squalene lipotoxicity in a lipid droplet‐less yeast mutant is linked to plasma membrane dysfunction. Yeast 2020; 37:45-62. [DOI: 10.1002/yea.3454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zsófia Csáky
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Martina Garaiová
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Marie Kodedová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ivan Hapala
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
13
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. Molecular dynamics simulations of mechanical stress on oxidized membranes. Biophys Chem 2019; 254:106266. [PMID: 31629220 DOI: 10.1016/j.bpc.2019.106266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using non-equilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with -OH and -OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
Collapse
Affiliation(s)
- Maria C Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil.
| |
Collapse
|
14
|
Zahumensky J, Malinsky J. Role of MCC/Eisosome in Fungal Lipid Homeostasis. Biomolecules 2019; 9:E305. [PMID: 31349700 PMCID: PMC6723945 DOI: 10.3390/biom9080305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
One of the best characterized fungal membrane microdomains is the MCC/eisosome. The MCC (membrane compartment of Can1) is an evolutionarily conserved ergosterol-rich plasma membrane domain. It is stabilized on its cytosolic face by the eisosome, a hemitubular protein complex composed of Bin/Amphiphysin/Rvs (BAR) domain-containing Pil1 and Lsp1. These two proteins bind directly to phosphatidylinositol 4,5-bisphosphate and promote the typical furrow-like shape of the microdomain, with highly curved edges and bottom. While some proteins display stable localization in the MCC/eisosome, others enter or leave it under particular conditions, such as misbalance in membrane lipid composition, changes in membrane tension, or availability of specific nutrients. These findings reveal that the MCC/eisosome, a plasma membrane microdomain with distinct morphology and lipid composition, acts as a multifaceted regulator of various cellular processes including metabolic pathways, cellular morphogenesis, signalling cascades, and mRNA decay. In this minireview, we focus on the MCC/eisosome's proposed role in the regulation of lipid metabolism. While the molecular mechanisms of the MCC/eisosome function are not completely understood, the idea of intracellular processes being regulated at the plasma membrane, the foremost barrier exposed to environmental challenges, is truly exciting.
Collapse
Affiliation(s)
- Jakub Zahumensky
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Jan Malinsky
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| |
Collapse
|
15
|
Keyvanloo A, Shaghaghi M, Zuckermann MJ, Thewalt JL. The Phase Behavior and Organization of Sphingomyelin/Cholesterol Membranes: A Deuterium NMR Study. Biophys J 2019; 114:1344-1356. [PMID: 29590592 DOI: 10.1016/j.bpj.2018.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 10/17/2022] Open
Abstract
We have studied the dependence of the phase and domain characteristics of sphingomyelin (SM)/cholesterol model membranes on sterol content and temperature using deuterium nuclear magnetic resonance. NMR spectra of N-palmitoyl(D31)-D-erythro-sphingosylphosphorylcholine (PSM-d31) were taken for temperatures from 25 to 70°C and cholesterol concentrations of 0-40%. Analogous experiments were performed using 1-palmitoyl,2-palmitoyl(D31)-sn-glycero-3-phosphocholine (DPPC-d31)/cholesterol membranes to carefully compare the data obtained using palmitoyl chains that have similar "kinked" conformations. The constructed phase diagrams exhibit both solid-ordered (so) + liquid-ordered (lo) and liquid-disordered (ld) + lo phase-coexistence regions with a clear three-phase line. Macroscopic (micron-sized) coexistence of ld and lo phases was not observed; instead, line-broadening in the ld+lo region was characterized by intermediate exchange of lipids between the two types of domains. The length scales associated with the domains were estimated to be 75-150 nm for PSM-d31/cholesterol and DPPC-d31/cholesterol model membranes.
Collapse
Affiliation(s)
- Amir Keyvanloo
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mehran Shaghaghi
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Martin J Zuckermann
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jenifer L Thewalt
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
16
|
Oxygen distribution in the fluid/gel phases of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:879-886. [PMID: 30716292 DOI: 10.1016/j.bbamem.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023]
Abstract
The interactions between oxygen and lipid membranes play fundamental roles in basic biological processes (e.g., cellular respiration). Obviously, membrane oxidation is expected to be critically dependent on the distribution and concentration of oxygen in the membrane. Here, we combined theoretical and experimental methods to investigate oxygen partition and distribution in lipid membranes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a temperature range between 298 and 323 K, specifically focusing on the changes caused by the lipid phase and phase transition. Even though oxygen is known to be more concentrated in the center of fluid phase membranes than on the headgroup regions, the distribution profile of oxygen inside gel-phase bilayers remained to be determined. Molecular dynamics simulations now show that the distribution of oxygen inside DPPC bilayers dramatically changes upon crossing the main transition temperature, with oxygen being nearly depleted halfway from the headgroups to the membrane center below the transition temperature. In a parallel approach, singlet oxygen luminescence emission measurements employing the photosensitizer Pheophorbide-a (Pheo) confirmed the differences in oxygen distribution and concentration profiles between gel- and fluid-phase membranes, revealing changes in the microenvironment of the embedded photosensitizer. Our results also reveal that excited triplet state lifetime, as it can be determined from the singlet oxygen luminescence kinetics, is a useful probe to assess oxygen distribution in lipid membranes with distinct lipid compositions.
Collapse
|
17
|
Smidova A, Alblova M, Kalabova D, Psenakova K, Rosulek M, Herman P, Obsil T, Obsilova V. 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J 2018; 285:4196-4213. [PMID: 30281929 DOI: 10.1111/febs.14670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Caspase-2 is an apical protease responsible for the proteolysis of cellular substrates directly involved in mediating apoptotic signaling cascades. Caspase-2 activation is inhibited by phosphorylation followed by binding to the scaffolding protein 14-3-3, which recognizes two phosphoserines located in the linker between the caspase recruitment domain and the p19 domains of the caspase-2 zymogen. However, the structural details of this interaction and the exact role of 14-3-3 in the regulation of caspase-2 activation remain unclear. Moreover, the caspase-2 region with both 14-3-3-binding motifs also contains the nuclear localization sequence (NLS), thus suggesting that 14-3-3 binding may regulate the subcellular localization of caspase-2. Here, we report a structural analysis of the 14-3-3ζ:caspase-2 complex using a combined approach based on small angle X-ray scattering, NMR, chemical cross-linking, and fluorescence spectroscopy. The structural model proposed in this study suggests that phosphorylated caspase-2 and 14-3-3ζ form a compact and rigid complex in which the p19 and the p12 domains of caspase-2 are positioned within the central channel of the 14-3-3 dimer and stabilized through interactions with the C-terminal helices of both 14-3-3ζ protomers. In this conformation, the surface of the p12 domain, which is involved in caspase-2 activation by dimerization, is sterically occluded by the 14-3-3 dimer, thereby likely preventing caspase-2 activation. In addition, 14-3-3 protein binding to caspase-2 masks its NLS. Therefore, our results suggest that 14-3-3 protein binding to caspase-2 may play a key role in regulating caspase-2 activation. DATABASE: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.ww pdb.org (PDB ID codes 6GKF and 6GKG).
Collapse
Affiliation(s)
- Aneta Smidova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Miroslava Alblova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Dana Kalabova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katarina Psenakova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Rosulek
- Division BIOCEV, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
18
|
Santos FC, Lobo GM, Fernandes AS, Videira A, de Almeida RFM. Changes in the Biophysical Properties of the Cell Membrane Are Involved in the Response of Neurospora crassa to Staurosporine. Front Physiol 2018; 9:1375. [PMID: 30364194 PMCID: PMC6193110 DOI: 10.3389/fphys.2018.01375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Neurospora crassa is a non-pathogenic filamentous fungus widely used as a multicellular eukaryotic model. Recently, the biophysical properties of the plasma membrane of N. crassa conidia were thoroughly characterized. They evolve during conidial germination at a speed that depends on culture conditions, suggesting an important association between membrane remodeling and the intense membrane biogenesis that takes place during the germinative process. Staurosporine (STS) is a drug used to induce programmed cell death in various organisms. In N. crassa, STS up-regulates the expression of the ABC transporter ABC-3, which localizes at the plasma membrane and pumps STS out. To understand the role of plasma membrane biophysical properties in the fungal drug response, N. crassa was subjected to STS treatment during early and late conidial development stages. Following 1 h treatment with STS, there is an increase in the abundance of the more ordered, sphingolipid-enriched, domains in the plasma membrane of conidia. This leads to higher fluidity in other membrane regions. The global order of the membrane remains thus practically unchanged. Significant changes in sphingolipid-enriched domains were also observed after 15 min challenge with STS, but they were essentially opposite to those verified for the 1 h treatment, suggesting different types of drug responses. STS effects on membrane properties that are more dependent on ergosterol levels also depend on the developmental stage. There were no alterations on 2 h-grown cells, clearly contrasting to what happens at longer growth times. In this case, the differences were more marked for longer STS treatment, and rationalized considering that the drug prevents the increase in the ergosterol/glycerophospholipid ratio that normally takes place at the late conidial stage/transition to the mycelial stage. This could be perceived as a drug-induced development arrest after 5 h growth, involving ergosterol, and pointing to a role of lipid rafts possibly related with an up-regulated expression of the ABC-3 transporter. Overall, our results suggest the involvement of membrane ordered domains in the response mechanisms to STS in N. crassa.
Collapse
Affiliation(s)
- Filipa C Santos
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| | - Gerson M Lobo
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| | - Andreia S Fernandes
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Arnaldo Videira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rodrigo F M de Almeida
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Química e Bioquímica, Universidade de Lisbon, Campo Grande, Lisbon, Portugal
| |
Collapse
|
19
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
20
|
Cordeiro RM. Molecular Structure and Permeability at the Interface between Phase-Separated Membrane Domains. J Phys Chem B 2018; 122:6954-6965. [DOI: 10.1021/acs.jpcb.8b03406] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rodrigo M. Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580 Santo André, SP, Brazil
| |
Collapse
|
21
|
Solanko LM, Sullivan DP, Sere YY, Szomek M, Lunding A, Solanko KA, Pizovic A, Stanchev LD, Pomorski TG, Menon AK, Wüstner D. Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic 2018; 19:198-214. [DOI: 10.1111/tra.12545] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Lukasz M. Solanko
- Department of Biochemistry and Molecular BiologyUniversity of Southern Denmark Odense M Denmark
| | - David P. Sullivan
- Department of BiochemistryWeill Cornell Medical College New York, New York
| | - Yves Y. Sere
- Department of BiochemistryWeill Cornell Medical College New York, New York
| | - Maria Szomek
- Department of Biochemistry and Molecular BiologyUniversity of Southern Denmark Odense M Denmark
| | - Anita Lunding
- Department of Biochemistry and Molecular BiologyUniversity of Southern Denmark Odense M Denmark
| | - Katarzyna A. Solanko
- Department of Biochemistry and Molecular BiologyUniversity of Southern Denmark Odense M Denmark
| | - Azra Pizovic
- Department of Biochemistry and Molecular BiologyUniversity of Southern Denmark Odense M Denmark
| | - Lyubomir D. Stanchev
- Department of Plant and Environmental SciencesUniversity of Copenhagen Frederiksberg C Denmark
- Department of Molecular BiochemistryRuhr‐University Bochum Bochum Germany
| | - Thomas Günther Pomorski
- Department of Plant and Environmental SciencesUniversity of Copenhagen Frederiksberg C Denmark
- Department of Molecular BiochemistryRuhr‐University Bochum Bochum Germany
| | - Anant K. Menon
- Department of BiochemistryWeill Cornell Medical College New York, New York
| | - Daniel Wüstner
- Department of Biochemistry and Molecular BiologyUniversity of Southern Denmark Odense M Denmark
| |
Collapse
|
22
|
Piña F, Yagisawa F, Obara K, Gregerson JD, Kihara A, Niwa M. Sphingolipids activate the endoplasmic reticulum stress surveillance pathway. J Cell Biol 2018; 217:495-505. [PMID: 29317528 PMCID: PMC5800815 DOI: 10.1083/jcb.201708068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Proper inheritance of functional organelles is vital to cell survival. In the budding yeast, Saccharomyces cerevisiae, the endoplasmic reticulum (ER) stress surveillance (ERSU) pathway ensures that daughter cells inherit a functional ER. Here, we show that the ERSU pathway is activated by phytosphingosine (PHS), an early biosynthetic sphingolipid. Multiple lines of evidence support this: (1) Reducing PHS levels with myriocin diminishes the ability of cells to induce ERSU phenotypes. (2) Aureobasidin A treatment, which blocks conversion of early intermediates to downstream complex sphingolipids, induces ERSU. (3) orm1Δorm2Δ cells, which up-regulate PHS, show an ERSU response even in the absence of ER stress. (4) Lipid analyses confirm that PHS levels are indeed elevated in ER-stressed cells. (5) Lastly, the addition of exogenous PHS is sufficient to induce all ERSU phenotypes. We propose that ER stress elevates PHS, which in turn activates the ERSU pathway to ensure future daughter-cell viability.
Collapse
Affiliation(s)
- Francisco Piña
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Fumi Yagisawa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Keisuke Obara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - J D Gregerson
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
23
|
Chan JP, Brown J, Hark B, Nolan A, Servello D, Hrobuchak H, Staab TA. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans. Front Genet 2017; 8:132. [PMID: 28983319 PMCID: PMC5613162 DOI: 10.3389/fgene.2017.00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P), mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1), which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.
Collapse
Affiliation(s)
- Jason P Chan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Jaylene Brown
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Brandon Hark
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Abby Nolan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Dustin Servello
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Hannah Hrobuchak
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Trisha A Staab
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| |
Collapse
|
24
|
Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing? Biochem Soc Trans 2016; 44:517-27. [PMID: 27068964 DOI: 10.1042/bst20150275] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1-4p target punctate ER-plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly?
Collapse
|
25
|
Santos FC, Fernandes AS, Antunes CAC, Moreira FP, Videira A, Marinho HS, de Almeida RFM. Reorganization of plasma membrane lipid domains during conidial germination. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:156-166. [PMID: 27815222 DOI: 10.1016/j.bbalip.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/10/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023]
Abstract
Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth.
Collapse
Affiliation(s)
- Filipa C Santos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia S Fernandes
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina A C Antunes
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe P Moreira
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
26
|
New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:119-80. [PMID: 27241220 DOI: 10.1016/bs.ircmb.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of biological membranes into structurally and functionally distinct lateral microdomains is generally accepted. From bacteria to mammals, laterally compartmentalized membranes seem to be a vital attribute of life. The crucial fraction of our current knowledge about the membrane microdomains has been gained from studies on fungi. In this review we summarize the evidence of the microdomain organization of membranes from fungal cells, with accent on their enormous diversity in composition, temporal dynamics, modes of formation, and recognized engagement in the cell physiology. A special emphasis is laid on the fact that in addition to their other biological functions, membrane microdomains also mediate the communication among different membranes within a eukaryotic cell and coordinate their functions. Involvement of fungal membrane microdomains in stress sensing, regulation of lipid homeostasis, and cell differentiation is discussed more in detail.
Collapse
|
27
|
Transmembrane voltage: Potential to induce lateral microdomains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:806-811. [PMID: 26902513 DOI: 10.1016/j.bbalip.2016.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
28
|
Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res 2015; 62:1-24. [PMID: 26738447 DOI: 10.1016/j.plipres.2015.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Abstract
The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution.
Collapse
Affiliation(s)
- Mélanie Carquin
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ludovic D'Auria
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
29
|
Marquês JT, Cordeiro AM, Viana AS, Herrmann A, Marinho HS, de Almeida RFM. Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9410-9421. [PMID: 26262576 DOI: 10.1021/acs.langmuir.5b02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoceramide is the backbone of major sphingolipids in fungi and plants and is essential in several tissues of animal organisms, such as human skin. Its sphingoid base, phytosphingosine, differs from that usually found in mammals by the addition of a hydroxyl group to the 4-ene, which may be a crucial factor for the different properties of membrane microdomains among those organisms and tissues. Recently, sphingolipid hydroxylation in animal cells emerged as a key feature in several physiopathological processes. Hence, the study of the biophysical properties of phytosphingolipids is also relevant in that context since it helps us to understand the effects of sphingolipid hydroxylation. In this work, binary mixtures of N-stearoyl-phytoceramide (PhyCer) with palmitoyloleoylphosphatidylcholine (POPC) were studied. Steady-state and time-resolved fluorescence of membrane probes, X-ray diffraction, atomic force microscopy, and confocal microscopy were employed. As for other saturated ceramides, highly rigid gel domains start to form with just ∼5 mol % PhyCer at 24 °C. However, PhyCer gel-enriched domains in coexistence with POPC-enriched fluid present additional complexity since their properties (maximal order, shape, and thickness) change at specific POPC/PhyCer molar ratios, suggesting the formation of highly stable stoichiometric complexes with their own properties, distinct from both POPC and PhyCer. A POPC/PhyCer binary phase diagram, supported by the different experimental approaches employed, is proposed with complexes of 3:1 and 1:2 stoichiometries which are stable at least from ∼15 to ∼55 °C. Thus, it provides mechanisms for the in vivo formation of sphingolipid-enriched gel domains that may account for stable membrane compartments and diffusion barriers in eukaryotic cell membranes.
Collapse
Affiliation(s)
- Joaquim T Marquês
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - André M Cordeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt University , Berlin, Germany
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
30
|
Kacirova M, Kosek D, Kadek A, Man P, Vecer J, Herman P, Obsilova V, Obsil T. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. J Biol Chem 2015; 290:16246-60. [PMID: 25971962 PMCID: PMC4481224 DOI: 10.1074/jbc.m115.636563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/21/2015] [Indexed: 11/06/2022] Open
Abstract
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.
Collapse
Affiliation(s)
- Miroslava Kacirova
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Dalibor Kosek
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| | - Alan Kadek
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Petr Man
- Microbiology,Czech Academy of Sciences, 14220 Prague, and Biochemistry Faculty of Science, Charles University in Prague, 12843 Prague
| | - Jaroslav Vecer
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | - Petr Herman
- the Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic
| | | | - Tomas Obsil
- From the Departments of Physical and Macromolecular Chemistry and the Institutes of Physiology and
| |
Collapse
|
31
|
Glucosylceramide Contained in Koji Mold-Cultured Cereal Confers Membrane and Flavor Modification and Stress Tolerance to Saccharomyces cerevisiae during Coculture Fermentation. Appl Environ Microbiol 2015; 81:3688-98. [PMID: 25795678 DOI: 10.1128/aem.00454-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.
Collapse
|
32
|
Herman P, Vecer J, Opekarova M, Vesela P, Jancikova I, Zahumensky J, Malinsky J. Depolarization affects the lateral microdomain structure of yeast plasma membrane. FEBS J 2014; 282:419-34. [DOI: 10.1111/febs.13156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/19/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Petr Herman
- Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Jaroslav Vecer
- Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Miroslava Opekarova
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Petra Vesela
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Iva Jancikova
- Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Jakub Zahumensky
- Faculty of Mathematics and Physics; Charles University; Prague Czech Republic
| | - Jan Malinsky
- Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
33
|
de Almeida RFM, Joly E. Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains. FRONTIERS IN PLANT SCIENCE 2014; 5:72. [PMID: 24634670 PMCID: PMC3943355 DOI: 10.3389/fpls.2014.00072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/11/2014] [Indexed: 05/08/2023]
Abstract
To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells.
Collapse
Affiliation(s)
- Rodrigo F. M. de Almeida
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de LisboaLisboa, Portugal
- *Correspondence: Rodrigo F. M. de Almeida, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal e-mail: ; Etienne Joly, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, 205 Route de Narbonne, BP 64182, F-31077 Toulouse, France e-mail:
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche ScientifiqueToulouse, France
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse III (Paul Sabatier)Toulouse, France
- *Correspondence: Rodrigo F. M. de Almeida, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal e-mail: ; Etienne Joly, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, 205 Route de Narbonne, BP 64182, F-31077 Toulouse, France e-mail:
| |
Collapse
|